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Non-universal structure of point defects in face-centred cubic metals

Pui-Wai Ma∗ and S. L. Dudarev
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Using ab initio density function theory calculations, we have determined the structure of self-
interstitial atom (SIA) defects in the most commonly occurring face-centred cubic (FCC) metals.
The most stable SIA defects in Al, Ca, Ni, Cu, Pd and Ag are the 〈100〉 dumbbells whereas octa-
hedral SIA configurations have the lowest energy in Pt, Rh and Th. The relative stability of defect
configurations in Sr, Ir, Au, and Pb is less well defined, and calculations suggest that an SIA defect
has the 〈100〉 dumbbell structure in Sr and Ir, a 〈110〉 crowdion/dumbbell structure in Au, and that
it adopts an octahedral configuration in Pb. Both the octahedral and 〈110〉 crowdion/dumbbell con-
figurations imply that defects diffuse one-dimensionally. This is fundamentally different from the
three-dimensional translation-rotational migration characterizing the mobility of a 〈100〉 dumbbell.
Elastic fields of point defects are defined by their elastic dipole tensors, which we compute for all
the defect configurations. The magnetism of a 〈100〉 dumbbell in ferromagnetic nickel appears to
have little effect on its structure. The variation of energy and elastic field of an SIA defect in copper
is investigated in detail along its migration pathway.

I. INTRODUCTION

Face-centred cubic (FCC) metals are widely used in
nuclear engineering and technology. Lead (Pb) is a well
known shielding material for X-ray and γ-ray applica-
tions. Aluminum (Al) and its alloys have been used as
materials for nuclear fuel cladding [1]. Copper (Cu), sil-
ver (Ag) and gold (Au) are group 11 elements. They all
have high corrosion resistance and high electric conduc-
tivity, stimulating their extensive use in electronics. Cop-
per alloys, including CuCrZr, are the heat sink materials
for divertor applications where they serve as interfaces
between the plasma facing tungsten components and the
coolant [2, 3].

Crystalline materials do not retain their crystal struc-
ture in an environment where they are exposed to the
bombardment by energetic particles. Following an ini-
tial impact and subsequent dynamic evolution and relax-
ation of the atomic environment, the initial crystalline
order is partially restored, but in most cases the recovery
is incomplete. The remaining imperfection of the lat-
tice structure can be identified and classified as a variety
of crystal defects [4–9]. These defects produce spatially
varying stress field in the surrounding lattice [10]. In the
far-field approximation, defects can be treated as point
objects interacting with other defects through their elas-
tic fields [11–18]. These fields generate forces and torques
acting on the defects and driving their collective evolu-
tion [19]. This changes the microstructure of a material
exposed to irradiation and has a significant effect on me-
chanical and physical properties [20].

Under continuous irradiation, defects accumulate and
microstructure eventually reaches saturation, or adopts
a gradually evolving structural state [21]. Transmission
electron microscope (TEM) observations of ion irradiated
Fe, Ni and Cu [22] show that the rate of accumulation of
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defects in Fe is lower than Ni and Cu. TEM experiments
also show that the defect cluster density in neutron irra-
diated molybdenum and its alloys is substantially lower
than in copper, and that the difference becomes even
larger at higher irradiation temperatures [23]. Singh and
Evans [23] suggested that the size and the density of de-
fect clusters produced in FCC metals is higher than in
body-centred cubic (BCC) metals. Besides, defects in
FCC metals are more likely to be sessile. This leads to
greater damage retention efficiency in FCC than in BCC
metals.

Notably, a pure crystalline metal does not appear to be
able to accumulate an unlimited number of defects. TEM
experiments on neutron irradiated FCC copper, nickel
and aluminium suggest that the defect cluster density
saturates at around 0.1 dpa [24]. Recent atomic scale
simulations on BCC tungsten [21] and iron [25] arrive at
the same conclusion that the defect cluster density sat-
urates close to 0.1 dpa. We note that both approaches
[21, 25] use the Frenkel pair insertion methodology, where
an arbitrarily chosen atom is removed from the simula-
tion cell and re-inserted at a random position, followed
by the atomic relaxation performed using a static [21]
or a dynamic [25] algorithm. Each atomic removal and
re-insertion increments the dose by 1/N dpa, where N
is the total number of atoms in a simulation cell. Care
should be taken when comparing simulations and obser-
vations, since the above simulations do not treat atomic
impacts or thermal spikes. Still, the approach is highly
computationally efficient and enables reaching the dose
of 20 dpa on a million-atom scale [21].

The spatial resolution of a TEM is limited, and in a
conventional imaging mode it is difficult to visualize point
defects. For example, defects smaller than 1 nm in diam-
eter can hardly be observed in a TEM [26–29]. Collision
cascades simulations suggest that at doses not exceeding
∼ 0.01 dpa, the frequency of occurrence of vacancy and
interstitial defects of a certain size follows a power-law
[6–9]. This implies that a considerable fraction of defects
is too small to be visible in a TEM.
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To understand the dynamics of evolution of mi-
crostructure under irradiation and the effect of irradi-
ation on properties, considerable effort is devoted to
modelling and simulation of materials [30]. Object
kinetic Monte Carlo (OKMC) simulations [31–33] are
commonly applied to simulate the dynamics of evo-
lution of irradiation-induced defects. These simula-
tions are parameterized using input from ab initio cal-
culations, molecular dynamics and atomic-scale kinetic
Monte Carlo, which enable modelling diffusion, coales-
cence and dissociation, and recombination of defects.
However, the OKMC methods often struggle to incor-
porate elastic interaction between the defects.

Derlet and Dudarev [21] showed that at relatively low
temperatures the evolution of microstructure is driven
primarily by the spatially fluctuating stress fields associ-
ated with the defects. To correctly reproduce the mor-
phology of evolving defect microstructure as a function
of time, it is essential to include elastic interactions be-
tween the defects. Defect dynamics models [34], based
on a combination of the elastic dipole tensor and elastic
Green’s function treatment of elastic fields coupled to a
finite element method solver, may provide a viable way
of incorporating elastic interactions in a simulation of a
relative low dose exposure of a material to irradiation
for experimentally relevant conditions. While a general
treatment of the high dose limit still appears elusive, the
most recent results are encouraging [19].

While the development of modelling algorithms for
simulating high dose exposure to irradiation is progress-
ing, the availability of high quality atomic-level input
data remains the cornerstone aspect of the model devel-
opment effort. Density functional theory (DFT) calcula-
tions enable extracting reliable information about struc-
ture and elastic properties of localized defects from elec-
tronic and atomistic scale models, to enable mapping the
resuts to the continuum linear elasticity treatment [10–
18]. In this respect, DFT remains a powerful compu-
tational data-generating tool, providing information for
materials modelling, consistent with experimental obser-
vations, at a reasonable computational cost [35].

A Frenkel pair is the most common defect produced in
a material by irradiation [36]. It forms if an atom is dis-
placed far away from its original lattice site, producing
a vacancy at the original location, and a self-interstitial
atom (SIA) defect. The atomic configuration of a va-
cancy is relatively simple and in most cases involves the
relaxation of near neighbour atoms towards the vacant
lattice site. On the other hand, a SIA defect, forming if
an extra atom is inserted in the lattice, often adopts a
variety of fairly complex configurations.

In our previous studies [15–17], we examined the for-
mation and migration energies and elastic dipole tensors
of SIA and vacancy defects in almost all the body-centred
cubic (BCC) metals. We also evaluated the elastic cor-
rection to the defect formation energy resulting from the
use of periodic boundary conditions.

There is extensive literature on DFT analysis of struc-

ture of mono-vacancies in FCC metals [37–61]. These
studies extend beyond the treatment of static configura-
tions, and explore finite temperature scenarios through
the use of the quasi-harmonic approximation [50, 51, 55,
57, 61]. On the other hand, DFT calculations of for-
mation and migration energies of SIA configurations are
limited to Al [62, 63] and Ni [64]. We also note a re-
markable study of SIA configurations in Al performed
using a many-body diffusion quantum Monte Carlo ap-
proach [65], a technique that is far more computationally
demanding than DFT [66].

In this study, we perform DFT analysis of SIA defects
in almost all the pure FCC metals. The study spans
Al, Ca, Ni, Cu, Sr, Rh, Pd, Ag, Ir, Pt, Au, Pb, and Th.
We evaluate formation energies of various high symmetry
SIA and vacancy configurations, as well as elastic dipole
and relaxation volume tensors of defects. The results
form a comprehensive database of properties of defects
required for continuum scale models [10]. We re-examine
the long-standing assertion, based on X-ray diffraction
data on Al, Cu and Ni [67–69] that the 〈100〉 dumbbell
represents the most stable SIA configuration in FCC met-
als. We find that this assertion is not universally appli-
cable. The formation energy of other SIA configurations
is found to be close to, or even lower than that for the
〈100〉 dumbbell in several well-known FCC metals. We
discuss implications of these results for the interpretation
of observations of migration of SIA defects, together with
a range of pertinent experimental data.

II. THEORY

The formation energy of a defect in a finite-size simu-
lation cell computed using periodic boundary conditions
equals [15–18]:

EF
def = [Edef (Ndef )−Eapp]− Ndef

Nperf
Eperf (Nperf )−Ecorr

el ,

(1)
where Edef is the energy of a simulation cell contain-
ing a defect, Eperf is the energy of a perfect lattice cell
representing a reference configuration, Ndef is the num-
ber of atoms in the cell containing a defect, and Nperf

is the number of atoms in a perfect lattice cell. Eapp is
the part of the total energy associated with externally
applied strain, and Ecorr

el is the elastic correction energy
that needs to be included to account for the effects of pe-
riodic boundary conditions. The energy associated with
externally applied strain is

Eapp =
Vcell

2
Cijklε

app
ij εappkl − Pijε

app
ij , (2)

where Vcell is the volume of the simulation cell. The ap-
plied strain εappij can be calculated from the cell vectors of
the reference cell and the cell containing the defect. The
elastic correction energy Ecorr

el also depends on elastic
dipole tensor of the defect Pij . The elastic dipole tensor
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can be computed using the equation [12–15]

Pij = Vcell(Cijklε
app
kl − σ̄ij), (3)

where σ̄ij is the average stress in the cell. The relaxation
volume tensor can then be evaluated as

Ωij = SijklPkl (4)

where Sijkl is the elastic compliance tensor, satisfying
the condition CijklSlkmn = 1

2 (δimδjn + δinδjm). The re-

laxation volume of the defect is Ωrel = Tr(Ωij) =
∑

i Ωii.
Further detail related to the methods used for the eval-
uation of Eapp, Ecorr

el , Pij , and Ωij can be found in Ref.
[11–18]. A detailed description of the computer program
CALANIE that we used for evaluating the above quan-
tities can be found in Ref. [18].

