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Abstract 

Crystal plasticity finite element (CPFE) modelling is an effective tool from which detailed 
information on the meso-scale behaviour of crystalline metallic systems can be extracted and 
used, not only to enhance the understanding of material behaviour under different loading 
conditions, but also to improve the structural integrity assessment of engineering components. 
To be of full benefit however it must be demonstrated to not only predict the average global 
response of the material, but also the local behaviour, which controls damage. In this study, a 
slip system based constitutive model is developed to improve the simulation capability of time 
independent and time dependent plasticity.  Comparison has been made between the macro-
mechanical behaviour predicted by the model and previous experiments carried out at 
engineering length scale.  Critically, the macro-mechanical behaviour predicted by the model has 
been examined against the behaviour of the materials at meso-scale crystalline level measured 
by previous diffraction experiments.  The robustness of the model is demonstrated on both the 
macro- and meso-scale through the successful prediction of macro-scale behaviour and lattice 
strain evolution under a variety of loading conditions. The model not only effectively recognised 
the influence of prior deformation on subsequent loading, but also complemented neutron 
diffraction data to enrich the understanding of the influence of an important loading condition 
on the deformation of grains within the material. 

Key words: Crystal plasticity, Creep, Stress relaxation, Stainless Steel 

1. Introduction 

Since complex thermomechanical loading is expected during operation of a power plant, it is 
vitally important to not only understand the influence of these complex load histories on the life 
of components, but also on the micro-mechanisms within their materials.  Doing so provides an 
improved understanding of the deformation of material in the components, but critically a 
greater insight into the influence of the micromechanics, which dominate damage, such that life 
extension can be achieved with greater assurance.  This also allows for the enhanced evaluation 
of more suitable materials for future design and construction of components. 
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Computational materials engineering using crystal plasticity finite element (CPFE) modelling can 
provide aspects of insight into the behaviour of the crystalline material when subject to complex 
load histories.  The recognition of this approach to integrate CPFE into the design of materials 
has been gaining popularity through the emergence of integrated computational materials 
engineering (ICME) methodologies over the last few years.  It has also been fuelled by the drive 
to integrate the processing-microstructure-property-relationships in the design process of 
materials.  Recent examples of the success of ICME approaches include the work by Tin, Detrois, 
Rotella and Sangid [1] who used ICME to modify a Ni-based superalloy to improve its damage-
tolerance.  In addition, CPFE approaches have also been utilised to extract deeper insight into the 
local deformation of the material which is on occasion difficult to obtain experimentally, an 
approach utilised by Tasan, Hoefnagels, Diehl, Yan, Roters and Raabe [2] to compliment 
experimental data in the investigation of microstructural strain and stress partitioning in ferritic-
martensitic dual phase steels.  Furthermore, Sinha, Szpunar, Kiran Kumar and Gurao [3] used 
CPFE, in conjunction with electron backscatter diffraction data, to develop deeper understanding 
around the influence of twinning during tensile loading of 316L stainless steel. 

There are a number of different phenomena which can affect the life of metallic components 
exposed to complex thermo-mechanical loading history.  These include time-dependent 
permanent deformation such as strain accumulation and stress relaxation occurring during creep.  
Both strain accumulation and stress relaxation can occur during plant operation due to loading 
conditions which induce either load or displacement-controlled deformation or a combination of 
both.  Therefore, it is important to develop an understanding of how these phenomena evolve 
to provide greater insight on their influence on the life of components within the plant.  Such an 
approach was used by Song, Sun, Li, Xu, Rawlings, Liebscher, Clausen, Poplawsky, Leonard, 
Huang, Teng, Liu, Asta, Gao, Dunand, Ghosh, Chen, Fine and Liaw [4] in development of a ferritic 
alloy with improved creep resistance, achieved through the findings associated with the 
integration of advanced experimental tools (including transmission-electron microscopy, 
neutron diffraction, and atom-probe tomography) and CPFE.  The creep resistance was enhanced 
through the inclusion of coherent hierarchical precipitates, the influence of which was quantified 
through the integration of these different tools, ultimately providing greater understanding of 
the interactions between the deformation of the matrix and the precipitates. 

Further development in understanding has also extended to consideration of the influence of 
cyclic loading on creep deformation.  Cyclic deformation can occur due to periodic shutdowns 
and scheduled maintenance [5].  The influence of the generated cyclic deformation on creep in 
austenitic stainless steels from a macro-scale deformation has been investigated experimentally, 
with the findings indicating that the evolution of creep strain and stress relaxation can be affected 
by prior cyclic loading [6-8]. Additionally, experimental investigation on the local level using 
neutron diffraction has also been conducted by [9-11] to provide greater insight into the 
contribution of intergranular stresses generated during cyclic loading on the creep deformation.  
These studies have highlighted the differences in grain-to-grain interactions occurring during 
plasticity and creep resulting in different levels of anisotropy.  This additional experimental 
investigation is vital in generating a more detailed insight of the underlying micromechanics of 
deformation which contribute to the macro-scale deformation. 
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To complement the experimental investigation into creep and prior cyclic loading on creep, there 
has been a significant push towards using micromechanical models, which include self-consistent 
models (SCM) [12] and CPFE.  SCM have been used to simulate the deformation of austenitic 
stainless steels subject to different loading conditions.  Stress relaxation has been investigated 
using SCM [13], and modifications were made to the underlying constitutive equations to 
improve creep simulations by Hu and Cocks [14].  Additionally, the effect of thermal aging on 
creep deformation was investigated by Chen, Hu, Flewitt, Cocks, Ainsworth, Smith, Dean and 
Scenini [15] and Wang, Jeong, Clausen, Liu, McCabe, Barlat and Tomé [16] considered the effect 
of martensitic phase transformation.  Further modifications were also introduced by Petkov, Hu 
and Cocks [5] to improve the SCM capabilities to simulate macroscopic stress relaxation, creep 
strain evolution, and the influence of prior cyclic loading on creep. 

In addition to the investigation of austenitic stainless steels using SCM, CPFE has also grown in 
popularity to provide in depth knowledge of the structural integrity of the material.  The focus of 
this understanding has included damage evolution and crack initiation [17-20], influence of grain 
morphology and orientation on local deformation [21, 22], lattice strain evolution [17, 23-27] and 
low-cycle fatigue [28].  CPFE has also been applied to investigate the evolution of creep strain.  
Petkov, Hu, Tarleton and Cocks [29] used a CPFE model to simulate the evolution of creep strain, 
which was then compared to the predictions made using a SCM modelling approach.  
Additionally, Erinosho, Venkata, Mostafavi, Knowles and Truman [30] investigated the influence 
of prior cyclic plastic loading on creep strain and introduced a modification to constitutive model 
controlling slip hardening to improve the deformation during the creep regime.  Although CPFE 
modelling has been applied to understand the creep deformation under load-controlled dwells 
in austenitic stainless steels, limited work has been undertaken to understand how the predictive 
capabilities of these constitutive models translate to creep deformation during displacement-
controlled (stress relaxation) dwells.  This is a particularly important investigation to undertake 
in the development of a CPFE modelling capability to develop a robust modelling approach 
proficient in recognising the differences in lattice strain evolution during both constant load- and 
strain-controlled creep. 

