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ABSTRACT
Typically applied to non-linear simulations of MHD instabilities relevant to magnetically confined
fusion, the JOREK code was originally developed with a 2D grid composed of isoparametric bi-
cubic Bézier finite elements, that are aligned to the magnetic equilibrium of tokamak plasmas. To
improve the applicability of these simulations, the grid-generator has been generalised to provide
a robust extension method, which allows the simulations of arbitrary domains of tokamak vacuum
vessels. This technique also requires the adaptation of boundary conditions along the edge of the
new domain. Demonstrative non-linear simulations of plasma edge instabilities are presented to
validate the robustness of the new grid, and future potential physics applications for tokamak
plasmas are discussed.

1 Introduction and Motivation

As fusion devices progress towards reactor-relevant conditions, the exhaust of particles and heat
onto plasma facing components (PFCs) is acknowledged to be a major challenge [1]. In JET, the
tungsten divertor is subject to damage in high power discharges, and there is growing concern that
divertor heat loads will be one of the main restricting factors for operation capabilities in ITER
[2]. Energy deposition on the divertor materials, due to steady-state heat fluxes as well as transient
MHD events like Edge-Localised-Modes (ELMs), will be considerably increased in burning plasma
experiments like ITER. Effectively most of the energy that crosses the separatrix into the Scrape-
Off Layer (SOL) is transported along field lines to the divertor targets, and this effect is enhanced
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by increased heat conductivity at higher temperatures [3–5]. Combined with the large amplitude
of these heat-fluxes, the longer duration of experimental pulses in reactor-sized devices will induce
significant strain on the tungsten tiles, possibly leading to erosion and melting [6]. The tungsten
tiles of the ITER divertor are designed to withstand up to 10MW.m−2 in steady-state, and several
thousands of transient events of up to 20MW.m−2 [7, 8].

Ultimately, heat fluxes on PFCs are determined by how much energy escapes from the well-
confined region inside the separatrix. It is well established that anomalous transport is responsible
for this energy crossing the separatrix [9], and it is also well established that this occurs either
in the form of turbulence filaments (blobs), or in the form of large-scale ELM filaments [10–13].
Hence, on one side, elaborate physics models (Fluid, MHD, drift-kinetic etc.) are indispensable to
yield a robust understanding of anomalous transport in tokamaks. On the other side, the elaborate
geometry of magnetic equilibria, including X-point and separatrix, is a fundamental ingredient for
the accurate description of filamentary transport at the plasma edge and in the SOL. This has
led a number of state-of-the-art numerical codes [14–18] to use various field- or flux-aligned grid
techniques, since it is essential to resolve the large parallel energy transport when these filaments
cross the separatrix. However, the extension of such grids to the entire vacuum domain of a tokamak
is not trivial, and often not undertaken.

In order to provide accurate estimates of divertor and first-wall heat-fluxes in present and future
tokamak simulations, it is essential to consider the exact plasma domain inside the vacuum vessel
wall. The precise location of individual wall components is necessary to obtain their respective
heat-fluxes, and the accuracy of the global wall geometry is also required to represent the transport
of neutral particles in various regions of the plasma domain. In addition, boundary conditions on
wall components that are not aligned to magnetic field lines constitute a key aspect of simulations
as a whole, particularly since boundary conditions have a direct impact on the plasma dynamics
in the entire SOL.

In this paper, we present the first results obtained using a new grid generator developed for the
JOREK code [19, 20]. This new grid generator enables the extension of single and double X-point
grids to the entire vacuum domain for arbitrary tokamak configurations. Simulations of ELMs
are demonstrated using wall-extended grids for the JET-ILW tokamaks. Section-2 presents the
JOREK code, including its bi-cubic Bezier finite-element formulation, and the visco-resistive MHD
models used for simulations. Section-3 describes the methods used to extend flux-aligned grids to
the first-vessel wall for arbitrary tokamak geometries. Section-4 discusses the use of Bohm Sheath
boundary conditions [9] with wall-aligned grids. Section-5 shows initial results of ELM simulations
in the JET-ILW tokamak, and discusses prospects for future studies with the new wall-extension
grid generator in JOREK. This article is closed with a brief conclusion in Section-6.
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2 The JOREK Code