All the DFT calculations were performed using the Vi-
enna Ab initio Simulation Package (VASP) [70–73], ver-
sion 5.4.1. We used a supercell containing 4 × 4 × 4
FCC unit cells and 3 × 3 × 3 k-point mesh. Each FCC
unit cell contains 4 atoms. The selection of projector
augmented-wave (PAW) potentials [74, 75], provided by
VASP, the number of valence electrons and the plane
wave energy cutoff for different elements are listed in Ta-
ble I. For all the elements, we performed calculations
using the GGA-PBE [76, 77] exchange-correlation func-
tional. We assumed that all metals were non-magnetic,
with the exception of nickel. Calculations for Ni were per-
formed in the collinear magnetic approximation, assum-
ing a collinear ferromagnetically ordered ground state.
For some selected materials, including Cu, Ag, Ir, Pt,
Au, Pb and Th, we also performed calculations using the
GGA-PBEsol functional [78, 79] with and without spin-
orbit coupling.

We start by creating a perfect lattice simulation cell
and relaxing it to the stress free condition. Then, we cre-
ate point defects by inserting or removing an atom from
the simulation cell. We create various SIA defect config-
urations, including a 〈100〉 dumbbell, a 〈110〉 dumbbell,
a 〈110〉 crowdion, a 〈111〉 dumbbell, a tetrahedral site
interstitial and an octahedral site interstitial, as well as
a vacancy configuration. The various SIA configurations
considered in this work are illustrated in Fig. 1. Ion posi-
tions are then relaxed without altering the shape and the
volume of the simulation cell. The convergence condition
is defined by the maximum force acting on an atom in
the cell, which was set to be less than 0.01 eV/Å.

For gold (Au), we have also performed calculations
using the revised-TPSS exchange-correlation functional
[80, 81] that includes spin-orbit coupling. The inclusion
of spin-orbit coupling is intended to account for the band
splitting and shape modification of the 5d bands [82–84],
where relativistic effects are significant. Some results of
this analysis were presented earlier [18]. We use simula-
tion cells with various shape and size for different defect
configurations to optimise the computational effort that
otherwise is associated with the uniform use of a rela-
tively large simulation cell. The simulation cells used for

analysing various configurations of defects are listed in
Table II.

The formation energies of defects were also computed
by means of full relaxation to the stress-free condition,
using cells of similar size with the same k-point sampling.
The resulting formation energies, evaluated using equa-
tion (1) and including the appropriate elastic corrections,
were virtually identical to those computed using the fixed
cell approach [15].

Although it might appear natural to introduce strong
on-site Coulomb electron-electron repulsion in the treat-
ment of f electrons in Thorium (Th), it is known that
the GGA-PBE treatment of correlations reproduces the
lattice constant of ThO2 well even if the the effective
Hubbard parameter U is set to zero [85]. We also find
that the equilibrium lattice parameter and elastic con-
stants of pure Th match experimental observations very
well.

The magnitude of spin-orbit coupling increases rapidly
as a function of atomic number, since the spin-orbit cou-
pling constant is proportional to the square of atomic
number [86]. Therefore, we include spin-orbit coupling
in the simulations of defects in heavy elements, including
Ir, Pt, Au, Pb and Th. For Cu and Ag, we include the
treatment of spin orbit coupling because they are in the
same group as Au.

The use of PBEsol [78, 79] exchange-correlation func-
tional is justified by the need to reduce the discrepancy
between the vacancy formation energy EF

V predicted by
DFT calculations and that found in experiment. Because
of the same reason, we use meta-GGA rTPSS [80] when
investigating defects in gold. The relevant numerical val-
ues are discussed in the next section of the paper. PBEsol
was developed to correct the surface energy by restoring
the second-order gradient expansion for exchange over
a wide range of densities [78, 79]. The rTPSS [80] was
revised from TPSS [87] following the same principles for
the purpose of obtaining better values for the lattice con-
stant, while keeping the surface and atomization ener-
gies unaffected. Both rTPSS and TPSS are semi-local
functionals that include the kinetic energy density. Ropo
et al. [88] examined surface energies of various metals,
and showed that calculations using the PBEsol functional
predict significantly higher surface energies than calcula-
tions using the PBE functional. Medasani et al. [89]
examined the trend of EF

V for a set of 34 metals. They
found that the magnitude of EF

V generally follows the
trend rTPSS > PBEsol ≈ LDA > PBE > PW91, where
rTPSS, PBsol and LDA lead to better overall agreement
with experiment.

In order to evaluate the contribution to energy asso-
ciated with applied strain Eapp, the elastic correction
energy Ecorr

el , and the relaxation volume tensor Ωij , it
is necessary to compute the full tensor of elastic con-
stants. In this study, the elastic constant tensors Cijkl

were evaluated for all the metals using the Le Page and
Saxe method [90] using a four-atoms cubic simulation cell
and a 21× 21× 21 k-point mesh. The atomic volume Ω0
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FIG. 1. Schematic sketches of self-interstitial atom defects in face-centred cubic metals. In all the cases illustrated in this figure,
the simulation cell contains one extra atom, and hence each configuration represents a single-atom SIA defect. All the atoms
shown in the sketches are identical, and colours highlight the symmetry of a particular defect structure. Empty spheres, where
appropriate, indicate positions of unoccupied ideal lattice sites. Letters d and c refer to a dumbbell or a crowdion configuration.

and the equilibrium lattice constant a0 were also deter-
mined from the same set of calculations. However, when
converting Ωij into the Ω0 units, we used the volume of
the supercell representing the reference crystal structure
for a defect calculation. The results are summarized in
Table III together with the relevant experimental data.
The predicted values are generally in agreement with ex-
periment.

III. NUMERICAL RESULTS

Formation energies of defects EF , elements of elastic
dipole tensors Pij and relaxation volume tensors Ωij , as
well as relaxation volumes Ωrel computed for vacancy
and various SIA configurations are summarised in tables
IV to XXXVIII. Formation energies of the most stable
SIA and vacancy configurations are also given in Table
III.

A. Vacancies

Vacancy formation energies EF
V computed in this study

for FCC metals are generally compatible with experimen-
tal values, and agree with recent DFT calculations by
Medasani et al. [89], Angsten et al. [56], and Nazarov et
al. [54].

Calculations performed using the PBE functional tend
to underestimate EF

V . This was recognised to result from
the underestimation of exchange energy at the surface

FIG. 2. Formation energies of various self-interstitial atom
(SIA) defect configurations in Al, Ca, and Ni. In each case,
the energy of a 〈100〉 dumbbell is used as a reference, and
the curves show the difference between the energy of a given
defect configuration and that of a 〈100〉 dumbbell.

of a vacancy, whereas the correlation energy is overesti-
mated only slightly [91]. The largest discrepancy with
other DFT calculations is found for Pt and Pb. We per-
formed comprehensive calculations using various super-
cell sizes and k-point meshes. They are listed in Tables
XXXIX and XL. The supercell size effect is clearly sig-
nificant. Our results are compatible other DFT stud-
ies where the same supercell size and k-point mesh were
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FIG. 3. Formation energies of various self-interstitial atom
(SIA) defect configurations in Cu. The energy of a 〈100〉
dumbbell is used as a reference, and the curves show the dif-
ference between the energy of a given defect configuration and
that of a 〈100〉 dumbbell.

FIG. 4. Formation energies of various self-interstitial atom
(SIA) defect configurations in Cu pv. The energy of a 〈100〉
dumbbell is used as a reference, and the curves show the dif-
ference between the energy of a given defect configuration and
that of a 〈100〉 dumbbell.

used. Medasani et al. [89] and Nazarov et al. [54] used
small supercells containing 2× 2× 2 unit cells. Angsten
et al. [56] used larger supercells containing 3× 3× 3 unit
cells.

We also performed calculations using the PBEsol func-
tional, which was developed to provide a better descrip-
tion of jellium surfaces [78]. We observe that the cal-
culated values of EF

V show better agreement with ex-
perimental data and are compatible with DFT calcula-
tions by Medasani et al. [89]. For some selected ele-
ments, including Cu, Ag, Ir, Pt, Au, Pb, and Th, we
also performed calculations using PBEsol and including

FIG. 5. Formation energies of various self-interstitial atom
(SIA) defect configurations in Sr, Rh, and Pd. The energy of a
〈100〉 dumbbell is used as a reference, and the curves show the
difference between the energy of a given defect configuration
and that of a 〈100〉 dumbbell.

FIG. 6. Formation energies of various self-interstitial atom
(SIA) defect configurations in Ag. The energy of a 〈100〉
dumbbell is used as a reference, and the curves show the dif-
ference between the energy of a given defect configuration and
that of a 〈100〉 dumbbell.

spin-orbit coupling. However, the computed formation
energies are not significantly different from those com-
puted without the spin-orbit coupling. A possible rea-
son is that all the above metals are non-magnetic, even
though some of them are heavy elements characterised
by relatively large values of the spin-orbit coupling pa-
rameter.

Since vacancy is elastically isotropic, the elastic dipole
tensor Pij is diagonal, and all its diagonal elements are
the same, i.e. P11 = P22 = P33. We have also calculated
the relaxation volume Ωrel of a vacancy from its dipole
tensor Pij . The relaxation volume of a defect is defined as



6

FIG. 7. Formation energies of various self-interstitial atom
(SIA) defect configurations in Ir. The energy of a 〈100〉 dumb-
bell is used as a reference, and the curves show the difference
between the energy of a given defect configuration and that
of a 〈100〉 dumbbell.

FIG. 8. Formation energies of various self-interstitial atom
(SIA) defect configurations in Pt. The energy of a 〈100〉
dumbbell is used as a reference, and the curves show the dif-
ference between the energy of a given defect configuration and
that of a 〈100〉 dumbbell.

the change of the total volume of a sample resulting from
the relaxation of the lattice around a defect [92]. For a
vacancy, the relaxation volume is negative. The experi-
mentally observed values of vacancy relaxation volumes
[93] are summarised in Table XLI. The calculated relax-
ation volumes are generally compatible with the experi-
mental values, taking into account the fact that there are
large fluctuations of the experimentally observed values
themselves.

FIG. 9. Formation energies of various self-interstitial atom
(SIA) defect configurations in Au. The energy of a 〈100〉
dumbbell is used as a reference, and the curves show the dif-
ference between the energy of a given defect configuration and
that of a 〈100〉 dumbbell.

FIG. 10. Formation energies of various self-interstitial atom
(SIA) defect configurations in Pb. The energy of a 〈100〉
dumbbell is used as a reference, and the curves show the dif-
ference between the energy of a given defect configuration and
that of a 〈100〉 dumbbell.

B. Self-interstitial atom defects

The central result of this study is a comprehensive
compilation of formation energies and anisotropic elas-
tic parameters of SIA defects in FCC metals. We have
plotted the formation energies of SIA configurations in
various FCC metals, relative to the formation energy of
a 〈100〉 dumbbell, in Figs. 2 to 11. The order in which
SIA configurations are shown on the horizontal axis fol-
lows the sequence of formation energies found in Al.

We see that the most stable SIA configuration in Al,
Ca, Ni, Cu, Pd and Ag is a 〈100〉 dumbbell. However,
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FIG. 11. Formation energies of various self-interstitial atom
(SIA) defect configurations in Th. The energy of a 〈100〉
dumbbell is used as a reference, and the curves show the dif-
ference between the energy of a given defect configuration and
that of a 〈100〉 dumbbell.

the 〈100〉 SIA dumbbell does not represent the univer-
sally most stable defect structure in all the FCC metals.
The octahedral site interstitial configuration, where an
extra atom occupies the centre of a cubic unit cell, is en-
ergetically more stable in Pt, Rh and Th. Furthermore,
it appears that the answer to the question about the sta-
bility of defects is not immediately straightforward for
Sr, Ir, Au, and Pb.

