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Abstract. Local linear gyrokinetic simulations show that electron temperature

gradient (ETG) instabilities are the fastest growing modes for kyρi & 0.1 in the steep

gradient region for a JET pedestal discharge (92174) where the electron temperature

gradient is steeper than the ion temperature gradient. Here, ky is the wavenumber in

the direction perpendicular to both the magnetic field and the radial direction, and

ρi is the ion gyroradius. At kyρi & 1, the fastest growing mode is often a novel type

of toroidal ETG instability. This toroidal ETG mode is driven at scales as large as

kyρi ∼ (ρi/ρe)LTe/R0 ∼ 1 and at a sufficiently large radial wavenumber that electron

finite Larmor radius effects become important; that is, Kxρe ∼ 1, where Kx is the

effective radial wavenumber. Here, ρe is the electron gyroradius, R0 is the major

radius of the last closed flux surface, and 1/LTe is an inverse length proportional to

the logarithmic gradient of the equilibrium electron temperature. The fastest growing

toroidal ETG modes are often driven far away from the outboard midplane. In this

equilibrium, ion temperature gradient instability is subdominant at all scales and

kinetic ballooning modes are shown to be suppressed by E×B shear. ETG modes are

very resilient to E ×B shear. Heuristic quasilinear arguments suggest that the novel

toroidal ETG instability is important for transport.
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1. Introduction

H-mode is currently the most favored high confinement operating regime in tokamaks.

In H-mode, plasma confinement significantly improves once plasma heating exceeds a

certain threshold [1, 2]. H-mode was first discovered in ASDEX [1], and subsequently

in most other tokamaks [3, 4, 5, 6]. The precursor to H-mode, L-mode [7], has fairly

constant equilibrium gradients across its radius, whereas H-mode is characterized by

the presence of a pedestal with decreased turbulent particle and heat diffusivities, and

therefore significantly increased equilibrium gradients. These increased gradients drive

MHD instabilities, which set hard limits on the maximum achievable pressure gradient

[8, 9, 10, 11]. Turbulent transport caused by microinstabilities driven unstable by

equilibrium gradients that steepen during the inter-ELM (inter-edge-localized mode)

period [12] can constrain other pedestal dynamics such as MHD stability [13, 14], scrape

off layer and divertor physics [15], and neoclassical transport [16], and hence studying

H-mode inter-ELM pedestal microstability is of great interest.

To study the pedestal microinstabilities, we use gyrokinetics [17, 18, 19, 20, 21, 22]

— an asymptotic approach to solving the Fokker-Planck kinetic equation. Gyrokinetics

is well-suited for studying anisotropic turbulence in highly magnetized plasmas. One

of its main results, the gyrokinetic equation, is a nonlinear partial differential equation

for the time evolution of the perturbed gyroaveraged distribution function. We will use

the linearized gyrokinetic equation in conjunction with Maxwell’s equations to study

microinstabilities in JET pedestals. The local δf gyrokinetic code GS2 [23] is used to

simulate the pedestal plasmas presented in this article.

We study the stability of a JET ITER-like wall (JET-ILW) inter-ELM magnetic

equilibrium with different ion and electron temperature profiles. The ion and electron

temperatures are obtained using impurity charge exchange emission and Thomson

scattering, respectively. Since E×B shear is hypothesized to play a key role in pedestal

formation [7, 24, 25], we focus on the radial region near the maximum value of the

equilibrium E×B shear. The region of maximum E×B shear is estimated by balancing

the radial electric field with the pressure gradient.

Gyrokinetic studies of pedestals have been performed before. Local gyrokinetic

analysis of MAST found the main instabilities at k⊥ρi ∼ 1 to be kinetic ballooning

modes (KBMs) in the steep pressure gradient region and microtearing modes (MTMs)

in the less steep pressure gradient region inside the pedestal top, throughout the inter-

ELM recovery of the pedestal [26]. A follow up study using DBS and cross-polarization

scattering found that k⊥ρi ≈ 3 − 4 turbulence at the pedestal top in MAST was most

consistent with the electron temperature gradient (ETG) instability [27]. Using the

Gyrokinetic Toroidal Code [28], PIC simulations in the steep gradient region of DIII-D

discharges found electrostatic electron-driven modes peaking at poloidal angle θ = ±π/2
[29]. More recently, in JET-ILW discharges where the ion temperature was not measured

and was assumed to be equal to the measured electron temperature, nonlinear global

gyrokinetic calculations were performed using the GENE code [30, 31]. These global
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simulations predict pedestal heat transport fluxes that are comparable with experiment,

and suggest that pedestal fluxes will be increasingly dominated by ion temperature

gradient (ITG) turbulence as the heating power increases [14]. Hatch et al. also

proposed that impurity seeding reduces ion-scale and ETG instability transport via

ion-dilution and increased collisionality [14]. In [32], it was again demonstrated that the

sum of neoclassical, MTM, and ETG turbulent transport was in good agreement with

another JET-ILW pedestal measurement. Another recent work that used experimental

ion temperature profiles found that ITG was suppressed in JET Carbon discharges, but

not in JET-ILW cases, where ITG turbulence carried a substantial fraction of the total

heat flux [33]. The difference between JET Carbon and JET-ILW was attributable to a

decreased density gradient in JET-ILW discharges, which increased the growth rates of

slab ITG and ETG instabilities.

In this work, we identify a novel type of toroidal ETG instability that appears

in regions of steep equilibrium temperature gradients. These sub-ion Larmor scale

modes have a radial wavenumber larger than its poloidal wavenumber, and have been

observed (but not explained) in previous pedestal simulations [34, 35, 36, 29, 37, 38].

The particularly large radial wavenumber means that the radial magnetic drift plays

an important role in these toroidal ETG modes. We find that this toroidal ETG has a

large critical gradient threshold, which occurs due to the pedestal’s magnetic geometry

and the radial magnetic drift. Moreover, because of the large equilibrium temperature

gradients, we show theoretically and numerically that both toroidal and slab ETG modes

are extended from perpendicular scales of kyρe ∼ 1 in the core, to kyρi ∼ 1 in the

pedestal, where ky is the binormal wavenumber, defined in Section 2, and ρs is the

gyroradius for a species s.

We primarily examine microinstability at a single radial location in the steep

gradient region of JET-ILW shot 92714 [39], a highly-fueled deuterium discharge with

deuterated ethylene (C2D4) injection. For this discharge, at all scales where instability

occurs — 0.005 . kyρi . 400 — we find that electron temperature gradient-driven

modes are the fastest growing modes. For kyρi & 1, the novel toroidal ETG mode is

usually the fastest growing mode. We also show that the gradients of the measured

ion temperature profiles are insufficiently steep to drive ITG instability. With the

measured ion temperature profiles, the ion temperature gradient is close to the critical

gradient needed for linear instability and hence subdominant. We also show that if ion

temperature gradients are made sufficiently steep, toroidal and slab ITG modes become

unstable at kyρi � 1, but are suppressed by E×B shear. Our findings suggest that the

toroidal and slab ITG mode are stable in many radial pedestal locations, even in the

steep gradient region that we examine.