2.1 Visco-resistive MHD with neutrals density

The 3D nonlinear MHD code JOREK was developed by Huysmans et al. with the specific aim to
produce simulations of Edge-Localised-Modes [19, 21]. The MHD model used for the present paper
is similar to that used in previous ELM and disruption studies [22, 23]. It is a six-field reduced
MHD model for the variables ψ (poloidal magnetic flux), Φ (electric potential), ~v‖ (parallel velocity),
ρ (ion density), T (total temperature), ρn (neutral density), including the two-fluid diamagnetic
effects [24]. The reduction of the equations assumes that the perpendicular velocity lies in the
poloidal plane, and that the toroidal magnetic field is constant in time, so that the total plasma
velocity and the total magnetic field are expressed respectively as

~vtot = ~v‖ + ~v⊥ = ~v‖ + ~vE + ~v∗i

= v‖ ~B +R~eφ ×∇Φ + δ∗R

ρ
~eφ ×∇pi, (1)

~B = ~Bφ + ~Bp = Fo
R
~eφ + 1

R
∇ψ × ~eφ, (2)

where R is the major radius, ~eφ is the toroidal unit vector and Fo = BoRo, with Bo being
the magnetic field amplitude at the reference major radius R = Ro. The diamagnetic component
of the perpendicular velocity is represented by the third term ~v∗i = δ∗Rρ−1~eφ × ∇pi, where pi is
the ion pressure and δ∗ = (ΩciRo)−1, with the ion gyrofrequency Ωci = eBo/mi. Substituting the
identities (1) and (2) into the visco-resistive MHD equations gives the reduced MHD model, first
derived by H.R. Strauss [25], with two separate equations for the parallel and the perpendicular
momentum. The complete set of equations is as follows, where diamagnetic terms are highlighted
in green, neutral density terms in red, and hyper-diffusive terms in blue:
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ρ
d~v

E
dt = − ρ~v∗i · ∇~vE − ∇⊥p + ~J × ~B + µ∇2 (~vE +~v∗i)

+
(
ρ2αrec − ρρnSion

)
~vE + µ

hyp
∇4~vE , (3)

ρ
d~v‖
dt = − ρ~v‖ · ∇~v‖ − ∇‖p + µ∇2

(
~v‖ − VNBI

)
+

(
ρ2αrec − ρρnSion

)
~v‖ + µ

hyp
∇4~v‖, (4)

∂ψ
∂t = η (j − jA) + R [ψ,Φ] − ∂Φ

∂φ

− δ∗R

ρ
[ψ, pe ] + δ∗

ρ

∂pe

∂φ
+ η

hyp
∇2j, (5)

∂ρ
∂t = − ∇ ·

(
ρ
[
~v‖ + ~vE +~v∗i

])
+ ∇ · (D⊥∇⊥ρ) + Sρ

+
(
ρρnSion − ρ2αrec

)
+ D

hyp
∇4ρ, (6)

∂p
∂t = − ~vE · ∇p − γp∇ · ~vE

+ ∇ ·
(
κ⊥∇⊥T + κ‖∇‖T

)
+ 2

3R2 ηj
2 + ST

+ ξionρρnSion − ρρnLlines − ρ2Lbrem, (7)

∂ρn

∂t = ∇ ·
(
~Dn : ∇ρn

)
+ Sρ −

(
ρρnSion − ρ2αrec

)
, (8)

(9)

where the density, temperature and current sources Sρ, ST and jA have been introduced. The
current source term jA also includes the time-dependent bootstrap current calculated using Sauter’s
formula [26]. The convective derivative, the parallel gradient, the perpendicular gradient, and the
Poisson brackets are defined as

d

dt
= ∂

∂t
+ ~vE · ∇,

∇‖ = ~b
[
~b · ∇

]
,

∇⊥ = ∇−∇‖,

[α, β] = ~eφ · (∇α×∇β) ,
~b = 1
|B|

~B.