In strontium (Sr), the formation energy of either a
〈110〉 crowdion or a dumbbell is higher than that of a
〈100〉 dumbbell, but the difference is just 0.016 eV. In
iridium (Ir), the formation energy of an octahedral self-
interstitial defect is 0.067 eV higher than that of a 〈100〉
dumbbell. In both metals, the 〈100〉 dumbbell configura-
tion has the lowest energy, but the difference between the
lowest and the second lowest formation energies is very
small.

In gold (Au), the calculations performed using PBE,
PBEsol, and PBEsol with spin-orbit coupling suggest
that a 〈110〉 crowdion or a 〈110〉 dumbbell are more sta-
ble than a 〈100〉 dumbbell. On the other hand, if the
rTPSS functional with spin-orbit coupling is used, we
find the 〈100〉 dumbbell as the most stable configuration.
Still, its formation energy is just 0.021 eV lower than the
formation energy of a 〈110〉 crowdion.

In lead (Pb), calculations using the PBE functional,
with various PAW potentials, and the PBEsol functional
with spin-orbit coupling suggest that the octahedral site
interstitial structure represents the most stable configu-
ration of the defect. On the other hand, calculations per-
formed using PBEsol suggest the 〈100〉 dumbbell ground
state configuration instead. This conclusion is confirmed
by calculations performed using a variety of starting
atomic configurations. Using both functionals, we find
that the difference between the energies of competing

configurations is in the range from 0.010 to 0.012 eV.
Given the tiny scale of this energy difference, it is diffi-
cult to ascertain what defect configuration is more stable
in practice.

A review of published literature results shows a small
number of DFT studies of SIA defects in Al and Ni, and
no studies of such defects in other FCC metals. Jesson
et al. [63] performed orbital-free DFT investigation of
Al. The general trend exhibited by the formation en-
ergies of defect configurations is similar to that found
in our simulations, but their energy values are about 1
eV smaller than ours results for all the SIA defects. The
more recent work by Qui et al. [62] included both orbital-
free and Kohn-Sham DFT studies of Al. These results
are compatible with our calculations. Simulations of de-
fects in Al were also performed using diffusion quantum
Monte Carlo (DMC), see Ref. [65]. They only investi-
gated a 〈100〉 dumbbell, tetrahedral and octahedral site
self-interstitials. The formation energies found in [65] are
similar to those found in our DFT calculations. Tucker
et al. [64] performed DFT simulations of SIA defects in
Ni using VASP and found EF

SIA values similar to those
given below.

Our DFT results extend the currently limited data on
SIA configurations in FCC metals. We show that the
commonly used assumption that the 〈100〉 dumbbell con-
figurations represent the most stable SIA defect struc-
tures does not uniformly apply to all the FCC metals,
although our DFT results do confirm that a 〈100〉 dumb-
bell represents the ground state of the defect in Al, Ni and
Cu in agreement with experimental observations [67–69].

Figures 12 to 15 show two-dimensional plots of electron
charge density difference in Al, Cu and Pb computed us-
ing the PBE functional. The defect structures in copper
shown in the figures were investigated using the Cu pv
PAW potential. In the treatment of electronic structure
of copper, the 3p orbitals were included as semi-core va-
lence states, and the corresponding results for copper in
the VASP terminology are referred to as those for Cu pv.

The charge density difference plots shown in the fig-
ures were evaluated for the 〈100〉 dumbbell and octahe-
dral site self-interstitials in the (010) and (011) planes.
Electron charge density difference is defined as the fully
convergent electron density computed ab intio minus the
superposition of atomic charge densities. The plots illus-
trate different character of interatomic bonding in Al, Cu
and Pb. Bonding between atoms in Al and Pb is mainly
mediated by s and p valence electrons, whereas bonding
in Cu is mediated almost exclusively by s electrons. We
observe the directional bonds forming around the core of
the defect in Al and Pb. In Cu, on the other hand, the
electron charge density remains largely non-directional.
We note that while being remarkable in its own right, this
electronic structure phenomenon does not explain why a
〈100〉 dumbbell is stable in Al and Cu, and octahedral
site self-interstitial is stable in Pb.

The character of the most stable SIA configuration de-
termines the migration pathway and the type of thermal
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migration exhibited by the defect. Understanding the
diffusion of SIA defects requires examining the migration
pathway of an SIA defect in each metal.

Temperature TID, corresponding to stage ID of re-
covery in electron irradiated resistivity recovery exper-
iments, characterizes the onset of migration of SIA de-
fects. Experimentally observed values of TID and SIA
migration enthaply HM

I from Ref. [93] are summarised
in Table XLII.

A [100] dumbbell in an FCC metal migrates following
a translation-rotation pathway to one of the [010] or [001]
dumbbell configurations centred on one of the adjacent
lattice sites [67–69, 94]. In total, there are 8 pathways
equivalent by symmetry. A schematic illustration show-
ing one of the pathways is given in Fig. 16. Jesson et
al. [63] performed orbital-free DFT calculations suggest-
ing that the migration barrier is 0.084 eV in Al. Qui
et al. performed orbital-free DFT calculations, involving
various approximations, and found that the migration
barrer was close to 0.11 eV. Tucker et al. calculated the
SIA migration barrier in Ni using VASP and found that
the value close to 0.14 eV.

If we assume that the lowest energy state of a self-
interstitial defect is octahedral, its nearest transition con-
figuration is a 〈100〉 dumbbell. Therefore, the compar-
atively low TID of Pb likely imply one-dimensional dif-
fusion involving Octa→〈100〉→Octa transition pathways.
A schematic illustration of such a pathway is given in Fig.
17. The migration enthaply for this process is HM

I = 0.01
eV, and this is compatible with the energy difference be-
tween the two lowest-energy SIA configurations. On the
other hand, even though Rh and Th adopt an octahedral
site interstitial configuration, their TID are not very low,
which is correlated with the fact that the energy differ-
ence between the two lowest energy SIA configurations is
close to 0.1 eV.

The most surprising experimentally observed value of
TID is the one for Au. A possible explanation is that
a SIA in Au adopts a 〈110〉 crowdion/dumbbell configu-
ration, and migrates purely one dimensionally following
a sequence of crowdion→dumbbell→crowdion transfor-
mations, similarly to the migration of a 〈111〉 defects in
BCC metals [95]. A schematic illustration of the process
is given in Fig. 18. Since the two SIA configurations have
almost the same formation energy, the energy required to
translate a SIA through the lattice is negligible. This im-
plies that the energy barrier for migration is nearly zero,
explaining why TID in gold is lower than 0.3 K, close to
the limit of what can be resolved experimentally. The low
temperature character of diffusion of SIA defects is gold
is similar to the low temperature one-dimensional diffu-
sion of 〈111〉 crowdions/dumbbells in body-centre cubic
metals [15, 96, 97].

Elastic dipole tensors Pij fully characterise the long-
range elastic fields of defects [10, 14]. The matrix ele-
ments and the symmetry of the Pij tensor for a particu-
lar defect reflects the symmetry of the corresponding SIA
configuration. The dipole character of elastic interaction

between the defects results in that the energy of interac-
tion depends not only on the relative positions of defects
but also on the orientation of the defects with respect to
each other [98] and, in an elastically anisotropic mate-
rial, with respect to the lattice [92]. In the limit where
the density of defects is low and elastic interactions are
well described by the pairwise approximation, the Pij-
mediated representation of elastic forces can be readily
transferred to other simulations such as OKMC [31–33]
or defect dynamics [34], where elastic interactions play
an important part in microstructural evolution.

Elastic dipole tensors and relaxation volumes of SIA
defects can be determined from diffuse X-ray scatter-
ing (DXS) experiments involving samples irradiated with
high energy electrons at very low temperature. In Al,
the experimentally observed elements of Pij of SIAs
are P11 = 15 eV and P22 = P33 = 16 eV, with the
corresponding relaxation volume of the defect Ωrel

SIA =
1.9 ± 0.4Ω0 [67]. These values compare well with our
DFT results. In Cu, Haubold and Martinsen [99] de-
termined that Tr(Pij) =

∑
i Pii = 45 ± 5 eV, and

(P22 − P11)/Tr(Pij) = 0.03 ± 0.03 eV, and Ωrel
SIA =

1.45 ± 0.15Ω0. This corresponds to P11 = 14.1 eV and
P22 = P33 = 15.45 eV if we convert the matrix elements
of the tensor disregarding the experimental uncertainties.
A direct comparison shows that our DFT results for Cu
are larger than the experimentally observed values. The
observed relaxation volume of a defect in Ni is Ωrel

SIA is
1.8± 0.2Ω0 [100]. In Pt, the experimentally observed re-
laxation volume of a SIA defect Ωrel

SIA is 2.0± 0.3Ω0 [67].
These values agree well with our first-principles calcula-
tions.

IV. MAGNETISM OF POINT DEFECT
CONFIGURATIONS IN NICKEL

Nickel is a ferromagnetic FCC metal [101]. The most
stable SIA defect configuration in nickel is a 〈100〉 dumb-
bell, and in this respect Ni is similar to many other FCC
metals. For comparison, iron (Fe) is also ferromagnetic
and an SIA defect in Fe adopts a 〈110〉 dumbbell config-
uration characterised by the antiferromagnetic ordering
of atomic magnetic moments in its core [15, 102]. The
structure the SIA defect in Fe is different from the 〈111〉
crowdion/dumbbell configurations typically occurring in
BCC metals [15, 95]. Magnetism is believed to be re-
sponsible for that the structure of an SIA defect in Fe
is different from the structure of an SIA defect in other,
non-magnetic, bcc metals. This warrants a study of mag-
netism of SIA defect configurations in Ni.

Fig 19 shows a two-dimensional plot of magnetization
density, that is the spin up minus the spin down density
of electrons, computed for a 〈100〉 dumbbell configuration
in Ni in the (010) and (011) planes. Fig. 20 is the cor-
responding two-dimensional plot of the electron charge
density difference. Interatomic interactions in Ni are me-
diated by s and d valence electrons, and this agrees with



9

the anisotropic pattern of directional bonds near the core
of an SIA defect. Magnetization appears to have an al-
most negligible effect despite the fact that the core part
of the defect is highly compressed. The locally projected
magnetic moments of the two atoms in the core of the
defect equal 0.721µB . The magnetic moment of a Ni
atom in a perfect FCC lattice at equilibrium is 0.697µB ,
according to a calculation performed using a 256 atom
cell.

