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The electron runaway phenomenon in plasmas depends sensitively on the momentum-
space dynamics. However, e�cient simulation of the global evolution of systems involving
runaway electrons typically requires a reduced �uid description. This is needed for exam-
ple in the design of essential runaway mitigation methods for tokamaks. In this paper,
we present a method to include the e�ect of momentum-dependent spatial transport in
the runaway avalanche growth rate. We quantify the reduction of the growth rate in
the presence of electron di�usion in stochastic magnetic �elds and show that the spatial
transport can raise the e�ective critical electric �eld. Using a perturbative approach
we derive a set of equations that allows treatment of the e�ect of spatial transport
on runaway dynamics in the presence of radial variation in plasma parameters. This is
then used to demonstrate the e�ect of spatial transport in current quench simulations
for ITER-like plasmas with massive material injection. We �nd that in scenarios with
su�ciently slow current quench, due to moderate impurity and deuterium injection,
the presence of magnetic perturbations reduces the �nal runaway current considerably.
Perturbations localized at the edge are not e�ective in suppressing the runaways, unless
the runaway generation is o�-axis, in which case they may lead to formation of strong
current sheets at the interface of the con�ned and perturbed regions.

1. Introduction

Electron runaway is seen as one of the main threats to successful operation of magnetic
con�nement fusion devices with large plasma currents, such as ITER (Lehnen et al.

2015; Breizman et al. 2019). The number of e-foldings in the runaway avalanche during a
plasma-terminating disruption increases drastically when a tokamak is scaled up to ITER
parameters from those currently in operation (Rosenbluth & Putvinski 1997). This calls
for accurate models for the runaway generation and losses to ensure the design of a
successful disruption mitigation system (Hollmann et al. 2015).
There is a wealth of experimental evidence that magnetic perturbations, occurring

either naturally after a disruption or induced by external magnetic coils, can prevent or
reduce runaway electron beam formation. In JET, a high level of magnetic �uctuations
following a disruption has been seen to correlate with the absence of runaways (Gill
et al. 2002). Broadband magnetic turbulence has been observed to lead to suppression of
runaway current if the perturbation exceeds a certain level also in TEXTOR (Zeng et al.
2013) and in J-TEXT (Zeng et al. 2017). Kinetic instabilities driven by the runaways
themselves can also induce local magnetic perturbations increasing the radial transport.
Observations at DIII-D indicate that when the power in the instabilities exceeds a
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threshold, runaway plateau formation is absent (Lvovskiy et al. 2018). Perturbations
imposed by external magnetic coils have also been shown to suppress the formation of
runaway beams in several tokamaks (Yoshino & Tokuda 2000; Lehnen et al. 2008, 2009;
Mlynar et al. 2018).
The avalanche generation of runaway electrons is a result of momentum transfer

between an existing runaway electron and a thermal one in a close collision. This leads
to a growth of the runaway population that is proportional to the existing number of
runaway electrons. Consequently, as the radial transport of runaways is also proportional
to their number, it can reduce the growth rate of the exponentiation (Helander et al.

2000). Perturbations in the plasma con�ning magnetic �eld result in spatial transport
and subsequent losses of runaway electrons (Rechester & Rosenbluth 1978). These losses
reduce the number of runaway electrons participating in the avalanche mechanics and
thereby have the potential to reduce the conversion of the initial plasma current to a
runaway beam.
Modelling of a disrupting tokamak plasma resolved both in momentum, as needed

for the runaway problem, and spatially, as needed to describe the evolution of plasma
parameters, is computationally costly. Therefore, to follow the evolution of the disruption,
simpli�ed �uid models for the runaway populations are often used (Smith et al. 2006;
Papp et al. 2013; Matsuyama et al. 2017; Bandaru et al. 2019; Fülöp et al. 2020). In
these, the momentum space dynamics has been captured approximately, and an e�ective
theory only dependent on spatially varying quantities is used to describe the growth
and loss of the runaway population. Such simpli�ed disruption modelling has been used
to estimate the post-disruption runaway population in the presence of massive material
injection (Martín-Solís et al. 2017; Vallhagen et al. 2020; Linder et al. 2020). However,
these studies focused on the generation rates of the runaways and neglected the losses
due to spatial transport.
The transport due to the perturbations is in general momentum dependent (Hau� &

Jenko 2009), preventing a straightforward �uid description of the phenomena. The goal
of this paper is to present a theory describing an e�ective rate of generation for runaway
electrons which incorporates the e�ects of a momentum-dependent spatial di�usion.
The di�usion considered here may originate from the motion of electrons in regions
of stochastic magnetic �elds as well as other perturbed magnetic �eld structures. In Sec.
3 we derive a self-consistent expression for the reduced avalanche growth rate of runaway
electrons, including the e�ect of spatial transport, as well as radiation reaction forces and
partially ionised impurities in a homogeneous plasma. Spatial variations in the plasma
are investigated in Sec. 4 with a perturbation approach which conserves particle number
to investigate the impact of radial transport in more realistic disruption simulations.
We �nd that, if the time-scale of the losses is comparable with that of the avalanche,

spatial transport can raise the critical electric �eld for runaway generation signi�cantly.
The reason is that, even as runaway electrons are generated through close collisions by the
avalanche dynamics, there need not be a net growth of the population if the relativistic
electrons are transported out of the plasma. This may be part of the explanation of
experimental observations which show strongly elevated critical electric �elds (Martín-
Solís et al. 2010; Hollmann et al. 2013; Granetz et al. 2014; Paz-Soldan et al. 2014;
Popovic et al. 2016). The value of the critical �eld is also important for the dynamics in
the current decay phase of disruptions, where the electric �eld tends to a value at which
the loss and gain of runaway electrons is balanced (Breizman & Aleynikov 2017).
We demonstrate the e�ect of magnetic perturbations on runaway evolution in simpli�ed

disruption simulations in Sec. 5, taking into account the evolution and transport of
runaways self-consistently with the electric �eld. We consider ITER-like plasmas with
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a combination of neon and deuterium injection and �nd that the runaway current can
be suppressed, if the perturbations reach all the way to the plasma centre. The mixed
magnetic topology common in disruptions is seen to have the potential to generate
strong current sheets. Their stability may in turn be expected to impact the magnetic
perturbation pro�le.

2. Radial di�usion of runaway electrons in the presence of radiation

Runaway electrons are almost collisionless and, as such, tend to follow magnetic �eld
lines closely. Thus, in a stochastic magnetic �eld, the trajectories of runaway electrons
generated close to one another will diverge with a rate dependent on the particle velocity
along the �eld line and the rate of divergence of nearby �eld lines themselves (Rechester
& Rosenbluth 1978). For a population of runaway electrons this leads to di�usive cross-
�eld transport, the magnitude of which depends on the perturbation strength. However,
at relativistic energies the electrons do not follow �eld lines closely, which causes the
transport to decrease with increasing energy due to the e�ects associated with the
�nite orbit width (Myra & Catto 1992; Hau� & Jenko 2009; Särkimäki et al. 2020).
Furthermore, it has been shown that modelling the transport as purely di�usive is
insu�cient in mixed magnetic topologies containing both islands and stochastic regions
(Papp et al. 2015), but this can be addressed by including an advection term in the model
(Särkimäki et al. 2016). A simpli�ed theory to account for the momentum dependent
radial di�usion in the avalanche growth rate was proposed by Helander et al. (2000), a
theory which we will build on and extend to account for radiation reaction forces and
the presence of partially ionised impurities. We address a case with mixed magnetic
topologies in Sec. 5.
The momentum-space dynamics in the electron runaway problem is often described by

the high-energy limit of the gyro-averaged kinetic equation with an accelerating electric
�eld parallel to the magnetic �eld B (Hesslow et al. 2018b):

∂f

∂t
+
E

τ

(
ξ
∂f

∂p
+

1− ξ2

p

∂f

∂ξ

)
= C{f} − ∂

∂p
· (F radf) . (2.1)

Here, f is the electron distribution function, p is the momentum normalised to mec,
ξ = p·B/(pB) is the cosine of the pitch angle, E is the electric �eld strength normalised to
the critical electric �eld Ec = nee

3 lnΛc/
(
4πε2

0mec
2
)
(Connor & Hastie 1975), where ne

is the electron density, e the elementary charge, me the electron mass, ε0 the permittivity
of free space, c the speed of light and lnΛc ' 14.6 + 0.5 lnTeV/ne20 is the relativistic
Coulomb logarithm, with TeV being the temperature measured in electronvolts and ne20

the electron density normalised to 1020 m−3. The relativistic collision time between
electrons is τ = mec/ (eEc), C{f} is the relativistic collision operator and the last term
on the right hand side of (2.1) represents radiation reaction forces from synchrotron
radiation and bremsstrahlung.
The relativistic test-particle collision operator is given by (Helander & Sigmar 2005)

C{f} = νD
1

2

∂

∂ξ

(
1− ξ2

) ∂
∂ξ
f +

1

p2

∂

∂p

(
p3νsf

)
, (2.2)

where νs and νD are the slowing down and de�ection frequencies, respectively. For
relativistic electrons νs and νD take the form

νD = τ−1 γ

p3
ν̄D, νs = τ−1 γ

2

p3
ν̄s, (2.3)
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where for the case of a fully ionised plasma ν̄s = 1 and ν̄D = 1 + Ze� (Hesslow et al.

