
UKAEA-CCFE-PR(20)133

Robert Skilton, Guy Burroughes, Matt Goodliffe

Future-Proofing Robotic
Maintenance and Inspection Systems

by Abstraction and Standardisation
of Distributed Communications



Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/


Future-Proofing Robotic
Maintenance and Inspection
Systems by Abstraction and

Standardisation of Distributed
Communications

Robert Skilton, Guy Burroughes, Matt Goodliffe

This is a preprint of a paper submitted for publication in
Robotics and Autonomous Systems





Future-Proofing Robotic Maintenance and Inspection Systems by Abstraction
and Standardisation of Distributed Communications

Robert Skiltona,∗, Guy Burroughesa, Matt Goodliffea

aRACE, UK Atomic Energy Authority, Culham Science Centre, Oxfordshire, UK

Abstract

Future experimental facilities, hazardous energy generation assets, and decommissioning facilities will require

ever greater degrees of remote maintenance, which will be facilitated by robotic systems. However, as the

plant scales so does the complexity of the handling systems. Moreover, these long-lived (30+ years) handling

systems will need to maintained and upgraded. Currently, there exist remote handling architectures are to

highly coupled monolithic systems that evolve in their life-time in to unmanageable complexity. We propose

an architecture, enabled by a novel communication protocol; which enable scalable standardisation, and

novel distribution method that is suitable for mixed real-time applications of realistic network infrastructure.

The architecture has been demonstrated in a laboratory environment, will be further deployed in real-world

applications, and is directly applicable to many other robotics scenarios.

Keywords: Robot Communications, Robot Operating Systems, Software Framework, Networked Robotics,

Distributed Control

∗Corresponding author
Email addresses: robert.skilton@ukaea.uk (Robert Skilton), guy.burroughes@ukaea.uk (Guy Burroughes),

matt.goodliffe@ukaea.uk (Matt Goodliffe)
URL: www.race.ukaea.uk (Robert Skilton), www.race.ukaea.uk (Guy Burroughes), www.race.ukaea.uk (Matt Goodliffe)

Preprint submitted to Robotics and Autonomous Systems December 18, 2017



1. Introduction

In hazardous environments such as nuclear reactors where it is not possible or desirable to allow human

entry, robotic systems are often employed to carry out necessary tasks such as inspection and maintenance.

For large scale experimental devices like the ITER nuclear fusion experimental device [1] currently being built

in the south of France, reconfigurability is paramount. In order to maximise their science value per dollar5

it is inevitably required that the facilities have a high level of flexibility so that they can track the science

that they advance. However, as these devices have a natural tendency to become larger, more complex, and

more hazardous, they inescapably require increased levels of remote maintenance. Maintaining these complex

facilities is challenging due to having to deal with changing maintenance requirements, managing obsolescence

in long-life systems as well as managing the impact of obsolescence mitigation activities, allowing for the10

integration of many items from different suppliers and nationalities.

We propose several mechanisms for addressing these problems, including a novel interface representation,

communications protocol, and software framework. We take inspiration from the principles of Object Oriented

Design (OOD), and attempt to solve the described problems using the principles of encapsulation and

standardised interfaces. We demonstrate an approach that extends the principles of traditional middleware15

systems towards solving larger issues than just communications and remote procedure calls.

Initial results have proven highly successful and we present a number of application test cases. Although

this work is motivated by nuclear fusion remote maintenance, the outcome is much more widely applicable.

Figure 1: A remotely operated robotic facility, designed to maintain the Joint European Torus (JET) nuclear fusion experimental

reactor.

2



Figure 2: Monolithic architectures with high coupling and low cohesiveness often result in challenging scenarios arising from

system evolution. This is often most clearly visible in system wiring.

2. Background

High energy physics research devices are often large, complex, and present environments which are20

hazardous to humans for reasons of elevated temperature, radiation, and toxic materials. Examples include

the Joint European Torus (JET) experimental fusion reactor [2], the ITER experiment, The European

Spallation Source (ESS)[3] currently under construction in Sweden, and the Chinese Fusion Engineering Test

Reactor (CFETR) [4].

Due to the long lifespan of these experimental devices, ordinarily in excess of 30 years [], coupled25

with the changing requirements that results from the experimental nature of the facilities and accelerating

external developments, maintenance and reconfiguration of equipment within these hazardous environments

is frequently required. This is typically conducted using tele-robotic devices, and remotely controlled tools

and equipment [5].