In this study, a crystal plasticity constitutive model for 316H stainless steel has been developed 
to predict the amount of expected stress relaxation during single and multiple load-displacement 
dwells using previous experimental data by [31-33] and Mamun, Simpson, Agius, Reinhard, 
Truman, Mostafavi and Knowles [9].  The modifications made to the underlying constitutive 
models (superposition of power laws, addition of type III residual stress, and the addition of 
recovery to the developed hardening) and the justification for the modifications are detailed 
based on microscopic behaviours of the material.  A parameter calibration scheme is also detailed 
to ensure application of the constitutive models to other materials.  Finally, the CPFE is used to 
provide deeper understanding on the influence of local grain environmental effects on the 
deformation of crystals by simulating the lattice strain evolution and comparing the results to an 
experimental investigation undertaken by Wang, Hossain, Kabra, Zhang, Smith and Truman [33]. 

2. Constitutive Model Development for Crystal Plasticity Modelling 

In the following sections the crystal plasticity governing equations will be introduced to provide 
background on how crystal deformation is calculated.  The constitutive relationships adopted will 
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then be given, followed by the modifications introduced to incorporate phenomenologically the 
microscopic behaviours (e.g. creep and the associated hardening and recovery phenomena) 
occurring in the material. 

2.1 Kinematics 

The following kinematic theory is based on the work described in [34-37], the history of which 
was reviewed in [38].  The summary presented is also based on the work by Huang [39]. 

The total crystal deformation (𝑭) can be described based on the contributions of both the plastic 
and elastic deformations, using the assumption that the deformation gradient obeys a 
multiplicative decomposition as given in the following equation, 

 𝑭 = 𝑭𝑒𝑭𝑝 (1) 

where 𝑭𝑝 is the plastic deformation associated with crystallographic slip, and 𝑭𝑒 is the elastic 
deformation associated with rigid body rotation and elastic stretching of the crystal lattice. 

The velocity gradient can be calculated using the following, 

 𝑳 = 𝑭̇𝑭−1 = 𝑫 + 𝛀 (2) 

where 𝑫 is the stretch tensor and 𝛀 the spin tensor respectively.  These two tensors representing 
stretch and spin can themselves be decomposed into lattice and plastic parts, 

 𝑫 = 𝑫𝑒 + 𝑫𝑝,   𝛀 = 𝛀𝑒 + 𝛀𝑝 (3) 

where 𝑫𝑝 and 𝛀𝑝 are plastic stretch tensor and plastic spin tensor respectively.  These plastic 
tensors result from crystallographic slip which can be captured by the following relations, 

 

𝑫𝑒 + 𝛀𝑒 = 𝑭̇𝑒𝑭𝑒−𝟏,    𝑫𝑝 + 𝛀𝑝 = ∑ 𝛾̇𝛼𝒔∗𝛼 ⊗ 𝒎∗𝛼

𝑁𝑠

𝛼=1

 

(4) 

where 𝑁𝑠 is the number of slip systems, 𝛾̇𝛼 is the slip rate on slip system 𝛼, 𝒔∗𝛼 and 𝒎∗𝛼 
represents the vector along the slip direction and the vector representing the normal to the slip 
plane of system 𝛼 in the deformed configuration respectively, 

 𝒔∗𝛼 = 𝑭𝑒𝒔𝛼,   𝒎∗𝛼 = 𝒎𝛼𝑭𝑒−1 (5) 

where 𝒔𝛼 and 𝒎𝛼 are the unit vectors in the slip direction and normal to the slip plane in the 
reference configuration respectively. 

2.2 Constitutive Models 

Based on the kinematic formulations presented above it are the magnitudes of 𝛾̇𝛼 on the active 
slip systems which are the primary focus of development for crystal plasticity models [40]. 

Slip can be modelled using a visco-plastic power-law relation following the work by [41, 42], 

 𝛾̇𝛼 = 𝛾̇0 (
𝜏𝛼

𝑔𝛼
)

𝑛

𝑠𝑔𝑛(𝜏𝛼) (6) 
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where 𝛾̇𝑜 is a reference strain rate, 𝜏𝛼 is the resolved shear stress on the slip system 𝛼, 𝑔𝛼 is a 
measure of the material’s resistance to slip on the slip system 𝛼 (which relates to strain hardening 
and/or softening) and 𝑛 is a strain rate sensitivity parameter.  Altering the value of 𝑛 can reflect 
the sensitivity of the strain rate. 

Slip system hardening can evolve according to a phenomenological based formulation of 
accumulated shear flow, which is an average plastic shear strain representing the overall effect 
of dislocation movement [43]. The evolution adopted for this work is that proposed by McGinty 
and McDowell [44].  This version of hardening model is based on the assumption made by Taylor 
[34] where all activated slip systems result in equal hardening across all slip systems.  Therefore, 
the applied slip hardening model can be described as slip system isotropic hardening.  The slip 
hardening has the following evolution, 

 𝑔𝛼̇ = ℎ0 ∑ {(1 +
ℎ0𝛾𝑠𝑢𝑚

𝜏0𝑚
)

𝑚−1

|𝛾̇𝛽|}

𝑁𝑠

𝛽=1

 (7) 

where ℎ0 is the initial hardening modulus, 𝑚 is a fitting parameter used to alter the rate of 
saturation, and 𝜏0 the initial critical resolved shear stress.  𝛾𝑠𝑢𝑚 is the total accumulated inelastic 
shear strain on all slip systems which evolves according to Eq 8, 

 𝛾𝑠𝑢𝑚 = ∑ ∫ |𝛾̇𝛽|𝑑𝑡
𝑡

0

𝑁𝑠

𝛽=1

 (8) 

2.3 Constitutive Model Modifications 

In the following sections, the modifications made to the basic constitutive equations proposed in 
the previous sections, explained from a microstructure influence, are outlined alongside a 
description of the meso-scale stress state which evolves in a polycrystalline metallic system under 
plastic deformation. 

2.3.1 Type III Residual Stress (Intragranular) 

One of the benefits of CPFE method is it incorporates intrinsically the capability to generate type 
II residual stress (intergranular) associated with grain to grain kinematic effects [45].  However, 
to further improve the CPFE model it was found necessary to also include local type III residual 
stresses (intragranular) into the constitutive model to recognise their influence on the 
deformation of the polycrystal as indicated by Hu, Chen, Smith, Flewitt and Cocks [46].  To 
incorporate the type III residual stresses, the slip rate constitutive relation given in Eq 6 was 
modified to give the following, 

 𝛾̇𝛼 = 𝛾̇0 (
|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛

𝑠𝑔𝑛(𝜏𝛼 − 𝑋𝛼) (9) 

𝑋𝛼 in Eq 9 is the type III residual stress, which in this study evolves according to the Armstrong-
Fredrick (AF) model [47] expressed as, 
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 𝑋𝛼̇ = ℎ𝛾̇𝛼 − ℎ𝐷𝑋𝛼|𝛾̇𝛼| (10) 

where ℎ is the direct hardening coefficient and ℎ𝐷 controls the dynamic recovery associated with 
the annihilation process between mobile and immobile dislocation links of opposite signs [12]; 
the ratio of the values (ℎ/ℎ𝐷) controls the saturation level of 𝑋𝛼 in each slip system [48].  The 
inclusion of type III residual stress through an AF formulation is a phenomenological approach 
proposed by several researchers [49-51] but has since gathered even greater popularity.   

The current formulation assumes that the evolution of the type III residual stress is dependent 
on slip within its own slip system, thus its evolution does not depend on slip on other systems, 
which is unlike the formulation proposed by Xu and Jiang [40].  The reasoning was to ensure 
simplicity of application as the current formulation requires only two calibrating parameters.  
Therefore, a simpler formulation of 𝑋𝛼 was derived to provide a baseline for simulation and 
experimental comparisons.   