2018b). Here γ =
√

1 + p2 is the Lorentz factor, Ze� = n−1
e

∑
j njZ

2
j is the e�ective

charge and j is an index which runs over all ion species in the plasma, each with density
nj and charge Zj .
In partially ionised plasmas, the slowing-down and de�ection frequencies are in�uenced

by the extent to which fast electrons can penetrate the bound electron cloud around the
impurity ion, i.e. the e�ect of partial screening (Martín-Solís et al. 2015; Breizman &
Aleynikov 2017). The collision frequencies νs and νD can be generalised to account for
the di�erences in the collisional dynamics at di�erent energy scales arising when screening
e�ects are introduced, and in the relativistic limit take the form (Hesslow et al. 2017,
2018a)

ν̄D ≈ 1 + Ze� +
1

lnΛc

∑
j

nj
ne

[(
Z2
j − Z2

0j

)
ln āj −

2

3
N2
j

]
+

ln p

lnΛc

∑
j

nj
ne
Z2
j , (2.4a)

ν̄s ≈ 1 +
1

lnΛc

∑
j

nj
ne
Nj
(
ln I−1

j − 1
)

+
ln p

2 lnΛc

1 + 3
∑
j

nj
ne
Nj

 , (2.4b)

which we will denote as ν̄D ≈ ν̄D0 + ν̄D1 ln p and ν̄s = ν̄s0 + ν̄s1 ln p. The collision
frequencies now depend on atomic parameters of species j: ionisation degree Z0j , charge
number Zj , number of bound electrons of the nucleus for species j, Nj = Zj −Z0j , mean
excitation energy of the ion Ij and e�ective ion size āj determined from density functional
theory calculations, given by Hesslow et al. (2017). The e�ect of partially ionised ions
in the plasma will in�uence the runaway generation (Hesslow et al. 2019a,b) as well as
increase the critical electric �eld (Hesslow et al. 2018b).
Synchrotron radiation and bremsstrahlung hinder the acceleration of runaway elec-

trons. The e�ective term in the kinetic equation resulting from synchrotron radiation is
(Stahl et al. 2015; Hirvijoki et al. 2015a,b)

∂

∂p
· (F synf) = − 1

p2

∂

∂p

(
p3γ

τsyn

(
1− ξ2

)
f

)
+

∂

∂ξ

(
ξ
(
1− ξ2

)
τsynγ

f

)
, (2.5)

where τsyn is the synchrotron radiation-damping time scale

τsyn = 6πε0m
3
ec

3/
(
e4B2

)
. (2.6)

Similarly to the treatment by Hesslow et al. (2017), the e�ect of bremsstrahlung is here
incorporated into the kinetic equation via a mean-force model, which has been shown to
capture the mean-energy accurately (Embréus et al. 2016),

∂

∂p
· (F brf) = − 1

p2

∂

∂p

(
p2Fbrf

)
. (2.7)

Here Fbr is approximated by

Fbr ≈
pαFS

τ lnΛc

∑
j

nj
ne
Z2
j (0.35 + 0.20 ln p) ≡ τ−1p (φbr0 + φbr1 ln p) (2.8)

and αFS is the �ne structure constant. The screening and radiation e�ectively increase the
friction at large momenta, which will prevent runaway electrons from reaching arbitrarily
large energies when given a long enough time to accelerate.
Equation (2.1) describes the momentum space dynamics of the runaway phenomena,

however it does not include any terms allowing for spatial transport. Helander et al.

(2000) amended the kinetic description by adding the radial component of the di�usion
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operator in cylindrical geometry, characterised by the phase-space dependent di�usion
coe�cient D. Including this in our formulation we obtain the full kinetic equation of
interest here,

∂f

∂t
=

1

p2

∂

∂p

[(
−ξE

τ
+ pνs + Fbr +

pγ

τsyn

(
1− ξ2

))
p2f

]
+

∂

∂ξ

[(
1− ξ2

)(
−E/τ

p
f +

1

2
νD

∂f

∂ξ

)
−
ξ
(
1− ξ2

)
τsynγ

f

]
+

1

r

∂

∂r
rD

∂f

∂r
.

(2.9)

In the next section we formulate a general expression for the change in the runaway
avalanche growth rate resulting from such a �nite D.

3. Reduced avalanche growth rate and e�ective critical electric �eld

The appearance of the di�usion term in the kinetic equation adds another dimension to
the problem, a radial one, compared to the standard avalanche growth rate calculation
(Jayakumar et al. 1993; Rosenbluth & Putvinski 1997). We develop an approximate
solution by taking advantage of a separation of time scales, following the approach
outlined by Helander et al. (2000). The avalanche generates secondary electrons with
momentum predominantly close to the critical momentum for the runaway process pc†
and the electron is accelerated from this region up to relativistic momenta on the short
timescale τacc ∼ τ/E. The transport timescale represented by D will typically be longer
than this acceleration time, so the di�usion will not be strong enough to signi�cantly
reduce or alter the generation process. However, the timescale of the avalanche growth
is signi�cantly longer, namely γ−1

r ∼ 2 lnΛ τacc (Jayakumar et al. 1993) and thus the
spatial di�usion may be expected to have a substantial impact on the avalanche.
To this end, the momentum space is divided into a low energy region, p < p∗, where all

the runaway generation occurs and the e�ects of radial di�usion are neglected, and a high
energy region, p > p∗, where all the radial transport takes place. After this division in
momentum space, the high energy region is modelled as source free and the generation of
runaway electrons is modelled as a �ux through the lower boundary in momentum space
at p∗. Furthermore, the theory is reduced to only a single momentum-space coordinate
in the high energy region.
This was done neglecting the e�ect of radiation in (Helander et al. 2000), by recognising

that runaway electrons often have small pitch-angles, ξ ≈ 1 and so expanding the collision
operator assuming p⊥ � p‖, where p‖ and p⊥ are the projections of the momentum
along and perpendicular to the magnetic �eld line, respectively. The rate of change
of the distribution function integrated over perpendicular momenta F =

∫
d2p⊥f =∫∞

0
dp⊥ 2πp⊥f can then be obtained by integrating the kinetic equation (2.9), leading

to
∂F
∂t

+
E − 1

τ

∂F
∂p

=
1

r

∂

∂r
rD(p)

∂F
∂r

, (3.1)

where the di�usion coe�cient for particles travelling purely along the magnetic �eld
line is used to �rst order. This is the kinetic description of the runaway electrons given
in equation (12) of (Helander et al. 2000). The synchrotron radiation reaction force is
however strongly dependent on the momentum perpendicular to the magnetic �eld line,

† The avalanche source term is 1
p2

∂
∂p

1
γ−1

∼ 1
p5

for low momenta, and therefore does not

extend far into the runaway region.
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as it is a consequence of the gyration around the �eld line, and a treatment of radiative
e�ects needs to account for the pitch angle distribution of particles.
Radiative e�ects are important close to the critical electric �eld where the acceleration

from the electric �eld is close to being balanced by the radiation reaction forces, making
the dynamics in the energy direction of momentum space comparatively slow. Therefore,
as in Lehtinen et al. (1999); Aleynikov & Breizman (2015); Hesslow et al. (2018b), we
consider the pitch-angle evolution to be a rapid process compared to the energy evolution
dynamics and assume a steady-state in the pitch-angle distribution for a given p. This
requires that the pitch-angle �ux of particles vanishes, the condition following from the
kinetic equation (2.9) as