Fig. 21 shows the total magnetisation and energy of a
Ni atom as a function of the lattice constant, calculated
using a one-atom FCC unit cell and 21×21×21 k-points
mesh, and the PBE exchange-correlation functional. The
curve exhibits a positive monotonic correlation between
the magnitude of the magnetic moment of an atom and
the available atomic volume. This suggests that if the
volume available to an atom is small, its magnetic mo-
ment is expected to be small. However, such a rule does
not appear to apply to the magnetic moment of atoms
in the core of an SIA configuration in Ni. The magnetic
moments in the core of the defect are actually larger than
the magnetic moments of atoms in the crystal bulk. Be-
sides, the moments of atoms in the core of the defect
remain ferromagnetically aligned with the moments of
surrounding atoms. This is completely different from the
case of Fe [15, 95]. These results suggest that magnetism
does not have a significant effect on the structure and
stability of SIA defects in Ni.

V. MIGRATION OF A SELF-INTERSTITIAL
ATOM DEFECT IN COPPER

Copper is one of the most commonly used materials
for applications requiring high electric and thermal con-
ductivity. In fusion technology, copper alloys are used
as heat sink materials, often in combination with tung-
sten directly facing the plasma [3]. A self-interstitial
atom defect in copper adopts a 〈100〉 dumbbell configura-
tion, which is expected to migrate following a translation-
rotation pathway illustrated in Fig 16 [67–69, 94]. Since
from each location a defect can follow any of the eight
available degenerate migration pathways, the defect dif-
fuses three-dimensionally through the lattice.

To explore the dynamics of migration of a defect in
copper, we performed a nudged elastic band [103, 104]
calculation using 9 images, representing a trajectory link-
ing the initial and final equilibrium positions of the de-
fect. Calculations were performed using the PBE ex-
change correlation functional. Fig. 22 shows the varia-
tion of the defect formation energy as a 〈100〉 dumbbell
migrates from the [100] to the [010] configuration along
the transition pathway illustrated in Fig. 16. All the
defect energies shown in the graph include the elastic
correction computed according to Eq. (1). The calcu-
lated saddle point energy is 0.121 eV, which compares
very well with the experimentally determined migration
energy of 0.117 eV [93]. This migration energy is approx-
imately three time lower than the migration energy of an

SIA defect in Fe [105].

The variation of elastic dipole tensor and relaxation
volume tensor along the migration pathway of the defect
are plotted in Fig. 23 and 24, respectively. The graph
shows that the elastic field of a 〈100〉 dumbbell follows
the transformation of its symmetry as it moves from the
initial to the final equilibrium positions as illustrated in
Fig. 16. The variation of the relaxation volume along the
migration pathway is shown in Fig. 25. The relaxation
volume of the defect does not vary significantly along the
migration pathway in comparison with its equilibrium
initial and final values of 1.767 Ω0.

VI. SUMMARY AND CONCLUSIONS

Using density function theory calculations, we explored
the structures of self-interstitial atom (SIA) defects in the
most commonly occurring face-centred cubic (FCC) met-
als. We have computed the formation energies and elastic
dipole tensors of all the defect configurations, providing
the so far unavailable data required for larger scale sim-
ulations of microstructural evolution under extreme con-
ditions. We find that the 〈100〉 SIA defect configuration
is not universally stable in all the FCC metals. The most
stable SIA configuration in Al, Ca, Ni, Cu, Pd and Ag is
the 〈100〉 dumbbell. The octahedral site SIA configura-
tion is most stable in Pt, Rh and Th. The 〈100〉 dumb-
bell configuration of the defect is likely realised in Sr and
Ir, whereas the 〈110〉 crowdion/dumbbell defect repre-
sents the ground state in Au. In lead, the defect adopts
an octahedral site configuration. Both the octahedral
site SIA defect in Pb and 〈110〉 crowdion/dumbbell con-
figuration in Au diffuse one-dimensionally through the
lattice, as opposed to the three-dimensional translation-
rotation diffusion exhibited by the 〈100〉 dumbbells. We
find that in nickel, magnetism does not have a noticeable
effect on the structure of point defects. We also explored
the variation of elastic parameters of an SIA defect in
Cu along its migration pathway, and found that the pre-
dicted migration energy compares well with experimental
observations.
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TABLE I. The header of PAW potential, number of valence
electrons (V. E.), and plane-wave energy cutoff of all elements
being considered.

Element Header of PAW potential V. E. Cutoff (eV)

Al PAW PBE Al 04Jan2001 3 400

Ca PAW PBE Ca sv 06Sep2000 10 400

Ni PAW PBE Ni pv 06Sep2000 16 600

Cu PAW PBE Cu 22Jun2005 11 600

Cu pv PAW PBE Cu pv 06Sep2000 17 600

Sr PAW PBE Sr sv 07Sep2000 10 400

Rh PAW PBE Rh pv 25Jan2005 15 400

Pd PAW PBE Pd pv 28Jan2005 16 400

Ag PAW PBE Ag pv 09Dec2005 17 450

Ir PAW PBE Ir 06Sep2000 9 350

Pt PAW PBE Pt 04Feb2005 10 450

Pt pv PAW PBE Pt pv 12Dec2005 16 450

Au PAW PBE Au 04Oct2007 11 450

Au pv GW PAW Au pv GW 23Mar2010 17 450

Pb PAW PBE Pb 08Apr2002 4 400

Pb d PAW PBE Pb d 06Sep2000 14 400

Pb d GW PAW Pb d 06Oct2005 14 400

Th PAW PBE Th 07Sep2000 12 400

TABLE II. Number of atoms, approximate cell size (in units
of the unit cell size), and the k-point mesh used in the calcu-
lations of SIA and vacancy configurations in FCC gold (Au).

No. of atoms Approx. cell size k-points

〈100〉d 145 3x3x4 4x4x3

Octa 109 3x3x3 4x4x4

〈110〉c 193 3x4x4 4x3x3

〈110〉d 193 3x4x4 4x3x3

〈111〉d 109 3x3x3 4x4x4

Tetra 109 3x3x3 4x4x4

Vac 107 3x3x3 4x4x4
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TABLE III. Calculated elastic constants Cij , lattice constants a, atomic volume Ω0, vacancy formation energy EF
V and the

most stable SIA formation energy EF
SIA. Experimental data for elastic constants are taken from Ref. [106]. Experimentally

observed values of lattice constants are taken from Ref. [93], with the exception of Ca and Sr, where they are taken from Ref.
[107]. Experimental data for vacancy and SIA formation energies are taken from Ref. [93].

Element Functional C11 (GPa) C12 (GPa) C44 (GPa) a (Å) Ω0 (Å3) EF
V (eV) EF

SIA (eV)

Al Experiment 108 62 28 4.050 16.603 0.67± 0.03 3.0

Al PBE 100.307 64.316 23.565 4.040 16.486 0.638 2.587

Ca Experiment 22.8 / 27.8 16.0 / 18.2 14 / 16.3 5.58 43.435 - -

Ca PBE 22.234 14.853 13.564 5.527 42.220 1.156 1.902

Ni Experiment 247 153 122 3.524 10.939 1.79± 0.05 -

Ni PBE 298.190 165.749 138.156 3.511 10.818 1.447 4.493

Cu Experiment 169 122 75 3.615 11.813 1.28± 0.05 2.82 to 4.12

Cu PBE 178.484 129.262 74.128 3.634 12.000 1.064 3.088

Cu pv PBE 201.507 131.304 85.442 3.622 11.874 1.059 3.379

Cu PBEsol 205.307 139.194 88.035 3.568 11.355 1.224 3.433

Cu pv PBEsol 226.394 144.724 91.916 3.559 11.270 1.269 3.766

Cu PBEsol+SOC 211.015 145.872 84.418 3.568 11.360 1.222 3.438

Cu pv PBEsol+SOC 230.224 145.099 91.751 3.559 11.266 1.264 3.768

Sr Experiment 15.3 10.3 9.9 6.08 56.189 - -

Sr PBE 14.623 10.062 9.220 6.018 54.489 1.045 2.053

Rh Experiment 413 194 184 3.804 13.757 - -

Rh PBE 430.323 183.901 192.399 3.823 13.968 1.873 6.735

Pd Experiment 221 171 70.8 3.891 14.725 1.70 / 1.85 -

Pd PBE 215.890 162.613 63.934 3.930 15.177 1.306 4.454

Ag Experiment 122 92 45.5 4.086 17.058 1.11± 0.05 -

Ag PBE 126.343 97.736 44.049 4.121 17.495 0.711 3.238

Ag PBEsol 154.105 118.540 51.357 4.037 16.444 1.155 3.929

Ag PBEsol+SOC 153.880 117.667 51.580 4.037 16.443 1.152 3.927

Ir Experiment 600 / 580 270 / 256 260 / 242 3.839 14.144 - -

Ir PBE 616.979 242.793 273.587 3.859 14.363 1.519 8.687

Ir PBEsol 650.965 264.366 286.970 3.833 14.073 1.979 9.617

Ir PBEsol+SOC 637.776 257.173 276.575 3.836 14.108 1.779 9.232

Pt Experiment 347 251 76.5 3.924 15.105 1.35± 0.05 1.7

Pt PBE 309.303 218.239 59.590 3.968 15.614 0.545 4.825

Pt pv PBE 344.308 232.445 69.481 3.959 15.514 0.458 5.285

Pt PBEsol 363.316 252.130 76.510 3.917 15.019 0.785 5.557

Pt PBEsol+SOC 355.641 247.011 80.443 3.919 15.045 0.831 5.501

Au Experiment 191 162 42.2 4.078 16.958 0.93± 0.04 -

Au PBE 145.366 135.479 21.978 4.157 17.963 0.442 2.602

Au pv GW PBE 154.975 138.733 22.963 4.160 17.991 0.418 2.683

Au PBEsol 193.950 167.045 32.891 4.082 17.000 0.765 3.374

Au PBEsol+SOC 202.004 169.796 36.051 4.072 16.878 0.662 3.369

Au RTPSS+SOC 210.550 168.107 49.964 4.075 16.920 0.939 3.938

Pb Experiment 48.8 41.4 14.8 4.950 30.322 0.58± 0.04 -

Pb PBE 50.238 36.107 19.880 5.028 31.770 0.299 1.254

Pb d PBE 54.393 36.481 21.749 5.036 31.938 0.285 1.295

Pb d GW PBE 49.737 35.321 20.949 5.036 31.937 0.279 1.285

Pb PBSol 52.722 43.352 13.863 4.930 29.947 0.407 1.365

Pb PBEsol+SOC 59.142 39.724 24.470 4.934 30.031 0.295 0.987

Th Experiment 75.3 / 77.0 48.9 / 50.9 47.8 / 45.5 5.084 32.855 1.28± 0.2 -

Th PBE 86.475 39.921 57.434 5.054 32.282 2.444 4.802

Th PBEsol 89.784 45.847 63.600 4.959 30.481 2.668 5.270

Th PBEsol+SOC 94.630 47.875 63.791 4.933 30.012 2.458 5.159
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TABLE IV. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation volume
tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Al using the GGA-PBE
functional.

