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Abstract. The poloidal harmonics of the toroidal normal modes of an unstable

axisymmetric tokamak plasma are employed as basis functions for the minimisation

of the 3D energy functional. This approach presents a natural extension of the

perturbative method considered in [M.S. Anastopoulos Tzanis et al, Nuclear Fusion

59:126028, 2019]. This variational formulation is applied to the stability of tokamak

plasmas subject to external non-axisymmetric magnetic fields. A comparison of the

variational and perturbative methods shows that for D-shaped, high βN plasmas,

the coupling of normal modes becomes strong at experimentally relevant applied 3D

fields, leading to violation of the assumptions that justify a perturbative analysis. The

variational analysis employed here addresses strong coupling, minimising energy with

respect to both toroidal and poloidal Fourier coefficients. In general, it is observed that

ballooning unstable modes are further destabilised by the applied 3D fields and field-

aligned localisation of the perturbation takes place, as local ballooning theory suggests.

For D-shaped high βN plasmas, relevant to experimental cases, it is observed that the

existence of intermediate n unstable peeling-ballooning modes, where a maximum in

the growth rate spectrum typically occurs, leads to a destabilising synergistic coupling

that strongly degrades the stability of the 3D system.

1. Introduction

H-mode tokamak plasma operation, which has beneficial characteristics for fusion power

performance and will be the baseline operational mode in ITER [1], is intrinsically linked

with the destabilisation of ideal MHD instabilities, called the peeling-ballooning (PB)

modes [2][3][4]. Those ideal MHD instabilities arise due to the establishment of steep

pressure gradient and large current density in a narrow “pedestal” region at the edge

of the core plasma. The PB modes are postulated to drive Edge Localised Modes

(ELMs), which are field-aligned filamentary structures that erupt from the pedestal

plasma, leading to large particle and heat transport. In large scale tokamak devices like



Peeling-Ballooning Stability of Tokamak Plasmas With Applied 3D Magnetic Fields 2

ITER, these transient phenomena, if uncontrolled, will exceed the melting point of the

divertor tiles [5][6], shortening the life of the divertor.

One promising method to control ELMs applies non-axisymmetric magnetic

perturbations (MPs) that lead to ELM mitigation [7][8][9][10], i.e. increase of

ELM frequency and decrease of ELM energy loss, or complete ELM suppression

[11][12][13][14], i.e. no ELMs. The key physics component that allows and defines

the existence of those two operational states is still an active area of research. However,

recent experimental and theoretical analysis, points towards a role for the degradation

of the local and global stability of the tokamak plasma. In particular, the imposed 3D

fields lead to local changes of plasma equilibrium parameters, that play a crucial role in

determining the stability of the plasma. This leads to the destabilisation of local infinite

n ideal ballooning modes, where n is the toroidal mode number of the perturbation,

which are localised about the most unstable magnetic field lines [15][16][17]. Such a

feature is computationally and experimentally observed in AUG discharges, when ELM

mitigation occurs [18].

Additional numerical investigation of the PB stability of ELM mitigated and

suppressed discharges in AUG, showed that those discharges should be stable against

global PB modes [19][20]. However, this analysis is based on stability codes for

axisymmetric equilibria, where coupling of the toroidal normal modes is prohibited,

i.e. the toroidal mode number remains a “good” quantum number. To improve our

understanding it is important to consider the local and global stability of the 3D plasma

equilibrium. An additional indication of the degradation of the global MHD stability

boundary in such cases is related to experimental observations, where ELM suppression

occurs below a pressure contour [14], of lower pressure compared to the axisymmetric

case. As such, the difference between ELM mitigation and suppression is postulated in

Ref.[20] and Ref.[21] to be a competition between density pump-out that reduces the

plasma pressure, i.e. global PB modes become more stable, and the degradation of the

global ideal MHD stability boundary due to the presence of the 3D MPs.

The axisymmetric equilibrium geometry of the tokamak plasma provides a set of

eigenmodes with discrete toroidal Fourier modes that can be studied individually. As

such, the numerical complexity of the global plasma stability is reduced and is routinely

and efficiently calculated with codes like ELITE [22] or MISHKA [23]. However, if a

non-axisymmetric equilibrium is established, the discrete toroidal modes are coupled

into families of super modes [24], significantly increasing the numerical complexity for

the stability of the system. This results in a much more challenging numerical system

to be solved that significantly limits the radial resolution, due to the need to treat the

large number of poloidal and toroidal harmonics that the 3D super modes are composed

of. As a result, the examination of unstable intermediate to high n perturbations that

drive the onset of ELMs becomes truly challenging in non-axisymmetric geometry.

In order to minimise the numerical complexity of the non-axisymmetric system,

a perturbation theory was introduced [25][26][27], considering an applied 3D magnetic

field, BN , which is several orders of magnitude lower than the confining axisymmetric
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magnetic field B0. Typically BN/B0 ∼ 10−3, where N is the primary toroidal mode

number of the MP. The perturbative approach leads to the formation of triplets of

toroidal Fourier harmonics {n−N, n, n+N}, where to leading order the spatial structure

of the three toroidal normal modes that couple is provided by the axisymmetric system.

Such a perturbative approach requires weak coupling of toroidal normal modes, which

is observed to be violated for strongly shaped, high βN plasmas. In addition, the

perturbative method does not allow freedom to adjust the relative size of the poloidal

harmonics that couple to form each toroidal normal mode of the axisymmetric system.

The above restrictions can be overcome by considering a variational formulation of the

non-axisymmetric energy functional that uses set of the poloidal Fourier harmonics of

the toroidal normal modes of the axisymmetric system as basis functions. The energy

can be minimised with respect to the poloidal coupling coefficients that are introduced

to vary the relative amplitude of these poloidal and toroidal harmonics.