0 =
(
1− ξ2

)(
−E/τ

p
f +

1

2
νD

∂f

∂ξ

)
− ξ(1− ξ2)

τsynγ
f. (3.2)

Since τsyn � τ we formally neglect the e�ect of the synchrotron radiation on the pitch-
angle distribution, retaining only the balance between the di�usive e�ect of pitch-angle
scattering and the collimating e�ect of the electric �eld. This can be used to solve for
the pitch angle distribution and the distribution function may now be written as

2πp2f(r, p, ξ, t) =
A(p)

2 sinh(A(p))
eA(p)ξF (r, p, t), (3.3)

where the reduced distribution function F includes the 2πp2 of the momentum-space
Jacobian, such that the radial density of runaway electrons is

nRE(r, t) =

∫ ∞
p∗

dp F (r, p, t) (3.4)

and the inverse of A(p) = 2E/ (pνDτ) determines the extent of the distribution function
in ξ. In the limit of large p, the pitch angle distribution is narrow in agreement with the
treatment by Helander et al. (2000), as νD ∼ p−2 and therefore A−1 ∼ p−1.
Integrating the kinetic equation over pitch-angle, a reduced kinetic equation now

accounting for radiation reaction forces and screening e�ects is obtained

∂F

∂t
+

1

τ

∂

∂p
(U(p)F ) =

1

r

∂

∂r
r〈D〉ξ

∂F

∂r
, (3.5)

where the pitch averaged force U(p) is

U(p) = E cothA− τ
[
pνD

2
+ pνs + Fbr +

p2γνD
τsynE

(
cothA− 1

A

)]
, (3.6)

and the pitch-angle averaged di�usion coe�cient is

〈D〉ξ(p) =

∫ 1

−1

dξ D(p, ξ)
AeAξ

2 sinhA
. (3.7)

Note that for large p, neglecting screening e�ects, we recover the non-radiative result
U(p) ≈ E cothA− pτνs → E − 1. A qualitative di�erence between the models with and
without radiative e�ects is the appearance of a momentum scale pmax where the pitch-
angle averaged advection in momentum disappears, U(pmax) = 0. This limits the energy
of the relativistic particles and corresponds to the energy scale where radiation reaction
forces balance the electric �eld acceleration.
As outlined by Helander et al. (2000), we impose the boundary condition that the

particle �ux through p∗ is given by the avalanche growth, γrnRE, where γr is the growth
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rate without the impact of di�usion. Given the structure of equation (3.5) this translates
to a condition on F as

F (p∗) =
τγr
U(p∗)

nRE =
τγr
U(p∗)

∫ ∞
p∗

dp F, (3.8)

which is not a typical boundary condition as the value at the lower boundary in
momentum space is dependent on the solution in the whole high energy region. A closed-
form expression for the solution can be found for the simpler problem of radially-uniform
plasma parameters in a quasi-steady state in terms of a Bessel mode expansion†. The
e�ective strength of the di�usion experienced by each Bessel mode is scaled by the square
of its inverse radial length scale ki = bi/a, where bi is the i:th root of the zeroth Bessel
function J0(x) (Abramowitz & Stegun 1948). The solution is,

F (p, r, t) =
1

U(p)

∞∑
i=1

ciJ0(kir) exp

(
γit−

∫ p

p∗

dp′
τ

U(p′)

(
γi + k2

i 〈D〉ξ(p′)
))

. (3.9)

The coe�cients ci are determined by the initial condition, or seed pro�le of the avalanche
process. The growth rate of the modes, γi, will be determined by the boundary condition
(3.8).
Helander et al. (2000) considered only the �rst Bessel mode, i = 1. This gave a

conservative estimate of the e�ect of di�usion as higher mode numbers have a smaller
characteristic length scale so will experience a larger e�ect of di�usion, as noted above.
Here we choose to retain all the modes, which would allow the runaway distribution
function to be propagated in time. As a consequence of the orthogonality of the Bessel
modes, the boundary condition can be projected on each mode separately, which decou-
ples them from one another. The equation for γi then follows from inserting (3.9) in the
boundary condition (3.8) as

1 =

∫ pmax

p∗

dp
γrτ

U(p)
exp

(
−
∫ p

p∗

dp′
γiτ + τk2

i 〈D〉ξ
U(p′)

)
, (3.10)

where the upper limit of the integration is pmax as no particles can gain energy larger
than this.
The theory for the pitch-angle distribution described above is valid for large p � which

we are mostly concerned with here � and not in general close to the critical momentum
pc, where U(pc) = 0. If the free parameter p∗ is chosen close to pc, the result will be
sensitive to the choice. We can consistently minimise this impact of p∗ by expanding U
in large p, such that the theory still retains a pmax, and safely set p∗ = pc as a typical
momentum scale for the onset of the runaway region. A large-p expansion keeping terms
of order p−1 and larger gives

U(p) = E − ν̄s0 +
τ ν̄2
D0

2τsynE2
−
(
ν̄s1 − τ

ν̄D0ν̄D1

τsynE2

)
ln p+

τ ν̄2
D1

2τsynE2
ln2 p

−
(
φbr0 +

τ ν̄D0

τsynE

)
p−

(
φbr1 +

τ ν̄D1

τsynE

)
p ln p−

(
1

2
+

τ

τsynE

)
ν̄D0 + ν̄D1 ln p

p
.

(3.11)
Finally, a model for the avalanche growth rate without magnetic perturbations is

† The same type of solution is still possible with a radially dependent di�usion coe�cient, as
the radial part of the problem forms a Sturm�Liouville problem, however the expansion would
no longer be in terms of Bessel functions but rather the eigenfunctions of the transport term in
question.
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needed. For continuity with our collision operator we will use the model by Hesslow
et al. (2019a), which incorporates the e�ect of screening by the evaluation of the
collision frequencies at an e�ective critical momentum scale peff

c , implicitly given by
peff
c = 4

√
ν̄s(peff

c )ν̄D(peff
c )/
√
E. Furthermore the model has an increased threshold �eld

for the avalanche generation, Ēe�
c , given by Hesslow et al. (2018b). Here, the bar on Ēe�

c

indicates the critical electric �eld without the e�ect of radial di�usion, to distinguish
from its value Ee�

c when the radial di�usion is taken into account in section 3.2. The
expression for the avalanche generation is then(

∂nRE
∂t

)Aval

= γrnRE =
ntote /ne

τ lnΛ
√

4 + ν̄s(peff
c )ν̄D(peff

c )

(
E − Ēe�

c

)
nRE, (3.12)

where ntote is the total number of electrons in the system (bound + free). Although we
will use this model for the avalanche generation in the next section in order to consider
its reduction due to radial transport, our method is agnostic to this choice and can be
adapted to any avalanche description.

3.1. Reduced avalanche growth rate

As the radial transport allows for runaway electrons to be lost from the system,
preventing these electrons from multiplying by the avalanche mechanism, the exponential
growth rate of the Bessel modes, γi, will be reduced compared to the uncorrected value.
The magnitude of the transport coe�cients considered below reduces at large momentum,
and in the avalanche distribution the particle density in phase space also decreases at
large energies. Therefore, the problem is to a large extent determined by the dynamics
at small energies. At these energies, where p� pmax, the radiation reaction forces do not
in�uence the problem signi�cantly, and the acceleration dynamics is dominated by the
electric �eld. For large �eld strength we have U ≈ E. However, at the critical electric �eld
for runaway generation, Ēe�

c , the runaway generation and the advection in momentum
space fall to zero. A linear interpolation between these regions gives U ≈ E − Ēe�

c .
The uncorrected growth rate in equation (3.12) scales with electric �eld strength as

E−Ēe�
c , which was just noted to be the approximate dependence of U at low momentum

(p� pmax), such that the prefactor of the exponent in (3.10) does not signi�cantly vary
with electric �eld strength at low p. The impact of the di�usion at low momentum is
then characterised by

α = τk2
i 〈D〉ξ

/
(E − Ēe�

c ) (3.13)

and the dependence of the corrected growth rate on this parameter is shown in �gure 1a,
which is obtained by solving equation (3.10) numerically. In the limit of small α the e�ect
of di�usion is rather well parametrised by this normalised ratio of di�usion strength to
the electric �eld acceleration. However, the correlation is lost when the growth rate is
strongly reduced and approaches zero. Qualitatively, this can be understood as the e�ect
of pmax and the high energy particles, as a �nite pmax limits the number of energetic
particles that can contribute to the avalanche without being signi�cantly a�ected by the
di�usion. The e�ect is demonstrated in �gure 1a by the case U = E − Ēe�

c where pmax

is formally in�nite and the growth rate remains slightly above zero for a relatively wide
range of di�usion strengths†. This limit is approached generally at large electric �eld
strength.