2.3.2 Decomposing the Flow Rule into Components of Plasticity and Creep 

Creep can be caused by diffusion-controlled climb, which can be thought of as a two-step process 
as discussed by Duffin and Nichols [52].  A slip plane containing dislocations restricted by 
obstacles can overcome the influence of the obstacle via climbing.  Once doing so, the 
dislocations can then glide on the new slip plane.  However, the time spent by gliding between 
obstacles is significantly less than the time spent during the climb process and therefore climb 
controls the rate.  Plastic deformation on the other hand is associated with dislocation glide and 
cross slip.  Therefore, to recognise the combination of the two phenomena, a superposition of 
power laws is used, one that is relatively rate insensitive (associated with dislocation glide and 
cross slip), and the other rate sensitive (associated with dislocation climb).  This modification is 
aimed at recognising that dislocation climb is a major rate controlling step, a modification also 
postulated by [45, 53-55] and a concept utilised by [56]in dislocation dynamic simulations.  The 
flow rule was therefore decomposed into two power laws as presented in Eq 11. 

 𝛾̇𝛼 = [𝛾̇0,1  (
|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛1

+ 𝛾̇0,2 (
|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛2

] 𝑠𝑔𝑛(𝜏𝛼 − 𝑋𝛼) (11) 

where 𝛾̇0,1 and 𝛾̇0,2 are the reference strain rate for dislocation glide and climb respectively, while 

𝑛1 and 𝑛2 are the strain rate sensitivities for dislocation glide and climb respectively. 

The authors recognise that there will also be a grain size dependence on the evolution of the slip 
hardening represented as 𝑔𝛼 which the current constitutive model does not consider.  
Additionally, in the presented constitutive model development, the evolution of 𝑔𝛼 is the same 
in both the plasticity and creep regimes.  However, the evolution of 𝑔𝛼 in the plasticity regime 
has the potential to be evolving differently from the creep regime.  It is the intention of future 
work to consider these modifications. 

2.3.3 Recovery 

The final modification to the flow rule is the addition of a recovery term to the slip hardening 
equation.  The formulation of the recovery term is determined based on the previous theoretical 
work on competing effects of work hardening and recovery occurring in metals [57, 58], where 
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recovery is associated with dislocation climb and dislocation annihilation [59].  Using the 
formulation provided in [60], the flow stress of the material (𝜎0) is a function of both hardening 
and recovery, which can be expressed as, 

 𝜎0̇ = ℎ𝜀̇ − 𝑟 (12) 

where ℎ is the hardening and 𝑟 the recovery.  For the application to the crystal plasticity, the flow 
stress (𝜎0) in Eq 12, is replaced in this case with 𝑔𝛼 to represent the overall slip hardening 
evolution and therefore dislocation interactions, which follows the approach by Gittus [61] to 
recognise that the current flow stress is a function of the current dislocation density, 

 𝑔𝛼̇ = ℎ𝛾𝛼̇ − 𝑟 (13) 

The hardening component defined by ℎ is incorporated using Eq 7.  The recovery component can 
be derived by applying the following as suggested by Evans and Wilshire [62], 

 𝑟 ∝ 𝑣𝑔𝛼𝑑 (14) 

where 𝑣 is the mobility of the climbing dislocation segments, and 𝑑 is a power to control the 
influence of the evolution of slip hardening.  To incorporate the temperature dependence on the 
recovery component, thus ensuring the magnitude of recovery is dependent on the temperature, 
the process outlined in Evans and Wilshire [62] was used where the dependence on 𝑣 is 
characterised by an activation energy giving the following relationship, 

 𝑟 = 𝐴𝑔𝛼𝑑 exp (−
𝑄

𝑅𝑇
) (15) 

where 𝐴 is a fitting parameter, 𝑄 is the activation energy for creep, 𝑇 is the temperature, and 𝑅 
is the universal gas constant.  

Substituting the hardening component in Eq 7 and the recovery component in Eq 15 into Eq 13 
gives the following final formulation which defines the complete hardening and recovery 
evolution, 

 𝑔𝛼̇ = ℎ0 ∑ {(1 +
ℎ0𝛾𝑠𝑢𝑚

𝜏0𝑚
)

𝑚−1

|𝛾̇𝛽|}

𝑁𝑠

𝛽=1

− 𝐴𝑔𝛼𝑑
exp (−

𝑄

𝑅𝑇
) (16) 

From Eq 16, the recovery component includes the total value of slip hardening (𝑔𝛼), which 
suggests that the magnitude of the recovery is dependent on the current amount of slip 
hardening, where more recovery processes have greater potential to occur with increased 
dislocation accumulation. 

3.Experimental data 

3.1 Material 

Experimental data was extracted from the work by [31-33] and [9, 63] using 316H stainless steel 
loaded at 550°C.   
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3.2 Loading Conditions 

Different loading conditions were used in the calibration and validation of the model.  These 
included single strain-dwell loading in addition to a multiple strain dwell loading conditions.  
Details of the different single strain-dwell loading conditions used in the study are listed in Table 
1, with a schematic of the type of loading provided in Figure 1.  The experimental data used to 
compare against the simulation results was obtained from [31-33]. 

Load-up stress 
(MPa) 

Strain dwell time 
(hours) 

250 1,055 

246 26 

230 14,310 

Table 1 Summary of single dwell stress 
relaxation tests considered in the study 
which are schematically demonstrated 

in Figure 1.  The experimental data 
used to compare with simulations from 

[31-33]. 
 

Figure 1 Schematic of the single strain dwell used 
in calibration and validation simulations. 

The multiple strain dwell loading condition is schematically demonstrated in Figure 2, with 
information on the stress loadings and dwell times provided in Table 2.  The experimental data 
used for this investigation was from [9, 63]. 

Loading 
sequence 

Stress at the 
start of strain 
dwell (MPa) 

Strain 
dwell 

time (sec) 

1st load-up 95.0 3303 

2nd load-up 155.6 3170 

3rd load-up 191.9 4639 

4th load-up 209.9 740 

5th load-up 257.8 2460 

6th load-up 270.7 3430 

7th load-up 321.1 3120 

8th load-up 364.0 2320 

Table 2 Further information on the values of 
the load-up stresses and strain dwell times 

used in the multiple dwell loading sequence, 
as schematically represented in Figure 2.  
Experimental data sourced from [9, 63]. 

 
Figure 2 Schematic of the multiple strain 
dwell loading scenario used in the model 

validation simulations.  Further information 
on the load-up stresses and time periods used 

in the strain dwells is provided in Table 2. 

 

4. Finite Element Implementation 
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In the following sections the details of the approach taken to construct the representative volume 
is described followed by the details of the of the finite element model.  It is also important to 
outline some of the assumptions made during the construction of the FE model.  The dimensions 
of the model considered is on the meso-scale, which is the scale that lies between the 
macroscopic and atomistic [64], since the approach considers the influence of local effects such 
as dislocations, but does so by applying an average across the grain rather than modelling them 
individually.  Additionally, the approach taken in the development of the FEM does not consider 
grain boundary sliding which has been found to have a more profound effect for materials with 
much smaller grains than being modelled in this study [65, 66]. 

4.1 Representative Volume Construction 

The representative volume was built synthetically using DREAM.3D [67] during which a random 
texture was assigned to the grains within the volume.  The final synthetic microstructure is 
provided in Figure 3, comprising of 226 grains.  Since 316H stainless steel is a face centred cubic 
(FCC), slip was modelled to occur on 12 systems ({111} < 110 >). 

The RVE was then meshed using 8-node linear brick elements (C3D8), totalling to 32,768 
elements. 