As such, the remote maintenance systems themselves can frequently require reconfiguration to meet30

the new needs of the plant being operated upon. Traditionally, architectures for remote maintenance have

been focussed on delivery on short-term programme renewal schedule (i.e. 2 years). This inevitably pushes

future-proofing to a low priority and results in ad-hoc, highly coupled monolithic architectures with low

cohesion, reulting in degradation of quality of systems as shown in Figure 2. However, this reconfiguration

scheme requires significant effort to be expended in order to make relatively small changes, and does not35

3



Figure 3: The ITER cask transportation system.

scale linearly with the scale of the system.

ITER and its supporting equipment will be vast, filled hundreds of complex devices all requiring ad-

vanced/experimental control systems developed by over 20 countries over a decade. For example, the cask

transport system which will transport sealed cargo containers to and from the reactor and the advanced

de-manufacturing hall. It will achieve this on an automated omni-directional vehicle that load and unload40

the cask safely. In a single cycle a cask transporter will interact with hundreds of different control systems,

accessing controlled areas, interfacing and docking with airlocks, stowing and deploying various robotics

components. This is not a unique example in ITER, almost all components will need to interface with

hundreds of other in the same way. If JET is an indicator it will be maintained and upgraded for 30 years.

Thus, ITER must be future-proof to advancements in technologies.45

Also consider the human interfaces within a complex facility comprised of hundreda of robotic systems.

How will maintenance staff support and diagnose issues in this system. How will operators control hundreds

of separate control systems? Ideally, a single cohesive platform for human interaction could be generated

allowing for a single point of access.

Another issue relates to the integration of many items from different suppliers, possibly different collabo-50

rating nations, into a functioning integrated capability. All of these systems will need to be integrated into a

working capability, with generic human-machine interfaces, and will likely require a non-specialised operator

workforce due to the expense of having individual teams trained on specific equipment.

All of these are essentially change management issues, and the problem can be phrased: “How can we

allow for the ongoing, seamless removal, addition, or modification of any given subsystem within a remote55

4



maintenance system whilst minimising impact on other subsystems?” The ideal scenario is one where a change

to one subsystem does not require any change whatever in any other subsystem, yet all of the subsystems

are able to continue functioning and interacting throughout the change process. This is also true for the

human elements of the remote maintenance; the operators and maintainers should be minimally impacted

by subsystem changes, ideally not needing to undergo time consuming and costly retraining. One further60

issue that presents itself when we try to standardise interfaces is that of bespoke vs. COTS systems. When a

bespoke system is developed for a particular application, it is relatively simple to conform to a set of standard

interfaces.

However, due to the need to reduce cost and take advantage of the reliability benefits of COTS equipment,

bespoke systems are rarely developed (and shouldn’t be) where COTS equivalents are available. We are65

therefore faced with a problem of providing standardised interfaces which can both be built into bespoke

equipment, and added on to COTS equipment.

3. Related Work

Decoupling of systems and standardised communications are tasks traditionally performed using middleware

platforms, so it is instructive to investigate existing middleware. Middleware can help software developers70

avoid having to write application programming interfaces (API), bespoke bus protocols, or highly tailored TCP

message protocol for every control system, by serving as an independent communications interface management

system for their applications. For operation over unreliable communications networks, use of mediator tools

(middleware) can be of significant benefit since they generally provide built-in mechanisms and tools for

management and supervision of Quality of Service and analysis of eventual failures in telecommunication75

services. Finally, middleware should assist in handling rapid and secure transactions over many different

types of computer environments, providing independence from operating systems, programming languages,

and communications transportation mechanisms.

Middleware and communication frameworks such as ICE [6], DDS [7], and Protocol Buffers [8] are mainly

focused on providing communications functionality and so are not concerned with allowing flexible, decoupled80

evolution of systems.

This is also true for middleware designed for use with physical devices such as robotics; for example, ROS

[9]. ROS is an open-source robot operating system provided by the Open Source Robotics Foundation. ROS

provides a structured communications middleware layer above the host operating systems of a heterogeneous

compute cluster. It was design with a philosophy of modular, tools-based software development, and is85

hence focused primarily on provision of reusable tools. It aims at maximizing the reusability of available

robot sensor visualizations, sensor fusion and control algorithms. It has gradually managed to gather a large

development community and it has become a popular framework for robotic platforms, primarily within

5



academic research.

ROS defines standard message types for commonly used robot sensor data such as images, inertial90

measurements, GPS, odometry etc. for communicating between nodes, thus separate data structures do

not need to be explicitly defined for integrating different components. However, these messages have been

created on demand and they are continuously evolving as new needs are identified, causing compatibility

issues. ROS is a powerful communications tool, and ROS 2.0 will probably be a powerful communications

tool capable of coping with real-time communications. However, it could never fairly be described as plug95

and play. Its overly permissive nature inevitably leads to highly coupled monolithic solution arising, causing

lasting maintainability and upgradability issues.