The layout of this paper is as follows: we first introduce gyrokinetics and the

notation used throughout this paper in Section 2. We then present JET-ILW density,

temperature, and rotation profiles from an inter-ELM pedestal in Section 3. Here, we

also give a broad overview of the growth rates and unusual mode structures for the

fastest growing modes in this pedestal, including a discussion of electromagnetic effects
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and E × B shear. At a wide range of scales, we find an ETG mode with unusual

character. This mode typically has a radial wavenumber that is significantly larger

than the poloidal wavenumber, and is insensitive to finite β effects and E × B shear.

Motivated by the results of Section 3 and using the notation of Section 2, we then make

analytic predictions about microinstability in steep gradient regions in Section 4. This

theoretical analysis explains the existence of the novel toroidal ETG modes that we see

in Section 3. We then examine ETG and ITG (or lack thereof) instability in linear

gyrokinetic simulations in Sections 5 and 6, respectively. The effect of E × B shear

is discussed further in Section 7. Finally, we conclude in Section 8. Experimentally-

minded readers might wish to jump to Sections 3 and 5, while those more theoretically

inclined and with a background in gyrokinetics might wish to begin at Section 4.

2. Gyrokinetics

In this section, we introduce the system of gyrokinetic equations and notation used

throughout this paper. This section can be skipped for readers well-acquainted with

gyrokinetics, or who mainly wish to see gyrokinetic simulations results in Sections 3,

5 and 6. Gyrokinetics [17, 18, 19, 20, 21, 22] is used to investigate turbulence and

transport using an asymptotic expansion in the ratio of ρ∗s ≡ ρs/LTs � 1. We express

the gradients by the equilibrium length scales LQ ≡ −(∂ lnQ/∂r)−1, where Q can be the

equilibrium density, temperature, or pressure, and the distance r is half of the diameter

of the flux surface at the midplane. Assuming k⊥ρi ∼ 1 and ω � Ωs, gyrokinetics

describes plasma behavior on spatial scales comparable to the ion gyroradius, and on

timescales much longer than the gyro period. The quantity k⊥ is the perpendicular

turbulence wavenumber, ω is the frequency for turbulence quantities, Ωs = ZseB/msc

is the gyrofrequency, Zs is the charge number, e is the proton charge, B is the magnetic

field strength, ms is the species mass, and c is the speed of light. The gyrokinetic

ordering is ρ∗s ∼ ω/Ωs ∼ νs/Ωs ∼ k‖/k⊥ � 1, where νs is a typical collision frequency

for species s, and k‖ is the turbulence parallel wavenumber. To obtain a rough estimate

for the radial electric field (see Equation (16)), we will impose that the radial electric

field is comparable to the pressure gradient, which implies a low flow ordering [40, 41,

42] for the electric field, |E| ∼ T0e/eLTe, that is, the equilibrium E × B drift is small

compared with the thermal velocity vts =
√

2T0s/ms by a factor of ρ∗s, where T0s is the

leading order temperature.

We expand the magnetic field in ρ∗s, B+B1+B2+. . ., where Bn = ρn∗sB. The lowest

order magnetic field is written as B = I(r)∇ζ+∇ζ×∇ψ, where ζ is the toroidal angle, ψ

is the poloidal flux divided by 2π, and I(r) is a flux function. For n ≥ 1, we further split

Bn into long-wavelength and turbulence components, Bn = Blw
n +Btb

n . Long wavelength

quantities, glw, spatially change on equilibrium length scales, ∇glw ∼ glw/LTs, and

temporally change on slow time scales, ∂glw/∂t ∼ glw/τE, where τE is the energy

confinement time and t is the time variable. Turbulence quantities, gtb, spatially change

on equilibrium length scales along the mean magnetic field, b̂ · ∇gtb ∼ gtb/LTs, but
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on gyroradius scales across the mean field, ∇⊥gtb ∼ gtb/ρs, and temporally change

on fast time scales, ∂gtb/∂t ∼ ωgtb. Here, b̂ = B/B, and ∇⊥ is a spatial derivative

perpendicular to B. We ignore the correction, Blw
1 , which is mainly due to the effect

of the neoclassical pressure anisotropy on the magnetic field. One can show that the

turbulent component of B1 can be written as Btb
1 = ∇Atb‖1×b̂+B

tb

‖1b̂, where B
tb

‖1 and A
tb

‖1
are the leading order parallel components of the turbulent magnetic field and magnetic

vector potential, respectively. We reserve the overline notation for these turbulent

quantities because later we will write their Fourier components without an overline,

which will keep the notation tidier.

For the electric field E, we also expand in ρ∗s, E = E0 + E1 + . . ., where

En ∼ ρn∗sT0s/eLTs. We split En into long wavelength and turbulent parts, En =

Elw
n + Etb

n . To lowest order, E0 is electrostatic; Elw
0 = −∇φ0, and Etb

0 = −∇⊥φ
tb

1 .

Here, φ0 is the leading order electric potential and φtb1 is the leading order turbulent

electric potential, where φtb1 ∼ ρ∗sφ0. Since φ0 is a flux function, E0 · b̂ = 0. To

leading order, the parallel components of the electric field are Elw
‖ = −b̂ · ∇φlw1 and

Etb
‖ = −b̂ · ∇φtb1 − (1/c)(∂A

tb

‖1/∂t). The electrostatic potential φlw1 is mainly due to

neoclassical physics.

We expand the distribution function in ρ∗s, fs = FMs + f1s + . . ., where the lowest

order distribution function, FMs, is a stationary Maxwellian,

FMs(r, v) = n0s(r)
( ms

2πT0s(r)

)3/2

exp
(
− msv

2

2T0s(r)

)
, (1)

with particle speed v, and flux functions n0s and T0s, where n0s is the leading order

density. The Maxwellian is stationary because the mean flow is subsonic. Higher order

corrections to the distribution function can be split into long-wavelength and turbulent

quantities, fns = f lwns + f tbns, where neoclassical corrections would be included in f lwns .

To describe phase space, we will employ gyrokinetic variables. These are the guiding

center, Rs, the kinetic energy, E = v2/2 , the magnetic moment, µ = v2
⊥/2B where

v⊥ = v − v · b̂b̂, and the gyrophase, ϕ, which is a particle’s angular location during

its gyromotion. The guiding center is given by Rs = r − ρs, the gyroradius position

is given by ρs = b̂ × v/Ωs, and the quantity r is the particle position. The first order

turbulent component of the distribution function can be written as

f tb1s(Rs, E , µ, ϕ, t) = hs(Rs, E , µ, t)−
Zseφ

tb

1

T0s

FMs(r, E , t). (2)

Note that the function hs is independent of the gyrophase — our task is to find an

evolution equation for hs.

To find hs, we substitute Equation (2) into the first order Fokker-Planck equation.