 

Figure 3 The RVE created using DREAM.3D where the colours represent different grains within 
the volume. 

The grain diameter distribution extracted from EBSD data and which was also sampled during the 
synthetic build of the RVE is provided in Figure 4.  The grain size comparison between that 
extracted from EBSD data and from the RVE is made using the equivalent spherical diameter.  The 
equivalent spherical diameter of the RVE grains is calculated using the volume of a single voxel 
and multiplying by the total number of voxels which form the grain resulting in total voxel volume 
for each grain (𝑉).  Using the total grain volume (𝑉), the equivalent spherical diameter can be 
calculated using the following relationship, 
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 𝐷3𝐷 = √
6𝑉

𝜋

3

 (17) 

The comparison provides confidence that the RVE contains a distribution of sizes which follows 
the same trend as that seen experimentally. 

 

Figure 4 Comparison of the distributions of the grain sizes extracted from the EBSD scans and 
that contained with the constructed RVE. 

4.2 Finite Element Analytical Details 

The constitutive relations were implemented by modifying a user-defined material subroutine 
(UMAT) developed originally by Huang [39].  To solve for an increment in slipping rate (𝛾̇𝛼) an 
implicit time integration scheme (Δ𝛾𝛼 = Δ𝑡𝛾̇𝑡+Δ𝑡) was employed and the Newton-Raphson 
iterative method to solve the nonlinear equations was used (details of the modification and 
implementation of this approach is given in Appendix A).  The implemented elasto-plastic tangent 
stiffness matrix used by the finite element solver during the iteration procedure was derived by 
Huang [39].  All simulations were conducted using the finite element code ABAQUS/Standard 
[68].   

The maximum time increments used in the simulations are listed in Table 3.  The tensile load 
refers to the loading during which an incrementally increasing stress or strain is applied to the 
model. 

Table 3 Time increments used in the different loading conditions used in this study. 

Load Case Maximum Time Increment(secs) 

Tensile 0.05 

Strain Dwell (>10,000 hours) 100,000 

Strain Dwell (<1000 hours) 100 

Load Dwell 10,000 
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The boundary conditions employed are important in ensuring the RVE deformation is 
representative of the macro-scale behaviour.  This is achieved by assuming symmetry, through 
the application of the boundary conditions as motivated by [69-72] and demonstrated in Figure 
5. 

 

Figure 5 Surface breakdown of the RVE to demonstrate the application of boundary conditions. 

To obtain the global stress-strain response of the RVE, an averaging method used by Kashinga, 
Zhao, Silberschmidt, Farukh, Barnard, Whittaker, Proprentner, Shollock and McColvin [73] was 
employed, which uses volume integrals, 

 𝜎𝑖𝑗̅̅̅̅ =
1

𝑉𝑇
∫ 𝜎𝑖𝑗𝑑𝑉    , 𝜀𝑖𝑗̅̅ ̅ =

1

𝑉𝑇
∫ 𝜀𝑖𝑗𝑑𝑉 (18) 

 

where 𝜎𝑖𝑗̅̅̅̅  and 𝜀𝑖𝑗̅̅ ̅ are the average stress and strains respectively, which represents the global 

response, 𝑉𝑇  is the total volume of the RVE, 𝑉 is the element’s volume and 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the 

local stresses and strains.  To compute the integral, the local stress, strains and volume were 
obtained from integration points of each element in ABAQUS.  A post-processing Python script 
was developed and used to access the results from the ABAQUS output file (odb file) to complete 
the averaging method across all integration points in the model and arrive at a global response. 

5. Parameter Calibration 

In the following sections the methods used to calibrate the parameters adopted in the 
constitutive models is presented.  The total number of parameters which require calibration 
against experimental data are eleven (ℎ𝑜 , 𝜏0, 𝑚,𝛾̇0,1, 𝛾̇0,2, 𝑛1, 𝑛2, 𝑑, 𝐴, ℎ, ℎ𝐷) and six other 

parameters are directly measured (𝑐11, 𝑐12, 𝑐44, 𝑄, 𝑅, 𝑇).  As much detail as possible is given to 
describe each of the processes undertaken to determine these values in order to provide ease of 
implementation to anyone endeavouring to use these constitutive models for different material.  
Additionally, the approach given makes use of only two data sets for successful calibration of the 
parameters, allowing for ease of application of the presented model. 

5.1 Strain Hardening and Kinematic Hardening Parameters 
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The slip hardening parameters were calibrated by fitting to tensile stress-strain experimental 
data obtained from experiments using 316H stainless steel at 550°C by [9, 63], with the kinematic 
hardening component initially set to zero.  This was done to evaluate the hardening modulus 
parameter ℎ0.  The value of ℎ0 was optimised to fit the stress-strain evolution beyond yield and, 
since 𝜏𝑜 controls the initiation of slip, this value was altered to provide an accurate initial yield 
strength.  To ensure the modelling capability of the stress-strain evolution for large strains was 
accurate, the experimental stress-strain evolution extracted from the stress (and corresponding 
strain) at the start of each dwell in [9, 63] was used.  The final parameters provide a good fit to 
the experimental tensile stress-strain data. 

Once the strain hardening (isotropic hardening) component was determined, the kinematic 
component could then be incorporated.  To provide an initial estimate of the AF parameters, a 
calibration process was created.  Using experimental data from [6], the first cycle from symmetric 
strain-controlled tests at a strain range of ±0.6% with R=-1 were extracted and the total 
intergranular and intragranular stress were calculated using Cottrell’s method [74] to estimate 
the total back-stress.  The total kinematic (𝑋) and isotropic hardening (𝑅) were estimated using 
Cottrell’s method by probing different locations on the hysteresis loop as demonstrated in Figure 
6 where 𝜎𝑒𝑓𝑓 is the effective stress which is a combination of the yield stress (𝜎𝑦) and the 

isotropic hardening (𝜎𝑒𝑓𝑓 = 𝑅 + 𝜎𝑦). 

 

Figure 6 A schematic demonstrating Cottrell’s method [74] to provide an estimate to the 
magnitude of kinematic hardening (𝑋), which was then used to estimate the parameters which 

control the magnitude of intragranular residual stress. 

Applying this approach leads to a total back-stress of 118MPa, which provides an upper bound 
on the saturated value of intragranular residual stress evolving according to Eq. 10 .  Starting with 
this value, monotonic simulations could be undertaken and compared to the experimental stress-
strain evolution.  Since this value is the combination of both intergranular and intragranular 
stresses, the values of ℎ and ℎ𝐷 in Eq. 10 were then manipulated to reduce the magnitude of the 
ratio ℎ/ℎ𝐷 to incorporate the intergranular residual stresses inherent to the CPFE.  Additionally, 
the isotropic component was also reduced slightly to allow for the introduction of the kinematic 
component since the isotropic parameters were developed assuming no kinematic hardening.  
This was done by also reducing the size of ℎ0.  This approach of developing synergy between the 
two hardening phenomena was undertaken until the simulation results matched the 
experimental data as closely as possible, with the final results given in Figure 7. 
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Figure 7 Stress-strain evolution of 316H at 550°C from low to high strain under tensile loading. 

5.2 Slip Rate Parameters 

The parameters for the slip rate during the loading phase dominated by glide were based on the 
assumption that the evolution of glide should only dominate during the plastic regime thus a 
large value for the power (𝑛1) was required.  The final value for 𝑛1 was arrived at by balancing 
the need to ensure the evolution of slip due to dislocation glide had limited influence during the 
dwells, but also was not too large a value to create issue with convergence (which has been 
shown to be a problem by Harewood and McHugh [75]). 