ROS always requires a large engineering effort to integrate every device, no two systems are the same

(e.g. USB cameras, IP cameras), ROS is a communications framework not a “systems of systems framework.

Adding a new object into the systems, like an improved robot, is almost guaranteed to require an extensive100

amount of expert knowledge and engineering.

Finally, the lack of defined framework standards leads to reproduction of work and inconsistent designs

naturally arise, (1 good standard is better than 50 great standards). This is especially true for user interfaces.

MOOS [10][11] suffers from the exact same problems as ROS, without the promise of real-time and

determinism of ROS 2.0. MOOS does offer the MOOSDB, which acts as a central server for all communicated105

information in the system.

Another ROS-like system is EPICS [12], The Experimental Physics and Industrial Control System, is a

software environment used to develop and implement distributed control systems to operate devices such as

particle accelerators, telescopes and other large experiments. As with ROS, EPICS uses client/server and

publish/subscribe techniques to communicate between the various computers.110

GenRobot, based on Generis [13] is generic low level control system software controller for the RH Control

System. It aims to solve the problems of control robots in uniform, reliable, and SIL2 fashion, which is crucial.

But is not the same problem as posed in this paper. Similarly, OROCOS [14] falls into the same field of

solving the problem of a deterministic middleware for robotics but other than this valuable distinction suffers

from the same issues as ROS.115

Another interesting example is TAO2000 [15], which is a core software platform dedicated to computer-

aided force-feedback teleoperation. TAO2000 has been developed by the CEA LIST as a generic master–slave

force feedback teleoperation system able to control different types of manipulators. Similar to many other

middleware, most of the TAO2000’s reusable components. However, unlike ROS and Orocos; TAO2000

is a tele-robotics oriented system, with a well-defined set of features, including control and graphical user120

interface (GUI) capabilities. Although some robotics modes are available and are frequently used during tasks,

TAO2000 is dedicated to force-feedback tele-manipulation. It allows high-speed synchronization between

6



several real and virtual mechanisms (master arm, slave arm, camera, dynamic simulation engine, etc.).

However, because of its specific nature its centralised system cannot aid in the larger problems of a system

like ITER. But there are useful lessons to be learnt in it abstraction layers.125

An alternative approach to use of this type of middleware framework is using a distributed industrial

control systems frameworks, such as Another noteworthy system is SCADA [16]. Supervisory control and data

acquisition (SCADA) is a control system architecture that uses computers, networked data communications

and graphical user interfaces for high-level process supervisory management, but uses other peripheral devices

such as programmable logic controllers and discrete PID controllers to interface to the process plant or130

machinery. Primarily, SCADA is monitoring and data logging systems which is supervisory software. It is not

designed as a control processing framework leaving the underlying system to suffer from the issues described

above. Similar to the previous mentioned middleware solutions, DCS and SCADA based systems require

significant integration and reconfiguration effort. However, the fourth generation of SCADA demonstrates

the utility of a distributed virtual model in monitoring and security concerns that occurs with systems with135

these characteristics.

Whilst our proposed system does not provide all of the features available in all of the described frameworks,

it does address the more fundamental problem of impact propagation during system evolution, and therefore

forward compatibility and future-proofing of complex systems of systems.

4. Philosophy of the Standardised Framework140

In this section, we look at the basic goals and underlying principles of the solution, essentially forming a

high-level description of the key considerations of such a system.

Distributed and Decentralised

To support a scalable network on robots and devices, it will be necessary for the framework support a

distributed network of devices. Furthering this philosophy, there should be no central point in the distributed145

network as this would introduce a single point of failure and would also introduce a bottleneck to scalability.

Encapsulated

Implementation is entirely hidden, with only the standard, generic interface presented to the outside

world. Modules should be self-contained, so that they can be verified and validated once and deployed in

multiple situations. Modules should verify their input and output, so that the only object that control150

modules memory and functionality is the module itself.

7



Scalable Standardisation

Functions and data should be abstracted as far as reasonably practicable. To improve scalability, ensure

maintainability, and future proofing large scale systems a degree of standardisation must take place. However,

this must be tempered with the understanding that technology is developing faster than any committee can155

hope to understand let alone control. Thus, the correct tool must be developed to enable scalable layers

of abstraction to be developed, balancing constraint and permissiveness. This should be achieved that if a

modules API is extended, modules unaware of the extension should not be impeded by the extension. This is

addressed more in Section 5.