Because only the variable ϕ varies over a single gyroperiod, it is convenient to average

the Fokker-Planck equation over the gyromotion using a gyroaverage, defined as 〈. . .〉 =

(1/2π)
∫ 2π

0
. . . dϕ|Rs,E,µ, evaluated at fixed Rs, E , and µ. Gyroaveraging the first order

Fokker-Planck equation and taking its turbulent component, we obtain the low flow
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electromagnetic gyrokinetic equation,( ∂
∂t

+ ΩE
∂

∂ζ

)
hs+(v‖b̂ + vMs + 〈vtbχ 〉) · ∇Rshs +

∑
s

〈
C

(l)
ss′

〉
=
ZseFMs

T0s

( ∂
∂t

+ ΩE
∂

∂ζ

)
〈χtb1 〉 − 〈vtbχ 〉 · ∇RsFMs,

(3)

where ΩE(r) = −c∂φ0/∂ψ is the E × B toroidal angular velocity, C
(l)
ss′ is a linearized

Fokker-Planck collision operator, ∇Rs ≡ ∂/∂Rs, the magnetic drift is

vMs =
b̂

Ωs

×
[(
v2
‖ +

v2
⊥
2

)
∇ lnB + v2

‖
4π

B2

∂p0

∂r
∇r
]
. (4)

Here, p0 =
∑

s p0s is the total pressure and p0s = n0sT0s is the lowest order pressure.

The parallel velocity is v‖ = v · b̂, and the gyrokinetic drift is vtbχ = (c/B)b̂ × ∇χtb1 .

Here, χtb1 is the leading order turbulent gyrokinetic potential defined as

χtb1 = φ
tb

1 −
v‖A

tb

‖1

c
+
ms

Zse

∫ µ

0

B
tb

‖1(Rs + ρs(µ
′))dµ′. (5)

In Equation (3), ΩE(r) can be approximated around the radial location rc of interest

by ΩE(rc) + (r − rc)(∂ΩE/∂r) because the characteristic size of the eddies is small

compared with LTe. In the low flow ordering that we use, the term (r − rc)(∂ΩE/∂r),

which represents the E×B shear, should be neglected because it is of the same size as

other terms that we have not kept. Even so, we perform some simulations with E×B

shear. We will justify using this small term in Section 7.

To close the system of equations, we need to find φ
tb

1 , A
tb

‖1, and B
tb

‖1 using hs. To

find φ
tb

1 , we use the first order turbulent quasineutrality condition,∑
s

Z2
s e

2φ
tb

1

T0s

n0s =
∑
s

Zse

∫
hs(r− ρs, E , µ)d3v. (6)

The parallel vector potential, A
tb

‖1, is found using the parallel component of Ampère’s

law,

−∇2
⊥A

tb

‖1 =
4πe

c

∑
s

Zs

∫
v‖hs(r− ρs, E , µ)d3v. (7)

Finally, B
tb

‖1 is determined by perpendicular pressure balance,

BB
tb

‖1

4π
+
∑
s

∫
msB

∫ µ

0

hs(r− ρs(µ
′), E , µ)dµ′d3v = 0. (8)

Note that the integral over µ′ only affects the µ dependence of ρs.

Throughout this paper, we will examine the stability properties of the gyrokinetic

equation in the linear local limit. To understand how these linear instabilities then

cause turbulent transport, one needs to keep the nonlinear term of Equation (3),

which we will neglect in this work. The local limit, k⊥LTs � 1, is useful for analytic

treatment and numerically efficient simulations. If k⊥LTs � 1, modes can be Fourier
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analyzed in the perpendicular domain. In JET shot 92174 at the radial location

we examine, LTe ' 0.02m, and thus the local approximation is good provided that

k⊥ρi � ρi/LTe ' 0.12.

To describe the properties of the turbulent pieces, φ
tb

1 , A
tb

‖1, B
tb

‖1, and hs, we use the

flux coordinates (x, y, θ). The coordinate x is a local flux surface label defined around

the flux surface rc (note that it is different from the flux label r), y is a field line label,

and θ is a poloidal coordinate that labels the position along the magnetic field line. The

coordinates x and y are given by

x =
q(rc)

rcBa

(ψ(r)− ψ(rc)), y =
1

Ba

∂ψ

∂r

∣∣∣
rc
α, (9)

where Ba is the toroidal magnetic field strength evaluated at rc and Rc, Rc is the distance

from the axis of symmetry of the tokamak to the center of the flux surface rc at the

midplane, α = ζ − qθ + ν(r, θ), and ν(r, θ) is a function 2π-periodic in θ,

ν(r, θ) = −I(r)
(∫ θ

0

dθ′
[ 1

R2(θ′)B(θ′) · ∇θ′ −
1

2π

∮
dθ′′

R2(θ′′)B(θ′′) · ∇θ′′
])
. (10)

The safety factor, q(r), is given by 2πq(r) =
∮
I(r)dθ/R2B · ∇θ. We choose to define

the poloidal angle θ as

θ = 2πl/Lθ, (11)

where l is the arclength along the magnetic field, and Lθ is the distance along a field

line for one complete poloidal turn.

Spatial anisotropy, k⊥/k‖ � 1, implies that ∂/∂x ∼ ∂/∂y � (2π/Lθ)∂/∂θ. In the

linear local limit, we Fourier analyze φ
tb

1 locally in the perpendicular plane and in time,

φ
tb

1 (x, y, θ, t) =
∑
kx,ky ,ω

φtb1 (kx, ky, θ, ω) exp(ikxx+ ikyy − iωt). (12)

The electromagnetic fluctuations A
tb

‖ and B
tb

‖ are Fourier analyzed in a similar way. It

will also be useful to Fourier analyze hs,

hs(Xs, Ys, θ, E , µ, t) =
∑
kx,ky ,ω

hs(kx, ky, θ, E , µ, ω) exp(ikxXs + ikyYs − iωt), (13)

where Xs = x− ρs · ∇x and Ys = y − ρs · ∇y are guiding center variables. In the next

section we present the profiles for the JET shot that we are examining, as well as an

overview of the gyrokinetic results. These gyrokinetic results will motivate the work for

the rest of the paper.

3. Pedestal Gyrokinetic Simulations of JET Shot 92174

In this section, we present the significant linear microstability features of a single JET-

ILW inter-ELM pedestal discharge at a single radial location. This equilibrium exhibits

properties such as temperature, magnetic geometry, injected neutral beam power, and

fueling that are typical for JET-ILW inter-ELM H-mode pedestals: key experimental
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parameters for this discharge are Ip = 1.4 MA, BT0 = 1.9 T, H98(y,2) = 1.0, nG = 0.7,

PNBI = 17.4 MW, βN = 2.5, and RD = 0.9 × 1022 electrons/s. Here, Ip is the poloidal

current, BT0 is the toroidal magnetic field at R = 2.96m, H98(y,2) is the H factor relative

to the IPB98(y,2) scaling [43], nG is the Greenwald density fraction [44] defined as the

line averaged density divided by the Greenwald density limit, PNBI is the neutral beam

injection power, βN is the normalized β factor [45], and RD is the deuterium electron

flow rate.