The next focus was the values for the creep regime during which the creep power-law in the 
constitutive model is the more dominant.  In this regime, the simulation requires a far slower slip 
rate than that occurring in the plasticity regime, therefore, a significantly smaller value for 
reference strain rate is required than that used to in the plasticity power law.  Additionally, the 
sensitivity of evolution of slip can be adjusted by controlling the size of the strain rate sensitivity 
parameter (𝑛2).  To develop the values of 𝛾̇0,2 and 𝑛2 to effectively simulate the evolution of slip 
during initial dwell, the strain dwell experimental results from [31, 32] at 230MPa at a 
temperature of 550°C were used with focus on the early stage of slip evolution (<200 hours).  The 
values for 𝛾̇0,2 and 𝑛2 were then optimised to provide a good fit to the experimental data, with 
the results given in Figure 8. 
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Figure 8 The final calibrated fit to the early stages of the stress relaxation using data gathered 
from [31, 32].  This calibration is used to arrive at the correct values for 𝛾̇0,2 and 𝑛2. 

5.3 Recovery Parameters 

The parameters defining the recovery process were calibrated from experimental data from long 
(>1000 hours) load or strain dwell tests during which the recovery is more dominant.  Firstly, the 
activation energy was taken as the average across the expected stress range as given by Kloc, 
Skienička and Ventruba [76].  The value of 𝑑 in Eq 16 could firstly be estimated from the 
understanding that for intermediate/high stress and temperatures from ~0.4 to 0.7𝑇𝑚 its value 
should be approximately 3 or greater [62].  Therefore, using the value of 3 as a starting point, the 
values of 𝑑 and 𝐴 could be adjusted to ensure the recovery evolves effectively enough to provide 
a good fit to long dwells (simulating the stress relaxation beyond approximately 1000 hours).  In 
this work, a strain dwell was used as the calibration data, by once again using the experimental 
data with a maximum stress of 230MPa at a temperature of 550°C gathered by [31, 32].  𝑑 and 
𝐴 were then adjusted to provide a good fit to this data beyond approximately 1000 hours with 
the final fit provided in Figure 9. 
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Figure 9 The final calibrated fit to the later stages (>1000 hours) of stress relaxation using data 
gathered from [31, 32]. 

The final and complete set of parameters used in simulations are listed in Table 4 (with the 
parameters derived in this work the following: ℎ𝑜 , 𝜏0, 𝑚,𝛾̇0,1, 𝛾̇0,2, 𝑛1, 𝑛2, 𝑑, 𝐴, ℎ, ℎ𝐷).  

Table 4 Final material parameters used in simulations. 

Equation Parameters Value 

Elastic 
modulus 

𝑐11, 𝑐12, 𝑐44 183.9 GPa, 123.4GPa, 91.5GPa 

Slip 
hardening 

ℎ𝑜 , 𝜏0, 𝑚 500MPa, 45MPa, 0.35 

Slip rate 𝛾̇0,1, 𝛾̇0,2, 𝑛1, 𝑛2 1𝑠−1, 3× 10−8𝑠−1, 500, 10 

Recovery 𝑄, 𝑅, 𝑇, 𝑑, 𝐴 418KJ/mol, 8.31J/mol K, 823K, 3, 
3 × 1016 

Type III 
residual 
stress 

ℎ, ℎ𝐷 6555MPa, 245  

 

6. Macro-Scale and Meso-Scale Prediction Results 

6.1 Macro-scale prediction/validation  

The model prediction is compared with the experimental results for loading containing multiple 
strain dwells in Figure 10.  From the results, it is evident that the model in combination with the 
parameter calibration procedure produces very accurate simulation results.  The simulation 
accurately recognises the stress relaxation for each of the dwells with the rate of relaxation being 
well predicted.  The accuracy of the results is particularly evident in Figure 10 (b) which plots each 
strain dwell separately. 
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Figure 10 Simulation results achieved for the multiple strain dwell loading case where (a) shows 
the complete loading history and (b) displays the results for each individual dwell to provide 
further clarity of the achieved simulation accuracy. 

In order to consider the influence of the relaxation component of the slip hardening and to 
further validate the model, another single strain dwell loading case was considered.  The results 
of the simulation compared to experimental data is provided in Figure 11, which shows the 
simulation once again being in good agreement with the experimental results.  The relaxation 
rate during the early stages (<100 hours) (Figure 11 (a)) of the dwell is very well simulated, which 
suggests that the model’s evolving shear strain when averaged across all the grains within the 
RVE is progressing at a rate representative of that occurring during the dwell.  Additionally, the 
gradual saturation of the evolving strain at the later stages of the dwell (>500 hours) (Figure 11 
(b)) is also well captured by the model which indicates that the recovery component of the slip 
hardening formulation is activating correctly to ensure the saturation of the shear strain is also 
representative of that occurring in the material.  This provides further support to the importance 
of the modifications made to the constitutive models. 
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Figure 11 Comparison of the simulated response of the stress relaxation during a single strain 
dwell compared to the experimental data from [31, 32]. 

6.2 Meso-scale prediction/validation 

With the developed constitutive models giving accurate macro-scale results, meso-scale 
information was then interrogated to make full use of the CPFE.  This level of interrogation 
compliments experimental findings, since it provides an opportunity to investigate grains and 
their environment and how these contribute to the development of localised damage.  One area 
of interest the CPFE could provide deeper insight into is the creep inhomogeneity reported to 
occur during creep by [9, 11].  Similar to plastic anisotropy during load-up, creep inhomogeneity  
is a phenomena also associated with grain-to-grain interactions, but instead refers to grain-to-
grain interactions occurring due to different creep rates between grains [9, 63].  Additionally, 
creep inhomogeneity is influenced by prior plastic loading since different levels of plastic 
deformation occurring between families during initial loading has potential to also influence the 
heterogeneity of creep strain accumulation in the grain families during subsequent creep [9, 63].  

The creep inhomogeneity can be visualised by calculating the ideal elastic lattice strains during 
the dwells and determining whether the lattice strains are deviating from these ideal elastic 
values.  The ideal elastic strains are calculated using the macro-scale stress relaxation and the 
diffraction elastic constants determined by Wang, Hossain, Kabra, Zhang, Smith and Truman [33] 
in conjunction with the following relationship, 

 𝜀ℎ𝑘𝑙 =
𝜎

𝐸ℎ𝑘𝑙
 (19) 

where 𝜀ℎ𝑘𝑙 is the ideal elastic strain for the [25] grain family, 𝐸ℎ𝑘𝑙  is the elastic modulus for each 
grain family, and 𝜎 is the macro-scale stress. 

Neutron diffraction experiments were undertaken by Wang, Hossain, Kabra, Zhang, Smith and 
Truman [33], who investigated the influence of elastic follow-up on lattice strain evolution during 
creep.  Elastic follow-up is a term used to describe the influence of a global elastic environment 
on localised regions undergoing plastic deformation [77].  With increasing levels of elastic follow-
up, the loading transitions from displacement control to stress control loading.  The amount of 
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elastic follow-up can be quantified by an elastic follow-up factor Z [33], where Z=1 is 
displacement control, and Z=∞ is stress control. 

To investigate the influence of elastic follow-up on the creep inhomogeneity in the material, the 
developed CPFE was used to simulate the lattice strain evolution during a strain dwell containing 
no elastic follow-up to compare against the Wang, Hossain, Kabra, Zhang, Smith and Truman [33] 
experimental results containing a small amount of elastic follow-up (Z=1.2).  In order to make this 
comparison, the same load-up conditions as that applied by Wang, Hossain, Kabra, Zhang, Smith 
and Truman [33] for the Z=1.2 case was simulated, which involved loading up in tension to a 
stress of 246MPa and holding the strain for a period of approximately 26 hours, as summarised 
in Table 1. 