As defined in [23], Sion and αrec are the ionization and recombination rate coefficients for
deuterium, ξion is the normalized ionization energy of a D atom (here set to 13.6 eV), and Llines

and Lbrem are the line and bremsstrahlung radiation rate coefficients (based on ADAS data [27]).
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Note that equations (3) and (4) can be reduced to scalar equations by projecting them in the
poloidal and parallel directions, respectively, by applying the operators ∇ · [R~eφ × ()] and ~b · ().
This reduced set of equations (without the diffusive transport terms and the diamagnetic terms) is
equivalent to that derived by HR.Strauss, where energy of the system is shown to be conserved at
first order [28, 29].

The perpendicular mass and thermal diffusivities D⊥ and κ⊥ used in simulations are ad-hoc
coefficients with a well at the pedestal region to represent the H-mode transport barrier. Spitzer
resistivity η = ηo(Te/Te,o)−3/2 is used, with Te,o the electron temperature at the magnetic axis.
Likewise, a temperature-dependent perpendicular viscosity is used: µ = µo(Te/Te,o)−3/2. The
Braginskii parallel thermal conductivity κ‖ is expressed as κ‖ = κ‖o(T/To)5/2. The ratio of specific
heat is γ = 5/3. Hyper-diffusive coefficients µ

hyp
, η

hyp
and D

hyp
are also used in these simulations

to improve numerical stability, but with values small enough not to influence the physics results.
Typically, η

hyp
∼ η2 is chosen (and similarly for µ

hyp
and D

hyp
).

The normalization of the equations is based on the magnetic permeability µo and the core density
ρo, so that time is normalized to a near Alfven time t = tSI/

√
µoρo. For a deuterium plasma with

particle density no = 6 × 1019m−3, a normalized time unit corresponds to approximately 0.5µs.
Naturally, current is normalized with µo and density with ρo. Pressure is normalized with µo.

2.2 Spatial and Temporal Discretization

The spatial discretization of the JOREK code is made of a 2D grid in the poloidal plane, and a
pseudo-spectral Fourier representation in the toroidal direction. The 2D poloidal grid is composed
with isoparametric bi-cubic Bezier finite elements, as described in [21]. This finite element grid
is aligned to equilibrium flux surfaces for the three regions of the core, the SOL and the private
region. This alignment along flux surfaces is particularly important in the region of the separatrix,
in order to treat accurately the fast parallel transport of energy along magnetic field lines.

In previous studies, the edge of the simulation domain was generally defined as a flux surface
in the SOL and private region, and a straight line for the target region, as shown in Figure-1. This
domain configuration is robust as it ensures Mach-1 Bohm boundary conditions (when the plasma
flow is set to the sound speed) are only necessary on the target boundary.

The time stepping is done using the implicit Crank-Nicolson scheme, so that the size of time
steps depends only on the time scale of the instabilities that are simulated. This implicit scheme
results in a sparse system of equations, which is solved using a Generalized Minimal REsidual Solver
(GMRES). The preconditioner for this iterative GMRES is obtained by solving independently
each sub-matrix corresponding to different Fourier harmonics, which amounts to a block-Jacobi
preconditioner. These sub-matrices are solved using the direct parallel sparse matrix solver PaStiX
[30].

In order to allow the n = 0 component of the ~E × ~B and parallel flows to evolve towards a sta-
tionary equilibrium, the simulations are first run without toroidal modes, with only the equilibrium
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Figure 1: A typical low-
resolution JOREK grid with
X-point. The domain bound-
aries are defined by flux sur-
faces in the SOL and the pri-
vate regions, and by straight
lines for the divertor targets.

n = 0. This allows the Bohm boundary conditions to diffuse into the SOL. Note that at the zeroth
time step, ~v‖ is Mach-1 on the target, and zero inside the plasma, already at the nodes adjacent to
the boundary.