Forward and backward compatible160

The communications and data model shall be compatible with a broad range of inconceivable future

systems, and it should be possible to modify the representation whilst maintaining compatibility with older

systems which should not require modification. The system must therefore be unassuming about how it will

be used, or which other systems may need to work with it.

Homogeneous165

All participants present the same interface and interact in a functionally identical way. They should

interact in the same manner regardless of physical topology (i.e. physical distribution). The modules to

enable distribution and support any topology and make it easier for developer to deploy should agnostic

distribution. To Distribution agnostic the modules should be unaffected whether the modules are connected

to are local or remote. However, this should not infringe on the performance benefits of having local modules.170

No Impact Propagation

Changing (adding, removing, or modifying) any given subsystem should never require a change to be

made in any other subsystem (though some may be desirable to achieve specific interfaces). There should be

no need to recompile any interfacing software when making a system change.

Middleware175

The communications mechanism shall be independent of implementation including underlying operating

systems and transport mechanisms, thereby not becoming an integration or obsolescence risk itself.

Self-Describing units

A system shall provide not only its data, but also a definition of the structure and meaning of that data,

such that other systems can interpret and use the information. This goes towards developing a transparent180

connection, but a unique and usable API, whilst also adding additional semantic data. The communications

8



protocol should be self-describing in a manner that doesn’t require expert level knowledge, or compilation

of source code for two systems to communicate. Additionally, this information should include semantic

information about the module that it is describing, to increase the possible functionality and improve

discoverability.185

Distributed database

A system should make no prior assumptions about what its data will be used for. It simply publishes

everything. Other systems can make use of this information as they individually require. Everything should

be made available. The middleware should act like a database, as single point of access. Data can be added,

removed, updated, and queried all in an atomistic fashion. Whilst being decentralized and distributed.190

Deterministic

The framework should support a repeating control cycle with a deterministic order of operation. In

particular, the framework should minimise jitter and lag, whilst also behaving predictably when time

constraints are violated. Jitter is the deviation from true periodicity of a periodic signal, such as reading

or writing to and from a hardware device whilst lag is the absolute delay of propagation of that signal.195

Furthermore, whilst parts of these systems may contain the usual hard periodic tasks, requiring known

bounded response time and controlled jitter, other parts may be made of much more complex soft (or

non-hard) tasks to deal with sporadic or aperiodic events, leading to a considerable task diversity. Moreover,

with distributed systems there is a requirement for a suitable communication network capable of dealing

with the new demands task diversity dictates. Indeed, network protocols must deal with different traffic200

patterns and must provide not only controlled jitter and bounded message transmission time, as required by

the usual hard tasks, but also high throughput, as demanded by soft and other non-periodic tasks. As a

result, industrial communication networks, known by being reliable and predictable, may not suffice anymore

due to their usual low bandwidth

The framework must be able to cope with poor, wireless, and realistic network infrastructure in a manner205

that will allow for control system to operate and communicate; although, perhaps with reduced functionality.

To start complex system in a low risk manner more than just its execution must be deterministic, it’s

necessary for a system to be initialised and de-initialised in a deterministic fashion. The framework should

enable this even over a distributed network.

Dynamic210

In a distributed modular system, the system should be capable of supporting dynamic insertion and

removal of modules in the graph. Each of those modules should be capable of dynamically changing their

configurations at any time. One or more monitoring system should monitor be able the state of the system

9



as a subgraph or full topology. The modules or an external system should be able to dynamically change the

module’s connections (the dataflow) to other connections. All of these capabilities together in a framework215

allows for complex systems which are capable of dynamic behaviour. The network of modules could become

vast, to a point where a single computer could not understand it. A framework should enable a system to

find and connect to only the modules it needs to, i.e. connecting only to a subgraph.

Generic interface tools

The architecture should allow for the implementation of generic interface tools which can be used to work220

with any possible compatible system.

5. A Standardised System Representation and Protocol

A communications protocol and framework has been developed to address the issues presented, and

achieve the stated benefits. This consists of a data representation, and a transport protocol, to distribute the

data, which varies depending on the underlying implementation.225

The standardised data representation is in the form of a sparsely connected graph of generic nodes

representing system elements. These nodes are known as Simplexes. Simplexes are the primary elements of

the architecture. A simplex is a single unit of functionality, highly encapsulated, and highly cohesive. Every

simplex is master of it domain, it’s the only thing that can change its data and control its domain, thus

preventing strong inter-simplex coupling.230

5.1. Data Representation

The data is encoded in a specialised form which is well suited to representation of generic data and

interfaces as it is allows for the definition of complex data structures, whilst ensuring high performance in a

real-time context.