To compare simulated lattice strain against the experimental values, the process used to extract 
the lattice strains for each family from the CPFE model required determining which grains within 
the RVE have {hkl} planes orientated to contribute to diffraction.  To do this, the normal vector 
to the {hkl} planes in the local lattice coordinate system was calculated as follows, 

 𝑵ℎ𝑘𝑙 =
(ℎ𝒆1 + 𝑘𝒆2 + 𝑙𝒆3)

√ℎ2 + 𝑘2 + 𝑙2
 (20) 

where 𝒆1, 𝒆2, 𝒆3 are the orthogonal vectors of the local lattice configuration. 

The normal of the plane in the global coordinate system (𝒏ℎ𝑘𝑙) was then obtained by rotating the 
normal in the local lattice configuration (𝑵ℎ𝑘𝑙) using the rotation matrix (𝑹) based on the Euler 
orientation angles (𝜑1, Φ, 𝜑2) describing the orientation of the grain.  The rotation matrix is 
formed by combining three successive rotations based on the convention of Bunge, where the 
rotations are first around the Z axis, then X axis, and finally around the new Z axis.  This results in 
the following matrix, 

 
𝑹 = [

cos 𝜑1 cos 𝜑2 − cos Φ sin 𝜑1 sin 𝜑2 sin 𝜑1 cos 𝜑2 + cos Φ cos 𝜑1 sin 𝜑2 sin Φ sin 𝜑2

−cos 𝜑1 sin 𝜑2 − cos Φ sin 𝜑1 cos 𝜑2 cos Φ cos 𝜑1 cos 𝜑2 − sin 𝜑1 sin 𝜑2 sin Φ cos 𝜑2

sin Φ sin 𝜑1 − sin Φ cos 𝜑1 cos Φ
] (21) 

 

The normal in the global coordinate system was then calculated using the following relationship, 

 𝒏ℎ𝑘𝑙  = 𝑹𝑻𝑵ℎ𝑘𝑙 (22) 

The angle between the diffraction vector (𝒈) and the plane normal defined in the global 
coordinate system (𝒏ℎ𝑘𝑙) was then calculated using the following, 

 
𝜃 = cos−1

(𝒏ℎ𝑘𝑙 ∙ 𝒈)

(|𝒏ℎ𝑘𝑙| ∙ |𝒈|)
 

(23) 

The grain from which the lattice strains were extracted was chosen if the calculated angle 
between the two vectors (𝜃) was within a specified tolerance of ±7.5° to be consistent with the 
process used for extracting the experimental data, in addition to ensuring enough grains were 
averaged across. 

The average lattice strain across each individual grain with {ℎ𝑘𝑙} planes oriented within the 
tolerance specified was calculated using the following formulation, 
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 𝜀𝑖𝑗̅̅ ̅ =
1

𝑉𝑇
∫ 𝜀𝑖𝑗𝑑𝑉 (24) 

where 𝜀𝑖𝑗̅̅ ̅ are the average lattice strain across the grain, 𝑉𝑇  is the total volume of the grain, 𝑉 is 

the element’s volume and 𝜀𝑖𝑗 is the element lattice strain.   

The lattice strain evolution of the family was then calculated by taking the average response 
across all identified grains within the ±7.5° tolerance according to the following equation, 

 𝜀ℎ𝑘𝑙 =
∑ 𝜀𝑖𝑗̅̅ ̅

𝑁𝑔𝑟𝑎𝑖𝑛

𝑁=1

𝑁𝑔𝑟𝑎𝑖𝑛
 (25) 

where 𝜀ℎ𝑘𝑙 is the lattice strain for the {ℎ𝑘𝑙} planes, and 𝑁𝑔𝑟𝑎𝑖𝑛 is the number of grains identified 

to be within the ±7.5° tolerance. 

The following simulations were undertaken without modification of parameters listed in Table 4.  
Firstly, the macro-scale tensile stress-strain evolution between the experimental results reported 
by Wang, Hossain, Kabra, Zhang, Smith and Truman [33] and the those simulated by the model 
were compared to ensure the modelling capability could accurately predict the macro-scale 
results.  This was a necessary step to validate the overall accuracy of the model before extracting 
information on the meso-scale.  The simulation and experimental tensile results are compared in 
Figure 12, with the results being in good agreement, validating the use of the developed CPFE 
model to investigate grain-level deformation. 

 

Figure 12 Comparison of the simulated and experimental tensile results from [33] for 316H 
stainless steel at 550°C 

Applying the method outlined to extract grain average responses for each family from the CPFE, 
the lattice strains for the {111}, {200}, {311}, and {220} families in the longitudinal direction 
during load-up were extracted and compared to the lattice strain evolution experimentally 
determined by Wang, Hossain, Kabra, Zhang, Smith and Truman [33].  The comparisons are made 
in Figure 13. 
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Figure 13 Experimental longitudinal lattice strain evolution from [33] for grain families (a) {111}, 
(b) {200}, (c) {220}, and (d) {311} compared to simulated lattice strain evolution. 

The simulation results for the families compare well with the extracted experimental results from 
Wang, Hossain, Kabra, Zhang, Smith and Truman [33].  In addition to the lattice strain evolution, 
the ideal elastic line (using Eq 19) was also added to each figure to demonstrate the deviation of 
the lattice strain from elastic conditions, therefore, highlighting the relative amount of 
intergranular stress and strain within grain families.  The ability of the model to predict the 
intergranular stress evolution during plasticity is therefore confirmed by the results with the 
lattice strain evolution within the grain families showing comparatively similar behaviour to that 
seen in the experimental data, particularly in grain families {220} and {200} which show very 
accurate deviation from the ideal elastic line.  This provides greater confidence in the simulated 
interaction of the grains within the model, by accurately considering the internal push and pull 
between grains associated with the influence of plastically deforming grains on grains still 
elastically deforming [9, 63].   

The relaxation in lattice strains occurring during the dwell for each family were extracted and 
compared to the experimental results in Figure 14.  In Figure 14, the strains for each family were 
normalised with respect to the maximum strain within each family.  Doing so ensures the lattice 
strain evolution for each family starts from zero, allowing for ease of comparison in evolution.  
Also included in the figure is a line of best fit to provide a better visual representation of the trend 
of the data. The simulated lattice strains are comparable with the experimental results with the 
magnitude in relaxations between families showing the same trend as that in the experimental 
case, where the magnitude of relaxation is greatest in the {200} family and the least in the {111} 
family. 
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Figure 14 Comparison of the lattice strain relaxation for each grain family between the 
experimental results (from [33]) (a) and the simulation results (b). 

A more detailed comparison of the simulated and experimental lattice strain relaxations is 
provided in Figure 15 between grain families.   

 

Figure 15 Experimental and simulation comparison of the relaxation of lattice strain for each 
family (a) {111} (b) {200} (c){220} (d) {311}. 

Closer inspection of the evolution of the lattice strain highlights the accuracy in the {111} and 
{220} predicted magnitudes.  In the {200} and {311} families the predicted evolution is quite 
accurate within the 5-hour window of the dwell before a slight divergence between the 
experiment and simulation occurs with continued holding.  This difference could be the 
consequence of the influence of elastic follow-up.  Due to the difficulty in accurately simulating 
the elastic follow-up, an approximation approach could be applied by recognising that there is 
an accumulated creep strain within the material due to elastic follow-up which will further 
decrease the creep stress relaxation rate [32].  Therefore, the simulated relaxation curves were 
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adjusted accordingly (by adjusting the magnitude by 1.2) to investigate the potential influence of 
elastic follow-up on the magnitude of lattice strain relaxation, with the results provided in Figure 
16. 