† Formally, the growth rate cannot be corrected down to zero in the theory where U = E−Ēe�
c

if the D decays asymptotically in momentum space faster than p−1. The latter is the marginal
case where it is impossible if α0 < 1 where α ∼ α0/p asymptotically.
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In �gure 1a a di�usion coe�cient of the following form was used,

〈D〉ξ(p) = D0
v

cγ
= D0

p

1 + p2
. (3.14)

The motivation for this expression is to capture the expected low energy behaviour
where the di�usion is proportional to the particle velocity along the magnetic �eld line
(Rechester & Rosenbluth 1978), as well as the expected e�ects of orbit decorrelation at
high energy, as described for example in Hau� & Jenko (2009). The latter authors made
an estimate for D0 in the small Kubo number limit, such that D ' v2

Bτ‖, where the
radial velocity of the particles vB = v‖δB/B is due to the projection of the motion along
the perturbed �eld line, with δB the root mean square of the magnetic perturbation
amplitude. The parallel correlation time is assumed to be set by the particle motion
through the perturbed poloidal magnetic �eld structure, τ‖ = λ‖/v‖ ' πqR/v‖, where
λ‖ is the parallel connection length and q is the safety factor. Therefore, the estimate of
D0 is

D0 ' πqR (δB/B)
2
c. (3.15)

The strength of the di�usion is parametrised in this paper by τk2
iD0 which is thus related

to the magnetic perturbation level as follows,

τk2
iD0 ≈ 3.14 b2i

R[m]q

a[m]2ne,20 lnΛ

(
104δB/B

)2
, (3.16)

where R[m] and a[m] are the major and minor radii in meters, respectively, and ne,20 is
the electron density in units of 1020 m−3. Consequently, for standard ITER parameters
without any material injection, R = 6.2 m, a = 2 m, ne = 1020 m−3, lnΛ ≈ 15 and
q ≈ 1, we have τk2

1D0 ≈ 2(δB/B)2 × 108 for the least suppressed mode (b1 ≈ 2.4).
In absolute units, the uncorrected growth rate scales linearly with the electric �eld

strength and in �gure 1b we see that the corrected growth rate also shows a linear
relation with the electric �eld strength for large �elds. The corrected growth rate is o�set
from the uncorrected one because the inverse of the characteristic di�usion parameter α
and the uncorrected growth rate depend similarly on the electric �eld. This can be seen
by expanding equation (3.10) in small α yielding†

γi = γr −
∫ pmax

p∗

dp γr
τk2

i 〈D〉ξ
U(p)

exp

(
−
∫ p

p∗

dp′
γrτ

U(p′)

)
, (3.17)

where the second term is almost independent of E if pmax is large, since then U ≈ E−Ee�
c

for the values of p with the largest contribution to the integral. This approximation is
compared to the full numerical solution in �gure 1b where the o�set from the uncorrected
result is evident for large E and small α.

3.2. E�ective critical electric �eld

As the radial transport reduces the growth rate, the critical electric �eld strength
for net generation of runaway electrons may increase. In the current decay phase of
the disruption the electric �eld stays close to the critical electric �eld and the current
decay rate is proportional to its value (Breizman & Aleynikov 2017; Hesslow et al.

2018b). Therefore the critical electric �eld has direct relevance for disruption mitigation
strategies.

† This formula can be arrived at by using integration by parts and change the momentum
variable q = p∗ +

∫ p
p∗
dp′

(
E − Ēe�

c

)
/U(p′) in the intermediate steps. The transformation maps

the problem to a theory without radiative e�ects.
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Figure 1: Reduction of the avalanche growth rate in a fully ionised plasma with Ze� = 1,
T = 10 eV, ne = 1020m−3 and B = 3 T based on the numerical solution of equation (3.10)
with the functional form of the di�usion coe�cient from equation (3.14). a) The relative
correction of the growth rate as a function of di�usion strength for di�erent electric
�eld strengths. The limit pmax = ∞ corresponds to the theory with U = E − Ēe�

c .
b) The corrected growth rate as a function of electric �eld strength. At large electric
�eld strength the o�set of the corrected growth rate depends on the di�usion strength
τk2

iD0, which is expected to be around unity in an ITER-sized machine with normalized
magnetic perturbation level of δB/B ' 10−4.

The mode least suppressed by the transport is the lowest order mode, with index i = 1,
and therefore can be expected to dominate the runaway pro�le in the late stages of the
disruption. We therefore choose to de�ne the e�ective critical electric �eld Ee�

c as the
�eld strength at which the growth rate of the �rst mode vanishes, namely γ1 = 0.
Figure 2a shows numerical solutions for the critical electric �eld, obtained from equa-

tion (3.10) under the constraint γ1 = 0 in fully ionised plasmas with di�erent densities.
For large di�usion strengths, when the e�ective critical electric �elds are relatively large, a
linear relation between di�usion strength and electric �eld is found. This follows naturally
for large electric �elds E in (3.10), U ≈ E − Ēe�

c and pmax is at large enough energy
scales not to be relevant, as the condition γ1 = 0 translates to a condition on α. Given
this linear relation in di�usion coe�cient, the critical electric �eld strength is expected
to be quadratic in the magnetic perturbation level, δB/B.
Figure 2b shows the critical e�ective �eld as a function of temperature, which intro-

duces screening e�ects at the lowest temperatures, where some electrons remain bound
to ions. The ionisation states are determined here by assuming equilibrium based on the
ADAS coe�cients of ionisation and recombination†.
In absolute units, the correction to the e�ective critical �eld strength increases with

temperature, primarily due to the increase in free electrons which raises Ec. Massive
material injection will also raise the density and so the critical electric �eld for runaway
generation. We see from �gure 2b that this e�ect can be combined with the e�ect of spatial
di�usion to further raise Ee�

c . However unlike massive material injection, where changes
to Ee�

c are linked to changes in the electron density, the correction based on magnetic
perturbations is only weakly dependent on the density (as long as perturbation strength is
treated independent of plasma density), in absolute units. This weak dependence follows
as τγr/E is density independent and therefore any sensitivity originates from only Ēe�

c

† http://www.adas.ac.uk
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Figure 2: a) Critical electric �eld as a function of di�usion strength calculated using the
momentum space dependent di�usion coe�cient given in equation (3.14). The critical
electric �eld for a net avalanche gain in the presence of spatial transport (solid lines)
is enhanced compared to the theory without transport (dashed lines). A linear relation
between e�ective critical �eld strength and di�usion strength is found for large di�usion
strengths. The plasma is fully ionised with e�ective charge Ze� = 1, a temperature of
T = 10 eV and magnetic �eld strength B = 3 T. The large p-expansion for U has been
used. b) Critical electric �eld as a function of temperature, in a plasma with deuterium
density nD = 1021 m−3 (upper three curves) or nD = 1020 m−3 (lower three curves), and
neon density nNe = 1019 m−3 in both cases, where the respective ionisation states for all
temperatures T are determined assuming equilibrium based on the ADAS coe�cients of
ionisation and recombination. The strength of the di�usion is characterised by equation
(3.16) with minor and major radii a = 2m and R = 6.2 m respectively, with a safety
factor q of order unity.

and the large-p dependence of U . Further, as was shown by Hesslow et al. (2018b), the
e�ect of partial screening on the critical electric �eld Ēe�

c was to raise it to the order
of Etot

c , which has the same form as the usual Connor-Hastie expression Ec, but with
the combined density of free and bound electrons instead of only the density of free
electrons. Therefore, only a weak dependence of temperature is seen in �gure 2b, as the
total number of electrons are kept �xed in these simulations. The two mechanisms for
increasing the e�ective electric �eld (screening and magnetic perturbations) can therefore
be combined. We note, however, that Ēe�

c is only weakly dependent on the temperature
and ionisation state.
The theory discussed so far, in which radial variations in the plasma have been

neglected, allows for self-consistent analytic solutions to the distribution function and
an understanding of the dependencies of the growth rate correction due to transport.
However, in a tokamak disruption, the electric �eld dynamics is essential and will vary
spatially through its dependence on plasma properties. Therefore in the next section we
take a perturbative approach to solving equation (3.5), to include e�ects due to radial
plasma variation.