3 The Wall-Extension Grid Generator

In view of adressing immediate tokamak physics issues of various domains, ranging from divertor
physics to plasma-wall interactions during disruptions, the grid generator of JOREK has been
generalised to allow the extension of a flux-aligned grid to any surrounding wall structures. The
method developed for this purpose is described here to demonstrate its robustness.

JOREK can take any input as initial Grad-Shafranov equilibrium, and use the exact pressure
profile, FF ′ profile and ψ-map given from any equilibrium such as a geqdsk file from an EFIT++
equilibrium [31]. However, in some cases, particularly ELM studies, it is desirable to use different
pressure and FF ′ profiles than the ones provided by external equilibrium solvers, to ensure that the
initial equilibrium is unstable with respect to peeling-ballooning modes. In these cases, the ψ-map
from the original equilibrium is often inconsistent with the new pressure profile, which results in a
significant imbalance between the ∇p term and the ~J × ~B term of equation (3). This would result
in an inherently unstable equilibrium. To ensure this balance is respected, JOREK solves its own
Grad-Shafranov equilibrium internally.

In previous cases, as for Figure-1, a polar grid was used to solve the new Grad-Shafranov
equilibrium, for which the pressure and FF ′ profiles are given as input by the user, and the
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(a) (b) (c)

Figure 2:
(a) Magnetic flux contours (blue) for a Super-X configuration of the MAST-U device. The connected double-null separatrix
contour is shown in red, the first-wall in green, and the PF-coils in yellow.
(b) The initial rectangular grid on which the JOREK Grad-Shafranov equilibrium is solved, to obtain a flux-map consistent
with ballooning unstable pre-ELM pressure profiles. For this Grad-Shafranov equilibrium, the boundary condition is the flux
taken from the input equilibrium (a). This initial rectangular grid is defined inside the first-wall, to avoid the necessity of
taking PF-coil currents into account for the Grad-Shafranov equilibrium.
(c) The initial flux-aligned grid contained inside the first wall. This is the grid which can be extended. Note that a low-resolution
grid is shown here for visual purpose.

boundary condition for the solver is taken as the ψ-values of the original equilibrium data along
the contour of this polar grid. The final flux-aligned grid is then built using the new equilibrium
calculated on this polar grid. In the present case, since we aim at building a grid that extends
to the wall, instead of a polar grid, a rectangular grid is built inside the first-wall, as shown in
Figure-2b. This is convenient as it allows the Grad-Shafranov solver to ignore all PF-coil currents
outside the wall.

Before extending a grid to the surrounding wall, we must build an initial grid inside that wall.
This is done in a similar manner as in Figure-1, where the target must be aligned to the wall. An
example of such initial grids is shown in Figure-2c, for a MAST-U Super-X configuration. Since the
JOREK grid is composed of quadrilateral elements, an extension of a given grid must be composed
of a number of quadrilaterals. Thus, the wall-extended grid is built simply by adjoining additional
quadrilateral grid patches to the initial grid.
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Figure 3: An example of successive grid patches applied between the flux-aligned X-point grid and the wall. Grid extension
patches need to be quasi-quadrangles, but do not need to have linear sides. The user specifies the sides of the patch (red lines)
using a set of input points (red points). The grid generator then automatically extends the grid between the grid side and the
wall side (blue lines).

The flexibility of Bezier elements allows for grid patches to have non-linear sides, including
curves and angles. The idea of the new generator is that the user can provide near-quadrilateral
patches between the initial grid and the wall. This is done by specifying the two sides of each
patch, between the grid and the wall, like the red lines in Figure-3. Note that these side can be
composed of multiple lines. The other two sides of the patch are determined automatically, along
the grid, and along the wall, like the blue lines in Figure-3. The only requirement is that successive
patches need to have matching sides. To ensure a smooth transition between the initial grid and
the patches, the radial distribution of elements for the patches is automatically adapted such that
their radial resolution at the junction matches that of the initial grid. Of course, the user can also
specify the radial resolution of the new patches, but the poloidal resolution, however, is determined
by the initial grid. In the case of matching successive patches, as in Figure-3, the radial resolution
of the first patch determines the radial resolution of the following patches. Note that this patching
method can be used any number of times, such that new grid patches can also be added on top of
previous grid patches, which enables the description of complex wall structures, such as corners or
isolated vacuum regions.