Al EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 2.587 17.399 18.376 18.376 0.000 0.000 0.000 0.591 0.855 0.855 0.000 0.000 0.000 2.301

Octa 2.812 18.873 18.873 18.873 0.000 0.000 0.000 0.802 0.802 0.802 0.000 0.000 0.000 2.406

〈110〉c 2.902 18.418 18.418 21.165 11.753 0.000 0.000 0.574 0.574 1.316 2.426 0.000 0.000 2.465

〈110〉d 2.902 18.440 18.440 21.127 11.768 0.000 0.000 0.580 0.580 1.306 2.429 0.000 0.000 2.465

〈111〉d 3.083 19.657 19.657 19.657 3.021 3.021 3.021 0.835 0.835 0.835 0.624 0.624 0.624 2.506

Tetra 3.118 19.847 19.847 19.847 0.000 0.000 0.000 0.843 0.843 0.843 0.000 0.000 0.000 2.530

Vac 0.638 -1.911 -1.911 -1.911 0.000 0.000 0.000 -0.081 -0.081 -0.081 0.000 0.000 0.000 -0.244

TABLE V. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation volume
tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Ca using the GGA-PBE
functional.

Ca EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 1.902 6.464 6.398 6.398 0.000 0.000 0.000 0.492 0.458 0.458 0.000 0.000 0.000 1.408

Octa 2.171 6.444 6.444 6.444 0.000 0.000 0.000 0.471 0.471 0.471 0.000 0.000 0.000 1.413

〈110〉c 1.995 5.129 5.129 7.541 4.716 0.000 0.000 0.020 0.020 1.261 0.660 0.000 0.000 1.301

〈110〉d 1.995 5.123 5.123 7.536 4.717 0.000 0.000 0.020 0.020 1.261 0.660 0.000 0.000 1.300

〈111〉d 2.097 6.216 6.216 6.216 2.390 2.390 2.390 0.454 0.454 0.454 0.334 0.334 0.334 1.363

Tetra 2.156 6.321 6.321 6.321 0.000 0.000 0.000 0.462 0.462 0.462 0.000 0.000 0.000 1.386

Vac 1.156 -1.068 -1.068 -1.068 0.000 0.000 0.000 -0.078 -0.078 -0.078 0.000 0.000 0.000 -0.234

TABLE VI. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation volume
tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Ni using the GGA-PBE
functional.

Ni EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 4.493 25.668 25.237 25.237 0.000 0.000 0.000 0.629 0.581 0.581 0.000 0.000 0.000 1.792

Octa 4.714 26.097 26.097 26.097 0.000 0.000 0.000 0.614 0.614 0.614 0.000 0.000 0.000 1.842

〈110〉c 5.281 25.140 25.140 29.074 15.623 0.000 0.000 0.476 0.476 0.916 0.838 0.000 0.000 1.867

〈110〉d 5.282 25.124 25.124 29.097 15.615 0.000 0.000 0.474 0.474 0.919 0.837 0.000 0.000 1.867

〈111〉d 5.109 26.412 26.412 26.412 2.333 2.333 2.333 0.621 0.621 0.621 0.125 0.125 0.125 1.864

Tetra 5.093 26.441 26.441 26.441 0.000 0.000 0.000 0.622 0.622 0.622 0.000 0.000 0.000 1.866

Vac 1.447 -5.067 -5.067 -5.067 0.000 0.000 0.000 -0.119 -0.119 -0.119 0.000 0.000 0.000 -0.358

TABLE VII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Cu using the
GGA-PBE functional.

Cu EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.088 19.448 19.198 19.198 0.000 0.000 0.000 0.634 0.566 0.566 0.000 0.000 0.000 1.767

Octa 3.352 20.000 20.000 20.000 0.000 0.000 0.000 0.611 0.611 0.611 0.000 0.000 0.000 1.832

〈110〉c 3.386 19.011 19.011 21.629 11.980 0.000 0.000 0.371 0.371 1.080 1.078 0.000 0.000 1.822

〈110〉d 3.386 19.017 19.017 21.626 11.968 0.000 0.000 0.372 0.372 1.079 1.077 0.000 0.000 1.822

〈111〉d 3.593 20.154 20.154 20.154 3.797 3.797 3.797 0.616 0.616 0.616 0.342 0.342 0.342 1.847

Tetra 3.644 20.187 20.187 20.187 0.000 0.000 0.000 0.617 0.617 0.617 0.000 0.000 0.000 1.850

Vac 1.064 -3.940 -3.940 -3.940 0.000 0.000 0.000 -0.120 -0.120 -0.120 0.000 0.000 0.000 -0.361
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TABLE VIII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Cu pv using the
GGA-PBE functional.

Cu pv EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.379 20.453 20.454 20.454 0.000 0.000 0.000 0.596 0.596 0.596 0.000 0.000 0.000 1.787

Octa 3.657 21.242 21.242 21.242 0.000 0.000 0.000 0.619 0.619 0.619 0.000 0.000 0.000 1.856

〈110〉c 3.700 20.050 20.050 23.199 12.328 0.000 0.000 0.412 0.412 1.019 0.975 0.000 0.000 1.844

〈110〉d 3.700 20.060 20.060 23.186 12.333 0.000 0.000 0.414 0.414 1.016 0.976 0.000 0.000 1.844

〈111〉d 3.907 21.453 21.453 21.453 3.958 3.958 3.958 0.625 0.625 0.625 0.313 0.313 0.313 1.875

Tetra 3.954 21.398 21.398 21.398 0.000 0.000 0.000 0.623 0.623 0.623 0.000 0.000 0.000 1.870

Vac 1.059 -3.729 -3.729 -3.729 0.000 0.000 0.000 -0.109 -0.109 -0.109 0.000 0.000 0.000 -0.326

TABLE IX. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Cu using the the
GGA-PBEsol functional.

Cu EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.433 21.673 22.040 22.040 0.000 0.000 0.000 0.587 0.665 0.665 0.000 0.000 0.000 1.917

Octa 3.733 22.725 22.725 22.725 0.000 0.000 0.000 0.662 0.662 0.662 0.000 0.000 0.000 1.987

〈110〉c 3.768 21.312 21.312 25.090 12.846 0.000 0.000 0.389 0.389 1.195 1.029 0.000 0.000 1.974

〈110〉d 3.768 21.318 21.318 25.053 12.854 0.000 0.000 0.392 0.392 1.189 1.029 0.000 0.000 1.973

〈111〉d 3.990 22.836 22.836 22.836 4.082 4.082 4.082 0.666 0.666 0.666 0.327 0.327 0.327 1.997

Tetra 4.042 22.900 22.900 22.900 0.000 0.000 0.000 0.668 0.668 0.668 0.000 0.000 0.000 2.003

Vac 1.224 -3.794 -3.794 -3.794 0.000 0.000 0.000 -0.111 -0.111 -0.111 0.000 0.000 0.000 -0.332

TABLE X. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Cu pv using the
GGA-PBEsol functional.

Cu pv EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.766 22.995 23.663 23.663 0.000 0.000 0.000 0.570 0.687 0.687 0.000 0.000 0.000 1.944

Octa 4.079 24.201 24.201 24.201 0.000 0.000 0.000 0.669 0.669 0.669 0.000 0.000 0.000 2.007

〈110〉c 4.121 22.537 22.537 27.080 13.140 0.000 0.000 0.400 0.400 1.194 1.019 0.000 0.000 1.994

〈110〉d 4.120 22.627 22.627 27.058 13.121 0.000 0.000 0.408 0.408 1.182 1.018 0.000 0.000 1.999

〈111〉d 4.347 24.351 24.351 24.351 3.835 3.835 3.835 0.673 0.673 0.673 0.297 0.297 0.297 2.019

Tetra 4.393 24.576 24.576 24.576 0.000 0.000 0.000 0.679 0.679 0.679 0.000 0.000 0.000 2.038

Vac 1.269 -3.177 -3.177 -3.177 0.000 0.000 0.000 -0.088 -0.088 -0.088 0.000 0.000 0.000 -0.263

TABLE XI. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation volume
tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Cu using the GGA-PBEsol
functional with spin-orbit coupling.

Cu EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.438 21.509 21.911 21.911 0.000 0.000 0.000 0.553 0.640 0.640 0.000 0.000 0.000 1.833

Octa 3.739 22.728 22.728 22.728 0.000 0.000 0.000 0.638 0.638 0.638 0.000 0.000 0.000 1.913

〈110〉c 3.773 21.305 21.305 24.973 12.903 0.000 0.000 0.367 0.367 1.161 1.078 0.004 0.004 1.896

〈110〉d 3.774 21.176 21.176 24.831 12.917 0.000 0.000 0.364 0.364 1.156 1.079 0.004 0.004 1.885

〈111〉d 3.995 22.806 22.806 22.806 4.131 4.131 4.131 0.640 0.640 0.640 0.347 0.347 0.347 1.919

Tetra 4.048 22.860 22.860 22.860 0.000 0.000 0.000 0.641 0.641 0.641 0.000 0.000 0.000 1.924

Vac 1.222 -3.965 -3.965 -3.965 0.000 0.000 0.000 -0.111 -0.111 -0.111 0.000 0.000 0.000 -0.334
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TABLE XII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Cu pv using
GGA-PBEsol functional and with spin-orbit coupling.

Cu pv EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.768 22.967 23.628 23.628 0.000 0.000 0.000 0.567 0.678 0.678 0.000 0.000 0.000 1.924

Octa 4.080 24.116 24.116 24.116 0.000 0.000 0.000 0.661 0.661 0.661 0.000 0.000 0.000 1.982

〈110〉c 4.124 22.399 22.401 26.935 13.095 0.000 0.000 0.402 0.402 1.162 1.017 0.000 0.000 1.965

〈110〉d 4.124 22.518 22.518 26.947 13.026 0.000 0.000 0.410 0.410 1.152 1.012 0.000 0.000 1.972

〈111〉d 4.347 24.560 24.560 24.560 3.829 3.829 3.829 0.673 0.673 0.673 0.298 0.298 0.298 2.019

Tetra 4.395 24.441 24.441 24.441 0.000 0.000 0.000 0.670 0.670 0.670 0.000 0.000 0.000 2.009

Vac 1.264 -3.617 -3.617 -3.617 0.000 0.000 0.000 -0.099 -0.099 -0.099 0.000 0.000 0.000 -0.297

TABLE XIII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Sr using GGA-PBE
functional.

Sr EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 2.053 6.906 7.430 7.430 0.000 0.000 0.000 0.389 0.727 0.727 0.000 0.000 0.000 1.843

Octa 2.348 6.998 6.998 6.998 0.000 0.000 0.000 0.592 0.592 0.592 0.000 0.000 0.000 1.777

〈110〉c 2.069 5.746 5.746 8.086 6.797 0.000 0.000 0.049 0.049 1.559 1.084 0.000 0.000 1.657

〈110〉d 2.069 5.748 5.748 8.080 6.795 0.000 0.000 0.051 0.051 1.555 1.084 0.000 0.000 1.657

〈111〉d 2.227 6.851 6.851 6.851 3.742 3.742 3.742 0.580 0.580 0.580 0.597 0.597 0.597 1.740

Tetra 2.365 7.079 7.079 7.079 0.000 0.000 0.000 0.599 0.599 0.599 0.000 0.000 0.000 1.798

Vac 1.045 -0.832 -0.832 -0.832 0.000 0.000 0.000 -0.070 -0.070 -0.070 0.000 0.000 0.000 -0.211

TABLE XIV. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Rh using GGA-PBE
functional.