4. Transport in an inhomogeneous plasma

During the current quench of a disruption the �ux surfaces are not completely stochas-
tic. Instead, they often exhibit a mixed magnetic topology consisting of intact �ux-
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surfaces, magnetic islands and stochastic regions. In such circumstances, the transport
will no longer be well described by the expression given by Rechester & Rosenbluth
(1978) and a more general transport model consisting of spatially dependent di�usive
and advective components is often formulated, based on particle following simulations
(Papp et al. 2015; Särkimäki et al. 2016). Assuming cylindrical symmetry, the transport
term on the right hand side of equation (3.5) becomes

1

r

∂

∂r
r

(
−〈V 〉ξ + 〈D〉ξ

∂

∂r

)
F, (4.1)

where 〈V 〉ξ is the pitch-angle average of the radial component of the advection coe�-
cient de�ned equivalently to (3.7). Fundamentally the above transport term conserves
particle number, which is a property not guaranteed by an approximate perturbative
solution. Therefore, this conservation property will be imposed on the solution to prevent
anomalous losses of particles. Note, that the conservation of particle number is local, and
particles can be lost at the edge.
The approach to solving the kinetic equation in the high energy region with a momen-

tum space dependent di�usion coe�cient in the previous section, by means of a Bessel
mode expansion, breaks down when a radial dependence is introduced in the plasma
parameters. To include the e�ects of radially varying plasma parameters we instead
perform an expansion in small radial transport compared to the electric �eld acceleration
α� 1. The full form of U gives U = 0 in the vicinity of pmax, so the transport would not
be subdominant for such momenta. We therefore treat this with a simpli�ed approach,
taking U = E − Ēe�

c which is similar to the advection in momentum space given by
Helander et al. (2000), modi�ed to include the e�ects of an increased critical electric
�eld due to screening. In this model, the advection in momentum-space does not vanish,
and in the previous section, we saw that the full U approaches this in the limit of large
electric �eld. As this model does not treat the e�ects of radiation correctly, it may be seen
as a better approximation signi�cantly below pmax. As the assumed transport coe�cients
and particle density decrease with momentum in avalanche dominated scenarios, these
lower energy scales are anyway expected to dominate the transport here. We will also
demonstrate explicitly the weak sensitivity of the results to p∗.
Given this model for U , the zeroth order solution given by neglecting the transport,

so the solutions at di�erent radii are independent, is

F0(p, r, t) = nRE(r, t)
γrτ

E − Ēe�
c

e−γrτ(p−p∗)/(E−Ēe�

c ), (4.2)

which is consistent with the incoming runaway electron �ux γrnRE and respects the
de�nition of nRE in (3.4). Under the assumption that the radial transport is small this
distribution may be used to evaluate the transport term. Integrating equation (3.5) over
p then gives

∂nRE
∂t

+
1

r

∂

∂r
(rΓ0) = γrnRE, (4.3)

where the term on the right represents the source of runaway electrons and

Γ0 =

∫ ∞
p∗

(
〈V 〉ξF0 − 〈D〉ξ

∂

∂r
F0

)
dp (4.4)

is the radial �ux of the runaway electrons. Using equation (4.2) for F0 to evaluate
Γ0 results in a form Γ0 = Γ̄0nRE + Γ̃0∂rnRE and equation (4.3) can be stably solved
numerically using a method based on the Crank�Nicholson scheme. This transport model
can be incorporated into any suitable runaway simulation to similarly capture the e�ects
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of transport due to magnetic perturbations. In the following subsections the transport
model will be integrated with the electric �eld evolution, but it should be noted that
the momentum space shape of the distribution function, equation (4.2), is insensitive to
the electric �eld strength, due to the appearance of the ratio γr/(E − Ēe�

c ), which is
consistent with the neglect of the temporal evolution of E in its derivation.

4.1. Simpli�ed disruption simulations including the e�ect of radial transport

Under normal operation of a tokamak there are radial gradients in the temperature
and plasma current, both of which contribute to a radially varying electric �eld as the
plasma is suddenly cooled in a disruption. The subsequent evolution of the electric �eld
is described by the induction equation, which for a plasma with only radial variations is
(Smith et al. 2006)

1

r

∂

∂r
r
∂E‖

∂r
= µ0

∂j‖

∂t
, (4.5)

where E‖ and j‖ are the electric �eld strength and the current density along the plasma
cylinder.
The time evolution of the electric �eld is dependent on its radial pro�le, as the current

j‖ has both an Ohmic and a runaway component: j‖ = σspE‖ + jRE ≈ σspE‖ + ecnRE
where σsp is the Spitzer conductivity (Spitzer & Härm 1953). Accordingly, the radial
pro�le of runaway generation also plays a crucial part in understanding the electric
�eld evolution. Furthermore, the avalanche growth rate is proportional to the electric
�eld strength, for �elds large compared to the critical one, such that the cumulative
generation is highly dependent on the evolution of the electric �eld. Consequently, for a
self-consistent treatment of both the electric �eld dynamics and runaway generation, it
is of the utmost importance to be able to treat the runaway generation in a region of
space with an electric �eld gradient. Such computations can be carried out within the
go-framework (Smith et al. 2006; Fehér et al. 2011; Vallhagen et al. 2020) or similar
codes. Introducing the e�ect of transport losses into such a model, including the e�ects
of impurities and allowing for partial screening, would allow us to quantify the reduction
given by transport of the total number of runaway electrons at the end of a disruption.
To achieve this, we have extended the go-framework to solve the coupled equations

(4.3) and (4.5). The runaway generation and transport are described by equation (4.3),
while the runaway electron dynamics couples to the electric �eld evolution through the
current term in equation (4.5). The right hand side of the former includes primary sources
of runaway electrons: Dreicer generation, tritium decay and Compton sources. When
avalanching dominates, as is the case for high current devices, the �ux Γ0 derived using
only the avalanche source should be valid as it describes the momentum space distribution
of the majority of the population. Finite-aspect-ratio e�ects on the generation will be
neglected here, as recent work by McDevitt & Tang (2019) indicate that their e�ect is
negligible at the high densities and electric �elds that we will consider here.
In the go-framework, the Dreicer generation is evaluated using a neural network

(Hesslow et al. 2019b), trained on kinetic simulations with code (Landreman et al. 2014),
using the collision operator that includes the e�ect of partially ionized impurities given
by Hesslow et al. (2018a). β-decay of tritium will also result in a source of runaway
electrons, which in the deuterium-tritium phase of operation is expected to be the
dominant source of seed electrons in ITER in the absence of hot-tail electrons (Martín-
Solís et al. 2017). Furthermore, neutrons produced in the fusion reactions will activate
the wall which in turn will emit γ-photons. Through Compton scattering events between
the γ-photons and the bulk electrons, runaway electrons can be generated (Martín-Solís



14P. Svensson, O. Embreus, S. L. Newton, K. Särkimäki, O. Vallhagen and T. Fülöp

et al. 2017; Vallhagen et al. 2020). In the simulations presented here, we neglect the
hot-tail generation occurring in a rapidly cooling plasma. This generation occurs during
the thermal quench which is typically associated with large magnetic �uctuations and
corresponding transport. By neglecting the hot-tail seed we implicitly assume that the
transport during the thermal quench is large enough to lead to the prompt loss of these
runaways.
The go-framework has the capability to compute the plasma temperature evolu-

tion from the energy balance between heat di�usion, Ohmic heating, line radiation,
bremsstrahlung losses and ionisation, as presented by Vallhagen et al. (2020). However,
in the initial phase of the disruption, the energy loss is expected to be dominated by the
MHD contribution, due to its strong temperature scaling ∼ T 5/2 (Ward & Wesson 1992).
This phase is, for simplicity, modelled as an exponential drop in temperature until the
temperature of the inner part of the plasma drops to ∼ 100 eV, with the form

T (r, t) = Tf(r) +
(
Ti(r)− Tf(r)

)
e−t/t0 , (4.6)

where t0 is the time constant for the thermal quench and Ti and Tf are the initial and
�nal temperatures, respectively. This mode of the temperature evolution uses a �at �nal
temperature pro�le Tf = 50 eV and is used for 6 ms with a time constant of t0 = 1 ms.
After this time the temperature is evolved based on the energy balance. The ionisation
states in the background plasma are evolved in time based on the ADAS coe�cients for
ionisation and recombination.