A ‘model’ of the data is constructed, which has a graphical structure. The complete system is represented235

as a graph of Simplexes which comprise the system at an appropriate level of granularity.

The model is transmitted using a publish-subscribe communications service, resulting in a novel distributed

database model. Where all the data is placed into a small number of structured and defined tables in a

distributed database. This enables a flat unchanging protocol that can universally accessed, whilst allowing

query-able extensible data.240

Some of tables are kept in a distributed p2p fashion. Other can be subscribed to by attaching to their

respective clusters. Their type will be noted in the following descriptions.

The data is then further divided into a number of subsets as follows:

10



Figure 4: Key components of the protocol

11



5.2. Simplexes

A table of all the simplexes available on the network are kept in a distributed table. This table includes245

enough information for dynamic discovery of Simplexes. This information includes: Global Unique Identifier

(GUID) of the simplex; Cluster in which the simplex is hosted; Domain and sub domain in which the simplex

operates, an ID for the simplex in the sub-domain, simplex type hierarchy, and some semantic tags about the

simplex.

5.3. Structure250

The structure representation which defines the simplexes in a cluster, including all of a simplexes Data,

Commands, and additional semantic information about the Simplex. Defining the structure of the memory

for simplex and its cluster permanently. This allows for communications to occur without use of dynamic

memory, which is necessary for Real-time capabilities.

5.4. State255

The state of the Simplex consists of the full set of signals which are exposed by the Simplex for external

use. Typically, this contains all of the variables that are used by or represent the condition of the node. The

state is further divided into status data (information that is expected to change frequently – at or near the

loop cycle frequency) and config data (information that changes infrequently or as a result of specific irregular

events or commands).260

Information here is stored in key-value sets, where the value may be a single value or an array of values.

This simple mechanism allows a wide range of possible data representations such as scalar values, text strings,

vectors, matrices, quaternions, etc. to be stored in an entirely generic way. This essentially forms a hybrid

relational and key-value database representation of the system’s data.

Critically, this generic representation means that all data is represented in a globally understood way,265

meaning that it is impossible for a Simplex to convey data that cannot be understood by any other Cortex

system.

5.5. Control Interface

A control interface is represented by two main items: A definition of the commands that the node can

carry out; an indication of the commands that are available or valid at the present moment; and a mechanism270

for the command to be used. All of which are in three separate tables.

5.6. Events

Events are discrete things that take place. Examples include equipment faults, changes of mode, completion

of processes, etc. Events are published by Simplex only once, when they happen and kept in a global table.

It is generally used to system-wide notifications, and monitor diagnostic information.275

12



5.7. Transport Protocol

This Protocol can all be transmitted over a publish-subscribe mechanism such as DDS, a client-server

mechanism such as TCP/IP, or a local mechanism such as shared memory or file storage. All communications

are associated with QoS requirements, which includes timeliness and liveliness, as well information about

when the internal data was generated. This makes it ideal for dealing with distributed real-time systems or280

systems on realistic and poor network infrastructure (e.g. Wi-Fi). It can also support various and variable

frequencies.

P2P Persistence servers that exist as separate applications use a publish-subscribe model to enable a

p2p distributed database each managing a set of lines in the table and updating remotes, ensuring their

correctness. This mechanism is used for dynamic discovery primarily and not for high throughput or real-time285

necessary communications. Another feature of the Distributed Database method, is that enables the use

of a query language to allow rapid, effective and structured filtering of the table. Most importantly, the

benefit of the distributed database model is that it guarantees continuous real-time availability of all critical

information.

6. A Standardised Framework290

The architecture is comprised of a software layer, which embeds the standardised representation of the

data and interfaces in the form of a sparsely connected graph of highly encapsulated Simplex nodes.

Simplexes are the primary elements of the architecture. A simplex is a single unit of functionality, highly

encapsulated, and highly cohesive. Every simplex is master of it domain, it’s the only thing that can change

its data and control its domain, thus preventing strong inter-simplex coupling.295

Each Simplex is composed of 3 elements:

• The Data, which is the publicly exposed data.

• The Commands, which are akin to remote procedure calls, but are more like functionality requests.

• The Functions, which is the repository for the actual algorithmic functionality.

Simplex data and interfaces are represented in a standardised way, providing homogeneity, and enforcing300

abstraction.

A control system or similar is then constructed from a collection of Simplexes connected together. Reusable

subsystems can be constructed from collections of connected Simplexes.

6.1. Data

Internal data is exposed to enable external systems to make use of it when it is may be useful to external305

parties. Examples of system types include: control systems, diagnostics and Graphical User Interfaces (GUIs).