Rh EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 6.859 42.374 47.121 47.121 0.000 0.000 0.000 0.507 0.728 0.728 0.000 0.000 0.000 1.963

Octa 6.735 46.103 46.103 46.103 0.000 0.000 0.000 0.663 0.663 0.663 0.000 0.000 0.000 1.988

〈110〉c 8.489 46.917 46.917 49.265 21.825 0.000 0.000 0.649 0.649 0.758 0.651 0.000 0.000 2.057

〈110〉d 8.493 46.967 46.967 49.183 21.849 0.000 0.000 0.651 0.651 0.754 0.651 0.000 0.000 2.057

〈111〉d 7.751 48.170 48.170 48.170 -0.997 -0.997 -0.997 0.692 0.692 0.692 -0.030 -0.030 -0.030 2.077

Tetra 7.665 47.627 47.627 47.627 0.000 0.000 0.000 0.685 0.685 0.685 0.000 0.000 0.000 2.054

Vac 1.873 -8.756 -8.756 -8.756 0.000 0.000 0.000 -0.126 -0.126 -0.126 0.000 0.000 0.000 -0.378

TABLE XV. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pd using GGA-PBE
functional.

Pd EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 4.454 29.811 32.267 32.267 0.000 0.000 0.000 0.289 0.774 0.774 0.000 0.000 0.000 1.836

Octa 4.644 32.256 32.256 32.256 0.000 0.000 0.000 0.628 0.628 0.628 0.000 0.000 0.000 1.884

〈110〉c 4.743 31.937 31.937 33.327 12.810 0.000 0.000 0.539 0.539 0.814 1.055 0.000 0.000 1.892

〈110〉d 4.743 31.942 31.942 33.315 12.816 0.000 0.000 0.540 0.540 0.812 1.056 0.000 0.000 1.892

〈111〉d 4.884 32.493 32.493 32.493 2.564 2.564 2.564 0.632 0.632 0.632 0.211 0.211 0.211 1.897

Tetra 5.062 32.842 32.842 32.842 0.000 0.000 0.000 0.639 0.639 0.639 0.000 0.000 0.000 1.918

Vac 1.306 -7.361 -7.361 -7.361 0.000 0.000 0.000 -0.143 -0.143 -0.143 0.000 0.000 0.000 -0.430
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TABLE XVI. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Ag using GGA-PBE
functional.

Ag EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.238 21.611 22.367 22.367 0.000 0.000 0.000 0.468 0.711 0.711 0.000 0.000 0.000 1.890

Octa 3.403 22.785 22.785 22.785 0.000 0.000 0.000 0.649 0.649 0.649 0.000 0.000 0.000 1.947

〈110〉c 3.433 22.015 22.015 24.048 10.313 0.000 0.000 0.429 0.429 1.081 1.073 0.000 0.000 1.939

〈110〉d 3.433 22.016 22.016 24.053 10.311 0.000 0.000 0.429 0.429 1.081 1.073 0.000 0.000 1.939

〈111〉d 3.741 23.275 23.275 23.275 2.960 2.960 2.960 0.663 0.663 0.663 0.308 0.308 0.308 1.989

Tetra 3.799 23.392 23.392 23.392 0.000 0.000 0.000 0.666 0.666 0.666 0.000 0.000 0.000 1.999

Vac 0.711 -3.015 -3.015 -3.015 0.000 0.000 0.000 -0.086 -0.086 -0.086 0.000 0.000 0.000 -0.258

TABLE XVII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Ag using
GGA-PBEsol functional.

Ag EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.929 26.457 27.129 27.129 0.000 0.000 0.000 0.549 0.734 0.734 0.000 0.000 0.000 2.017

Octa 4.117 27.697 27.697 27.697 0.000 0.000 0.000 0.692 0.692 0.692 0.000 0.000 0.000 2.076

〈110〉c 4.134 26.844 26.844 29.062 12.965 0.000 0.000 0.486 0.486 1.096 1.234 0.000 0.000 2.068

〈110〉d 4.135 26.850 26.850 29.032 12.921 0.000 0.000 0.489 0.489 1.089 1.230 0.000 0.000 2.067

〈111〉d 4.500 28.228 28.228 28.228 4.036 4.036 4.036 0.705 0.705 0.705 0.384 0.384 0.384 2.116

Tetra 4.572 28.306 28.306 28.306 0.000 0.000 0.000 0.707 0.707 0.707 0.000 0.000 0.000 2.122

Vac 1.155 -3.924 -3.924 -3.924 0.000 0.000 0.000 -0.098 -0.098 -0.098 0.000 0.000 0.000 -0.294

TABLE XVIII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Ag using
GGA-PBEsol functional and with spin-orbit coupling.

Ag EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.927 26.242 26.908 26.908 0.000 0.000 0.000 0.550 0.730 0.730 0.000 0.000 0.000 2.010

Octa 4.115 27.520 27.520 27.520 0.000 0.000 0.000 0.691 0.691 0.691 0.000 0.000 0.000 2.073

〈110〉c 4.134 26.579 26.579 28.915 12.833 0.000 0.000 0.477 0.477 1.107 1.216 0.000 0.000 2.061

〈110〉d 4.134 26.590 26.590 28.751 12.913 0.000 0.000 0.491 0.491 1.075 1.223 0.000 0.000 2.057

〈111〉d 4.498 27.924 27.924 27.924 4.043 4.043 4.043 0.701 0.701 0.701 0.382 0.382 0.382 2.104

Tetra 4.571 28.164 28.164 28.164 0.000 0.000 0.000 0.707 0.707 0.707 0.000 0.000 0.000 2.122

Vac 1.152 -4.244 -4.244 -4.244 0.000 0.000 0.000 -0.107 -0.107 -0.107 0.000 0.000 0.000 -0.320

TABLE XIX. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Ir using GGA-PBE
functional.

Ir EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 8.687 58.928 67.113 67.113 0.000 0.000 0.000 0.484 0.726 0.726 0.000 0.000 0.000 1.935

Octa 8.754 65.520 65.520 65.520 0.000 0.000 0.000 0.656 0.656 0.656 0.000 0.000 0.000 1.969

〈110〉c 11.281 67.284 67.284 67.947 28.286 0.000 0.000 0.670 0.670 0.689 0.571 0.000 0.000 2.029

〈110〉d 11.280 67.514 67.514 67.459 28.406 0.000 0.000 0.677 0.677 0.675 0.573 0.000 0.000 2.029

〈111〉d 10.216 69.054 69.054 69.054 -2.850 -2.850 -2.850 0.692 0.692 0.692 -0.058 -0.058 -0.058 2.075

Tetra 10.075 68.144 68.144 68.144 0.000 0.000 0.000 0.683 0.683 0.683 0.000 0.000 0.000 2.048

Vac 1.519 -11.625 -11.625 -11.625 0.000 0.000 0.000 -0.116 -0.116 -0.116 0.000 0.000 0.000 -0.349
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TABLE XX. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation volume
tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Ir using GGA-PBEsol
functional.

Ir EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 9.617 63.248 72.350 72.350 0.000 0.000 0.000 0.490 0.758 0.758 0.000 0.000 0.000 2.007

Octa 9.722 70.524 70.524 70.524 0.000 0.000 0.000 0.681 0.681 0.681 0.000 0.000 0.000 2.042

〈110〉c 12.330 71.954 71.954 73.819 30.345 0.000 0.000 0.682 0.682 0.737 0.602 0.000 0.000 2.101

〈110〉d 12.327 72.136 72.136 73.219 30.505 0.000 0.000 0.689 0.689 0.721 0.605 0.000 0.000 2.099

〈111〉d 11.303 74.124 74.124 74.124 -2.720 -2.720 -2.720 0.715 0.715 0.715 -0.054 -0.054 -0.054 2.146

Tetra 11.148 73.144 73.144 73.144 0.000 0.000 0.000 0.706 0.706 0.706 0.000 0.000 0.000 2.118

Vac 1.979 -13.024 -13.024 -13.024 0.000 0.000 0.000 -0.126 -0.126 -0.126 0.000 0.000 0.000 -0.377

TABLE XXI. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation volume
tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Ir using GGA-PBEsol
functional and with spin-orbit coupling.

Ir EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 9.232 61.638 71.707 71.708 0.000 0.000 0.000 0.473 0.774 0.774 0.000 0.000 0.000 2.021

Octa 9.294 69.418 69.418 69.418 0.000 0.000 0.000 0.684 0.684 0.684 0.000 0.000 0.000 2.053

〈110〉c 11.929 71.244 71.243 72.282 30.239 0.000 0.000 0.695 0.695 0.726 0.621 0.000 0.000 2.117

〈110〉d 11.928 71.470 71.470 71.847 30.404 0.000 0.000 0.702 0.702 0.713 0.624 0.000 0.000 2.117

〈111〉d 10.916 72.960 72.960 72.960 -2.378 -2.378 -2.378 0.719 0.719 0.719 -0.049 -0.049 -0.049 2.158

Tetra 10.809 72.096 72.096 72.096 0.000 0.000 0.000 0.711 0.711 0.711 0.000 0.000 0.000 2.132

Vac 1.779 -12.715 -12.715 -12.715 0.000 0.000 0.000 -0.125 -0.125 -0.125 0.000 0.000 0.000 -0.376

TABLE XXII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pt using GGA-PBE
functional.

Pt EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 5.159 46.704 50.172 50.172 0.000 0.000 0.000 0.414 0.805 0.805 0.000 0.000 0.000 2.023

Octa 4.825 49.008 49.008 49.008 0.000 0.000 0.000 0.674 0.674 0.674 0.000 0.000 0.000 2.023

〈110〉c 5.699 51.100 51.100 50.519 16.330 0.000 0.000 0.722 0.722 0.657 1.406 0.000 0.000 2.101

〈110〉d 5.699 51.069 51.069 50.516 16.382 0.000 0.000 0.721 0.721 0.659 1.410 0.000 0.000 2.100

〈111〉d 5.634 50.876 50.876 50.876 0.870 0.870 0.870 0.700 0.700 0.700 0.075 0.075 0.075 2.100

Tetra 5.998 51.628 51.628 51.628 0.000 0.000 0.000 0.710 0.710 0.710 0.000 0.000 0.000 2.131

Vac 0.545 -11.054 -11.054 -11.054 0.000 0.000 0.000 -0.152 -0.152 -0.152 0.000 0.000 0.000 -0.456

TABLE XXIII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pt pv using
GGA-PBE functional.

Pt pv EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 5.626 48.218 51.641 51.641 0.000 0.000 0.000 0.433 0.749 0.749 0.000 0.000 0.000 1.932

Octa 5.285 50.548 50.548 50.548 0.000 0.000 0.000 0.645 0.645 0.645 0.000 0.000 0.000 1.934

〈110〉c 6.182 52.523 52.523 52.129 17.058 0.000 0.000 0.680 0.680 0.644 1.267 0.000 0.000 2.004

〈110〉d 6.182 52.511 52.511 52.118 17.081 0.000 0.000 0.680 0.680 0.644 1.268 0.000 0.000 2.004

〈111〉d 6.122 52.466 52.466 52.466 0.999 0.999 0.999 0.669 0.669 0.669 0.074 0.074 0.074 2.007

Tetra 6.496 53.229 53.229 53.229 0.000 0.000 0.000 0.679 0.679 0.679 0.000 0.000 0.000 2.036

Vac 0.458 -11.177 -11.177 -11.177 0.000 0.000 0.000 -0.143 -0.143 -0.143 0.000 0.000 0.000 -0.428
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TABLE XXIV. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pt using GGA-
PBEsol functional.