This grid-extension method is generic and robust enough that it may be applied to any toroidally
axisymmetric tokamak device. Figure-4 shows examples of extended grids for MAST-U, JET-ILW
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and JT-60SA, which all have very different wall contours and separatrix shapes.

(a) (b) (c)

Figure 4:Examples of wall-extended grids for three devices: (a) MAST-U, (b) JET-ILW and (c) JT-60SA.

4 Sheath Boundary Conditions with a Wall-aligned Grid

With this new wall-extended grid, appropriate boundary conditions are required. The usual case
is that magnetic field lines are incident to the boundary surfaces, thus requiring Bohm (Mach-1)
and Sheath boundary conditions [9]. These are expressed as:

~vtot · ~n = ± cs =
√
γT ~b · ~n, (10)

nT~v‖ + κ‖∇‖T = γshnT~v‖. (11)

where ~n is the unit vector normal to the boundary, ~b is the unit vector along the magnetic field,
γ = 5/3 and γsh = 4.5. In the standard model, without neutrals density, density and temperature
have free outflow boundary conditions at the target (no density reflection). However, when using
the neutrals density model, as described above, a reflective coefficient ξre can be applied at the
boundary, such that density arriving at the target is (fully or partly) reflected as neutrals into the
simulation domain, as in [32]:
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Dn∇ρn · ~n = − ξre ρ~v‖ · ~n, (12)

(a) (b)

Figure 5:
(a) The direction of Mach-1 boundary conditions is determined by the direction of field lines going in/out of the domain
boundary, which can change along the wall,
(b) The change in direction of the Mach-1 boundary condition can occur within a few elements.

It should be noted that the direction of the magnetic field may change as we step along the
boundary of the domain, such that the sign of ~b · ~n may be going from positive, across zero,
to negative. This is illustrated in Figure-5. It implies that the Mach-1 boundary condition can
reverse direction within a grid element. A threshold is used for the application of Mach-1 boundary
conditions, which requires that the angle α between the magnetic field and the boundary is larger
than 3◦, which is approximately twice the lower limit given by Geraldini et al. [33]:

√
me

mi
� α� 1 (13)

If the angle α is smaller than 3◦, then instead Dirichlet boundary conditions are applied to ψ,
Φ, ~v‖ and j, while Neumann boundary conditions are applied to ρ, T and ρn. Even with relatively
low parallel viscosity for equation-4, simulations remain numerically stable. In the ELM simulation
presented in the next section, a spacially uniform value of µ‖ = 10−6kg ·m−1 · s−1 was used.

5 Current Physics Applications with the Wall-extended Grids

First-wall and divertor heat-fluxes

In order to demonstrate the ability of the new wall-extension grid-generator to handle non-linear
simulations of large type-I ELM crashes, a type-I ELMy H-mode experiment of JET-ILW has been
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used. Pulse JPN-83334, which was thoroughly simulated and analysed in [22], is a 2.4T, 2.4MA,
low-triangularity plasma, with 25MW of NBI heating, and with the outer strike point positioned on
the main (bulk) tungsten divertor tile. The pre-ELM pedestal electron density and temperature are
5·1019m−3 and 1.2keV respectively, which is unstable with respect to ideal MHD ballooning modes.
For this test simulation, relatively high MHD parameters were used: a resistivity 200 times higher
than ηspitzer, and a viscosity of 10−6kg ·m−1 · s−1, and diamagnetic effects are not included. The
toroidal resolution used was n = 2, 4, 6, 8, 10. More challenging simulations with the wall-extended
domain, using higher toroidal resolutions and more challenging diffusive parameters, will be the
focus of future research in the coming years.