In Section 3.1, we show the pedestal equilibrium temperature, density, and flow

profiles, which will have significant implications for microstability. In Section 3.2, we

present an overview of linear results from gyrokinetic simulations, run both with and

without finite β effects. From these results, we justify an electrostatic study. Here, we

find a range of modes, including an unusual toroidal ETG instability that is driven at a

very wide range of perpendicular scales, and has a radial wavenumber that is typically

much larger than its poloidal wavenumber. A significant portion of the paper will be

devoted to understanding this mode. We show that this mode is largely unaffected

by finite β effects and E × B shear, and in subsequent sections, that it could play an

important role in transport. Finally, in Section 3.3, we present the prominent features

of the electrostatic growth rate spectrum.

3.1. JET-ILW Profiles

In this paper, we focus on simulation results from JET shot 92174. We run linear

gyrokinetic simulations with a single deuterium ion species and no impurities, assuming

that n0e = n0i (note that experimentally Zeff = 1.8, where Zeff =
∑

i niZ
2
i /ne). The

three other pedestals that we have analyzed (82550, 92167, 92168) give qualitatively

similar results, which is notable, given that the nature of these discharges varies quite

significantly. The experimental and simulation parameters and linear gyrokinetic growth

rates for these additional three discharges are shown in Appendix A.

The temperature and density profiles for shot 92174 and associated gradients, are

shown in Figure 1(a) as functions of r/a. The distance a is the value of r at the last closed

flux surface (LCFS). In Figure 1(d), we also show the toroidal velocity of 12
6 C

+, uζC ,

at the outboard midplane, normalized by the ion thermal speed vti =
√

2T0i/mi. We

assume that this velocity is a good proxy for the toroidal ion velocity, uζi. We normalize

the gradient length scales using the major radius of the last closed flux surface, R0, which

is the radial distance to the center of the last closed flux surface at the midplane. The

profiles in Figure 1 are consistent with an emerging JET-ILW pedestal paradigm [46,

14, 47, 33], whereby enhanced gas puffing reduces the edge density gradient [48] and

shifts the density pedestal outwards [27, 49], making microinstabilities more virulent

[50]. Weaker density gradients also reduce the E × B shear, which has often been

observed to be important for microinstability suppression in the pedestal [14, 47, 33].

It is hypothesized that heat transport from more strongly-driven microinstabilities with

less shear suppression is responsible for a reduced temperature at the pedestal top [33].
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Figure 1: Pedestal profiles and their gradients for JET shot 92174. Crosses indicate

simulation location of r/a = 0.9743. (a): Ion and electron temperatures profiles. (b):

Density profiles. (c): Flow profiles. (d): Temperature and density gradients profiles.

(e): ηs profiles, where the parameter ηs is defined as ηs ≡ Ln/LTs. (f): E × B shear

profiles.

In this work, the electron temperature and density are determined from the High

Resolution Thomson Scattering profiles [51, 52]. To improve the data statistics, a

composite profile is constructed from profiles collected in a time window of 80-99% in the

ELM interval period. The profiles of the ion temperature and rotation are measured with

the edge Charge Exchange Recombination Spectroscopy diagnostic [53] for fully stripped

carbon-12 (12
6 C

+), with a time integration of 7.2ms. These ion profiles are collected on

a longer 60-99 % ELM interval period time window. The 12
6 C

+ and ion temperature and

rotation profiles in the pedestal can differ substantially, as found in some recent DIII-D

experiments [54, 55, 56]. Since the ITG instability is sensitive to T0i and R0/LT i, the

ITG instability results in Section 6 should be viewed in the context of potentially large

uncertainties in ion temperature measurements, which might significantly underestimate

the ion temperature gradient. For this reason, while we have mainly used T0i > T0e and

R0/LTe > R0/LT i in our simulations and theory, we have also explored the impact
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on gyrokinetic microinstabilities of assuming T0i = T0e and R0/LT i = R0/LTe, which

can be found in Section 6. However, unless explicitly mentioned otherwise, we use the

measured ion temperature profiles.

To obtain an estimate for the radial electric field, we use the most general ion flow

[40, 41],

ui = −c∂φ0

∂ψ
R2∇ζ − c

Zien0i

∂p0i

∂ψ
R2∇ζ +

B

n0i

Ki(ψ)
∂T0i

∂ψ
. (14)

Here, R is the major radius, and the flux function, Ki(ψ), is determined by neoclassical

theory [40, 41]. Based on the experimental data in Figure 1, we find that uζC .
(ρPi/LT i)vti. The quantity ρPs = (B/BP )ρs is the poloidal gyroradius for a species s,

where BP is the poloidal magnetic field strength. Thus, the flow velocity of the 12
6 C

+

impurity species is comparable to the size of the ion diamagnetic flow, uζip,

uζip
vti

= − Rc

Zien0ivti

∂p0i

∂ψ
∼ ρPi
Lpi
∼ 1

3
. (15)

Note that this implies that there are only several poloidal gyroradii in a pressure length

scale, Lpi. To obtain a rough estimate of the radial electric field, we use the fact that

the measurement of uζi suggests that the overall flow, the E×B flow, the diamagnetic

flow in Equation (15), and the term proportional to Ki(ψ) are all of the same order.

Thus,

−∂φ0

∂ψ
≈ 1

Zien0i

∂p0i

∂ψ
. (16)

Then, the radial shear in the E×B rotation, γE(ψ), is approximately

γE ≡ −
cr

q

∂

∂r

(∂φ0

∂ψ

)
≈ r

q

∂

∂r

( c

Zien0i

∂p0i

∂ψ

)
. (17)

The location of the simulations was chosen to have equilibrium length scales

characteristic of the steep gradient region in the pedestal, and an E × B shear

value close to the maximum possible for a given equilibrium, using the estimate

in Equation (17). The radial location for JET shot 92174, shown in Figure 1, is

r/a = 0.9743. To simulate this discharge, we use the following simulation parameters:

ρi = 0.27 cm, νeea/vti = 0.14, a/LTe = 42, a/LT i = 11, a/Ln = 10, ρi/LTe =

0.12, T0e/T0i = 0.56, ŝ = 3.36, q = 5.1, R0 = 2.86 m, a = 0.91 m, Rc = 2.91 m, and

rc = 0.89 m, where νss′ =
√

2πn0s′Z
2
sZ

2
s′e

4 ln(Λss′)/
√
msT

3/2
0s , ln(Λss′) is the Coulomb

logarithm, and ŝ = (r/q)∂q/∂r is the magnetic shear. In the instances where we included

E×B shear and electromagnetic effects, we used γEa/vti = 0.56 and β = 0.0031. Here,

the quantity β = 8π(p0i + p0e)/B
2
a, where Ba = 1.99 T for this equilibrium.