4.2. Simulations of ITER-like disruptions with uniform perturbations

To investigate the large scale e�ect of radial transport, in tokamak disruption scenarios
where the runaway generation is expected to be dominated by the avalanche mechanism,
an ITER-like case with deuterium and neon injection was simulated using the go-
framework. The parameters considered are the same as those used by Martín-Solís et al.
(2017) and Vallhagen et al. (2020): initial plasma current Ip(t = 0) = 15 MA, minor
and major radii a = 2 m and R = 6.2 m, respectively, initial electron, deuterium and
tritium densities ne0 = 2nD0 = 2nT0 = 1020 m−3. The simulation was initiated with
one dimensional pro�les in temperature Te = 20

[
1 − (r/a)

2 ]
keV and current density

j‖(t = 0) = j0
[
1 − (r/a)

2 ]0.41
, where j0 is chosen so that the current integrates to

15 MA.
At the start of the simulations we assume a rapid injection of deuterium and neon, with

respective densities nD and nNe, where the impurity is distributed uniformly throughout
the plasma in the neutral state. The current evolution for three such scenarios with
di�erent combinations of injected neon and deuterium is demonstrated in �gure 3,
for a set of radially constant magnetic perturbation levels and a momentum space
dependent di�usion coe�cient of the form (3.14). The three cases considered are the
same as those investigated in Vallhagen et al. (2020) and denoted both here and there
as Case 1, Case 3 and Case 4†. In each of these cases the injected material is large
enough to induce a complete thermal quench: Case 1 (nNe = 1 × 1020 m−3, nD = 0),
Case 3 (nNe = 8× 1018 m−3, nD = 4 × 1021 m−3) and Case 4 (nNe = 8 × 1018 m−3,
nD = 7×1020 m−3). In the absence of perturbations large runaway currents were obtained
in all of these three cases, even without hot-tail generation.
Interestingly, the maximum runaway current increases for small transport coe�cients

(δB/B ' 2 · 10−4) compared to the baseline case of no radial transport, as the runaway
electron seed is radially �attened by the transport. This agrees with previous results by

† Case 2 described in (Vallhagen et al. 2020) does not result in a complete thermal collapse.
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Figure 1: ——————————————————————————————————-Figure 3: Evolution of current carried by runaway electrons in an ITER-like disruption
in the presence of magnetic perturbations. The magnitude of δB/B is shown by the text
and colour in the �gure. Three cases of injected material are considered: A pure neon
injection with density nNe/ne0 = 1 (Case 1), and two cases with the same amount of
injected neon nNe/ne0 = 0.08, but di�erent amount of injected deuterium nD/ne0 = 40
(Case 3) and nD/ne0 = 7 (Case 4), respectively. The coloured area corresponds to p∗
in the range 0.1− 1.

Fehér et al. (2011). However, for large enough perturbations we note a reduction of the
maximal current carried by the runaway electrons. How large the reduction is depends
on the particular scenario. Case 4, with a combination of moderate neon and deuterium
injection shows the largest reduction.

The e�ectiveness of the radial transport in modifying the runaway evolution is closely
related to the time scale of the current evolution. Generally, the longer the time scale
of the current quench the more pronounced is the e�ect of transport, as particles have
more time to be transported out of the plasma. Due to this e�ect Case 4 has a slower
growth rate of runaway electrons than in Cases 1 and 3, di�usion therefore having a
larger impact, as can be noted in �gure 3.

Figure 4 shows the maximum runaway current, just before the onset of the dissipation
phase where the plasma current carried by the runaway electrons decays, in the three
cases as a function of (δB/B)2. We note that almost full suppression of the runaway
current can be achieved in Case 4, for a normalised perturbation δB/B ' 5 · 10−4.
We also show the time it takes for the runaway current to rise from 10% to 90% of its
maximum value, denoted by t10-90, for δB/B = 2 ·10−4. Clearly, Case 4 has considerably
longer t10-90 than the other two and this is the main reason for the larger suppression.
The di�usion time scale can be estimated to be tdiff = a2/〈D0〉 ' a2/(π〈q〉Rc) (δB/B)

−2
,

and is 17 ms for 〈q〉 ' 1 and δB/B = 2 · 10−4. Here, 〈· · · 〉 denotes a volume average.
We note that the uncertainty in p∗ in�uences the result, but the e�ect of the magnetic
perturbation is clearly dominant.

When the runaway plateau phase is reached in the �nal stages of the disruption the loss
of plasma current is dominated by the loss of runaway electrons. If the time derivative of
the Ohmic current is neglected in equation (4.5), combining with equation (4.3) yields
an approximate equation for the electric �eld in the runaway plateau,

1

r

∂

∂r
r
∂E‖

∂r
≈ µ0ce

(
γr(E‖)nRE −

1

r

∂

∂r
(rΓ0)

)
. (4.7)
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Figure 1: Radial profiles from the ITER-like disruption simulation in Case 3, with the
transport coefficient presented in figure ?? (solid lines) and without transport of runaway
electrons (dashed lines), at subsequent time slices. Radial profiles of a) temperature, b)
electric field and c) the number of e-foldings defined in equation (??). The time slices
were chosen to highlight the formation of the current sheet in the case with transport, and
are identified in panel b). The dashed lines were taken at times such that the positions
of the cold front were matched. The extra (gray) line in c) gives the number of e-foldings
at the start of the current decay phase. The vertical dashed line shows the onset of the
stochastic region.

Figure 4: Runaway current in ITER-like disruptions in the presence of magnetic
perturbations. The maximum current carried by the runaways is shown against the square
of the magnetic perturbation level - proportional to the transport coe�cient. The upper
axis label shows the di�usion time scale a2/〈D0〉. The shaded area corresponds to the
range of p∗ shown in �gure 3. The time for the runaway current to rise from 10% to 90%
of its maximum value, t10-90, is shown in the �gure for δB/B = 2 · 10−4.
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Figure 1: Electric field after 50 ms in Case 3 shown in figure ?? (solid line), together with
the approximate runaway plateau electric field obtained from setting the local growth
of the runaway density to zero in equation (??) (dashed line) using the radial profile of
runaway electrons from the simulation.

Figure 5: Electric �eld after 50 ms in Case 3 shown in �gure 3 (solid line), together with
the approximate runaway plateau electric �eld obtained from setting the local growth
of the runaway density to zero in equation (4.3) (dashed line) using the radial pro�le of
runaway electrons from the simulation.

Based on this expression the decay of the plasma current is

∂Ip
∂t

=
2πa

µ0

∂E‖

∂r

∣∣∣
r=a
≈ 2πec

(∫ a

0

dr rγr(E‖)nRE − aΓ0(r = a)

)
, (4.8)

for a given radial pro�le of the runaway electron density. This approximation recovers
the electric �eld structure in the current decay phase to a large extent, however an even
simpler consideration can be made where the local growth of runaway electrons is set
to zero, in equation (4.3), which in terms of equation (4.7) corresponds to neglecting
the left hand side of the equation. Using the expression for the uncorrected growth rate
under consideration here, equation (3.12), yields an explicit expression for the electric
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�eld given a pro�le nRE. Figure 5 shows the electric �eld obtained in the simulations
corresponding to the cases shown in �gure 3, together with the electric �eld strength
which zeros the local growth of runaway electrons. The electric �eld pro�les are seen to
agree with one another in regions with small gradients in E and especially in the central
part of the plasma, which is related to the neglected term from equation (4.7). Therefore,
the electric �eld is generally higher than the threshold �eld for runaway generation Ēe�

c in
the centre of the plasma, where there is a balance between the generation and transport.
However, close to the edge the current density is low enough so that the prefactor on the
source term in equation (4.7) is small enough to allow a signi�cant deviation below Ēe�

c .
Furthermore, in the cases with large transport, the electric �eld in the central region
is not as �at as Ēe�

c . Instead it has a similar functional form to the runaway current
pro�le, indicating that it is the transport which dominates the electric �eld in the plateau
phase. In these situations, the electric �eld is highly dependent on the pro�le of runaway
electrons, which in turn depends on the full temporal evolution of the system, and in
particular the transport coe�cients. This suggests that approaches where the current
decay phase is described by Ēe�

c are only valid if the transport is negligible, otherwise
the coupled dynamics with the runaway electrons must be considered.