Such an approach can be physically motivated as follows. In an axisymmetric

tokamak plasma, intermediate to high toroidal mode number, n, peeling-ballooning

modes involve a single toroidal Fourier harmonic, but couple a number of poloidal

Fourier harmonics. For the ballooning component, each poloidal harmonic, m, has the

same shape, and each is centred on its corresponding rational surface where m = nq (q

being the safety factor). The relative amplitude of these Fourier modes is related to the

radial variation of the equilibrium. However, the radial shape of each poloidal harmonic

is not expected to be modified by the applied MP. With the application of a 3D MP

there is an additional coupling of the toroidal Fourier harmonics and, in addition, this

can influence the relative amplitude of the poloidal Fourier harmonics. Guided by this

physics understanding, we employ a new variational approach where the trial function

is the set of axisymmetric poloidal Fourier harmonics (each with a radial dependence

corresponding to that for the axisymmetric plasma) and treat the coefficients that scale

each as a set of variational parameters, obtained by minimising the energy functional.

The paper is set as follows. Section2 presents our new variational formulation of

the non-axisymmetric energy functional, which is composed of an axisymmetric and

non-axisymmetric component, that leads to a generalised eigenvalue problem to be

numerically solved. Section3 presents results from the application of this technique

to applied MPs for different plasma βN and cross-section shapes, in an attempt to

understand the underlying difference between the stability of an axisymmetric and non-

axisymmetric system. Finally, Section4 discusses the obtained results and their relation

to experimental observations.

2. Variational 3D MHD Stability

In this section, the non-axisymmetric tokamak plasma stability theory is described

using a new variational approach. The general numerical framework for a perturbative

approach, i.e. calculation of non-axisymmetric plasma response and stability, based on

the axisymmetric stability code ELITE, was presented in Ref.[27]. Here, we extend that
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formalism to develop a new variational approach to stability that is valid for a wide range

of 3D magnetic fields. ELITE provides a particular efficient and accurate approach to

calculate the radial dependence of each axisymmetric Fourier mode, providing our set

of basis functions for the variational method.

The ideal MHD stability of tokamak plasmas under the application of external

non-axisymmetric MPs of single toroidal mode number N is considered. The stability

problem results in a generalised eigenvalue problem of the force operator F and the

stability of the system will depend on the eigenvalues of this operator. The variational

approach employs a set of orthogonal basis functions for the representation of a non-zero

plasma displacement δξ 6= 0 and provides a method that determines an appropriate

superposition of these basis functions that minimises the potential δW and kinetic

δK energy change of the non-axisymmetric equilibrium state. This provides the most

unstable mode that can be produced from the particular basis set. Considering that the

applied 3D fields are much smaller than the axisymmetric equilibrium fields, the radially

dependent poloidal Fourier coefficients derived from the axisymmetric equilibrium are

adopted as appropriate trial functions for energy minimisation. The radial dependence

of the poloidal Fourier harmonics is taken to be the same as for the axisymmetric

system, each weighted by a coefficient to adjust their relative weighting. Coupling of

different toroidal Fourier harmonics is also accompanied in our approach. These Fourier

modes are summed to provide the energy functional, with a minimisation performed to

determine the coefficients, i.e. the relative sizes of the Fourier harmonics.

2.1. Potential and Kinetic Energy Terms

The coordinate system is based on the axisymmetric normal n = ∇ψ0/|∇ψ0|, binormal

t = (B0 × ∇ψ0)/(B0|∇ψ0|) and parallel b = B0/B0 components. Here ψ0 labels

the flux surfaces and B0 is the magnetic field of the axisymmetric equilibrium, i.e.

before application of the 3D MP. For peeling-ballooning modes the parallel component

of the displacement δξ|| contributes only to the kinetic energy δK. However, it is in

general much smaller than the perpendicular component, i.e. δξ|| � δξ⊥, and so it

can be neglected. As such, the displacement under consideration is reduced to the two

components perpendicular to b,

δξ ≈ δξ⊥ =
X

|∇ψ0|
n+ U

|∇ψ0|
B0

t (1a)

By minimising magnetic compression, the two components are related by,

[
Bφ0

B2
0

(B0 · ∇)− ∂φ]U = [∂ψ + ∂ψ(ln J0B
2
0) +

2µ0∂ψp0
B2

0

]X (1b)

where Bφ0 = RB0t, B0t is the toroidal magnetic field, J0 is the Jacobian of the coordinate

system and p0 the plasma pressure.

Considering an ideal and incompressible limit, a displacement δξ of the plasma will

result in a force,

F = J × δB + δJ ×B +∇(δξ · ∇P ) (2)
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where (δξ, δB, δJ) represent the perturbed displacement, magnetic field and current

density respectively. In order to express F in an ordered way, the plasma equilibrium

can be split into an axisymmetric and non-axisymmetric part, i.e. B = B0 +BN . The

perturbed quantities are linear with respect to equilibrium quantities and similarly,

δB = δBn + δBn±N (3a)

δJ = δJn + δJn±N (3b)

δp = δpn + δpn±N (3c)

where the subscript indicates the toroidal mode number of the perturbation.

