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The saturated state of turbulence driven by the ion-temperature-gradient instability
is investigated using a two-dimensional long-wavelength fluid model that describes the
perturbed electrostatic potential and perturbed ion temperature in a magnetic field with
constant curvature (a Z-pinch) and an equilibrium temperature gradient. Numerical
simulations reveal a well-defined transition between a finite-amplitude saturated state
dominated by strong zonal-flow and zonal-temperature perturbations, and a blow-up
state that fails to saturate on a box-independent scale. We argue that this transition is
equivalent to the Dimits transition from a low-transport to a high-transport state seen
in gyrokinetic numerical simulations (Dimits et al. 2000). A quasi-static staircase-like
structure of the temperature gradient intertwined with zonal flows, which have patch-
wise constant shear, emerges near the Dimits threshold. The turbulent heat flux in
the low-collisionality near-marginal state is dominated by turbulent bursts, triggered by
coherent long-lived structures closely resembling those found in gyrokinetic simulations
with imposed equilibrium flow shear (van Wyk et al. 2016). The break up of the low-
transport Dimits regime is linked to a competition between the two different sources
of poloidal momentum in the system — the Reynolds stress and the advection of the
diamagnetic flow by the E ×B flow. By analysing the linear ITG modes, we obtain a
semi-analytic model for the Dimits threshold at large collisionality.

1. Introduction
Understanding the heat transport properties of magnetically confined plasmas is crucial

for the design of successful tokamak experiments. Since the characteristic correlation
length of the turbulence is small compared to the size of the tokamak, one normally
assumes that the local heat transport depends only on local conditions, such as density,
temperature, magnetic field and their gradients (this view has been challenged; see
Dif-Pradalier et al. 2010). Existing research suggests that the dominant contribution
to the heat flux in tokamaks arises from turbulence driven by microinstabilities, the
most prominent of which is the ion-temperature-gradient instability (Waltz 1988; Cowley
et al. 1991; Kotschenreuther et al. 1995a). We use "ITG" and "ITG turbulence" as
shorthand terms for this instability and the turbulence driven by it, respectively. As the
name suggests, it is controlled by the gradient of ion temperature, which is a source of
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free energy for unstable microscale perturbations. It is then natural to investigate the
dependence of the heat flux carried by the perturbations on the temperature gradient that
drives those perturbations. Knowing the relationship between them, one can invert this
relationship and find the heating power needed to support a given temperature gradient.

Strongly driven ITG turbulence, i.e., ITG turbulence with a temperature gradient far
above the linear-instability threshold, is believed to saturate via a "critically balanced"
turbulent cascade (Barnes et al. 2011): free energy stored in the equilibrium gradient is
injected into perturbations by the instability and nonlinearly transferred (cascaded) to
smaller scales, where it is thermalised via collisions. This is governed by the same kind
of processes as the Kolmogorov cascade in hydrodynamic turbulence (Frisch 1995). This
strongly turbulent saturated state supports vigorous turbulent transport of energy, so
increasing the temperature gradient in such a system requires very substantial increases
in heating power.

Naïvely, one expects strong turbulence and high levels of transport to set in as
soon as the temperature gradient exceeds the linear-instability threshold. However,
there is numerical evidence for a low-transport regime with low levels of turbulence at
temperature gradients larger than the linear threshold for the ITG instability but smaller
than some nonlinear threshold above which strong turbulence and a high-transport state
set in (Dimits et al. 2000). Simulations have shown that the low-transport state below this
threshold (to which we refer as the "Dimits state" and "Dimits threshold", respectively)
is dominated by strong zonal flows (ZFs) — Larmor-scale shear flows in the poloidal
direction. These help regulate turbulence by shearing heat-carrying perturbations and
hence reducing their amplitude. In this paper, we attempt to explain how the Dimits
state is maintained and what leads to its eventual collapse.

Despite being fairly well studied, many aspects of ZF physics, e.g., generation of
ZFs from turbulence, stability of zonal fields, dependence of experimentally important
quantities, like the heat flux, on basic plasma parameters (density, temperature, magnetic
field and their gradients) in zonally dominated plasmas, remain far from being settled.
One of the established paradigms is the primary-secondary-tertiary instability scenario
(Rogers et al. 2000; Rogers & Dorland 2005). Let us outline it here. The primary
ITG instability feeds energy into a spectrum of linearly unstable modes that become
nonlinearly unstable to zonal perturbations: this is the "secondary instability". Saturation
is reached when the energy injection into ZFs is balanced by their slow viscous damping.
Increasing the temperature gradient increases the primary drive, hence the secondary
drive, hence the amplitude of ZFs. However, ZFs of large enough amplitude become
nonlinearly unstable to a "tertiary instability", so they break up, transferring energy back
into the ITG modes. The suppression due to zonal shear having been lost, fully developed
turbulence ensues. In this scenario, the Dimits threshold is given by the threshold of the
tertiary instability.

Even though we show that the tertiary instability determines important properties
of the saturated state (e.g., poloidal spectra), we find that the Dimits threshold is not
directly determined by the tertiary instability. The latter only works to excite turbulent
perturbations that coexist with the ZFs. The way these perturbations interact with
the ZFs via a mechanism akin to a generalised nonlinear secondary instability is what
determines the Dimits threshold. In the low-collisionality regime, the interactions between
turbulent perturbations and ZFs give rise to predator-prey-like oscillations familiar from
past studies of ZF physics (see, e.g., Diamond et al. 2005; Ricci et al. 2006; Kobayashi &
Rogers 2012).