3.2. Gyrokinetic Simulation Results

In this section, we present results obtained from linear gyrokinetic simulations (both

electromagnetic and electrostatic) for this radial location and pedestal. For the chosen

pedestal and radial location, we will establish that linear electrostatic simulations
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Figure 2: The Miller equilibrium and numerical equilibrium for JET shot 92174 used

for gyrokinetic simulations. (a): Equilibrium and Miller flux surfaces in RM , ZM space,

(b): Equilibrium and Miller poloidal magnetic field versus θM , (c): Equilibrium toroidal

and magnetic fields.

without E × B shear give similar growth rate spectra to linear electromagnetic

simulations with E × B shear. The electrostatic limit of Equation (3) is taken

by requiring that the turbulent electric field is primarily electrostatic, |∇φtb1 | �
(1/c)|∂Atb‖1/∂t|, and that the turbulent magnetic field is small, |µBtb

1 | � |Zsφ
tb

1 |e/ms

‡. It is no coincidence that the electrostatic regime without E × B shear and the

electromagnetic case with E ×B shear give similar results; electromagnetic modes are

suppressed by E × B shear, leaving electrostatic modes that are unaffected by E × B

shear as the dominant instabilities. Therefore, it is reasonable to study this pedestal

with linear electrostatic simulations without E×B shear. We will choose to study the

electrostatic limit without E×B shear rather than an electromagnetic case with E×B

shear because the former is analytically and numerically simpler. We now proceed to

give an overview of gyrokinetic results for the electrostatic pedestal.

We performed these local simulations in ballooning space, which can be represented

in a flux-tube [57]. Because the novel toroidal ETG instability we have found is often

driven at large distances along the field line from θ = 0, we require a large range of θ

values, and hence we typically choose a flux-tube with 64 gridpoints in each 2π period

in θ, with nine periods. This is equivalent to a ballooning space calculation extending

to nine poloidal turns in the extended ballooning angle. The standard velocity space

grid had 20 passing pitch angles, 17 trapped pitch angles, and 12 energy gridpoints [58].

Resolution scans were performed in all of these parameters.

While GS2 is capable of reading in numerical equilibria, we fit the magnetic

‡ Even though the last term in Equation (4) is formally small in β in the electrostatic limit, we keep

it in all our electrostatic simulations because the large pressure gradients in the pedestal can make it

important.
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Figure 3: (a): GS2 growth rate (γ) and (b): real frequency (ωR) for JET shot 92174

with θ0 = 0 with and without finite β. (c): eigenmodes for kyρi = 0.2. (d): growth

rates for an electromagnetic simulation with different θ0 values at kyρi ∼ 0.1.

equilibrium with Miller geometry. A Miller equilibrium is a prescription to generate flux

surfaces that satisfy the Grad Shafranov equation locally by fitting to nine parameters

[59]. In Figure 2 we show the difference between the exact flux surface at r/a = 0.9743

and the Miller fits that we use. The Miller angle θM , which is in general not equal to

the poloidal angle θ defined in Equation (11), is given by θM = arcsin(Z/κr), where

κ is the flux surface elongation, RM is the Miller major radius, and ZM is the Miller

distance above the midplane [59]. The Miller parameters for this radial location are

∆ = dRM/dr = −0.345, κ = 1.55, a(dκ/dr) = 0.949, δ = 0.263, a(dδ/dr) = 0.737,

β′ = βa(d ln p0/dr) = −0.161, where δ is the triangularity.

Electromagnetic effects have been shown to be important for microinstability in the

pedestal [26, 14, 32, 33, 38]. While we have neglected electromagnetic effects in most of

this study, we have scoped out the potential effects of nonzero β. As an initial study, this

is well-justified since we will show that a linear electromagnetic gyrokinetic simulation

with E × B shear gives similar results to a linear electrostatic gyrokinetic simulation

without E × B shear. To demonstrate this equivalence, we first show the results of

gyrokinetic simulations with and without finite β effects in Figure 3. To include finite

β effects, we included values of β and β′ consistent with the Miller equilibrium.

In Figure 3, we show the effect of finite β on the growth rates (a), real frequencies
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(b), and eigenmodes (c) for θ0 = 0, where θ0 is the ballooning angle, defined as

θ0 = kx/ŝky. Throughout this paper, the eigenmodes are separately normalized such

that |φtb1 | has a maximum of 1. When finite β effects are included, a KBM appears, as

shown by the small bump at kyρi ∼ 0.1 in Figure 3(a) of the growth rates. This KBM

has a standard ballooning eigenmode structure, centered at θ = θ0 = 0. However, when

β = 0, there is no KBM, and instead at kyρi ∼ 0.1 there are modes with a much lower

growth rate and a complicated mode structure in θ (see Figure 3(c)). These eigenmodes

have maxima in bad curvature regions and have tearing parity in both Re(φtb1 ) and

Im(φtb1 ). More details regarding these long wavelength electron modes can be found in

Appendix B.

Much of the rest of the growth rate spectrum is quite unaffected by finite β effects.

At kyρi ≈ 1−5 for θ0 = 0, there is a peculiar bump in Figure 3(a), whose corresponding

instability will be the focus of much of this paper. We identify this mode as toroidal

ETG. We have undertaken extensive tests described later in Section 5 to confirm that

it is a novel type of toroidal ETG; for now, we will refer to it as a toroidal ETG mode

without justification. Finally, for kyρi & 5 and θ0 = 0, the fastest growing mode becomes

a slab ETG mode, which again, we will justify later in Section 5. Clearly the toroidal

ETG mode is unaffected by finite β, and the slab ETG growth rates decrease by roughly

20%, but the mode structure is qualitatively the same. Thus, apart from the KBM, the

electromagnetic and electrostatic growth rates and modes are very similar.

Once E × B shear is included in the simulations, the electromagnetic and

electrostatic growth rate spectra become qualitatively the same. This is because E×B

shear is found to easily suppress the KBM. Recall that the KBM is the main difference

between the electromagnetic and electrostatic simulations without E×B shear. Further

evidence for the effectiveness of the E × B shear for suppressing the KBM is that the

KBM is stable for all |θ0| > θ0c ≈ 0.5, as shown in Figure 3(d), where we show the

growth rates for a range of θ0 values at scales 0.01 < kyρi < 0.3 in a simulation with

finite β. The dependence on θ0 is important because E×B shear causes a mode’s radial

wavenumber to vary with time as ∆kx = kyγEt, giving a change of θ0 of ∆θ0 = γEt/ŝ.

If a mode is shown to be unstable only for a very narrow range of θ0 values, |θ0| < |θ0c|,
it is highly susceptible to E × B shear because in a time of order 1/γE its θ0 changes

significantly. After a time tC ∼ ŝθ0c/γE, E × B shear will have suppressed the KBM;

in our simulations, tC ≈ 3. Thus, to suppress instability we require γtC . 1, leading

to γE/ŝγ & θ0c ≈ 0.5. We will discuss the E ×B shear and its effects on all the other

instabilities we find in more detail in Section 7.

Finally, the perpendicular wavenumber of the KBM is close to the limit where local

simulations are valid, which is when k⊥ρi � 0.12, and hence, results from our KBM

simulations should be viewed in the context of uncertainties that are present due to

being close to the local approximation.
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Figure 4: (a): electrostatic growth rates for 2 values of θ0. (b): eigenmodes for 2 values

of kyρi at θ0 = 0. (c): eigenmodes for 2 values of kyρi at θ0 = 0.5.