5. Runaway dynamics in the presence of arti�cial resonant

perturbations

The magnetic �eld is expected to become fully stochastic at the end of the thermal
quench, after which it begins to heal during the current quench. To mimic the conditions
during the current quench in ITER, we choose the 15 MA / 5.3 T baseline scenario
(Parail et al. 2013) and introduce arti�cial resonant magnetic perturbations at the
plasma edge to create a stochastic layer. We have chosen the pre-disruption current
�at top equilibrium for this exercise as obtaining realistic current quench equilibrium
would require dedicated MHD modelling. The introduced perturbations are stationary
and have a helical structure,

δB = ∇×
∑
n,m

αnm(ρ) cos(nζ −mθ − φnm)B, (5.1)

where (ρ, θ, ζ) are the radial, poloidal, and toroidal Boozer coordinates, respectively,
B is the unperturbed �eld and the phase φnm is chosen to be random. This method is
the same as used in Särkimäki et al. (2020), and also here the total perturbation consists
of several modes with low mode numbers (n,m . 20). The mode eigenfunctions are
Gaussians,

αnm = exp

(
(r − rnm)2

2σ2

)
, (5.2)

that peak at the corresponding resonance rnm and all have the same width σ = 0.03 m
which is large enough for the modes to overlap and create a continuous stochastic region.
The perturbation level is set to δB/B ≈ 10−3 at which signi�cant runaway transport
is expected (Helander et al. 2000). The resulting �eld is illustrated in �gure 6. The
transport coe�cients are evaluated numerically with the orbit-following code ASCOT5
(Varje et al. 2019). Markers representing guiding centers of collisionless electrons were
traced in the perturbed �eld, and their radial position was recorded for each orbit. As
particles with �nite orbit width oscillate radially during their orbit, the radial position
was always recorded at the same poloidal position (at the outer mid-plane) so that all
changes in the radial position were due to the transport alone. No collisions, electric �eld
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Figure 6: Magnetic �eld Poincaré-plot at the outer mid-plane for an ITER current �at-
top equilibrium perturbed with arti�cial resonant magnetic perturbations according to
(5.1). The stochastic region begins at r/a ≈ 0.6 (q = 1 surface is at r/a ≈ 0.5).

or radiation reaction force was present in the simulation to isolate the transport due to
the magnetic �eld perturbations and to keep momentum constant in order to calculate
momentum dependent coe�cients.

The transport coe�cients are evaluated from the recorded radial positions as

V =
1

N

N∑
i=1

〈
∆r

∆t

〉
i

, (5.3)

D =
1

N

N∑
i=1

〈
(∆r)2

∆t

〉
i

, (5.4)

where the brackets denote an average over all collected data points for a marker i, ∆t
is the orbit circulation time, ∆r is the change in radial position between subsequent
recordings, and the sum is taken over all N markers that were traced. This scheme is
similar to the one originally presented by Boozer & Kuo-Petravic (1981). At the edge
markers are lost within a few orbits, making estimates (5.3) and (5.4) unreliable, and so
the coe�cients are evaluated from the loss-time distribution using the method described
in (Särkimäki et al. 2016, 2020). This latter method is used if more than half of the
markers are lost.

Markers are simulated for 2 × 10−5 s which corresponds to approximately 100 orbit
transit times. The simulation time has to be long enough as early on the particle orbits are
correlated and the motion is not di�usive. However, longer simulation time decreases the
radial resolution of the evaluated coe�cients as ∆r ≈

√
2Dt. The markers have identical

radial position, pitch and momentum but a random toroidal location. The transport
coe�cients to be used in the go simulation are found by repeating the orbit-following
simulation with di�erent values of radius, pitch, and momentum. In these simulations,
the phase space is divided into 15 radial, 11 momentum, and 10 pitch slots (covering the
passing particle regime). For each volume element 200 markers are simulated to calculate
the coe�cients at that point. The resulting advection and di�usion coe�cients are shown
in �gure 7 for a �xed pitch, as the coe�cients show no strong pitch dependence as long
as the particles are passing. Radially the transport is almost uniform in the region where
the �eld is stochastic (recall �gure 6) while the momentum dependence shows decreasing
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Figure 7: Numerically evaluated advection (a) and di�usion (b) coe�cients for the
transport due to the stochastic �eld corresponding to the case shown in Fig. 6. The
2D plots show the radial and momentum dependence of the advection and di�usion
coe�cients for a �xed pitch p‖/p = 0.99. Radial pro�les at di�erent energies are shown
at the top. At the side, general momentum dependence is illustrated with a mean value
calculated over each radial position.

transport for higher energies due to the �nite orbit width e�ects (Hau� & Jenko 2009;
Särkimäki et al. 2020).
In the inner region of the plasma (r/a < 0.58), the runaway electrons are not

transported as the �ux surfaces are intact, and markers initiated in the stochastic region
will not be transported into this region. To properly capture this e�ect in a simulation
with the go-framework, a re�ective boundary condition was imposed at the �rst complete
�ux surface, and no transport could occur between the regions. However, the regions are
still coupled through the electric �eld evolution.
In scenarios where the runaway generation is dominant in the central part (such as

in Case 1 and Case 4) the stochastic plasma edge is not expected to a�ect the runaway
dynamics signi�cantly. By using the advection and di�usion coe�cients shown in �gure 7,
and simulating an ITER-like scenario with material injection corresponding to Case 4,
we �nd that the maximum runaway current is reduced only marginally, from 3.7 MA
to 3.5 MA. To illustrate a case when the e�ect of a stochastic plasma edge is more
pronounced, we consider Case 3, where in the absence of radial losses an o�-axis �nal
runaway pro�le is found. Therefore the transport should have a larger impact in this case
compared to scenarios with an on-axis �nal current pro�le, where a larger part of the
runaway electrons are generated in the non-transporting region.
Figure 8 shows the radial pro�les of the runaway current after 45 ms in the ITER-

like disruption simulation of Case 3. The maximum runaway current, just before the
dissipation phase, in the absence of radial transport due to magnetic perturbations is
7 MA, with a constant δB/B is 5.8 MA and with the coe�cients presented in �gure 7
is 4.6 MA. Without magnetic perturbations, the pro�le of runaway electron density has
an o�-axis maximum. This is due to strong radiative losses, leading to signi�cant plasma
cooling, and corresponding e�cient runaway generation in the outer part of the plasma,
as was pointed out by Vallhagen et al. (2020). Note, that such o�-axis current pro�les
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Figure 8: Radial pro�les of the runaway current after 45 ms in the ITER-like disruption
simulation of Case 3 without magnetic perturbations (dash-dotted), with radially
constant magnetic perturbations δB/B = 2 · 10−4 (dashed) and with the coe�cients
presented in �gure 7 (solid). In the latter case, a strong current sheet develops at the
interface to the stochastic region.

may become MHD unstable. The resulting magnetic activity may act to mitigate the
build up of runaways.
In the presence of magnetic perturbations electrons can di�use and this results in

a �nal runaway current pro�le that is peaked on-axis. However, in the case with the
stochastic edge, with transport coe�cients shown in �gure 7, the transport in the edge
region is strong enough to prevent any signi�cant build up of runaway electrons there.
The increase of the transport at the edge results in only partial reduction of the total
runaway current, as the runaway population is free to build up in the centre of the plasma.
In the con�ned inner region strong gradients in the current density can form, which is
evident in the simulation. At the transition from the con�ned region to the stochastic
one (at r/a = 0.58) a discontinuity is formed in the current pro�le (however not in the
electric �eld), as particles in the stochastic outer region are continuously transported
away, but in the con�ned region they are free to build up, eventually forming a current
sheet.
The radial pro�les of the temperature, electric �eld and number of e-foldings (the time-

integral of the runaway growth rate) are shown in �gure 9 for Case 3, at a few time slices.
The vertical dashed line denotes the radial position for the transition between con�ned
and stochastic regions. Figure 9a shows that, both with and without perturbations, the
plasma is divided into two regions by a cold front, with an inner region with a temperature
of about 6 eV, and an outer region with a temperature as low as about 1 eV. At such low
temperatures a large fraction of the deuterium recombines, and this leads to an increased
avalanche multiplication of the seed runaway electrons in the outer region, see �gure 9c,
quanti�ed by the number of e-foldings†,

Nexp(r) =

∫ t

0

dt′ γ(t′, r). (5.5)

† exp (Nexp) is the factor by which the avalanche mechanics ampli�es the seed in a
non-transporting model.
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Figure 1: Radial profiles from the ITER-like disruption simulation in Case 3, with the
transport coefficient presented in figure ?? (solid lines) and without transport of runaway
electrons (dashed lines), at subsequent time slices. Radial profiles of a) temperature, b)
electric field and c) the number of e-foldings defined in equation (??). The time slices
were chosen to highlight the formation of the current sheet in the case with transport, and
are identified in panel b). The dashed lines were taken at times such that the positions
of the cold front were matched. The extra (gray) line in c) gives the number of e-foldings
at the start of the current decay phase. The vertical dashed line shows the onset of the
stochastic region.