Recent progress has suggested that an entirely different scenario might need to be
developed for turbulence with imposed background flow shear, applicable to tokamak
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plasmas made to rotate differentially. The work by van Wyk et al. (2017) has shown that
close to marginality, the effect of the self-generated zonal shear is negligible compared
to the equilibrium flow shear. The heat flux in this near-marginal state is dominated
not by space-filling turbulence, but by localised, long-time-coherent, soliton-like, finite
temperature and density perturbations travelling through the plasma (van Wyk et al.
2016). We call these structures "ferdinons", after Ferdinand van Wyk’s name. As the
temperature-gradient drive is increased, the number of ferdinons increases, they begin
overlapping and interacting strongly, and the system enters a fully developed turbulent
state. We do not investigate the case of imposed background flow shear in this paper,
but we do find that locally generated zonal flows arrange themselves in regions of nearly
constant shear. Structures closely resembling ferdinons are seen drifting through these
sheared regions. This suggests that the formation of localised structures is a robust feature
of sheared ITG turbulence as they are seen both in our simplified model (described below
and in Section 2) and in more realistic 3D GK simulations.

A comprehensive treatment of the problem of transition to, and saturation of, ITG tur-
bulence requires the gyrokinetic (GK) framework in toroidal tokamak geometry (Frieman
& Chen 1982; Sugama et al. 1996; Sugama & Horton 1997, 1998; Abel et al. 2013; Catto
2019). However, its complexity makes it both analytically and numerically hard to treat.
In this paper, we attempt the more modest task of tackling the problem in a simplified
model for the dynamical evolution of the perturbations of electrostatic potential (or,
equally well, density) and ion temperature in a tokamak plasma. The model is derived
as an exact asymptotic limit of the underlying gyrokinetic equations in a physically
realisable, if not necessarily most general, regime (see Section 2.4). The approximations
used are chosen to ensure that our model has a number of features that we consider
essential: 1) a curvature-driven ion-temperature-gradient (ITG) instability, characteristic
of tokamak plasmas; 2) an appropriate modified adiabatic electron response, which has
been found to be crucial for capturing essential zonal-flow properties (e.g., the correct
ITG secondary instability: see Hammett et al. 1993; Rogers et al. 2000); 3) it is a two-field
model linking the perturbations of the electrostatic potential and the ion temperature,
rather than a one-field drift-wave model of the Hasegawa & Mima (1978) variety. A two-
field model allows us to capture the important ITG linear instability, while keeping the
equations simple enough to allow for an analytic treatment.

As already mentioned, fully developed ITG turbulence is critically balanced and,
therefore, 3D, so we cannot hope to capture that in a 2D model. Beyond the Dimits state,
we find that our model fails to reach a saturated state — perturbations grow exponentially
and the box-sized perturbations eventually dominate the spectrum, regardless of the size
of the integration domain. Such behaviour is typical of strongly turbulent 2D systems,
e.g., 2D hydrodynamics with its inverse energy cascade (Kraichnan 1967). However, below
the Dimits threshold, our model has a perfectly well-defined 2D Dimits saturated state,
dominated by ZF (see Section 3). Thus, our model allows us to identify the Dimits phase
transition in an unambiguous and sharp way, as a transition from a regime with a finite
saturated state to one without.

There are two ways for turbulence to achieve saturation — it can either cascade
injected energy down to dissipation scales or, if it is internally driven by an instabil-
ity, it can assemble itself in a configuration that suppresses that instability, i.e., the
initial unstable equilibrium evolves into a new equilibrium with weaker instabilities. As
our model contains both ZF and zonal-temperature perturbations, in principle it can
accommodate the physics of two possible instability-suppression mechanisms: shearing
of the turbulence by ZFs and modifying the background temperature gradient by zonal
temperature perturbations in order to cancel the ITG drive. Neither of these can be done
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uniformly across the entire domain because we impose periodic boundary conditions in
the radial direction. Interestingly, we find that the zonal perturbations arrange themselves
in alternating wide regions of nearly-constant zonal shear, strong enough to suppress
turbulence, and narrow regions of strong zonal-temperature gradient, which flattens
the background temperature gradient and quenches the ITG instability. The resulting
"staircase"-like overall radial temperature profiles are reminiscent of those seen in global
and local flux-driven gyrokinetic simulations (Dif-Pradalier et al. 2010, 2017; Villard et al.
2013; Rath et al. 2016) and reported in experimental data (Dif-Pradalier et al. 2015).
The resulting turbulent heat flux is significantly suppressed. The stability, and hence
existence, of this zonal state is controlled by the background temperature gradient — a
large enough gradient renders the staircase configuration unstable and the system enters
a fully developed turbulent state. In Section 4, we link this behaviour to the mechanism
through which the turbulence feeds the ZF, viz., the turbulent flux of poloidal momentum.
By considering the linearly unstable ITG modes, we find a semi-analytical prediction of
the Dimits threshold at high collisionality and high temperature gradient.

The rest of the paper is organised as follows. In Section 2, we describe our model,
whose detailed derivation is given in Appendix A. Section 3 describes the nonlinear
saturated state and in particular the zonally dominated state near the Dimits threshold.
In Section 4, we focus on the turbulent momentum flux of ITG turbulence subject to
strong zonal shear, and the physics of the Dimits regime and its breakup beyond the
Dimits threshold. Our results are summarised and conclusions are drawn in Section 5.