13



Data is further sub-divided into Status, Config, and Relationships.

To respect real-time and network performance constraints Status data is limited to the data that is

expected to change regularly, i.e. during normal operation, it is not unreasonable to expect this data to

change between control or communications cycles. Configuration, or config data consists of the subset of data310

that is unlikely to change regulary. Each item of config and status data also has up to 3 levels of associated

minimum and maximum limits: normal, abnormal, and exceptional.

Relationships are distribution friendly pointers to other data and simplexes. Relationship data is akin to

Configuration data in its non-periodic nature. Relationships also define the types of dependency a simplex has

on a relationship, which can be build-time, run-time, or no-dependency. On top of this relationships can have315

three type: necessary, which defines a relationship for which the simplex cannot operate without; preferable,

which defines a relationship for which the simplex can operate without, but with a reduced functionality; and

optional, which defines a relationship which is entirely optional. These relationships can then be used to form

multiple directed acyclic graphs (DAGs).

These DAGs enable determinism whilst remaining encapsulated and distributed. For example, the DAG320

of build-time dependency relationships determine the necessary deterministic start-up routine, whilst the

run-time dependencies DAG determines the deterministic execution order. With the addition of Quality of

Service (QoS) information about data generation timestamps determinism can even brought to poor and

unreliable networks or even merge of hard and soft systems.

These DAGs can also be used to generate meta-state-machines, composed of the state machines of325

numerous simplexes, and automatically progress them safely.

6.2. Commands

Commands are requests for functionality in a Simplex, and are conducted asynchronously and without

response. Command sets can be seen as exposing functionality to the outside world, and are all of a standard

form. Examples of commands might include changing from an initialised state to active state in an internal330

state diagram, or a progressing a robotic arm to a commanded waypoint. The commands can be interpreted

and acted upon as the Commanded Simplex wishes, in keeping with the simplexes being encapsulated. This

Command mechanism has been designed to ensure that all data is uniformly exposed, and that the standard

operation of the simplexes are always the only focus of the simplexes, as to be more deterministic and

distribution agnostic.335

6.3. Functions

The final element is the Functions, the actual algorithmic functions it is how the simplex operates. The

separation exists to improve the distribution agnosticism as it forms a distinct separation of the “API” of a

simplex (the Data and Commands) and its internal workings (the Functions). One of the benefits of such as

14



Figure 5: Illustrative example of Simplexes controlling a motor. The yellow boxes represent Simplexes, and the arrows represent

dataflow.

separation is that the Functions can be easily replaced and other simplexes would be unable to distinguish340

them. This is particularly useful for simulating Simplexes, or extending their functionality.

6.4. Pulling in Data, changing relationships and commanding other Simplexes.

Then with these 3 elements all simplexes operate reading other simplexes data, based on their relationships,

which can be changed at runtime. Performing their appropriate functions at the appropriate deterministic

rate. Whilst responding to commands as they see fit.345

When a Simplex reads the Data from another simplex it is only simplex that has the correct domain

knowledge on what it requires. For these reasons, the initiating simplex will interpret the contents of the read

Simplex, by attempting to mask the contents. This will be achieved by checking that correct elements in the

simplex database are fulfilled, whilst ignoring the extra components. This enables simplexes to easily extend

standards adding extra data elements or commands without effecting reliant simplexes. Additionally, with350

the use of relationships, traditionally incompatible standards changes can be mitigated via simply creating a

mask to data from relationships.

For example, consider the control of a motor which can be performed a Simplex arrangement as in Figure

5. The initial sensing is performed by the Encoder Simplex, which then places its data in its status data.

15



This is then read by a Joint simplex based on a relationship from the Joint Simplex to the Encoder Simplex,355

and is translated into joint information that is placed in status data. Then, if both Controller simplexes are

active, they both read the Joint information, and produce demand information. The Actuator Simplex then

based on its controller relationship read the demand from Controller 1 and implements it. This alternatively

could change based on the Actuator changing it relationship based on Controller 2 having a better QoS or

some attractive Config value. Alternatively, an external source could have commanded the actuator to now360

listen to Controller 2. The Actuator does not need to know what the controller is, only that it includes the

required data (which can be referenced by ID or Relationship) and commands, which may be a subset of the

full command set. The actuator can then interpret as it wants. This allows for minimal impact extension.