Pt EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 5.916 49.843 53.138 53.138 0.000 0.000 0.000 0.429 0.745 0.745 0.000 0.000 0.000 1.920

Octa 5.557 52.107 52.107 52.107 0.000 0.000 0.000 0.641 0.641 0.641 0.000 0.000 0.000 1.922

〈110〉c 6.528 54.035 54.035 54.015 18.748 0.000 0.000 0.665 0.665 0.663 1.307 0.000 0.000 1.993

〈110〉d 6.527 54.114 54.114 54.062 18.796 0.000 0.000 0.667 0.667 0.662 1.310 0.000 0.000 1.995

〈111〉d 6.484 54.130 54.130 54.130 1.047 1.047 1.047 0.666 0.666 0.666 0.073 0.073 0.073 1.997

Tetra 6.882 54.834 54.834 54.834 0.000 0.000 0.000 0.674 0.674 0.674 0.000 0.000 0.000 2.023

Vac 0.785 -14.305 -14.305 -14.305 0.000 0.000 0.000 -0.176 -0.176 -0.176 0.000 0.000 0.000 -0.528

TABLE XXV. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pt using GGA-
PBEsol functional and with spin-orbit coupling.

Pt EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 5.669 50.156 55.230 55.230 0.000 0.000 0.000 0.339 0.836 0.836 0.000 0.000 0.000 2.012

Octa 5.501 53.357 53.357 53.357 0.000 0.000 0.000 0.668 0.668 0.668 0.000 0.000 0.000 2.005

〈110〉c 6.243 55.108 55.107 55.829 17.222 0.000 0.000 0.670 0.670 0.740 1.139 0.000 0.000 2.080

〈110〉d 6.244 55.094 55.092 55.758 17.150 0.000 0.000 0.671 0.671 0.736 1.134 0.000 0.000 2.078

〈111〉d 6.317 55.341 55.341 55.341 0.823 0.823 0.823 0.693 0.693 0.693 0.054 0.054 0.054 2.079

Tetra 6.607 56.266 56.266 56.266 0.000 0.000 0.000 0.705 0.705 0.705 0.000 0.000 0.000 2.114

Vac 0.831 -11.837 -11.837 -11.837 0.000 0.000 0.000 -0.148 -0.148 -0.148 0.000 0.000 0.000 -0.445

TABLE XXVI. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Au using the
GGA-PBE functional.

Au EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 2.738 30.818 32.140 32.140 0.000 0.000 0.000 -0.116 1.078 1.078 0.000 0.000 0.000 2.039

Octa 2.805 32.429 32.429 32.429 0.000 0.000 0.000 0.695 0.695 0.695 0.000 0.000 0.000 2.086

〈110〉c 2.602 32.627 32.627 31.825 9.558 0.000 0.000 0.935 0.935 0.212 1.941 0.000 0.000 2.081

〈110〉d 2.603 32.605 32.605 31.850 9.549 0.000 0.000 0.921 0.921 0.239 1.939 0.000 0.000 2.081

〈111〉d 3.195 33.669 33.669 33.669 2.521 2.521 2.521 0.722 0.722 0.722 0.512 0.512 0.512 2.166

Tetra 3.290 33.860 33.860 33.860 0.000 0.000 0.000 0.726 0.726 0.726 0.000 0.000 0.000 2.178

Vac 0.442 -5.379 -5.379 -5.379 0.000 0.000 0.000 -0.115 -0.115 -0.115 0.000 0.000 0.000 -0.346

TABLE XXVII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Au pv GW using
the GGA-PBE functional.

Au pv GW EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 2.787 31.037 32.345 32.345 0.000 0.000 0.000 0.179 0.894 0.894 0.000 0.000 0.000 1.968

Octa 2.853 32.651 32.651 32.651 0.000 0.000 0.000 0.671 0.671 0.671 0.000 0.000 0.000 2.013

〈110〉c 2.683 32.882 32.882 31.955 9.645 0.000 0.000 0.839 0.839 0.331 1.867 0.000 0.000 2.008

〈110〉d 2.683 32.882 32.882 31.958 9.648 0.000 0.000 0.838 0.838 0.332 1.867 0.000 0.000 2.009

〈111〉d 3.252 33.860 33.860 33.860 2.442 2.442 2.442 0.696 0.696 0.696 0.473 0.473 0.473 2.088

Tetra 3.336 34.051 34.051 34.051 0.000 0.000 0.000 0.700 0.700 0.700 0.000 0.000 0.000 2.100

Vac 0.418 -5.234 -5.234 -5.234 0.000 0.000 0.000 -0.108 -0.108 -0.108 0.000 0.000 0.000 -0.323
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TABLE XXVIII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Au using the
GGA-PBEsol functional.

Au EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.474 39.244 41.543 41.543 0.000 0.000 0.000 0.191 0.998 0.998 0.000 0.000 0.000 2.187

Octa 3.563 41.801 41.801 41.801 0.000 0.000 0.000 0.747 0.747 0.747 0.000 0.000 0.000 2.242

〈110〉c 3.375 41.381 41.381 40.870 12.244 0.000 0.000 0.797 0.797 0.617 1.757 0.000 0.000 2.210

〈110〉d 3.374 41.358 41.358 40.881 12.270 0.000 0.000 0.792 0.792 0.625 1.761 0.000 0.000 2.210

〈111〉d 4.031 42.621 42.621 42.621 3.605 3.605 3.605 0.762 0.762 0.762 0.517 0.517 0.517 2.286

Tetra 4.143 42.947 42.947 42.947 0.000 0.000 0.000 0.768 0.768 0.768 0.000 0.000 0.000 2.303

Vac 0.765 -5.289 -5.289 -5.289 0.000 0.000 0.000 -0.095 -0.095 -0.095 0.000 0.000 0.000 -0.284

TABLE XXIX. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Au using the
GGA-PBEsol functional with spin-orbit coupling.

Au EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.465 37.228 39.485 39.485 0.000 0.000 0.000 0.235 0.901 0.901 0.000 0.000 0.000 2.038

Octa 3.556 39.698 39.698 39.698 0.000 0.000 0.000 0.696 0.696 0.696 0.000 0.000 0.000 2.088

〈110〉c 3.370 39.261 39.261 38.899 12.435 0.000 0.000 0.722 0.722 0.615 1.638 0.000 0.000 2.059

〈110〉d 3.369 39.283 39.283 38.926 12.439 0.000 0.000 0.722 0.722 0.617 1.638 0.000 0.000 2.060

〈111〉d 4.041 40.563 40.563 40.563 3.733 3.733 3.733 0.711 0.711 0.711 0.491 0.491 0.491 2.134

Tetra 4.158 40.882 40.882 40.882 0.000 0.000 0.000 0.717 0.717 0.717 0.000 0.000 0.000 2.151

Vac 0.662 -8.199 -8.199 -8.199 0.000 0.000 0.000 -0.144 -0.144 -0.144 0.000 0.000 0.000 -0.431

TABLE XXX. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Au using the
MetaGGA-RTPSS functional with spin-orbit coupling.

Au EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 3.938 36.667 39.612 39.612 0.000 0.000 0.000 0.231 0.888 0.888 0.000 0.000 0.000 2.008

Octa 4.102 39.529 39.529 39.529 0.000 0.000 0.000 0.685 0.685 0.685 0.000 0.000 0.000 2.055

〈110〉c 3.959 38.856 38.856 41.084 11.199 0.00000 0.000 0.520 0.520 1.018 1.062 0.000 0.000 2.058

〈110〉d 3.960 38.742 38.742 41.332 11.155 0.00000 0.000 0.494 0.494 1.072 1.057 0.000 0.000 2.059

〈111〉d 4.785 41.072 41.072 41.072 5.286 5.286 5.286 0.712 0.712 0.712 0.501 0.501 0.501 2.135

Tetra 4.879 41.277 41.277 41.277 0.000 0.000 0.000 0.715 0.715 0.715 0.000 0.000 0.000 2.146

Vac 0.939 -6.760 -6.760 -6.760 0.000 0.000 0.000 -0.117 -0.117 -0.117 0.000 0.000 0.000 -0.351

TABLE XXXI. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pb using the
GGA-PBE functional.

Pb EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 1.264 12.361 12.912 12.912 0.000 0.000 0.000 0.393 0.589 0.589 0.000 0.000 0.000 1.570

Octa 1.254 13.466 13.466 13.466 0.000 0.000 0.000 0.554 0.554 0.554 0.000 0.000 0.000 1.661

〈110〉c 1.366 11.890 11.890 13.262 5.231 0.000 0.000 0.345 0.345 0.833 0.662 0.000 0.000 1.523

〈110〉d 1.367 11.831 11.831 13.243 5.236 0.000 0.000 0.338 0.338 0.841 0.663 0.000 0.000 1.517

〈111〉d 1.418 12.364 12.364 12.364 0.777 0.777 0.777 0.508 0.508 0.508 0.098 0.098 0.098 1.525

Tetra 1.428 12.405 12.405 12.405 0.000 0.000 0.000 0.510 0.510 0.510 0.000 0.000 0.000 1.530

Vac 0.299 -2.769 -2.769 -2.769 0.000 0.000 0.000 -0.114 -0.114 -0.114 0.000 0.000 0.000 -0.342
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TABLE XXXII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pb d using the
GGA-PBE functional.

Pb d EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 1.307 12.796 13.222 13.222 0.000 0.000 0.000 0.436 0.555 0.555 0.000 0.000 0.000 1.546

Octa 1.295 13.732 13.732 13.732 0.000 0.000 0.000 0.541 0.541 0.541 0.000 0.000 0.000 1.623

〈110〉c 1.418 11.941 11.941 13.452 5.240 0.000 0.000 0.349 0.349 0.772 0.604 0.000 0.000 1.471

〈110〉d 1.418 12.170 12.170 13.641 5.222 0.000 0.000 0.361 0.361 0.774 0.602 0.000 0.000 1.496

〈111〉d 1.469 12.877 12.877 12.877 0.799 0.799 0.799 0.507 0.507 0.507 0.092 0.092 0.092 1.522

Tetra 1.478 12.846 12.846 12.846 0.000 0.000 0.000 0.506 0.506 0.506 0.000 0.000 0.000 1.518

Vac 0.285 -2.342 -2.342 -2.342 0.000 0.000 0.000 -0.092 -0.092 -0.092 0.000 0.000 0.000 -0.277

TABLE XXXIII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pb d GW using
the GGA-PBE functional.