Substituting Eqn.(3) into the linearised force, naturally results in an ordered

axisymmetric and non-axisymmetric contribution,

Fn = J0 × δBn + δJn ×B0 +∇(δξn · ∇p0) (4)

Fn±N = J0 × δBn±N + JN × δBn + δJn ×BN + δJn±N ×B0 +∇(δξn · ∇pN) (5)

Fn±2N = JN × δBn±N + δJn±N ×BN (6)

where δBn = ∇× (δξn×B0) and δBn±N = ∇× (δξn×BN). The zeroth order force is

due to the original axisymmetric equilibrium and the first order arises due to the non-

axisymmetric equilibrium that provides the coupling between the toroidal axisymmetric

modes. The second order force, Fn±2N , is dropped from the calculation, as it is assumed

that Fn±2N � Fn±N . Considering Eqn.(5) and taking the inner product with δξ∗n, after

some algebraic manipulation, we derive the following contribution to the perturbed

energy. The kinetic energy,

δK(δξ∗n, δξn) =
1

2

∫
δξ∗n · δξn J dψdθ∗dφ (7)

the part of the potential energy associated with perturbations about the axisymmetric

part of the equilibrium,

δW (δξ∗n, δξn) =
1

2

∫
{|δBn⊥|2 −

J0 ·B0

B2
(δξ∗n⊥ ×B0) · δBn⊥

− 2(δξn⊥ · ∇p0)(δξ∗n⊥ · κ0)} J dψdθ∗dφ

(8)

the part of the potential energy associated with perturbations about the 3D part of the

equilibrium,

δY (δξ∗n, δξn′) = −1

2

∫
{[δξ∗n · (JN × δBn′ + δJn′ ×BN)]

+ [∇× (δξ∗n × J0)] · (δξn′ ×BN)

− δJ∗n · (δξn′ ×BN)} J dψdθ∗dφ

(9)

and a surface contribution due to the 3D part part of the equilibrium,

δS(δξ∗n, δξn′) = −1

2

∫
{(δξ∗n · n)[(δξn′ ×BN) · J0 − δBn′±N ·B0]

+ δB∗n · [BN(δξn′ · n)− δξn′(BN · n)]

+ (δξ∗n · n)(δξn′ · ∇pN)} J dθ∗dφ

(10)
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2.2. Variational Formulation of Energy Functional

The ideal MHD system defines a Hermitian stability problem, so that δWn,n′ = δWn′,n,

where δWn,n′ = δW (δξ∗n, δξn′). Thus, it can efficiently be solved by expanding in a set

of discrete normal modes. Considering the stability of the axisymmetric system and

non-degenerate eigenvalues ω2
n′ 6= ω2

n for n′ 6= n,

(ω2
n′ − ω2

n)(δKn′,n − δKn,n′) = (δWn′,n − δWn,n′) = 0 (11)

and leads to δKn′,n = δn′,n, where δKn,n′ = δK(δξ∗n, δξn′). As a result, the axisymmetric

normal modes δξ
(0)
n are orthogonal and can be used to define a basis set, through which

any perturbation can be expressed as a superposition of these modes. Let us now

define δξ
(0)
n to be the displacement eigenfunction associated with the axisymmetric

system. This displacement δξ
(0)
n can be expressed as a sum of terms each linear in

the radial displacement Xn(ψ, θ∗) [28], where θ∗ is straight field-line poloidal angle.

Expanding in poloidal Fourier modes, Xn(ψ, θ∗) =
∑

mXn,m(ψ) exp[−imθ∗], where

the radially dependent function Xn,m(ψ) can be provided by ELITE. Note that for

any constant dn δξ(dnXn) = dnδξ(Xn). Furthermore, the linearised force is linear

with respect to the displacement, and therefore Xn; thus F (dnXn) = dnF (Xn) and

δW (d∗n′X
∗
n′ , dnXn) = d∗n′dnδW (X∗n′ , Xn), where dn is a constant. The same applies to

δK, δY and δS.

In order to create orthogonal normal modes, the toroidal dependence of the

displacement is expressed through Fourier harmonics. As such, a displacement can

be expressed as a linear superposition of axisymmetric normal modes δξn,

δξn(ψ, θ∗, φ) =
∑
n′

dn′δξ
(0)
n′ (ψ, θ∗)ein

′φ =
∑
n′

dn′δξ
(0)
n′ (Xn′)e

in′φ (12)

In the case where the plasma equilibrium is axisymmetric, the energy functional results

in a toroidally decoupled system and dn′ = δn,n′ for a specific n. This simplifies the

problem and allows the ψ-dependence and relative size of all Fourier coefficients Xnm(ψ)

(see above) to be calculated in a code like ELITE. If non-axisymmetric fields are present,

toroidal modes become coupled through the non-axisymmetric potential energy δY and

the resulting energy principle becomes,∑
n

|dn|2ω2
nδKn,n =

∑
n

|dn|2δWn,n

+
∑
n,n′

d∗ndn′±NδYn,n′±Nδnn′±N

+
∑
n,n′

d∗ndn′±NδSn,n′±Nδnn′±N

(13)

where δYn,n′±N = δY (δξ∗n, δξn′), δSn,n′±N = δS(δξ∗n, δξn′) and N is the toroidal mode

number associated with 3D equilibrium quantities in the energy terms.

If the δYn,n′±N coefficients are small, weak coupling occurs and it is expected that

the variational method is equivalent to the perturbative method presented in Ref.[27].



Peeling-Ballooning Stability of Tokamak Plasmas With Applied 3D Magnetic Fields 7

An advantage of the variational method is that it is not restricted to weak coupling

as larger values of δYn,n′±N will result in strong or broadband coupling of toroidal

modes. However, in both approaches the trial function forces the mix of poloidal Fourier

harmonics to equal that of the axisymmetric normal modes δξ
(0)
n (ψ, θ∗, φ). As a result,

any influence of the applied 3D field on the coupling of the individual poloidal harmonics

cannot be captured by this approach and the structure of the non-axisymmetric normal

mode is likely overly constrained.