(a) (b)

Figure 6:
(a) The parallel heat-flux amplitude in a JET-ILW ELM simulation,
(b) The electron temperature Te [eV] on the wall during an ELM simulation in JET-ILW.

The energy loss of this simulated ELM is 3.9% of the total plasma energy content, which
is reasonably close to the experimental value of 4.6% (averaged of all ELMs in the discharge).
The peak heat-flux on the divertor target reaches just above 380MW.m−2, which is also close to
the experimental value of 360MW.m−2 (also averaged over all ELMs), and close to values found
previously in [22]. Note that, while reasonable agreement is achieved between this simulation and
the corresponding experiment, the purpose of this work is not to validate the JOREK simulations
(which would require diamagnetic effects as well as lower resistivity and viscosity), but rather to
demonstrate the robustness of the new wall-extended grid and its applicability to simulations of
type-I ELM instabilities. Figure-6a shows the parallel heat-flux for a snapshot of this simulation,
while Figure-6b shows the temperature of the first wall at this same snapshot.
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Divertor configurations, gas-fueling, and detachment

One of the main interests of providing an accurate description of the first-wall boundary in JOREK
simulations is to enable the simulation of various gas-puffing levels as well as divertor configurations.
As described in [34], JET-ILW experiments have demonstrated the importance of gas-puffing levels
regarding ELM dynamics as well as global confinement levels. Similarly, the separatrix position
with respect to the gas-injection valves and the divertor pumps plays a major role in neutrals
dynamics and, as a consequence, pedestal performance in JET-ILW experiments [35].

Although the neutrals model described in section-2.1 and in [23] may not be sufficient to fully
describe the complete neutrals dynamics in the SOL of JET-ILW (or other devices), it could provide
a preliminary insight into the effect of SOL neutrals levels on pedestal and ELM physics. Figure-7
shows a test simulation of an ELM using the full model described in Section-2.1. The interaction
of plasma filaments with the neutrals background is clearly visible in the upper SOL region.

Figure 7: A simulation of ELM filaments using the neutrals density model with divertor reflection of neutrals. Electron
density (left) and neutrals density (right) are shown in the divertor region. Both quantities are normalised to the central ne

value: 0.65× 1020m−3.

Further work is under way to benchmark JOREK simulations of neutrals simulations with
SOLPS [36], particularly addressing simulations of detachment and ELM burn-through in the new
MAST-U device [37, 38]. As shown in Figure-4a, the detailed description of the entire plasma
domain enables the representation of increased neutrals pressure inside the closed divertor leg,
crucial for detachment studies, as well as the computation of heat-fluxes on the nose of the divertor
(where the outer wall almost reaches the outer leg, just below/above the X-points). However, this
is a continuing effort which is left for future publications. In addition, a project is underway to add
kinetic neutrals as particles [39].
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6 Summary and Future Studies

A new grid generator has been developed for the JOREK code, enabling any equilibrium to be
meshed, including the entire plasma domain, all the way to the first wall. The appropriate fluid
boundary conditions are applied to all wall surfaces, providing a detailed description of SOL flows.
This paper demonstrates the practical feasibility of building grids for various tokamak devices,
and an advanced JET-ILW ELM simulation shows the robustness of such new grids when used for
state-of-the-art non-linear MHD simulations.

Figure 8: A synthetic diagnostic of JET fast-visible camera for a JOREK ELM simulation (left), compared to an experiment
(right).

The wide range of physics areas accessible with this new grid generator is duplicated by its
coupling with the JOREK neutrals density model. Advanced studies of divertor, SOL and pedestal
physics, including detachment, ELM burn-through and impurity transport, can now be done in a
detailed and systematic manner. This work also contributes a significant step towards the full 3D
description of plasma-wall interactions in disruption studies with the JOREK-STARWALL code
[40, 41]. The goal of detailed 3D tiled-wall representation, to provide precise calculations of hiro
and halo currents during disruptions, is a long-term challenge, and one of ITER’s and DEMO’s
most pressing issues. Finally, this improvement enables direct comparisons of simulations with
current experiments, as shown in Figure-8.
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