3.3. Linear Features of the Electrostatic Pedestal

In this section, we describe the most prominent features of the electrostatic growth rate

spectrum.

A notable feature of the growth rate spectrum shown earlier in Figure 3 is the

bump at kyρi ≈ 1 − 5 in Figure 3(a), which we claimed was a novel toroidal ETG

instability. In Figure 4(a), we show the growth rates for two values of θ0. Focusing first

on θ0 = 0, we again identify the bump at kyρi ≈ 1− 5, which has a peak growth rate at

kyρi ' 3. Once kyρi & 5, the mode switches to a slab ETG instability. In Figure 4(b),

we show the eigenmodes for two kyρi values in the θ0 = 0 growth rate spectrum, one

at kyρi = 2.4 (near the top of the toroidal ETG bump) and one at kyρi = 51.4. The

eigenmode associated with kyρi = 2.4 is fairly localized at large θ, whereas the eigenmode

associated with kyρi = 51.4 is centered at θ = 0 and has a large parallel wavenumber.

The kyρi = 2.4 mode is the novel toroidal ETG mode, and the kyρi = 51.4 mode is a

slab ETG mode. In our up-down symmetric equilibrium fit, there is a subtlety for the

novel toroidal ETG eigenmodes when θ0 = 0: there are two independent modes that

grow at the same rate, and are localized at opposite signs of θ. Indeed, for toroidal

ETG, there must be two independent modes with θ0 = 0, since the gyrokinetic equation

is invariant under the transformation θ → −θ, θ0 → −θ0 [60]. Thus, henceforth, when

plotting the eigenmodes for θ0 ' 0, we choose a small value of θ0, θ0 = 0.05, which

causes the mode at one location to grow slightly faster than the mode at the other, but

barely changes the growth rate compared with θ0 = 0. This results in a well-defined

single eigenmode, like the one in Figure 8(a), rather than two separate modes, like the

ones shown in Figure 8(b). The relative size and phase of the modes at opposite values

of θ depend on the initial condition.

To distinguish between the toroidal and slab ETG modes in Figure 3(a) and

Figure 4(a), we used a set of criteria discussed extensively in Section 5.1. Briefly, the
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toroidal ETG eigenmodes are localized far along the field line for smaller kyρi values,

and are at a θ location with the opposite sign of θ0 for larger kyρi values. Sensitivity

scans to equilibrium parameters, shown in Figure 7, reveal that the slab and toroidal

ETG branches have different dependences on parameters such as R0/LT i and R0/Ln.

For a given kyρi, slab ETG modes also tend to have a much larger k‖ than toroidal ETG

modes.

While the novel toroidal ETG mode is the fastest growing instability for 1 . kyρi .
5 when θ0 = 0, we find that when θ0 differs slightly from 0, the toroidal ETG mode

is the fastest growing for 1 . kyρi . 400. We show a simple example of the growth

rate spectrum for θ0 = 0.5 in Figure 4(a), where the toroidal ETG mode is the fastest

growing mode for that particular value of θ0 for all kyρi & 1. In Figure 4(c), we show

the eigenmodes for θ0 = 0.5 for kyρi = 2.4 and kyρi = 51.4. For kyρi = 2.4, the

eigenmodes for θ0 = 0 and θ0 = 0.5 have a similar structure, both being localized at

|θ| ' 8. However, the eigenmode at kyρi = 51.4 is dramatically different to the θ0 = 0

mode at kyρi = 51.4; the eigenmode for θ0 = 0.5 is localized at θ ' −1, and has, in

fact, the same novel toroidal ETG character we identified earlier. In Section 5 we will

explain these toroidal ETG modes in much more detail, including the reasons why they

move in θ for different values of kyρi, as evidenced by the eigenmodes for θ0 = 0.5 at

kyρi = 2.4 and kyρi = 51.4.

For completeness, we briefly describe the modes we find at larger scales. For this

JET discharge and the surface r/a = 0.9743, we find that the instabilities are electron-

driven between 0.005 . kyρi . 400. For 0.005 . kyρi . 0.1 the modes have electron

tails similar to those described in [61], and for 0.1 . kyρi . 1.0, there are complicated

modes that appear to be a form of ETG we do not yet fully understand. Both the

electron tails and complicated ETG modes will be excluded from in-depth analysis in

the main text, but are described in Appendix B.

In the next section, we introduce the theory needed to understand these novel

toroidal ETG modes as well as the slab ETG modes at kyρi & 1. We will see that

the existence of these modes follows naturally from the steep temperature gradients in

pedestals.

4. Linear Gyrokinetics With Large Gradients

In this section, we analyze the consequences of large equilibrium gradients for linear

collisionless electrostatic gyrokinetic stability, which will considerably change the

character of the toroidal ETG instability. We have already motivated the local and

linear limits in Section 2, and the electrostatic limit in Section 3.2. We now motivative

the collisionless limit of the electron gyrokinetic equation, which will be used for the

theoretical analysis.

The collisionless limit for electrons is justified by the small electron collision

frequency, νee � vte/qR. For JET shot 92174 at r/a = 0.9743, νee ' 4 × 104 Hz,

and vte/qR ' 3× 105 Hz. In gyrokinetic simulations, we found ETG instabilities to be
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insensitive to whether collisions are kept. However, for ITG scale instabilities at lower

frequencies, electron collisions can decrease the ITG growth rates and cause electrons

to be non-adiabatic, as we will see in Section 6.

Using the equations laid out in Section 2, we take the linear electrostatic

collisionless local limit of the gyrokinetic equation in Section 4.1. Analytically and

computationally, this limit is more straightforward, and includes key elements of the

pedestal microinstability linear physics that we wish to explain. Motivated by the

steep pedestal gradients, we explore the implications of steep equilibrium temperature

gradients on ETG instability in Section 4.2. Simple arguments based on balancing

terms with the same order of magnitude reveal how these steep gradients affect the

perpendicular scales of the instability and how magnetic shear determines the parallel

toroidal ETG mode structure, allowing the toroidal ETG mode to compete with the slab

ETG mode. In Section 4.3, we convert the gyrokinetic equation derived in Section 4.1

to an algebraic equation in order to analyze slab and toroidal ETG instabilities in the

presence of large equilibrium gradients. This is then used to derive an analytical ETG

dispersion relation that supports our simplified arguments.

4.1. Electrostatic Collisionless Local Limit

In this section, we take the electrostatic, linear, collisionless form of the gyrokinetic

equation. In this limit, Equation (3) is

∂hs
∂t

+ v‖b̂ · ∇Rshs + vMs · ∇Rshs =
ZseFMs

T0s

∂〈φtb1 〉
∂t

+
c

B
(∇Rs〈φ

tb

1 〉 × b̂) · ∇r
[∂ lnns

∂r
+
∂ lnTs
∂r

(msE
T0s

− 3

2

)]
FMs.

(18)

We have absorbed the toroidal mean flow in the convective derivative as a constant

Doppler shift, and neglected the equilibrium E×B shear, which is consistent with the

low flow ordering in Equation (16), and is justified in Section 7 with simulation results.