In order to resolve this issue, we adopt a trial function that expands in both poloidal

and toroidal Fourier harmonics of the axisymmetric system δξ
(0)
n,m(ψ),

δξn(ψ, θ∗, φ) =
∑
n′,m′

cn′,m′δξ
(0)
n′,m′(ψ)e−im

′θ∗ein
′φ =

∑
n′,m′

cn′,m′δξ
(0)
n′,m′(Xn′,m′)e

−im′θ∗ein
′φ

(14)

where Xn′,m′(ψ) are the Fourier coefficients derived from the axisymmetric system. For

the axisymmetric system, such a representation results in a system of normal modes,

where each has a single toroidal Fourier mode, but is a superposition of many poloidal

Fourier modes due to poloidal inhomogeneity of the axisymmetric equilibrium. Thus,

for the axisymmetric system cn′,m′ = δn,n′ . It is straight forward to derive an energy

principle for the non-axisymmetric system, which becomes∑
n,m,m′,m′′

c∗n,mcn,m′±m′′ω
2
nδK

m,m′+m′′

n,n δm,m
′+m′′ =

∑
n,m,m′,m′′

c∗n,mcn,m′±m′′δW
m,m′+m′′

n,n δm,m
′+m′′

+
∑

n,n′,m,m′,m′′

c∗n,mcn′±N,m′±m′′δY
m,m′+m′′

n,n′±N δm,m
′+m′′

n,n′±N

+
∑

n,n′,m,m′,m′′

c∗n,mcn′±N,m′±m′′δS
m,m′+m′′

n,n′±N δm,m
′+m′′

n,n′±N

(15)

where δKm,m′+m′′
n,n = δK(δξ

(0)
n,m, δξ

(0)
n,m′), δW

m,m′+m′′
n,n = δW (δξ

(0)
n,m, δξ

(0)
n,m′), δY

m,m′+m′′

n,n′±N =

δY (δξ
(0)
n,m, δξ

(0)
n′,m′), δS

m,m′+m′′

n,n′±N = δS(δξ
(0)
n,m, δξ

(0)
n′,m′) and m′′ is the poloidal mode number

associated with equilibrium quantities in the energy terms. Taking the coefficients cn,m
as variational parameters, and minimising the energy with respect to c∗n,m, provides a set

of equations for the numerical coefficient cn′,m′ . These equations depend on the matrix

elements δKm,m′+m′′
n,n , δWm,m′+m′′

n,n , δY m,m′+m′′
n,n and δSm,m

′+m′′
n,n , which can all be derived

from axisymmetric ELITE calculations for a given toroidal mode number (n or n±N).

It can be observed from Eqn.(15) that this minimisation will adjust the coupling

of poloidal harmonics for each toroidal normal mode and this can be significant when

strong coupling occurs providing greater flexibility in the trial function to optimise the

poloidal mode structure. In this case, the structure of each toroidal normal mode in the

presence of a 3D MP can differ significantly from the axisymmetric modes. In principle,

such a feature can allow the 3D MP to adjust the coupling between external kink/peeling

modes and core ballooning modes, as the corresponding poloidal harmonics can change

independently. In addition, in a tokamak plasma, elongation and triangularity lead to

coupling of {m,m ± 1,m ± 2} poloidal modes, whereas in a non-axisymmetric plasma
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(a) (b)

(c) (d)

Figure 1: The radial dependence of the equilibrium normalised pressure and parallel

current density as well as the q-profile for the (a) cbm18 dens6 and (c) dbm9 equilibrium.

The growth rate spectrum of the unstable peeling-ballooning modes as a function of

toroidal mode number n for the (b) cbm18 dens6 and (d) dbm9 axisymmetric equilibria.

additional shaping effects can significantly increase the number of coupled poloidal

harmonics, indicating the importance of allowing freedom in their coupling. Together

with our physics understanding of ballooning modes in an axisymmetric plasma, i.e.

that the Xn,m(ψ) are all very similar for a given n for all m, only the relative coupling

adjusts, this gives us confidence that our trial function will accurately capture the effect

of MPs on the PB stability.

3. Application to External MPs

3.1. Linear Plasma Response to Applied MPs

The ELITE code has been extended, and used at marginal stability to obtain the linear,

ideal MHD plasma response for a given non-axisymmetric magnetic flux perturbation
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(4,3) (5,3) (6,3) (7,3)(8,3)

(a) (b)

(4,3) (5,3) (6,3) (7,3)

(c) (d)

Figure 2: Linear, ideal MHD plasma response to an applied N = 3 even MP.

The radial dependence of the straight field line poloidal harmonics of the normal

displacement functional δξN · ∇ψ for the (a) cbm18 dens6 and (c) dbm9 equilibrium.

The reconstruction in the poloidal cross-section of the normal magnetic field δBN · n̂
for the (a) cbm18 dens6 and (c) dbm9 equilibrium.

of toroidal mode number, N , at the plasma-vacuum interface, as described in Ref.[27].

Two plasma shapes are considered, one for a large aspect ratio circular plasma cross-

section based on the cbm18 equilibrium configurations and a second for a D-shaped

plasma based on the dbm9 equilibrium configuration. In both cases, an even N = 3 MP

field is applied.