2. ITG-Driven Dynamics in a Z-pinch
We consider the local dynamics of the perturbations of electrostatic potential and ion

temperature of a 2D plasma (in the plane perpendicular to the magnetic field) in a Z-
pinch magnetic geometry with an equilibrium temperature gradient. Our equations are
derived in a highly collisional, cold-ion asymptotic limit of the electrostatic ion gyrokinetic
equation. Their detailed derivation can be found in Appendix A. Here we present a
summary of these equations, their physical motivation and key properties. If the reader
wishes to skip directly to Section 3, which contains the analysis of the saturated state,
she may want to glance first at the model equations — these are (2.17) and (2.18).

2.1. Magnetic Geometry
The magnetic geometry of constant magnetic curvature is chosen because it is the

simplest one that enables an ITG instability by coupling the electrostatic potential
and the temperature perturbations via the magnetic drift. The integration domain is
positioned in the magnetic field of a line of current (Z-pinch†) at radial distance LB
from the current line: see Figure 1. We define the x and y axes as pointing radially
outwards and parallel to the current, respectively. We assume LB � Lx, Ly, where Lx
and Ly are the "radial" (x) and "poloidal" (y) sizes of the domain, respectively. Here
we use the terms "radial" and "poloidal" to reflect the intended similarity of the domain
to one positioned at the outboard midplane in a tokamak geometry. In that sense, we
can think of the radial x coordinate as perpendicular to flux surfaces. These surfaces
are parametrised by the poloidal y and field-parallel b̂ coordinates. Here B = Bb̂ is
the magnetic field and the unit vectors {x̂, ŷ, b̂} form a right-handed basis. In the 2D
approximation employed here, all perturbed fields depend only on x and y. The magnetic

† This simplification as a route to a minimal model of ion-scale turbulence goes back at least
to Ricci et al. (2006).
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Figure 1. Illustration of the Z-pinch magnetic geometry.
.

field of the Z-pinch with total current I is azimuthal around the current line (as shown
on Figure 1) and has magnitude B(x) = 2I/cx. The radial gradient of this field is then

1

B

dB

dx
= − 1

LB
. (2.1)

This value is constant across the domain to lowest order in Lx/LB � 1. We define LB
to be the magnetic scale length. Similarly, we can define the ITG scale length

1

LT
≡ − 1

Ti

dTi
dx

. (2.2)

In a tokamak, LB scales with the major radius of the device, while LT scales with the
minor radius. Here we will take the limit

LB � LT , (2.3)

equivalent to a large-aspect-ratio approximation in a tokamak geometry. We do this in
order to ensure that the magnetic drift in the density equation is of the appropriate order
[see (2.9)]. This drift is essential for the linear curvature-driven ITG instability that we
aim to capture.

2.2. Electron Response
The electron density is assumed to follow the modified adiabatic response

δne
ne

=
e(φ− φ)

Te
, (2.4)

taking into account the fast parallel streaming of the electrons within the flux surfaces
of a tokamak, in the small-mass-ratio limit me/mi → 0 (Dorland & Hammett 1993;
Hammett et al. 1993). Here δne and ne are the perturbed and equilibrium electron
density, respectively, φ is the electric potential, Te is the electron temperature, and

φ(x) ≡ 1

Ly

∫
dy φ(x, y) (2.5)

is the poloidal (zonal) spatial average of the perturbed electric potential φ. We refer to
zonally averaged fields as being "zonal". In the 2D approximation, the turbulent fields
(e.g., φ) are independent of z, hence we do not need to integrate over the z direction.
The difference

φ′(x, y) ≡ φ(x, y)− φ(x) (2.6)
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is the "nonzonal" part of the field.
A cautious reader has spotted that there is no way to define flux surfaces in the

magnetic geometry of a Z-pinch, as the magnetic field lines do not describe 2D surfaces,
but rather close on themselves after one turn around the current axis. This problem can
be fixed by demanding that the magnetic field be, in fact, sheared: B = B0(ẑ+ xŷ/Ls),
where Ls is the characteristic scale length of the magnetic shear. This is the magnetic
field of a helimak (Gentle & He 2008). The field lines define cylindrically symmetric
concentric flux surfaces and the electron parallel streaming mixes the azimuthal (z) and
poloidal (y) directions. We can then take the limit Ls →∞ after performing the small-
mass-ratio (me/mi → 0) expansion and eliminate magnetic shear from the ion equations,
while retaining the flux-surface effect in the electron response.

2.3. Cold-Ion Limit
The cold-ion limit allows us to simplify the gyroaveraging operator that appears in

gyrokinetics. Its corresponding Fourier-space operator is a multiplication by the Bessel
function

J0

(
k⊥v⊥
Ωi

)
= 1− 1

4
k2⊥ρ

2
i

v2⊥
v2ti

+O
(
k4⊥ρ

4
i

)
. (2.7)

The square of the ion gyroradius ρi = vtimic/ZeB and the ion temperature Ti = miv
2
ti/2

are both proportional to the square of the ion thermal speed vti (here mi and Z are the
ion mass and charge in units of e, respectively). Thus, the cold-ion limit is equivalent
to a long-wavelength expansion O(k⊥ρi) � 1 with a finite sound radius O(k⊥ρs) ∼ 1,
where k⊥ is the perpendicular (to the magnetic field) wavenumber, ρs = ρi/

√
2τ is the

sound radius, and τ = Ti/ZTe is the temperature ratio (Te is assumed finite). The sound
radius ρs is the natural normalisation for the microphysical length scales in the problem:
see equations (2.9) and (2.10) below and their derivation in Appendix A.