Pb d GW EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 1.297 12.519 12.909 12.909 0.000 0.000 0.000 0.442 0.578 0.578 0.000 0.000 0.000 1.597

Octa 1.285 13.413 13.413 13.413 0.000 0.000 0.000 0.559 0.559 0.559 0.000 0.000 0.000 1.676

〈110〉c 1.407 11.974 11.974 13.386 5.186 0.000 0.000 0.355 0.355 0.846 0.621 0.000 0.000 1.555

〈110〉d 1.407 11.976 11.976 13.387 5.181 0.000 0.000 0.355 0.355 0.846 0.620 0.000 0.000 1.555

〈111〉d 1.460 12.489 12.489 12.489 0.765 0.765 0.765 0.520 0.520 0.520 0.092 0.092 0.092 1.561

Tetra 1.470 12.513 12.513 12.513 0.000 0.000 0.000 0.521 0.521 0.521 0.000 0.000 0.000 1.564

Vac 0.279 -2.660 -2.660 -2.660 0.000 0.000 0.000 -0.111 -0.111 -0.111 0.000 0.000 0.000 -0.332

TABLE XXXIV. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pb using the
GGA-PBEsol functional.

Pb EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 1.365 13.638 14.419 14.419 0.000 0.000 0.000 0.246 0.693 0.693 0.000 0.000 0.000 1.631

Octa 1.377 14.900 14.900 14.900 0.000 0.000 0.000 0.572 0.572 0.572 0.000 0.000 0.000 1.716

〈110〉c 1.420 12.999 12.999 14.723 5.901 0.000 0.000 0.193 0.193 1.178 1.139 0.000 0.000 1.564

〈110〉d 1.421 13.033 13.033 14.707 5.883 0.000 0.000 0.203 0.203 1.159 1.136 0.000 0.000 1.566

〈111〉d 1.493 13.768 13.768 13.768 0.897 0.897 0.897 0.529 0.529 0.529 0.173 0.173 0.173 1.586

Tetra 1.501 13.728 13.728 13.728 0.009 0.009 0.009 0.527 0.527 0.527 0.000 0.000 0.000 1.581

Vac 0.407 -3.235 -3.235 -3.235 0.000 0.000 0.000 -0.124 -0.124 -0.124 0.000 0.000 0.000 -0.373

TABLE XXXV. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Pb using the
GGA-PBEsol functional with spin-orbit coupling.

Pb EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 1.001 12.897 13.436 13.436 0.000 0.000 0.000 0.411 0.559 0.559 0.000 0.000 0.000 1.528

Octa 0.987 13.863 13.863 13.863 0.000 0.000 0.000 0.533 0.533 0.533 0.000 0.000 0.000 1.598

〈110〉c 1.091 12.735 12.736 12.776 3.646 0.000 0.000 0.486 0.486 0.497 0.397 0.000 0.000 1.470

〈110〉d 1.092 12.769 12.769 12.754 3.693 0.000 0.000 0.492 0.492 0.488 0.402 0.000 0.000 1.471

〈111〉d 1.148 12.810 12.810 12.810 0.629 0.629 0.629 0.492 0.492 0.492 0.068 0.068 0.068 1.477

Tetra 1.155 12.867 12.867 12.867 0.000 0.000 0.000 0.494 0.494 0.494 0.000 0.000 0.000 1.483

Vac 0.295 -3.543 -3.543 -3.543 0.000 0.000 0.000 -0.136 -0.136 -0.136 0.000 0.000 0.000 -0.408
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TABLE XXXVI. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Th using the
GGA-PBE functional.

Th EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 4.968 23.098 21.820 21.820 0.000 0.000 0.000 0.757 0.621 0.621 0.000 0.000 0.000 1.998

Octa 4.802 21.500 21.500 21.500 0.000 0.000 0.000 0.644 0.644 0.644 0.000 0.000 0.000 1.931

〈110〉c 5.628 22.549 22.549 26.432 16.818 0.000 0.000 0.575 0.575 0.991 0.729 0.000 0.000 2.142

〈110〉d 5.623 22.544 22.544 26.321 16.789 0.000 0.000 0.578 0.578 0.982 0.728 0.000 0.000 2.138

〈111〉d 5.249 23.119 23.119 23.119 4.641 4.641 4.641 0.692 0.692 0.692 0.201 0.201 0.201 2.077

Tetra 5.344 22.576 22.576 22.576 0.000 0.000 0.000 0.676 0.676 0.676 0.000 0.000 0.000 2.028

Vac 2.444 -3.681 -3.681 -3.681 0.000 0.000 0.000 -0.110 -0.110 -0.110 0.000 0.000 0.000 -0.331

TABLE XXXVII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Th using the
GGA-PBEsol functional.

Th EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 5.461 24.051 22.497 22.497 0.000 0.000 0.000 0.791 0.605 0.605 0.000 0.000 0.000 2.002

Octa 5.270 22.008 22.008 22.008 0.000 0.000 0.000 0.638 0.638 0.638 0.000 0.000 0.000 1.914

〈110〉c 6.211 23.759 23.759 27.005 18.480 0.000 0.000 0.591 0.591 0.979 0.764 0.000 0.000 2.161

〈110〉d 6.201 23.748 23.748 26.937 18.729 0.000 0.000 0.592 0.592 0.974 0.775 0.000 0.000 2.158

〈111〉d 5.792 23.897 23.897 23.897 5.184 5.184 5.184 0.693 0.693 0.693 0.214 0.214 0.214 2.079

Tetra 5.863 23.285 23.285 23.285 0.000 0.000 0.000 0.675 0.675 0.675 0.000 0.000 0.000 2.025

Vac 2.668 -4.741 -4.741 -4.741 0.000 0.000 0.000 -0.137 -0.137 -0.137 0.000 0.000 0.000 -0.412

TABLE XXXVIII. Formation energy of a defect EF (in eV units), elements of its dipole tensor Pij (in eV units) and relaxation
volume tensor Ωij (in Ω0 units), as well as the relaxation volume of a defect Ωrel (in Ω0 units) computed for Th using the
GGA-PBEsol functional with spin-orbit coupling.

Th EF P11 P22 P33 P12 P23 P31 Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

〈100〉d 5.376 24.381 21.668 21.668 0.000 0.000 0.000 0.839 0.530 0.530 0.000 0.000 0.000 1.899

Octa 5.159 20.765 20.765 20.765 0.000 0.000 0.000 0.582 0.582 0.582 0.000 0.000 0.000 1.747

〈110〉c 6.179 23.778 23.778 24.927 19.466 0.000 0.000 0.634 0.634 0.765 0.815 0.000 0.000 2.032

〈110〉d 6.171 23.806 23.806 24.919 19.657 0.000 0.000 0.636 0.636 0.763 0.822 0.000 0.000 2.034

〈111〉d 5.745 23.192 23.192 23.192 5.739 5.739 5.739 0.650 0.650 0.650 0.240 0.240 0.240 1.951

Tetra 5.821 22.293 22.293 22.293 0.000 0.000 0.000 0.625 0.625 0.625 0.000 0.000 0.000 1.875

Vac 2.458 -4.609 -4.609 -4.609 0.000 0.000 0.000 -0.129 -0.129 -0.129 0.000 0.000 0.000 -0.388
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TABLE XXXIX. Vacancy formation energy in Pb calculated
using various cell size and k-point mesh.

size k-points Ecorr
el EF

V

2× 2× 2 6× 6× 6 0.0125 0.507

2× 2× 2 11× 11× 11 0.0151 0.464

3× 3× 3 4× 4× 4 0.0028 0.443

4× 4× 4 3× 3× 3 0.0013 0.300

4× 4× 4 4× 4× 4 0.0031 0.407

5× 5× 5 3× 3× 3 0.0008 0.474

TABLE XL. Vacancy formation energy in Pt calculated using
various cell size and k-point mesh.

size k-points Ecorr
el EF

V

2× 2× 2 6× 6× 6 0.0514 0.735

2× 2× 2 11× 11× 11 0.0507 0.711

3× 3× 3 4× 4× 4 0.0162 0.624

4× 4× 4 3× 3× 3 0.0071 0.545

4× 4× 4 4× 4× 4 0.0085 0.600

5× 5× 5 3× 3× 3 0.0077 0.639

TABLE XLI. Experimentally observed vacancy and SIA re-
laxation volumes taken from Ref. [93].

Element Ωrel
SIA Ωrel

V

Al 1.9 -0.05 / -0.38

Ni 1.8 -0.2

Cu 1.55± 0.2 -0.25

Pt 1.6 to 1.8 -0.28 to -0.42

Au – -0.15 / -0.44

TABLE XLII. Experimentally observed values of TID and mi-
gration enthalpy HM

I taken from Ref. [93].

Element TID (K) HM
I (eV)

Al 37 0.115 / 0.112

Ca – –

Ni 56 0.15

Cu 38 0.117

Sr – –

Rh 32 –

Pd 35 –

Ag 28 0.085 / 0.088

Ir 50 –

Pt 22 0.065 / 0.06-0.07 /0.063

Au <0.3 –

Pb 4 0.01

Th 10 0.087
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FIG. 12. Two-dimensional plots of the electron charge density
difference in Al (Top), Cu (middle), and Pb (Bottom), com-
puted for a 〈100〉 dumbbell configuration in the (010) plane.
Electron charge density difference is defined as the fully con-
vergent electron density derived from ab initio simulations
minus the superposition of atomic charge densities.
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FIG. 13. Two-dimensional plots of the electron charge density
difference in Al (Top), Cu (middle), and Pb (Bottom), com-
puted for a 〈100〉 dumbbell configuration in the (011) plane.
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FIG. 14. Two-dimensional plots of electron charge density
difference in Al (Top), Cu (middle), and Pb (Bottom), com-
puted for an octahedral site interstitial configuration in the
(010) plane.
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FIG. 15. Two-dimensional plots of electron charge density
difference in Al (Top), Cu (middle), and Pb (Bottom), com-
puted for an octahedral site interstitial configuration in the
(011) plane.
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FIG. 16. Schematic illustration of the three-dimensional
translation-rotation pathway of migration of a 〈100〉 dumb-
bell from a [100] configuration to a [010] configuration in an
FCC crystal.

FIG. 17. Schematic illustration of the one-dimensional path-
way of migration of an octahedral site interstitial defect in an
FCC crystal.
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FIG. 18. Schematic illustration of one-dimensional migration
of a 〈110〉 crowdion / dumbbell in an FCC crystal.

FIG. 19. Two-dimensional plots of magnetization density in
nickel, computed for a 〈100〉 dumbbell configuration in the
(top) (010) and (bottom) (011) planes.
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FIG. 20. Two-dimensional plots of electron charge density dif-
ference in nickel computed for a 〈100〉 dumbbell configuration
in the (top) (010) and (bottom) (011) planes.
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FIG. 21. Energy and magnetic moment of a nickel atom plot-
ted as a function of the FCC lattice constant in a perfect
crystal structure.

FIG. 22. Variation of the formation energy of a 〈100〉 dumb-
bell in Cu along the migration pathway of the defect.
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FIG. 23. Variation of elements of elastic dipole tensor of a
〈100〉 dumbbell in Cu along the migration pathway from the
[100] to the [010] configuration.
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FIG. 24. Variation of elements of the relaxation volume tensor
of a 〈100〉 dumbbell in Cu along the migration pathway from
the [100] to the [010] configuration.

FIG. 25. Variation of the relaxation volume of a 〈100〉 dumb-
bell in Cu along the migration pathway.