Having the API in this flat fashion means that regardless to its extension the simplexes depending upon

it can still operate as if it was not extended.365

6.5. Distribution

This architecture not only allows for the flexible interoperation of control systems within a remote

maintenance facility, but also facilitates the possibility of a fully distributed control system. No extension to

the architecture or communications is required. Nodes simply exchange data which is already being broadcast,

forming a control scheme which can be distributed across processes, across machines, or even the internet.370

Distribution is achieved by grouping simplexes into Clusters. The Clusters then communicate with each

other as necessary using the CorteX protocol (Section 7). The clusters communicate the CorteX protocol as a

bus, communicating all of the Simplexes inside the cluster as one. This obviously helps constrains complexity

and minimises communication overheads.

From the point of view, of a cluster communicating with another one it clones in the Simplexes from that375

cluster minus the Functions, as illustrated in Figure 7. These cloned Simplexes can then be asynchronously

kept up to date with their original counterparts. From the point of view of the simplexes in the cluster, the

clones are indistinguishable from their local cousins, exposing the exact same interface.

It is interesting to note at this point, that once cloned, alternative passive Functions can be put in the

cloned Simplex. This can be used to achieve Graphical User Interfaces or Virtual Reality representation of380

physical object the Simplexes measure

7. Other Considerations

With personal data and IP stored on connected devices as well as devices potentially capable of causing

injury to a person, cyber security is a necessary enabler of this technology, and if it is not prioritised the

business opportunity will be undermined. And simply encrypting communications is not enough, a considered385

approach to an entire system’s design is necessary. Thus, the simplexes have been designed to be suspicious

16



Figure 6: Simplexes in clusters

17



Figure 7: Cluster 2 from Figure 6 with it clones of remote simplexes.

18



Figure 8: Lab trial elements

and self-contained, meaning that all inputs are interrogated as if it was malicious code. This distrust is one

of the reasons that there are no request response style calls, as no response would ever be trusted without

checking the data coming the simplex, thus making useless. Additionally, user-defined simplexes are run as

plugin on top of a fault-tolerant, security aware clusters, which adds a layer of abstraction to improve security.390

Cyber-security is an endless topic; however, this platform should enable a reasonable cyber-security routine

to be implemented. Additionally, Simplexes are self-contained, so that they can be verified and validated

once and deployed in multiple situations. Simplexes should verify their input and output, so that the only

object that control Simplexes memory and functionality is the Simplex itself.

One of the benefits a platform that has its data separated from its functionality is that an interpretation395

layer can be implemented to allow a plugin system to easily change the runtime implementation of simplexes;

i.e. from real to simulated functionality. Additionally, this plugin system allows for closed source simplexes

to be easily implemented.

8. Lab Trials

Initial trials have been conducted at the RACE testing facility. In order to validate the capability of this400

architecture within the context of a remotely operated robotic facility, a complete end-to-end technology

demonstrator was constructed. This contained all major subsystems that would be found within a typical

operational tele-robotics facility including viewing systems, emergency stop systems, planning tools, and

human interface devices.

A selection of robotic devices was chosen in order to maximise the variety of devices demonstrated in405

order to demonstrate compatibility with a wide range of systems. This included an Industrial manipulator

robot, mobile ground robot, aerial quadcopter robot, gantry crane, and a haptic interface device.

19



Figure 9: Auto-generated C&C HMI

8.1. C&C HMI

A generic Command and Control (C&C) Graphical User interface has been constructed that is designed

to be compatible with any possible CorteX system. In some ways, this element is the most critical to410

both de-duplication of subsystems within a facility, as well as minimising operator training and retraining

requirements. The GUI is multi-platform and features a plugin system to allow for customisation without the

need to recompile or re-validate.

8.2. Virtual Reality Visualisation

Gateway wrappers to several visualisation tools, such as VR, synthetic viewing, and physics simulations,415

which can easily be created by implementing virtual reality functions for virtual simplexes cloned from remote

simplexes.

8.3. Integration Times

The integration time control system and GUI development for a single engineer for these devices as listed

in Table 1. These values are created from the point of view of the engineer having knowledge of devices, but420

not the particular model and makes of devices.

The rapid development time was achieved using existing Simplexes, their scalable Standardisation enabling

use of their functionality with never before seen proprietary COTS.

20



Figure 10: Real-time VR synthetic camera view of the experimental setup.

Table 1: Integration times for each of the main devices in the trial. Times are measured from having the system operational

under its own control system, to full integration with the CorteX architecture.

Item
Integration

Time

Industrial Robot (Kuka) 3 days

Haptic Master (Phantom) 2 days

UAV (Pelican) 2 days

UGV (Clearpath Jackal) 2 days

Crane Tracking (Vision-based) 2 days

Viewing System 3 days

21



9. Conclusions

CorteX demonstrated its ability to rapidly develop complex control systems that have all benefits discussed.425

The 4 main significant novel elements of CorteX are:

A communications protocol that allows collections of devices and software to dynamically connect and

collaborate without a priori knowledge of other systems, by representation of a system as a graph of generic

nodes with self-describing data.