2.4. Model Equations
We take the density and temperature moments of the electrostatic ion gyrokinetic

equation and adopt the high-collisionality, cold-ion, long-wavelength, large-aspect-ratio
ordering

∂t
νi
∼ τ ∼ k2⊥ρ2i ∼

LT
LB
� 1 ∼ ϕ

T
, (2.8)

where ϕ ≡ Zieφ/Ti is the normalised electric potential, T = δT/Ti is the normalised
ion-temperature perturbation, and νi is the ion-ion collision frequency. The equations
that we obtain in Appendix A are

∂

∂t

(
τϕ′ − 1

2
ρ2i∇2

⊥ϕ

)
− ρivti

LB

∂

∂y
(ϕ+ T ) +

ρivti
2LT

∂

∂y

(
1

2
ρ2i∇2

⊥ϕ

)
(2.9)

+
1

2
ρivti

({
ϕ, τϕ′ − 1

2
ρ2i∇2

⊥ϕ

}
+

1

2
ρ2i∇⊥ · {∇⊥ϕ, T}

)
= −1

2
χρ2i∇4

⊥(aϕ− bT ),
∂T

∂t
+
ρivti
2LT

∂ϕ

∂y
+

1

2
ρivti{ϕ, T} = χ∇2

⊥T, (2.10)

where the Poisson bracket is defined by

{f, g} = b̂ · (∇f ×∇g) = ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, (2.11)
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and

χ ≡ 8

9

√
2

π
νiρ

2
i (2.12)

is the thermal diffusivity. The numerical factor in (2.12) and the constants a = 9/40,
b = 67/160 in (2.9) are specific to the Landau collision operator (see Appendix A.5).

Let us discuss the physics content of (2.9) and (2.10). Equation (2.10) is the more
obvious one — it describes the advection of the total temperature (perturbations plus
equilibrium) by theE×B drift VE = cb̂×∇φ/B, and the thermal diffusion perpendicular
to the magnetic field. Indeed, (2.10) can be rewritten as

d

dt
(δT + Ti) = χ∇2

⊥δT, (2.13)

where the advective time derivative is

d

dt
≡ ∂

∂t
+ VE ·∇. (2.14)

The advection of the equilbrium temperature, VE ·∇Ti [the second term on the left-hand
side of (2.10)] is responsible for the injection of free energy (see Section 2.7), causing the
ITG instability.

Equation (2.9) describes the time evolution of the sum of perturbed ion density and
the vorticity of the E ×B drift velocity:

δni
ni

+
1

ni

∫
d3v

(
ϕ− 〈〈ϕ〉R〉r

)
Fi = τϕ′ − 1

2
ρ2i∇2

⊥ϕ+O
(
k4⊥ρ

4
iϕ
)
, (2.15)

where ni and δni are the equilibrium and perturbed ion densities, respectively [see
(A 21)]. Thus, (2.9) can be thought of as both a perturbed-ion-density equation and
as the curl of the perpendicular-momentum equation. The equality in (2.15) follows from
the quasineutrality condition Zδni = δne, the electron response (2.4), the approximation
(2.7), and the ordering (2.8).

The first term of (2.9) is the time derivative of (2.15). The second term,
(ρivti/LB)∂y(ϕ+ T ), is the magnetic drift (both curvature and ∇B) of pressure
perturbations. This, or rather the ∂yT part of it, is essential for the curvature-driven
ITG instability. It appears in the density equation because the magnetic drift creates
charge separation, and hence electrostatic potential, which is then coupled to the
perturbed density via quasineutrality. The third term, (−ρivti/4LT )∂y

(
ρ2i∇2

⊥ϕ
)
, is a

finite-Larmor-radius (FLR) term originating from the gyroaveraged E × B drift. It
is the diamagnetic drift due to the equilibrium temperature gradient. The first of the
nonlinear terms represents the advection of the quantity (2.15) by the E ×B drift. The
second nonlinear term ∇⊥ ·{∇⊥ϕ, T} is another FLR effect, which describes the E×B
advection of diamagnetic momentum. This term provides a crucial source of turbulent
poloidal momentum flux that destabilises the ZF profiles, destroying the ZF-dominated
Dimits regime. The nature of this term and its role in the Dimits transition are discussed
in detail in Section 4.3. Note that the nonlinear terms in (2.9) and (2.10) are equivalent
to the nonlinearities appearing in the model analysed by Rogers et al. (2000) in the limit
(2.8). Finally, the collisional terms in (2.9) represent the viscous damping of the E ×B
flow and also couple the density and temperature perturbations. The latter coupling
does not appear to be important for the results of this paper, but has been kept for
consistency.
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To prepare (2.9) and (2.10) for numerical analysis and distil important parameters, we
introduce normalised variables and fields

t̂ ≡ 2ρsΩi
LB

t, x̂ ≡ x

ρs
, ŷ ≡ y

ρs
,

ϕ̂ ≡ τLBϕ

2ρs
=
τLB
2ρs

Zieφ

Ti
, T̂ ≡ τLBT

2ρs
=
τLB
2ρs

δT

Ti
,

κT ≡
τLB
2LT

, χ̂ ≡ LB
2ρs

χ

Ωiρ2s
,

(2.16)

where Ωi = vti/ρi is the ion gyrofrequency. Dropping hats and subscripts (∇⊥ 7→ ∇),
we obtain from (2.9) and (2.10) the following equations in normalised units:

∂t
(
ϕ′ −∇2ϕ

)
− ∂y(ϕ+ T ) + κT∂y∇2ϕ+

{
ϕ,ϕ′ −∇2ϕ

}
+∇ · {∇ϕ, T}

= −χ∇4(aϕ− bT ), (2.17)

∂tT + κT∂yϕ+ {ϕ, T} = χ∇2T. (2.18)

These equations have two independent parameters: the normalised equilibrium temper-
ature gradient, κT , and the normalised collisionality, χ. There are two other parameters
— Lx and Ly, the domain lengths in x and y — but any physically relevant results must
be independent of these if our equations are indeed a valid local model of the plasma.
This turns out to be true for the saturated Dimits state.