Substituting the expressions for φtb1 and hs in Equations (12) and (13) into

Equation (18) gives a Fourier-analyzed gyrokinetic equation,

−iωhs +
2πv‖
Lθ

∂hs
∂θ

+ ivMs · k⊥hs = −iωZseFMs

T0s

φtb1 J0

(k⊥v⊥
Ωs

)
+ iω∗s

[
1 + ηs

(msE
T0s

− 3

2

)]ZseFMs

T0s

φtb1 J0

(k⊥v⊥
Ωs

)
,

(19)

where J0 is a Bessel function of the first kind that comes from gyroaveraging φ
tb

1 . The

perpendicular wavenumber k⊥ is

k⊥ = kx∇x+ ky∇y =
[
kx − ky

(
ŝθ − r

q

∂ν

∂r

)]
∇x

+
∂ψ

∂r

1

Ba

ky

[
∇ζ +

(∂ν
∂θ
− q
)
∇θ
]
,

(20)
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where every function is evaluated at rc. We have also introduced the drift frequency,

ω∗s, and the stability parameter, ηs,

ω∗s ≡ −
c

B

T0s

ZseLns
(k⊥ × b̂) · ∇r =

c

Ba

T0s

ZseLns
ky, ηs ≡

Lns
LTs

. (21)

Note that the factor (k⊥ × b̂) · ∇r in ω∗s is only proportional to ky. The system of

equations is closed by the first order turbulent quasineutrality condition in Equation (6),

eφtb1 n0e

T0e

(ZiT0e

T0i

+ 1
)

+ 2π

∫
B

|v‖|
heJ0

(k⊥v⊥
Ωe

)
dEdµ

− 2π

∫
B

|v‖|
hiJ0

(k⊥v⊥
Ωi

)
dEdµ = 0,

(22)

where we used that the Jacobian of the gyrokinetic transformation is J =

∂(r,v)/∂(R, E , µ, ϕ) ' B/|v‖| [21].

We proceed to demonstrate how the presence of large equilibrium gradients changes

the perpendicular scales at which ETG can be strongly driven, and how in the presence

of these steep gradients, magnetic shear can act to determine the poloidal location where

the ETG mode has its maximum amplitude.

4.2. Slab Versus Toroidal ETG In Large Gradient Regions

In this section, we describe a novel type of toroidal ETG with anisotropic perpendicular

wavenumbers. Equation (22) contains two branches of electron temperature gradient

driven instability, slab [62, 63] and toroidal [64, 65]. These modes have been covered

extensively [30, 62, 63, 64, 65, 66]. Here, we give a very brief overview. In the

slab branch, the density perturbation is caused by a competition between the parallel

streaming and the radial E×B drift. For sufficiently large ηs, a large parallel compression

causes φtb1 to grow in time. For smaller values of ηs, the radial E×B drift term dominates

and we obtain stable electron drift waves. The toroidal instability is caused by magnetic

drifts, rather than parallel streaming, creating a compression that again, gives rise to

a destabilizing electric field for sufficiently large ηs. In both cases, at the onset of

instability, increasing the temperature gradients causes the linear instability to be more

virulent.

Motivated by the large temperature gradients in Figure 1(b), we proceed to

demonstrate that

R0

LTe
,
R0

LT i
� 1, (23)

has major implications for ETG stability. First, we present an intuitive, albeit non-

rigorous argument that will turn out to be incorrect. We then develop a more careful

argument, which reveals the distinctive new character of ETG modes in steep gradients,

which is very different to the more familiar lower gradient regime typical of the core.

Throughout this section, we shall assume that θ0 = 0. We will investigate the physics

of θ0 6= 0 in Section 5.3.
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First, we present the intuitive, albeit incorrect argument. For the electrons, since

R0/LTe � 1, we naively expect that the ratio determining the relative strength of the

drive frequency to the magnetic drift frequency to be large. Therefore, in the pedestal,

one might naively think that the drive for toroidal ETG is weak and independent of k⊥,

ω∗eηe
vMe · k⊥

∼ R0

LTe
� 1. (24)

Here, we use vMe · k⊥ ∼ k⊥v
2
te/ΩeR0 and ky ∼ k⊥. Comparing the size of the drive

frequency to the parallel streaming frequency, we obtain

ω∗eηe
k‖vte

∼ ky
k‖

ρe
LTe

. (25)

As we will show in Section 4.3, the ratios in Equations (24) and (25) must be of order

unity for a large toroidal and slab ETG growth rate, respectively (see Figure 6). Thus,

Equation (24) suggests that the magnetic drifts are small for every k⊥, whereas in

Equation (25), k‖ can become large to drive slab instability. One would therefore expect

slab ETG to be the dominant electron microinstability at all scales.

The above argument, however, suffers from a deficiency. It is naive to make the

assumption ω∗eηe/vMe · k⊥ ∼ R0/LTe (see Equation (24)) in the presence of magnetic

shear, because k⊥ varies along a field line (see Equation (20)). At large values of

|θ|, the radial component of the magnetic drift frequency becomes increasingly large

and can compete with the linear drive ω∗eηe, to allow the toroidal branch to become

unstable. Toroidal modes, with vMe · k⊥ ∼ ω∗eηe, are therefore possible because the

competition between the slab and toroidal modes has a k⊥ dependence, which arises

from the fact that vMe · k⊥ depends on both kx and ky, whereas ω∗e only depends on

ky. For convenience, we define the radial component of k⊥ in Equation (20) as

Kx = kx − ky
(
ŝθ − r

q

∂ν

∂r

)
. (26)

We now show that toroidal ETG modes with k⊥ ∼ Kx � ky can indeed compete with

the slab ETG at sufficiently small kyρi. Motivated by the eigenmodes in Figure 4 that

are localized far along a field line, we will make Kx large by taking ŝθ � kx/ky = ŝθ0

and ŝθ � (r/q)∂ν/∂r. Thus, for ŝθ large, we find

k⊥ ∼ Kx ∼ kyŝθ. (27)

Hence, for ŝθ � 1, the magnetic drift term that drives toroidal ETG can become

comparable to the drive term,

ω∗eηe
vMe · k⊥

∼ ky
k⊥

R0

LTe
∼ 1

ŝθ

R0

LTe
∼ 1, (28)

Thus, for sufficiently small kx, the toroidal mode must be driven far along the field line,

ŝθ ∼ R0

LTe
� 1. (29)

Through detailed analysis in later sections, we will indeed see that this explains the

toroidal ETG modes, which are often unstable at large distances along the field line (see

Figure 4). Recall that here θ is the ballooning angle, which has a range −∞ < θ <∞.
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When Equation (28) is satisfied, we will demonstrate with a local gyrokinetic

dispersion relation in Section 4.3 that when vMe ·k⊥ ∼ ω∗eηe, the toroidal ETG growth

rate becomes comparable to the slab ETG growth rate. This would seem to suggest

that toroidal ETG exists for all ky. However, for large ky and small kx, k⊥ρe ∼ ŝθkyρe
becomes so large that finite Larmor radius (FLR) effects from the electron gyromotion

become important. Thus, if R0/LTe � 1 and ŝθ � 1, for strongly driven toroidal ETG,

Kx has a maximum of the order of

Kxρe ∼ ŝθkyρe ∼ 1. (30)

If Kxρe is much larger than in Equation (30), then the growth rate will be strongly

electron FLR damped. Motivated by Equation (30), for a toroidal mode we expect ion

FLR damping to be very strong at kyρe � 1 with k⊥ρe ∼ 1. Thus, our analytic

treatment of toroidal ETG will assume hi = 0 because |J0(k⊥ρi)| � 1. Using

Equations (28) and (30), we obtain a scale for ky,

kyρe ∼
LTe
R0

. (31)

Given that the pedestal profiles have R0/LTe & ρi/ρe in the steep pedestal regions,

toroidal ETG can be unstable even at scales as large as kyρi . 1. Therefore, R0/LTe � 1

extends the minimum ky scale at which toroidal ETG modes can be strongly driven to

ion gyroradius scales or larger.