 

 

Figure 16 Experimental and simulation comparison of the relaxation of lattice strain with an 
adjustment to the magnitude of creep strain as an approximate recognition of Z=1.2 for each 

family (a) {111} (b) {200} (c){220} (d) {311}. 

The approximate adjustment of the relaxation magnitude for each family to recognise the small 
elastic follow-up improves the simulation results for all four families, with the magnitude in 
relaxation in good agreement with the experimental relaxation. 

7. Discussion 

The simulation results achieved during the macro-scale validation indicates that separating the 
shear strain evolution between the plasticity and creep regimes to recognise the differences in 
evolution is successful at achieving the desired effect. The results indicate a significant level of 
accuracy with success in simulating several different loading conditions.  Furthermore, the 
seamless transition from plasticity to creep during the multiple dwells in Figure 10 further 
supports the approach to use a superposition of different power law relations.  The prior 
deformation history is accurately captured and effectively used in subsequent load-ups and 
dwells, which suggests that the combined influence of the two power laws works effectively not 
only for a single load case but for more complex loading conditions where the prior deformation 
history will have an influence on future loading.  This is a particularly important finding since it 
encourages the application of the presented constitutive model to further complex loading 
where accurate transitioning of deformation from the plasticity and creep regimes is required.  
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Such loading conditions include the influence of cyclic plasticity on creep strain, recently 
investigated computationally by [5, 30].  The importance of accurate prediction of these sort of 
conditions are of importance in thermal power plants where transient conditions can induce a 
local cyclic plasticity. 

The accuracy of the proposed constitutive model is further supported by the meso-scale 
simulation predictions.  Predicted lattice strain evolution during plasticity for all three families 
are in very good agreement with the experimental data.  Plastic anisotropy is very well simulated 
with deviation from the ideal elastic lines for each family indicative of the behaviour noticed 
experimentally.  This is especially evident in the {200} family which shows the greatest amount 
of plastic anisotropy, predictions displaying a similar magnitude. 

The ability of the model to simulate the lattice strain evolution during creep was also investigated 
for the {111} and {200} families, the results demonstrating accurate amounts of relaxation when 
compared to the experimental data.  Slight deviation in the predicted magnitudes of lattice strain 
from experimental results were noticed in the {200} and {311} families.  This was hypothesised 
to be the consequence of the influence of elastic follow-up in the experiment.  This hypothesis 
was investigated by applying an approximate adjustment to the magnitude of relaxation for each 
family to recognise the additional creep strain in the experiment that is not present in the 
simulation, as a consequence of the elastic follow-up in the experiment.  Doing so improved the 
simulation accuracy of the magnitude in relaxation across all four tested families, which suggests 
that even a small amount of elastic follow-up had an influence on the magnitude of lattice strain 
relaxation in the tested grain families. 

8. Conclusion 

A constitutive model which combines the deformation evolution during both plasticity and creep 
has been presented.  The conception of the model originates from the need to recognise the 
differing micromechanics occurring in the two regimes and the need to ensure the deformation 
with each of the regimes correctly influences the deformation of succeeding loading.  The 
following conclusions can be drawn from this study: 

1. The superposition of power laws to recognise the differing micromechanics occurring 
between the plasticity and creep regimes provided ease of transition to occur from plasticity 
to creep during the multiple dwell simulations.  The accuracy in simulated relaxation for later 
dwells also highlighted the model’s capability to recognise prior deformation on succeeding 
load cases. 

2. Improvements in simulation accuracy of strain-dwells of 316H at 550°C were achieved 
through the addition of a recovery component to the evolution of slip hardening.  
Comparisons made between the experiments and simulation demonstrated the importance 
of balancing the hardening and recovery during long strain-dwells (>1000 hours). 

3. A calibration procedure was introduced to encourage further application of the constitutive 
model developed during this study to other materials.  The calibration procedure presented 
requires only limited data to achieve accurate simulation accuracy of load cases outside of 
those used for calibration on both the macro- and meso- scale, which highlights the 
robustness and applicability of the presented model 



 

 24 

4. Meso-scale validation of the model highlighted its capability to simulate lattice strain 
evolution in both plasticity and creep, which further supports the presented superposition 
of power laws to simulate slip.  Plastic anisotropy was successfully simulated for each grain 
family, with deviation from the ideal elastic line for each family showing the same trend and 
magnitude as that in the experimental data. 

Data availability 

The raw experimental data used to compare against simulation results can be obtained from [9, 
31-33]. 

Acknowledgments 

The authors would like to thank EDF Energy and EPSRC [grant EP/R020108/1] for funding this 
work.  Additionally, the authors would like to thank the computational facilities of the Advanced 
Computing Research Centre, University of Bristol (http://www.bris.ac.uk/arc/), which was used 
for the simulation component of this study.  Dr. Wang would also like to acknowledge the RCUK 
Energy Programme [grant EP/T012250/1] and the UK Government Department for Business, 
Energy and Industrial Strategy. 

  

http://www.bris.ac.uk/arc/


 

 25 

Appendix. A.  Integration Scheme Applied to the Constitutive Relations 

As outlined by Huang [39], the integration scheme implemented in the subroutine is the 
tangent modulus method for rate dependent solids proposed by Peirce, Shih and Needleman 
[78].  Firstly, the increment of shear strain within a time increment Δ𝑡 is calculated as: 

 Δ𝛾𝛼 = γα(𝑡 + Δ𝑡) − 𝛾𝛼(𝑡) (A.126) 

Employing a linear interpolation with Δ𝑡, the increment of shear strain can be calculated, 

 Δ𝛾𝑡+Δ𝑡
𝛼 = 𝛾̇𝑡+Δ𝑡

𝛼 (Δ𝛾𝑡+Δ
𝛼 )Δ𝑡 (A.2) 

where 𝛾̇𝛼 is the slip rate in slip system 𝛼 at time 𝑡 + Δ𝑡 which is calculated using the following, 

 
𝛾̇𝑡+Δ𝑡

𝛼 = [𝛾̇0,1 (
|𝜏𝑡+Δ𝑡

𝛼 −  𝑋𝑡+Δ𝑡
𝛼 |

𝑔𝑡+Δ𝑡
𝛼 )

𝑛1

 + 𝛾̇0,2 (
|𝜏𝑡+Δ𝑡

𝛼 −  𝑋𝑡+Δ𝑡
𝛼 |

𝑔𝑡+Δ𝑡
𝛼 )

𝑛2

] 𝑠𝑔𝑛(𝜏𝑡+Δ𝑡
𝛼

−  𝑋𝑡+Δ𝑡
𝛼 ) 

(A.3) 

The values for the resolved shear stress, type III residual stress and slip hardening/recovery can 
be calculated at 𝑡 + Δ𝑡 once Δ𝛾𝑡+Δ𝑡

𝛼  is known.  Firstly, the slip hardening and type III residual 
stress can be calculated applying the following, 

 
𝑔𝑡+Δ𝑡

𝛼 = 𝑔𝑡
𝛼 + ℎ0 ∑ {(1 +

ℎ0𝛾𝑠𝑢𝑚(𝑡+Δ𝑡)

𝜏0𝑚
)