Figure 9: Radial pro�les from the ITER-like disruption simulation in Case 3, with the
transport coe�cient presented in �gure 7 (solid lines) and without transport of runaway
electrons (dashed lines), at subsequent time slices. Radial pro�les of a) temperature, b)
electric �eld and c) the number of e-foldings de�ned in equation (5.5). The time slices
were chosen to highlight the formation of the current sheet in the case with transport, and
are identi�ed in panel b). The dashed lines were taken at times such that the positions
of the cold front were matched. The extra (gray) line in c) gives the number of e-foldings
at the start of the current decay phase. The vertical dashed line shows the onset of the
stochastic region.

The avalanche production continues throughout the simulation, but is counteracted by
the strong radial transport in this region.
The formation and strength of the current sheet seen in �gure 8 is a result of the

interaction between runaway transport and strong di�usion of the electric �eld. The
location is tightly connected to that of the cold front, which propagates in from the
plasma edge in the later stages of the simulation. In the scenario without perturbations,
the cold front propagates inwards faster. Figure 9 compares the evolution of the electric
�eld in the two scenarios after the cold front has crossed out of the stochastic region,
at times when the cold front has reached the same position, to highlight the dynamics
behind the current sheet formation. In the case with transport there is less conversion
from Ohmic to runaway current in the outer parts of the plasma, so a signi�cantly larger
electric �eld is maintained in the outer region, as is seen in �gure 9b. When the conversion
starts in the inner regions, a sharp change in the gradient of the electric �eld develops
at the interface to the stochastic region, which enhances the di�usion of the strong
electric �eld in the inner region. This results in a larger avalanche multiplication of the
seed runaway electrons in the boundary between the regions, which is demonstrated in
�gure 9c. Despite the strong ampli�cation in the outer region, the transport prevents a
signi�cant number of runaway electrons building up, and so the current sheet is formed.
Another way of thinking of this phenomenon is to consider the e�ect of the runaway

electrons on the electric �eld evolution. As the transport in the outer region is strong
enough to prevent a runaway build up, the runaways do not a�ect the electric �eld
evolution - this is akin to the assumption of a trace electron population used in the
estimate by Rosenbluth & Putvinski (1997) - which leads to a very large ampli�cation
factor. However, the coupled dynamics must be considered in the presence of a large
runaway population, and the ampli�cation saturates as the current carried by the
runaways in the inner region here approaches the Ohmic current. Then the current sheet
is formed at the interface between the two regions. Such a current pro�le is likely to
be very unstable, and this could a�ect the magnetic equilibrium and lead to magnetic
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perturbations penetrating deeper into the plasma core, giving further runaway mitigation.
Such a study is beyond the scope of the current paper.

6. Conclusions

During tokamak disruptions the magnetic �eld lines can be severely distorted from
their usual con�ning structure. The magnetic topology evolves in time, being almost
fully stochastic during the thermal quench, and often displaying a mixed topology of
intact �ux-surfaces, magnetic islands and stochastic regions during the current quench.
As runaway electrons travel rapidly along the tokamak magnetic �eld lines, their evolution
during a disruption can be strongly a�ected by such magnetic perturbations. This intro-
duces the possibility for radial losses of runaway electrons to o�set the avalanche growth
of the population, preventing the formation of a high current, potentially damaging,
runaway electron beam.
In this paper, we have presented a model which generalises previous treatments of the

e�ects of radial transport due to the interaction of runaway electrons with magnetic �eld
perturbations on the runaway evolution. We continue to take advantage of the separation
of timescales in the runaway generation dynamics, between the acceleration to relativistic
energies after a knock-on collision and the characteristic avalanche population growth
time. This allows us to neglect the e�ect of transport due to magnetic perturbations
on the generation process and focus on solving the kinetic equation in the high energy
limit, which simpli�es the collision operator. The extension here allows for a generalised
pitch-angle distribution formed by rapid pitch-angle scattering at high energy, the impact
of radiation reaction and the presence of partially ionised impurity atoms. The e�ect of
including radiation is to introduce an upper limit in momentum space, so particles are
prevented from reaching very high energies where they would be well con�ned.
In particular, we have determined an expression which can be used to correct the

growth rate of the runaway electron population by the avalanche mechanism. This takes
the form of the solution of an integral equation. The introduction of radial transport
raises the e�ective critical electric �eld for avalanche generation because even though
particles can be kicked into the runaway region through the avalanche mechanism, they
can be lost due to spatial di�usion resulting in no net gain of runaways. The increase
in Ee�

c is weakly dependent on the plasma density, unlike the case of massive material
injection.
The derivation of the integral equation for the growth rate corrections is only valid

when radial variations in the plasma are neglected. To treat non-homogeneous plasmas,
a perturbation approach in small radial transport has been used to estimate the radial
�ux of runaway electrons. By computing the radial �uxes instead of an e�ective (local)
growth rate the formulation is particle conserving. This �ux can be included in general
runaway simulation frameworks. The formulation was used here in a simpli�ed disruption
simulation for ITER-like plasmas, where an induction equation was used to give the self-
consistent time evolution of the electric �eld in the presence of the runaways.
We �nd that in scenarios with a moderate amount of impurity and deuterium in-

jection, the runaway current can be suppressed for perturbation levels of the order of
δB/B ∼ 5 · 10−4, which is about an order of magnitude higher than the perturbation
level measured in �xed magnetic �eld experiments where the current was scanned (Gill
et al. 2002). Furthermore, it is di�cult to fully dissipate the runaway electrons without
signi�cant transport in the centre where most of the runaway electrons are generated.
Earlier results investigating the potential of employing edge-localized mode (ELM) coils
for runaway suppression show that perturbations created at the plasma edge are generally
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not su�cient for runaway suppression in ITER (Papp et al. 2011). Perturbations at the
edge might have an e�ect on scenarios with an o�-axis runaway current pro�le, which can
arise in the case of massive material injection (Vallhagen et al. 2020). We investigated
such a scenario, using orbit-following simulations with ASCOT5 (Särkimäki et al. 2020)
to determine the di�usion coe�cients for energetic electrons in an ITER-like plasma
with a stochastic region at the plasma edge. Disruption simulations with these di�usion
coe�cients show that the �nal runaway current can be reduced, but not suppressed
completely, in agreement with the conclusions of earlier work.
The analysis presented in this paper is valid when the distribution function is in quasi-

steady state, i.e. the runaway generation is balanced by transport, and the transport
can be described by an advection-di�usion model. This assumption is not valid during
the thermal quench phase in the disruption or in the presence of major magnetic islands
in which a fraction of runaways could remain con�ned. Furthermore, a kinetic e�ect
lacking in the model is the impact of di�usion on the avalanche generation dynamics
at momentum scales close to the critical one. We anticipate that this e�ect could be
small compared to the e�ects investigated so far, as the runaway electrons spend a
comparatively short amount of time close to the critical momentum. Analytical progress
in this direction would require the addition of a radial dimension in the full kinetic
calculation with a source term to treat the dynamics close to the critical momentum,
then the development of a solution to the kinetic equation valid for large momenta in
the same calculation. Numerical progress, on the other hand, could be made directly
by implementing the radial transport in kinetic frameworks. This would have the added
bene�t of capturing the pitch-angle dynamics in the presence of pitch-angle dependent
transport coe�cients, an e�ect which has not been considered in the present work.
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