A software framework that allows systems to be integrated, and new tools to be developed with inherent430

forward compatibility and scalable standardisation.

Virtual cloning the remote simplexes to make the distribution in the system seamless.

The use of data-flow (Relationships) to generate build-time and run-time directed acyclic graphs for

scheduling.

Other notable features are the consideration made for mixed real-time requirements, ability to cope435

with poor networks, and consideration to cyber-security. For ITER-like remote maintenance, CorteX would

provide a decentralised, distributed network that had all the data securely accessible, and that allowed for

easy extension and repair. Additionally, the encapsulated nature of the system would remove the need for

duplication of elements, by simply reusing existing simplex in other contexts. This deduplication would

reduce cost and reduce risk of failure and the de-duplicated functionality could be verified and validated to a440

greater degree with the recovered resources.

10. Future Work

Clearly, for deployment in ITER-like system there should be considerations and research carried out into

how to fit to nuclear regulation in a development friendly manner. Can a framework put in place for high

complex software (i.e. machine learning) in a manner where the framework takes most of the burden of445

compliance and ensuring reliability and predictability.

CorteX will need a stronger test case; i.e. evaluation within the context of remote maintenance facility.

This will be achieved by deployment within the European Spallation Source (ESS) facility scheduled for first

operation in 2019. ESS will be a facility that will need to be maintained for the next 50 years, with the

expectation of remaining on the cutting edge of technology.450

References

[1] Bart Verberck. Building the way to fusion energy. Nature Physics, 12(5):395–397, 2016.

[2] JET Team et al. Fusion energy production from a deuterium-tritium plasma in the jet tokamak. Nuclear

Fusion, 32(2):187, 1992.

22



[3] C Darve, M Eshraqi, M Lindroos, D McGinnis, S Molloy, P Bosland, and S Bousson. The ess455

superconducting linear accelerator. Proceedings of SRF2013, 2013.

[4] Yun Tao Song, Song Tao Wu, Jian Gang Li, Bao Nian Wan, Yuan Xi Wan, Peng Fu, Min You Ye,

Jin Xing Zheng, Kun Lu, Xianggao Gao, et al. Concept design of cfetr tokamak machine. IEEE

Transactions on Plasma Science, 42(3):503–509, 2014.

[5] Rob Buckingham and Antony Loving. Remote-handling challenges in fusion research and beyond. Nature460

Physics, 12(5):391–393, 2016.

[6] Stefan Niemczyk, Stephan Opfer, Nugroho Fredivianus, and Kurt Geihs. Ice: Self-configuration of

information processing in heterogeneous agent teams. In Proceedings of the Symposium on Applied

Computing, SAC ’17, pages 417–423, New York, NY, USA, 2017. ACM.

[7] G. Pardo-Castellote. Omg data-distribution service: architectural overview. In 23rd International465

Conference on Distributed Computing Systems Workshops, 2003. Proceedings., pages 200–206, May 2003.

[8] Kenton Varda. Protocol buffers: Google’s data interchange format. Google Open Source Blog, Available

at least as early as Jul, 72, 2008.

[9] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and

Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop on open source software,470

volume 3, page 5. Kobe, 2009.

[10] Paul Michael Newman. Moos-mission orientated operating suite. 2008.

[11] Michael R Benjamin, Henrik Schmidt, Paul M Newman, and John J Leonard. Nested autonomy for

unmanned marine vehicles with moos-ivp. Journal of Field Robotics, 27(6):834–875, 2010.

[12] Stephen A Lewis. Overview of the experimental physics and industrial control system: Epics. h ttp://csg.475

lbl. gov/EPICS/OverView. pdf, 2000.

[13] Emilio Ruiz Morales. Generis: The ec-jrc generalised software control system for industrial robots.

Industrial Robot: An International Journal, 26(1):26–32, 1999.

[14] Herman Bruyninckx. Open robot control software: the orocos project. In Robotics and Automation,

2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 3, pages 2523–2528. IEEE,480

2001.

[15] P Gicquel, C Andriot, F Coulon-Lauture, Y Measson, and P Desbats. Tao 2000: A generic control

architecture for advanced computer aided teleoperation systems. In Proceedings of the 9th ANS topical

meeting on robotics and remote systems, 2001.

23



[16] Stuart A Boyer. SCADA: supervisory control and data acquisition. International Society of Automation,485

2009.

24