𝑚−1

|Δ𝛾𝑡+Δ𝑡
𝛽

|}

𝑁𝑠

𝛽=1

− 𝐴𝑔𝑡
𝛼ℎ

𝑒𝑥𝑝 (−
𝑄

𝑅𝑇
) 

𝑋𝑡+Δ𝑡
𝛼 = 𝑋𝑡

𝛼 + ℎΔ𝛾𝑡+Δ𝑡
𝛼 + ℎ𝐷𝑋𝑡

𝛼|Δ𝛾𝑡+Δ𝑡
𝛼 | 

(A.4) 

where the accumulated shear strain (𝛾𝑠𝑢𝑚(𝑡+Δ𝑡)) is calculated in the following way, 

 𝛾𝑠𝑢𝑚(𝑡+Δ𝑡) = 𝛾𝑡
𝛼 + ∑|Δ𝛾𝑡+Δ𝑡

𝛼 |

𝛼

 (A.5) 

The resolved shear stress at 𝑡 + Δ𝑡 can also be calculated using the shear stress derived in Huang 
[39], which is given as, 

 𝜏𝑡+Δt
𝛼 = 𝜏𝑡

𝛼 + [𝐿𝑖𝑗𝑘𝑙𝜇𝑘𝑙
𝛼 + 𝜔𝑖𝑘

𝛼 𝜎𝑗𝑘(𝑡+Δ𝑡) + 𝜔𝑗𝑘
𝛼 𝜎𝑖𝑘(𝑡+Δ𝑡)] ∙ [Δ𝜀𝑖𝑗(𝑡+Δ𝑡) − ∑ 𝜇𝑖𝑗

𝛽
Δ𝛾𝑡+Δ𝑡 

𝛽

𝛽

] (A.6) 

where 𝐿𝑖𝑗𝑘𝑙  is the elastic moduli, and 𝜇𝑖𝑗
𝛼  and 𝜔𝑖𝑗

𝛼  are given as, 

 
𝜇ij

𝛼 =
1

2
[𝑠𝑖

∗𝛼𝑚𝑗
∗𝛼 + 𝑠𝑗

∗𝛼𝑚𝑖
∗𝛼] 

𝜔ij
𝛼 =

1

2
[𝑠𝑖

∗𝛼𝑚𝑗
∗𝛼 − 𝑠𝑗

∗𝛼𝑚𝑖
∗𝛼] 

(A.7) 

 

To calculate the shear rate, Eq 6 must be solved for 𝛾̇ within an increment of time defined by the 
step size increment in the FE model.  Since Eq 6 is a nonlinear equation containing function of 
resolved shear stress (𝜏𝛼), slip hardening strength (𝑔𝛼 ) and type III residual stress (𝑋𝛼), a 
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Newton-Raphson scheme was employed to solve for the current slipping rate within the specified 

time.  To distinguish between Δ𝛾𝛼 and the Newton-Raphson iterated version, the 𝚫𝛄𝑘 is used 
where 𝑘 represents the iteration of the Newton-Raphson algorithm.  Therefore, the Newton-
Raphson iteration is as follows, 

 
𝚫𝛄𝒌+𝟏 = 𝚫𝜸𝑘 −

𝑹(Δ𝛾𝑡+Δ𝑡
𝛼 )

𝜕𝑹(Δ𝛾𝑡+Δ𝑡
𝛼 )

𝜕𝚫𝜸

 
(A.8) 

where the function to iteratively solve is as follows, 

 𝑹(Δ𝛾𝑡+Δ𝑡
𝛼 ) = Δγ𝑡+Δ𝑡

α − 𝛾̇𝑡+Δ𝑡
𝛼 (Δ𝛾𝑡+Δ

𝛼 )Δ𝑡 (A.9) 
The solution is arrived at once the following condition is met, 

 |𝑹(Δ𝛾𝑡+Δ𝑡
𝛼 )| ≤ 𝑇𝑂𝐿 (A.1027) 

where the 𝑇𝑂𝐿 in this study was taken as 1 × 10−6. 

The partial derivate of Eq A.9 with respect to the unknown increment in slip rate 
(𝜕𝑹(Δ𝛾𝑡+Δ𝑡

𝛼 )/𝜕𝚫𝜸) can be calculated using the following equation, 

 
𝜕𝑹(Δ𝛾𝑡+Δ𝑡

𝛼 )

𝜕𝚫𝜸𝛽
= 𝛿𝛼𝛽 −

𝜕𝛾̇𝛼

𝜕Δ𝛾𝛽
Δ𝑡 (A.11) 

where 𝛿𝛼𝛽 is the Kronecker delta and the partial derivative of the slip rate can be solved 

following the expression, 

 
𝜕𝛾̇𝛼

𝜕Δ𝛾𝛽
=

𝜕𝛾̇𝛼

𝜕𝜏𝛼

𝜕𝜏𝛼

𝜕Δ𝛾𝛽
+

𝜕𝛾̇𝛼

𝜕𝑔𝛼

𝜕𝑔𝛼

𝜕Δγβ
+

𝜕𝛾̇𝛼

𝜕𝑋𝛼

𝜕𝑋𝛼

𝜕Δ𝛾𝛼
   (A.12) 

Each of the partial derivatives of slip rate (𝛾̇𝛼) with respect to resolved shear stress, slip 
hardening and type III residual stress can be calculated as, 

 

𝜕𝛾̇𝛼

𝜕𝜏𝛼
=

1

𝑔𝛼
[𝛾̇0,1𝑛1 (

|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛1−1

+ 𝛾̇0,2𝑛2 (
|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛2−1

] 

𝜕𝛾̇𝛼

𝜕𝑔𝛼
= −

|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼2 [𝛾̇0,1𝑛1 (
|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛1−1

+ 𝛾̇0,2𝑛2 (
|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛2−1

] 𝑠𝑔𝑛(𝜏𝛼

− 𝑋𝛼) 

𝜕𝛾̇𝛼

𝜕𝑋𝛼
= −

1

𝑔𝛼
[𝛾̇0,1𝑛1 (

|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛1−1

+ 𝛾̇0,2𝑛2 (
|𝜏𝛼 − 𝑋𝛼|

𝑔𝛼
)

𝑛2−1

] 

(A.13) 

Additionally, the partial derivatives for the resolved shear stress, slip hardening and type III 

residual stress with respect to 𝜕Δγβ can be calculated as, 

 
𝜕𝜏𝛼

𝜕Δ𝛾𝛽
= ∑ 𝜇𝑖𝑗

𝛽

𝛽

[𝐿𝑖𝑗𝑘𝑙𝜇𝑘𝑙
𝛼 + 𝜔𝑖𝑘

𝛼 𝜎𝑗𝑘 + 𝜔𝑗𝑘
𝛼 𝜎𝑖𝑘] (A.14) 
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𝜕𝑔𝛼

𝜕Δ𝛾𝛽
= ℎ0 ∑ {(1 +

ℎ0𝛾𝑠𝑢𝑚(𝑡+Δ𝑡)

𝜏0𝑚
)

𝑚−1

𝑠𝑔𝑛(Δ𝛾𝛽)}

𝑁𝑠

𝛽=1

 

𝜕𝑋𝛼

𝜕Δ𝛾𝛽
= ℎ𝛿𝛼𝛽 − ℎ𝐷𝑋𝛼𝛿𝛼𝛽𝑠𝑔𝑛(Δ𝛾𝛼) 

 

Using the equations in Eq A.13 and Eq A.14, the partial derivative in Eq A.12 can be solved and 

finally, the value of 𝚫𝛄𝒌+𝟏 can be solved. 
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