Considering first the cbm18 dens6 equilibrium configuration, the inverse aspect

ratio ε = 0.3 and the equilibrium core pressure p0 = 22.8 [kPa], core magnetic field

B0 = 1.8 [T], core parallel current density J||0 = 0.7 [MAm−2] and edge safety factor

qa = 2.71. This axisymmetric plasma equilibrium is unstable to ballooning modes for

n > 7. For the dbm9 equilibrium configuration, the inverse aspect ratio ε = 0.3 and the

equilibrium core pressure p0 = 81.9 [kPa], core magnetic field B0 = 3 [T], core parallel
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(a) (b)

Figure 3: Comparison of (a) the normalised growth rate and (b) the coupling coefficients

Vnk between the perturbative and variational methods for a triplet {n, n ± N} mode

of primary mode number n = 21 as a function of applied field strength BN/B0 for the

cbm18 dens6 equilibrium.

current density J||0 = 1.7 [MAm−2] and edge safety factor qa = 2.65. This axisymmetric

plasma equilibrium is unstable to intermediate n peeling/kink modes, while the standard

ballooning modes occur for high n > 30.

The axisymmetric equilibrium profiles of the cbm18 dens6 and dbm9 cases, as well

as the associated growth rate spectrum of the unstable peeling-ballooning modes, are

shown in Fig.1. The linear plasma response for an even (up/down symmetric) N = 3

MP field is shown in Fig.2. Both responses are characterised by an external kink/peeling

response.

3.2. Comparison of Perturbative and Variational Toroidal Normal Mode Coupling

In this section we employ the variational approach which fixes the poloidal spectrum

(equal to the axisymmetric spectrum), and use variational theory to determine the

coupling of different n ballooning modes. The matrix elements Vnn′ for the perturbative

approach described in Ref.[27] and the variational approach described in this work,

come from a similar set of equations and the only difference occurs in the coupling of

the individual basis set. A straightforward relation exists between the two methods, if

the relative poloidal coupling of the axisymmetric normal modes remains unchanged for

a given n, such that

Vnn′ = F
(1)
nn′/(ω

(0)2
n′ − ω

(0)2
n ) =

δYn,n′±N + δSn,n′±N√
δKn,nδKn′,n′

(16)

As a result, a direct comparison of the two approaches becomes possible.

Initially the cbm18 dens6 equilibrium is considered, and only nearest neighbour

coupling is taken into account, i.e. coupling of n with n′±N . For applied field strength
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(a) (b)

(c)

Figure 4: The coupling coefficients of a primary n = 21 mode for the cbm18 dens6

equilibrium of a nonuplet {n, n ±N, n ± 2N, n ± 3N, n ± 4N} mode, (a) as a function

of the toroidal mode number and (b) applied field strength BN/B0 using the “toroidal

coupling” variational method. (c) Illustrates a comparison between the perturbative

and “toroidal coupling” variational methods for a triplet {n, n ± N} and nonuplet

{n, n±N, n± 2N, n± 3N, n± 4N} mode.

BN/B0 < 10−3, where weak coupling occurs, the “toroidal coupling” variational method

results in the same outcome as the perturbative method. Fig.3 illustrates a comparison

for the growth rate and the coupling coefficients between the two approaches considering

a triplet mode with primary toroidal mode number n = 21. As can be observed up to

BN/B0 ∼ 10−3 the two approaches agree very well, but as the field strength is increased

a disagreement starts to build up and the two approaches diverge. The growth rate of

the triplet in the variational case is observed to increase slower with the applied field

since the coupling to the destabilising lower n modes becomes weaker in this case. In

addition, in the perturbative analysis, the assumption of weak toroidal coupling means
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that the coupling coefficient of the primary mode n is unity, i.e. dn = 1. In the

variational approach this assumption is relaxed and dn 6= 1, such that the perturbative

method results in unphysical behaviour as BN/B0 increases.

(a) (b)

(c)

Figure 5: The coupling coefficients of a primary n = 18 mode for the dbm9 equilibrium

of a septuplet {n, n ± N, n ± 2N, n ± 3N} mode, (a) as a function of the toroidal

mode number and (b) applied field strength BN/B0 using the variational method. (c)

Illustrates a comparison between the perturbative and variational methods for a triplet

{n, n±N} and septuplet {n, n±N, n± 2N, n± 3N} mode.

Furthermore, the variational method allows the coupling of multiple toroidal normal

modes. Since perturbation theory deviates at BN/B0 ∼ 10−3, it is expected that

strong coupling occurs requiring more toroidal normal modes to be retained. As can

be observed from Fig.4, with increasing applied field, multi-mode coupling takes place

and in this case for BN/B0 ∼ 2.25 · 10−3 even 3rd neighbouring coupling is required,

and further destabilisation is observed due to the inclusion of additional degrees of

freedom. The n = 21 mode couples strongly to lower n neighbours, as indicated from the
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Growth Rate Balloon Kink Bending

n=12

ELITE 0.1096 -2.858E-02 -3.838E-03 2.905E-02

Reconstruct 0.1134 -2.907E-02 -3.615E-03 2.974E-02

n=15

ELITE 0.1550 -4.325E-02 -4.648E-03 4.095E-02

Reconstruct 0.1582 -4.404E-02 -4.451E-03 4.204E-02

n=18

ELITE 0.1876 -7.308E-02 -6.514E-03 6.536E-02

Reconstruct 0.1869 -7.448E-02 -6.298E-03 6.731E-02

Table 1: Comparison of growth rates and contributions to δW in terms of destabilising

ballooning and kink/peeling terms and stabilising field line bending between the ELITE

result and the reconstructed result for the cbm18 dens6 equilibrium case.

perturbative method considering only first neighbour coupling, with the 3rd neighbour

contributing ∼ 10%. In addition, the stronger coupling to lower n modes leads to further

destabilisation, as can be observed from Fig.4. In addition, it can be observed that with

increasing field strength BN/B0 the weak coupling assumption dn = 1 is indeed violated

and for that reason the perturbative approach becomes inaccurate.