We solve (2.17) and (2.18) numerically in a doubly periodic box of size Lx and Ly using
a pseudo-spectral algorithm. We integrate the linear terms implicitly in time, while the
nonlinear terms are integrated explicitly using the Adams-Bashforth three-step method.
This integration scheme is similar to the one implemented in the popular gyrokinetic
code GS2 (Kotschenreuther et al. 1995b; Dorland et al. 2000).

2.5. Relationship to Hasegawa-Mima Equation and Related Models
It is easy to see that setting κT = 0 effectively decouples (2.18) from (2.17) — taking

an initial condition T (t = 0) = 0 then leads to a trivial solution T (t) = 0. In that case,
(2.17) reduces to

∂t
(
ϕ′ −∇2ϕ

)
− ∂yϕ+

{
ϕ,ϕ′ −∇2ϕ

}
= −aχ∇4ϕ, (2.19)

which is the well-known (modified) Charney-Hasegawa-Mima (mCHM) equation
(Hasegawa & Mima 1978) that includes the appropriate modified adiabatic electron
response, with viscous damping. Even though we have considered a situation with no
equilibrium density gradient, the magnetic drift provides a term identical to the one
that would have arisen from the E × B advection of an inhomogeneous equilibrium
density profile. This puts the model considered here in the same class of systems as
those proposed by Hasegawa & Wakatani (1983), Terry & Horton (1983) and others
— all essentially extensions of the Hasegawa-Mima equation with additional physics to
account for microinstabilities in the plasma.

As (2.19) is contained within the model considered in this paper, equations (2.17)
and (2.18) should, in principle, capture the behaviour of the mCHM equation as well as
additional temperature and ITG effects. There has recently been a significant effort to
advance the understanding of (2.19) and its relatives (Ruiz et al. 2016, 2019; Zhu et al.
2018b, 2019; Zhou et al. 2019; Plunk & Bañón Navarro 2017; St-Onge 2017; Majda et al.
2018; Qi et al. 2019). The mCHM equation does capture certain important phenomena,
such as the generation of ZFs through a secondary instability (see Section 2.8); however,
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its predictive capabilities for ITG turbulence are unclear. In particular, we shall find that
the break up of the Dimits state of (2.17) and (2.18) is, in an essential way, governed
by the behaviour of the temperature perturbations, which are absent in (2.19) (see
Section 4).

2.6. Linear Physics of ITG Instability
Let us analyse the linear stability of (2.17) and (2.18). Dropping the nonlinear terms,

we look for Fourier modes ϕ, T ∝ exp[(γk − iωk)t+ ik · r], where γk and ωk are the
real growth rate and frequency, respectively. Figure 2 shows γk as a function of the
wavenumber k. Qualitatively it resembles the growth rate of toroidal ITG modes in
tokamaks (Horton et al. 1981). This is expected because the mechanism of the toroidal
ITG instability is similar to that of the 2D curvature-driven ITG instability. The terms
that give rise to the instability are the magnetic drift term −∂yT in (2.17) and the
E × B advection of the equilibrium temperature κT∂yϕ in (2.18). We find that the
fastest growing linear modes are radially extended across the entire box, i.e., they have
kx = 0. Such modes are sometimes called "streamers".

The exact dispersion relation is

(γk − iωk)2(1 + k2) + (γk − iωk)
{
−iky(1 + κT k

2) + χk2
[
1 + (1 + a)k2

]}
+ aχ2k6 − κT k2y − ikyχk2

[
1 + κT (1− b)k2

]
= 0. (2.20)

We can get a good qualitative idea of the properties of the instability by setting χ = 0.
Then the solution of (2.20) is

γk − iωk =
iky(1 + κT k

2)± ky
√
4κT (1 + k2)− (1 + κT k2)2

2(1 + k2)
, (2.21)

so the growth rate of the unstable mode is

γk =
ky
√
(2
√
κT − 1 + κT k2)(2

√
κT + 1− κT k2)

2(1 + k2)
. (2.22)

To simplify further, consider κT � 1� κ
−1/4
T � k. Then

γk ≈ ky
√
κT . (2.23)

This expression, with the normalisations (2.16) undone, is the well-known "bad-
curvature-instability" growth rate (Beer 1995):

γk = Ωi
ρ2i ky√
2τLBLT

. (2.24)

Note that there is another, physically distinct, ITG instability usually referred to as the
"slab ITG mode". This instability relies on coupling density and temperature through
parallel-velocity perturbations, and so is naturally three-dimensional (Cowley et al. 1991).
This mode is entirely absent from our 2D model.

Now let us return to the general dispersion. An important feature of the modes
described by (2.20) is the boundedness of the region of unstable wavenumbers in the
k plane (right panel of Figure 2). This allows us to integrate (2.17) and (2.18) without
the need for artificial dissipation. There are both collisionless and collisional mechanisms
that lead to the suppression of the ITG instability. Let us consider these mechanisms.
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Figure 2. Left: Dependence of the growth rate γk on ky for the streamer modes (kx = 0).
Right: Dependence of γk on kx and ky for κT = 0.36, χ = 0.1. The dashed line is the boundary
between stable and unstable modes (γk = 0). In Section 3, we will consider nonlinear simulations
with these same parameters.

2.6.1. Collisionless Bounds on Unstable Wavenumbers
It is easy to see that, in order to be positive, the collisionless growth rate (2.22) requires

k < kmax,FLR, where

k2max,FLR =
1 + 2

√
κT

κT
. (2.25)

For κT < 1/4, (2.22) also gives a lower bound on the wavenumbers k of the unstable
collisionless modes, viz., k > kmin,FLR, where

k2min,FLR =
1− 2

√
κT

κT
. (2.26)

Adding collisions re-establishes the instability at low k. We deem this to be an unimpor-
tant peculiarity of our model, thus we shall only consider κT > 1/4.

2.6.2. Collisional Bounds on Unstable Wavenumbers
For nonzero (χ > 0) collisionality, the term aχ2k6 in (2.20) dominates over the ITG

term κT k
2
y when k is large enough and gives strictly damped modes. To show this, let us

simplify (2.20) by writing it as

(γk − iωk +A)(γk − iωk +B − iC)− fAB + igAC = 0, (2.27)
where

A = χk2, B =
aχk4

1 + k2
, C = ky

1 + κT k
2

1 + k2
, f =

κT k
2
y

aχ2k6
, g =

bκT k
2

1 + κT k2
. (2.28)

The instability threshold is given by γk = 0. The real and imaginary parts of (2.27) for
γk = 0 are

− ω2
k(1 + k2)− ωkC + (1− f)AB = 0, (2.29)

− ωk(A+B)− (1− g)AC = 0. (2.30)



Dimits regime of curvature-driven ITG turbulence 11

Substituting into (2.29) the value of ωk derived from (2.30), and using A 6= 0, we find

g(1− g)AC2 +BC2(1− g) + (1− f)B(A+B)2 = 0. (2.31)

Since g ∈ (0, 1)†, a necessary condition for instability is

f > 1 =⇒ aχ2k6 < κT k
2
y. (2.32)

Thus, the region of unstable modes is bounded by k < kmax,χ, where

k2max,χ =

√
κT
aχ2

. (2.33)

2.7. Conservation Laws
Equations (2.17) and (2.18) have several conservations laws describing the time evo-

lution of quantities that would be conserved in the absence of equilibrium gradients and
dissipation:

∂t

∫
dxdy

1

2
T 2 = −κT

∫
dxdy T∂yϕ− χ

∫
dxdy (∇T )2, (2.34)

∂t

∫
dxdy

1

2

[
ϕ′2 + (∇ϕ)2

]
(2.35)

= −
∫
dxdy T∂yϕ− χ

∫
dxdy (∇2ϕ)

(
a∇2ϕ− b∇2T

)
,

∂t

∫
dxdy

[
1

2
ϕ′2 + Tϕ′ +

1

2
(∇T +∇ϕ)2

]
= −χ

∫
dxdy

[
(∇ϕ′) · (∇T ) + a

(
∇2ϕ

)2
+ (a+ 1− b)

(
∇2ϕ

)(
∇2T

)
+ (1− b)

(
∇2T

)2]
. (2.36)

These are fairly easy to spot by inspection of the nonlinear terms in (2.17) and (2.18).
They are also particular cases of the conservation laws of the gyrokinetic equation.
The conservation of the variance of T , given by (2.34), is the lowest-order version of
the gyrokinetic free-energy budget. The other two conservation laws, (2.35) and (2.36),
can be derived from the conservation of the two-dimensional gyrokinetic invariant (see
Schekochihin et al. 2009; Plunk et al. 2010). This invariant is a function of velocity in
the GK formalism. The model presented here is based only on two velocity moments of
the distribution function, namely density and temperature, and so the two-dimensional
invariant yields two independent conservation laws. More specifically, (2.35) is a generali-
sation of the "electrostatic gyrokinetic invariant". The derivations of the three invariants
of our system directly from the corresponding GK invariants can be found in Appendix B.

Equations (2.34) and (2.35) imply that a steady saturated state, i.e., ∂t = 0 for all
averaged quantities, can be achieved only if appropriate balance between injection and
dissipation terms is established:

χ

κT

∫
dxdy

LxLy
(∇T )2 = χ

∫
dxdy

LxLy
(∇2ϕ)

(
a∇2ϕ− b∇2T

)
= Q, (2.37)

† Note that for b < 0 or b > 1, there would be a collisional (κT = 0) instability. No such
instability exists in our model because the Landau collision operator gives g ∈ (0, 1).
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where the total radial heat flux Q is‡

Q = − 1

LxLy

∫
dxdy T∂yϕ. (2.38)

Thus, a saturated state would necessarily have a net positive "turbulent" (or "anoma-
lous") heat flux Q > 0. Note that the first term on the right-hand side of (2.34), which
represents injection of free energy, is κTQ. The turbulent heat flux is enabled by the
turbulence excited by the ITG instability.

Note as well that the linearly unstable modes have a positive radial heat flux. Indeed,
from (2.38),

Q =
∑
k

ikyTkϕ
∗
k =

∑
k

iky|ϕk|2
Tk
ϕk

. (2.39)

The relative phase of the temperature and potential perturbations can be obtained from
(2.18):

Tk
ϕk

=
−ikyκT

γk − iωk + χk2
, (2.40)

where γk − iωk is the solution of the dispersion relation (2.20). Then

Q =
∑
k

κT k
2
y|ϕk|2

γk + χk2

(γk + χk2)2 + ω2
k

> 0 (2.41)

for the unstable modes, which have γk > 0.
Finally, the third conservation law (2.36) has some peculiar properties. First, neither

the conserved quantity on the left-hand side nor the dissipation rate on the right-hand
side is sign-definite. Secondly, all of the evolution is dissipative, i.e., this invariant is not
injected by any equilibrium gradients and is constant in time if χ = 0.