Finally, the non-axisymmetric stability of the dbm9 D-shaped equilibrium is studied.

In this case a n = 18 primary toroidal mode is examined with multi-mode toroidal

coupling of 7 toroidal normal modes. As can be observed from Fig.5, a similar outcome

in comparison to the cbm18 dens6 equilibrium is drawn. However, in this case an order

of magnitude lower applied field results in similar relative coupling due to stronger

plasma response, which is a consequence of the larger βN . Therefore, the stronger

coupling leads to a break down of the perturbative assumptions at much lower applied

field strength BN/B0. In addition, the stronger coupling affects the variational result

in the case of a triplet mode, as multiple toroidal normal modes need to be coupled for

convergence to be achieved.

3.3. Coupled Toroidal & Poloidal Normal Modes

We now turn into the full variational approach, which allows the poloidal Fourier

spectrum to adjust in addition to coupling toroidal Fourier modes. Neither the

perturbative method nor the “toroidal coupling” variational method discussed in

Section3.2, allows changes in the coupling of the poloidal harmonics in response to

the 3D MP. Since the applied field is composed of a wide range of poloidal harmonics,

and strong coupling takes place at experimentally relevant applied fields, it is expected

that the poloidal coupling within each toroidal normal mode will be affected. To test

this hypothesis, we allow the coupling between the poloidal harmonics to change in this

more general variational approach. However, in this case the axisymmetric potential and

kinetic energy matrices need to be reconstructed. The reconstruction of those matrices
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(a)
(b)

(c)

(d)

Figure 6: (a) The growth rate of the 3D triplet modes as a function of primary

toroidal mode number n and applied field strength BN/B0 for a resonant N=3 MP. (b)

Comparison between the different perturbative and variational methods for a n = 21

triplet mode as a function of BN/B0. (c) The reconstruction of the mode structure of

a n = 12 triplet and (d) the poloidal variation of the normalised normal displacement

for the n = 12 triplet (blue) in comparison to the normalised linear plasma response

(green).

is performed in two ways. In the first way, those matrices are input variables and taken

from ELITE, provided the plasma is up-down symmetric or the low n version is not

used. In the second way, those matrices are calculated considering the axisymmetric

δW and δK for the displacement ELITE provides and so the low n modes or up-down

asymmetric plasmas configurations can be considered.

To begin with, the cbm18 dens6 circular equilibrium is used in order to verify that

the calculation of the axisymmetric matrices is correct. As can be observed from Table.1,

where a comparison of the growth rate and destabilising/stabilising energy contributions

are listed, the reconstruction agrees with the ELITE result.
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Figure 7: A comparison between the axisymmetric modes and the 3D triplet mode for

the relative amplitude of the constituent poloidal harmonics for each toroidal normal

mode of the n = 12 triplet for N = 3 and BN/B0 ∼ 1.5 · 10−3.

At this stage, where the axisymmetric energies can be computed accurately, the

impact of the applied field on the coupling of poloidal and toroidal harmonics can be

examined. The cbm18 dens6 is considered for the even N = 3 MP perturbation used

previously. Fig.6 illustrates the growth rate of 3D peeling-ballooning modes as a function

of primary toroidal mode number n and applied field strength BN/B0. Initially, only

first neighbour toroidal coupling is considered, i.e. triplet modes {n − N, n, n + N},
retaining all the constituent poloidal harmonics and allowing freedom in the poloidal

coupling. From Fig.6a and Fig.6b it becomes apparent that the freedom in the poloidal

coupling results in strong destabilisation of the ballooning mode, and for an applied field

of BN/B0 ∼ 2 · 10−3 the growth rate increased by ∼ 60% in comparison to the previous

methods where only a difference of ∼ 5% occurred. The applied field interacts strongly

with specific poloidal harmonics in such a way that field line bending is minimised and

the driving terms are maximised. However, from Fig.6c and Fig.6d it can be concluded

that the resulting mode structure is in good qualitative agreement with the perturbative

method as calculated in Ref.[27]. Direct comparison of the coupling coefficients is not

possible, as the toroidal coefficients are replaced by a set of toroidal/poloidal coefficients.

Nevertheless, the difference in the poloidal spectrum of the axisymmetric normal mode

compared to the 3D mode can be studied. Fig.7 illustrates the relative amplitude of the

poloidal coupling coefficients for each axisymmetric toroidal normal mode compared to

the poloidal coupling coefficients of the 3D mode. The (independent) toroidal modes

of the axisymmetric system have been normalised to the same maximum amplitude as

the 3D calculation. Each toroidal mode has an increasing poloidal mode number in

left direction. As can be observed, the poloidal coupling is affected by the 3D field;

in this case we find that the 3D field pushes the ballooning mode outwards in the
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(a) (b)

Figure 8: (a) The normalised growth rate of the n = 15 triplet as a function of

the applied field strength BN/B0 for different βN for the cbm18 set of axisymmetric

equilibria. (b) The non-axisymmetric equilibrium normal displacement δξN · n as a

function of normalised ψ for applied field strength BN/B0 = 10−4.