2.8. Secondary Instability
Before we delve into the study of nonlinear saturation, let us show how ZFs can be gen-

erated from the linearly unstable ITG modes. Consider the stability of a streamer mode
with kx = 0, ky = q (the "primary" mode) to infinitesimal "secondary" perturbations:

ϕ = (ϕqe
iqy + c.c.) + δϕ(x, y), (2.42)

T = (Tqe
iqy + c.c.) + δT (x, y). (2.43)

A common way of analysing the secondary instability is to take a Galerkin truncation by
considering only four Fourier modes (kx, ky) = {(0, q), (p, 0), (p,±q)} and their complex
conjugates: the (0, q) mode is the primary streamer in (2.42) and (2.43) and the others
are

δϕ =
(
δϕ+e

iqy + δϕ−e
−iqy + δϕ0

)
eipxeγ2t + c.c., (2.44)

δT =
(
δT+e

iqy + δT−e
−iqy + δT0

)
eipxeγ2t + c.c., (2.45)

where p is the radial wavenumber of the secondary perturbations, δϕ0 and δT0 are the
zonal flow and temperature, and δϕ± and δT± are known as "sidebands". Substituting all
this into (2.17) and (2.18) and linearising the nonlinear terms for δϕ� ϕq and δT � Tq,
we obtain a closed set of equations. In order to keep things simple, we drop the linear

‡ The dimensional ion heat flux Qi = V −1
∫
d3r

∫
d3v(VE · x̂)(miv

2/2)δfi (Barnes et al.
2011), where V is the volume of integration and δfi is the perturbed ion distribution function
[see (A 1) in Appendix A.1], is related to Q via Qi/Q = 3niTivti(ρi/LB)

2/τ5/2
√
2.
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terms in (2.17) and (2.18) — this is valid when the amplitude of the primary mode is
large enough, so that interactions with it are more important for the evolution of δϕ
and δT than the effects of the equilibrium gradients and collisions. Observe that, due to
the structure of the Poisson bracket (2.11), all nonlinear terms are proportional to pq.
Defining for convenience γ2 ≡

√
2pq|ϕq|γ̂2, we obtain the following equation for γ̂2:(
γ̂22 + U

)(
γ̂22 + V

)
=W, (2.46)

where

U = 1 +
q2Re(Tq/ϕq)
1 + p2 + q2

,

V =
p2Im(Tq/ϕq)

2
+ p2[1 + Re(Tq/ϕq)]

2 −
(
1 + q2

)
[1 + Re(Tq/ϕq)]

1 + p2 + q2
,

W =
p2q2

(1 + p2 + q2)2

[
|Tq|2/|ϕq|2 + 2Re(Tq/ϕq)

][
1 + Re(Tq/ϕq)

]
. (2.47)

We see that the growth rate γ2 of the secondary instability depends both on the
amplitudes of the primary fields ϕq and Tq, and on their relative phase.

2.8.1. No Temperature Perturbation
If we set Tq = 0, i.e., ignore the temperature perturbation of the primary streamer,

(2.46) gives the well-known dispersion relation for the secondary instability of the
modified Hasegawa-Mima model (Rogers et al. 2000; Strintzi & Jenko 2007):

γHM
2 = pq|ϕq|

√
2(1 + q2 − p2)
1 + p2 + q2

. (2.48)

This form of the secondary instability has long been associated with the strong ZFs
observed numerically in ITG turbulence (Hammett et al. 1993)†. We will show that the
inclusion of the temperature perturbations can introduce qualitative and quantitative
changes, and even suppress the secondary instability completely.

2.8.2. Long-Wavelength Limit
To simplify (2.46), we can consider the long-wavelength limit p� 1. Then (2.46) gives[

γ̂22 + 1 +
q2Re(Tq/ϕq)

1 + q2

][
γ̂22 − 1− Re(Tq/ϕq)

]
= O

(
p2
)
≈ 0. (2.49)

Thus, there are two independent branches of the secondary instability with instability
conditions given by Re(Tq/ϕq) + 1/q2 < −1 and Re(Tq/ϕq) > −1, respectively. The
second branch is a modified form of the long-wavelength Hasegawa-Mima secondary
instability (2.48)‡:

γ2 = pq|ϕq|
√

2

(
1 + Re

Tq
ϕq

)
. (2.50)

† Especially in contrast with the much weaker ZFs observed in electron-temperature-gradient–
driven (ETG) turbulence on electron scales (Jenko et al. 2000; Strintzi & Jenko 2007). However,
this distinction between ITG and ETG turbulence has recently been challenged by Colyer et al.
(2017), who found that the long-time saturated state of ETG turbulence is also dominated by
ZFs, although the system does go through a streamer-dominated quasi-saturated state at earlier
times.
‡ Plunk & Bañón Navarro (2017) found the same expression in the context of the "warm-ion"

approximation, i.e., dropping the FLR terms in the nonzonal part of (2.17).
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We observe that (2.50) relies only on a handful of the nonlinear terms in (2.17) and
(2.18). Substituting (2.42) and (2.44) into (2.17) and taking the limit p� 1 gives us the
following equations for δϕ0, δϕ+ and δϕ−:

γ̂2δϕ0 =
1√
2

[
δϕ+(ϕ

∗
q + T ∗q )− δϕ−(ϕq + Tq)