(a) (b)

Figure 9: (a) The dependence of the growth rate of a n = 15 triplet on the phase ∆φ of

the imposed MP for the βN = 2.35 cbm18 dens8 axisymmetric equilibrium case. (b) The

non-axisymmetric equilibrium normal displacement δξN ·n as a function of normalised

ψ for applied field strength BN/B0 = 10−4.

radial direction, since the poloidal harmonics that resonate with edge of the plasma and

the vacuum region are amplified. In addition, the variation with respect to poloidal

coupling leads to a different relative coupling in comparison to the perturbative method

since the higher sideband n′ = n + N is observed to be larger that the lower sideband

n′ = n−N . Within the perturbative method stabilisation would be expected, but the

observed destabilisation is attributed to the difference in the poloidal coupling.
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Furthermore, the impact of MPs is examined with respect to βN and ∆φ variations,

where ∆φ is the parity of the MP field with respect to the mid-plane. The cbm18 dens6,

cbm18 dens7 and cbm18 dens8 equilibria are considered for βN = [1.65, 1.99, 2.35] with

qa = [2.97, 3.01, 3.04]. Fig.8 illustrates the dependence on βN for a n = 15 triplet mode

considering the even N = 3 MP. As can be observed, further destabilisation due to the

applied MP is observed in all three cases. In addition, it can be observed that for a

certain βN the growth rate is almost linear with BN/B0. The stronger destabilisation

that occurs with increasing βN is mainly attributed to the larger response. For a fixed

normal magnetic field at the plasma boundary a larger plasma response, i.e. normal flux

surface displacement, is expected with increasing βN . The maximum response within the

pedestal region occurs for the βN = 2.35 case and significant destabilisation is observed

with increasing BN/B0. The lowest response is observed in the βN = 1.99 and it can

be observed that the fractional change in growth rate with increasing BN/B0 is smaller

in comparison to βN = [1.65, 2.35]. However, since the relation is not linear with βN it

can be concluded that the poloidal mode structure of the applied MP itself is a crucial

factor for the plasma stability.

Fig.9 illustrates the dependence of the n = 15 triplet for the βN = 2.35 case on

the applied MP phase, where ∆φ = 0 is the even MP and ∆φ = π is the odd MP, with

BN/B0 = 5 · 10−4. As can be observed, a small variation of the growth rate occurs with

∆φ, with the odd MP configuration resulting in the most unstable case. From Fig.9 it

is clear that although the odd MP has a smaller edge displacement in comparison to the

even MP indicating a less resonant response (presumably a peeling physics effect), the

overall displacement in the pedestal region is larger. The additional non-axisymmetric

displacement of the flux surfaces seems to further destabilise the PB modes. This

indicates once again the importance of the poloidal spectrum of the non-axisymmetric

MP in the penetration of its constituent poloidal harmonics.

The dbm9 D-shaped equilibrium case has also been examined as it represents a

more experimentally relevant case, and again the resonant N = 3 MP field is considered.

Fig.10 illustrates the growth rate of the triplets as a function of primary toroidal mode

number n and applied field strength BN/B0. The growth rate of triplets around the peak

of the growth rate spectrum of the axisymmetric system, which correspond to unstable

peeling-ballooning modes, are significantly destabilised by a factor of ∼ 2.8. The rest of

the triplets are also observed to be further destabilised but at lower levels and again this

provides an indication that peeling-ballooning modes become more unstable with the

applied MP field. This observation is similar to the perturbative method, where strong

destabilisation is expected at modes around the peak of the growth rate spectrum. An

additional interesting feature that occurs is the complete reorganisation of modes away

from the kink peak of the growth rate spectrum. Fig.11 and Fig.12 illustrates the n = 9

triplet and n = 18 triplet for BN/B0 ∼ 10−4 and BN/B0 ∼ 10−3. As can be observed

from Fig.11 for the n = 9 triplet, the structure of individual toroidal modes of the

triplet does not significantly change with an increasing BN/B0. On the other hand, as

illustrated in Fig.12 for the n = 18 triplet, the individual toroidal modes are reorganised
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Figure 10: Growth rate of the 3D triplet modes as a function of the primary toroidal

mode number n and applied field strength BN/B0 for the dbm9 equilibrium case and a

N = 3 resonant applied MP.

with the external kink/peeling poloidal harmonics being minimised and the 3D mode is

pushed radially inwards at sufficiently high BN/B0 ∼ 10−3.

Finally, especially for the dbm9 equilibrium case where strong toroidal coupling

is observed even for small BN/B0, the impact of multi-mode coupling of the toroidal

normal modes is examined, including freedom in the relative poloidal coupling. The

n = 18 mode is considered as the primary harmonic of a triplet {n − N, n, n + N}, a

quintuplet {n−2N, n−N, n, n+N, n+2N} and a septuplet {n−3N, n−2N, n−N, n, n+

N, n + 2N, n + 3N} 3D mode for BN/B0 ∼ 10−3. As can be observed from Fig.13a,

strong coupling occurs between the individual toroidal normal modes even considering

a septuplet mode. The relative shape of the poloidal spectrum of the individual normal

modes is not significantly altered by considering more normal modes in the coupling,

but their relative amplitude changes. This results in a significantly more poloidally

localised 3D mode minimising field line bending, such that the growth rate of the mode

increases further, from γ/ωA = 0.55 for the triplet to γ/ωA = 0.62 for the septuplet.

4. Conclusion

The linear stability of non-axisymmetric tokamak plasmas has been examined within a

new numerical framework based on a variational approach that builds on the eigenvalue

axisymmetric stability code ELITE. The framework first computes the linear plasma

response, i.e. the new 3D equilibrium component as a result of the application of an

external MP field, and the axisymmetric peeling-ballooning eigenfunctions. Considering

a variational formulation of the energy principle, all this information is used to construct

the linear non-axisymmetric stability of global ideal MHD modes.