]
, (2.51)

γ̂2δϕ+ =
1√
2
ϕqδϕ0, (2.52)

γ̂2δϕ− = − 1√
2
ϕ∗qδϕ0. (2.53)

Substituting (2.52) and (2.53) into (2.51) yields precisely (2.50). We do not consider the
equations for the temperature perturbations because δT = 0 is a consistent solution and
it corresponds to (2.50). The terms on the right-hand side of (2.52) and (2.53) arise
from the zonal advection term

{
ϕ,ϕ′ −∇2ϕ′

}
in (2.17) and represent the tilting of the

primary streamer by the ZF. The terms on the right-hand side of (2.51) are the poloidal
E × B and diamagnetic flows caused by the interaction of the primary mode and the
two sidebands (kx, ky) = (p,±q). The quantity Re(Tq/ϕq) controls the response of the
primary mode to the zonal perturbation: Re(Tq/ϕq) > −1 yields an unstable ZF, while
Re(Tq/ϕq) < −1 results in a stable, oscillatory perturbation.

Let us consider the collisionless case (χ = 0), where analytical progress is possible, and
ask for what values of κT the two modes described by (2.49) are unstable. Let us take
(kx, ky) = (0, q) to be the linear mode with the largest growth rate. We then define the
critical gradient κsec

T for the long-wavelength secondary instability of the fastest-growing
streamer as the value of κT at which Re(Tq/ϕq) = −1. Using (2.21) and the relationship
(2.40) between Tq and ϕq, we obtain

Re
Tq
ϕq

= −1 + κT q
2

2
. (2.54)

To determine q, we seek the maximum of γk, as given by (2.22) for kx = 0 and ky = q.
We find

∂γk
∂q
∝ κ2T q6 + 3κ2T q

4 − q2 − 4κT + 1 = 0, (2.55)

where the equality holds for the most unstable mode. As an equation for q2, (2.55) is
a cubic with only one positive solution for κT > 1/4. Substituting that solution into
(2.54), we find Re(Tq/ϕq) as a function of κT . This relationship is given in Figure 3.
In particular, we obtain that Re(Tq/ϕq) = −1 at κT = 1, as can indeed be verified
analytically from (2.55) and (2.54), and Re(Tq/ϕq) < −1 for κT > 1. We also find that
Re(Tq/ϕq) + 1/q2 > −1 always. Thus, for κT > 1, the most unstable collisionless ITG
mode is stable to the secondary perturbations.

2.8.3. General Case
Let us go back to the general secondary dispersion relation (2.46). Its solution is

γ̂22 =
−(U + V )±

√
(U − V )2 + 4W

2
, (2.56)

where

U + V =
p2
[
1 + Im(Tq/ϕq)

2
]
+ p2[1 + Re(Tq/ϕq)]

2 − Re(Tq/ϕq)

1 + p2 + q2
. (2.57)
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Figure 3. Temperature-gradient dependence of Re(Tk/ϕk) (solid) and Re(Tk/ϕk) + 1/q2

(dashed) for the most unstable collisionless (χ = 0) mode. We find that Re(Tk/ϕk) < −1
for κT > 1 and Re(Tk/ϕk) + 1/q2 > −1 for all κT . The secondary instability is present only for
κT < 1.

We can use the primary dispersion relation (2.20) to show that Re(Tk/ϕk) < 0, and
hence U + V > 0, for any unstable primary mode with wavenumber k. Indeed, the real
part of (2.40) is

Re
Tk
ϕk

=
kyκTωk

|γk − iωk + χk2|2 < 0 (2.58)

if kyωk < 0. Let us show that this is true. For k � 1 and κT > 1/4 (the reasons for
the latter are discussed at the end of Section 2.6.1), the dispersion relation (2.20) gives
simply kyωk = −k2y/2 < 0. Since the solutions to (2.20) are continuous functions of k,
if kyωk changes sign and becomes positive, then ωk = 0 somewhere. However, if we set
ωk = 0, the imaginary part of (2.27) gives γk = (g − 1)A < 0. Therefore, kyωk cannot
change sign within the region of linear instability and so kyωk < 0 for all linearly unstable
modes.

We now consider the solution (2.56) assuming that the relationship between ϕq and Tq
is given by (2.40) with ky = q and γk and ωk corresponding to the most unstable mode.
This gives us γ2 as a function of κT , χ and p. Figure 4 shows the real part of γ2 maximised
over p for each pair of equilibrium parameters κT and χ, and the wavenumber pmax at
which that maximum is attained. Let us discuss this figure. There are three distinct
regions:

(i) κT < κsec
T , where κsec

T is defined as the value of κT where Re(Tq/ϕq) = −1; in this
region, Re(Tq/ϕq) > −1. Additionally, UV −W < 0 for p = pmax, so γ̂22 given by (2.56)
is real and positive. The instability exists for arbitrarily small values of p (i.e., for an
arbitrarily long wavelength of the ZF). Increasing the temperature gradient κT towards
κsec
T has a dramatic effect on the secondary instability of the most unstable mode: it

diminishes both the growth rate and the region of zonal wavenumbers that go unstable.
On the line κT = κsec

T , γ̂2 is purely imaginary and there are no growing secondary
modes, just like in the long-wavelength analysis of Section 2.8.2. Indeed, substituting
Re(Tq/ϕq) = −1 in (2.47), we obtain W = 0 and U, V > 0. Then, by (2.56), γ̂22 = −U or
−V . Figure 5 (κT = 0.7, 1.1, 1.5) shows γ2 vs. p in region (i).






























































