The coupling of toroidal harmonics by MPs can significantly influence the



Peeling-Ballooning Stability of Tokamak Plasmas With Applied 3D Magnetic Fields 19

(a) (b)

(c) (d)

(e) (f)

Figure 11: (a,c) The reconstruction of the n = 9 triplet mode, (c,d) a comparison

between the axisymmetric modes and the 3D triplet mode for the relative amplitude of

the constituent poloidal harmonics for each toroidal normal mode and (e,f) the poloidal

dependence of triplet mode (blue) in comparison to the linear plasma response (green);

BN/B0 = 10−4 (left) and BN/B0 = 10−3 (right) for an even N = 3 MP.

ballooning instability for D-shaped high βN plasmas, even for a low MP field of

BN/B0 ∼ 10−3. This then raises questions about the validity of the perturbative

approach for realistic 3D field amplitudes. This perturbative approach does not take

into account the influence of the MP field on the axisymmetric poloidal mode structure

of the triplet. In order to resolve this issue, a new more general variational approach,
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(a) (b)

(c) (d)

(e) (f)

Figure 12: (a,c) The reconstruction of the n = 18 triplet mode, (c,d) a comparison

between the axisymmetric modes and the 3D triplet mode for the relative amplitude of

the constituent poloidal harmonics for each toroidal normal mode and (e,f) the poloidal

dependence of triplet mode (blue) in comparison to the linear plasma response (green);

BN/B0 = 10−4 (left) and BN/B0 = 10−3 (right) for an even N = 3 MP.

has been developed in this paper. This uses the individual poloidal and toroidal Fourier

modes from the normal modes of the axisymmetric system, as a basis for trial functions

with coefficients to be determined by minimisation of the energy functional. This

efficient proven to provide significantly more degrees of freedom, allowing the MP field

to influence the peeling-ballooning structure of each constituent toroidal Fourier mode
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(a)

(b)

Figure 13: (a) The relative amplitude of individual poloidal harmonics of the toroidal

normal modes as a function of their poloidal harmonic label, considering a primary

mode of n = 18 for BN/B0 = 10−3 and multi toroidal mode coupling. (b) Illustrates

the reconstruction of the poloidal variation of the normalised normal displacement in

comparison to the normalised linear plasma response (cyan).

used in the basis.

The variational method revealed the impact of the MP field in the poloidal coupling

of the individual axisymmetric normal modes. The change in the poloidal coupling of

the basis functions resulted in further destabilisation of ballooning modes. This is

especially apparent in cases where strong toroidal coupling is observed; for example in

the dbm9 equilibrium case, the peeling-ballooning mode was completely reorganised and

it was observed that the peeling component of the instability, i.e. poloidal harmonics

that resonate in the vacuum region, were suppressed for sufficiently high applied field

BN/B0 and toroidal mode number n. However, for kink unstable modes close to the

peak of the growth rate spectrum, the external kink-like structure was retained, and

those modes were highly destabilised by the 3D field. Such a feature could be relevant

for experimental high βN plasmas, where unstable internal or external kink modes are
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expected for low to intermediate n modes. The significant increase in the growth rate

of the most unstable kink mode potentially indicates a faster ELM crash of similar

mode number n; a feature which is observed experimentally in ELM mitigation [29]. In

addition, since plasma shaping is important for the stabilisation of low to intermediate

n kink modes, ELM suppression could be a manifestation of the absence of a strong

kink peak, that could result in faster growing high n ballooning modes, leading to

softer transport properties, i.e. no ELM crash. In any case, plasma stability seems

to be degraded by the applied MP field and could provide an insight in experimental

observation that suggests unstable plasmas in regions where the axisymmetric J|| − p′
diagram indicates stable operation.

Finally, due to strong coupling of toroidal modes, the notion of a triplet mode might

be insufficient and more toroidal modes may be needed for an accurate representation

of the 3D mode. The variational approach allows the inclusion of a whole set of

toroidal normal modes. Such a case was examined retaining only toroidal coupling

for the cbm18 dens6 equilibrium case and significant contribution from the ±2N and

±3N sidebands was observed leading to further destabilisation. A similar analysis was

performed for the dbm9 equilibrium case, but allowing freedom in the poloidal coupling

of the toroidal basis functions, and a similar outcome could be drawn. The inclusion of

more toroidal modes resulted in further destabilisation and stronger poloidal localisation

of the peeling-ballooning mode. The strong poloidal localisation in 3D geometry is a

feature that is observed experimentally in AUG in cases of ELM mitigation [18], and

was successfully reproduced by theory based on a local infinite n ballooning analysis

[17]. In those cases the 3D ballooning mode was localised around specific field lines,

that coincided with locations where the plasma response crosses zero, i.e. ξN ∼ 0. A

numerical investigation in MAST using MPs, revealed similar behaviour for the 3D local

ballooning mode [16]. It was shown that for those field lines, changes in local torsion

lead to further destabilisation. The perturbative and variational methods for sufficiently

low BN/B0 provided similar results for the localisation of the mode for the cbm18

and dbm9 cases. However for higher BN/B0, in the variational approach, considering

the dbm9 case, the 3D mode seemed to be shifted towards regions where the flux

surfaces are pushed inwards. This could indicate further destabilisation from the sharper

pressure gradient in the 3D system, instead of the modification of the local torsion, and

the contribution of the kink instability in the mode structure. However, due to the

complex interplay of local shear/torsion, curvature and pressure gradient a more rigorous

examination is needed with respect to the individual stabilising and destabilising energy

terms in 3D geometry. Future work will focus on developing a numerical diagnostic tool

for the examination of those energy terms, to further understand the non-axisymmetric

structure and field-line localisation of the 3D global mode.
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