To obtain the parallel width of a toroidal ETG mode ∆θ, we balance the parallel

streaming term with the change in the magnetic drift over the mode width,

vte
qR0

∂he
∂θ
∼ ∆θ

∂

∂θ
(k⊥ · vMe)he. (32)

This is based on the conjecture that the magnetic drift profiles limit the parallel width

of the mode. The quantity ∆θ captures the width of the mode envelope, rather than

the oscillations within it, which would be captured by k‖. For the Taylor expansion of

the magnetic drift frequency in Equation (32) to be valid, ∆θ must be small, and as

a result, any scalings that we obtain from Equation (32) will only be valid as long as

∆θ � 1. Assuming that

∂he
∂θ
∼ he

∆θ
,

∂

∂θ
(k⊥ · vMe) ∼ k⊥ · vMe, (33)

and that magnetic drifts balance the drive frequency, as in Equation (28),

vMe · k⊥ ∼ ω∗eηe, (34)

we obtain a scaling for the mode width,

∆θ ∼
√

vte
qR0ω∗eηe

∼
√

1

qkyρe

LTe
R0

, (35)

where we use ω∗eηe ∼ kyρevte/LTe. Hence, higher values of R0/LTe, kyρe, and q make

the mode narrower. Using ŝθ ∼ R0/LTe, we obtain

∆θ

θ
∼ ŝ

√
1

qkyρe

(
LTe
R0

)3/2

. (36)
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In the pedestal, the quantity ∆θ/θ is small, whereas in the core, ∆θ/θ is of order unity.

Results from gyrokinetic scans in q, R0/LTe and kyρe are in fair agreement with the

scalings in Equation (35). We report these scans in Section 5.

To summarize thus far, pedestal toroidal ETG — where R0/LTe � 1 — has a very

different character to core toroidal ETG — where R0/LTe ∼ 1. In the pedestal, toroidal

ETG can be driven strongly at wavenumbers as small as kyρe ∼ LTe/R0 � 1, but with a

large effective radial wavenumber Kxρe ∼ 1, due to the mode being driven far along the

field line, ŝθ ∼ R0/LTe � 1. For pedestal toroidal ETG, the radial component of the

magnetic drift is essential for instability. In contrast, core toroidal ETG only becomes

unstable at much larger poloidal wavenumbers kyρe ∼ 1, and has a much smaller radial

wavenumber Kxρe � 1 due to θ ≈ 0. For core toroidal ETG, the in-surface poloidal

magnetic drift is essential to the instability drive.

Slab ETG is also shifted to larger perpendicular scales by R0/LTe � 1. Re-

examining Equation (25), and requiring a strong slab drive,

ω∗eηe
k‖vte

∼ kyρe
k‖R0

R0

LTe
∼ 1. (37)

Thus, the scale for which slab ETG can be strongly driven is

kyρe ∼ k‖R0
LTe
R0

. (38)

We place bounds on kyρe for the ‘pure’ slab ETG branch by considering two linear effects

that can constrain the parallel mode extent. The first constraint on the slab ETG mode

is that the mode is not too strongly FLR damped, which according to Equation (30),

requires

θ .
1

ŝ

1

kyρe
. (39)

A mode that oscillates only a few times before reaching the maximum value of θ in

Equation (39) has a parallel wavenumber k‖ ∼ kyρeŝ/qR0. Using Equation (38), we

find that such a mode would have R0/LTe ∼ ŝ/q. Electron temperature gradients

smaller than this value would be FLR damped. Since the gradients in the pedestal

satisfy R0/LTe � ŝ/q, we conclude that the FLR damping constraint on the electron

temperature gradient for the slab ETG mode is irrelevant in pedestals.

The second constraint on the slab ETG mode determines how far the mode can

extend in the parallel direction while still retaining a parallel streaming frequency that

is faster than the magnetic drift frequency. From Equation (28), the largest θ value a

mode can have before vMe · k⊥ and ω∗eηe become comparable is

θ .
1

ŝ

R0

LTe
. (40)

A mode that oscillates only a few times before reaching this value of θ has a parallel

wavenumber of order

k‖ ∼
ŝ

qR0

LTe
R0

. (41)
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A slab ETG mode with such a k‖ is the mode with the smallest kyρe value because,

for smaller values of kyρe, the mode would have to extend into the region of θ where

the magnetic drift is large. Thus, due to the magnetic drift condition, slab ETG modes

must satisfy

kyρe &
ŝ

q

(
LTe
R0

)2

. (42)

Thus, for a fast-growing ‘pure’ slab ETG mode, we require

ŝ

q

(
LTe
R0

)2

. kyρe . 1. (43)

Even though our simple estimates suggest that slab ETG modes can grow for

wavenumbers as small as kyρe ∼ (ŝ/q)(LTe/R0)2 ∼ 1/30000, we should point out that

kinetic ion physics is important at such large scales, and hence the slab ETG will be

modified at these very long wavelengths.

In principle, the above arguments are also valid for toroidal and slab ITG in the

collisionless limit with identical gradients. However, in the JET pedestal equilibrium

we have studied, R0/LTe > R0/LT i, which causes the ITG growth rates to decrease

substantially. Furthermore, in the pedestal the electrons are sufficiently collisional to be

non-adiabatic on ITG timescales; as we will show in Section 6, these electron collisions

also decrease the ITG growth rate. Indeed, we will see that the less steep measured

ion temperature gradients and collisions result in ITG being the subdominant mode

at all scales. For kyρi . 1, ITG is likely stable, and hence we do not expect ITG to

cause significant transport in the equilibrium and radial location studied in this paper.

For other JET pedestal equilibria that we studied in less detail, it was also true that

R0/LTe > R0/LT i in the steep gradient region; these equilibria had qualitatively similar

growth rate spectra to the equilibrium studied in this paper (see Section 8).

We now proceed to obtain an ETG dispersion relation using the approximations in

the previous sections. Its solutions will provide useful insights on toroidal ETG stability,

which will be used heavily in subsequent sections.

4.3. ETG Dispersion Relation

Formally solving Equation (19) for hs gives

hs =
−>ωs + >ω∗s

[
1 + ηs

(
v̂2
‖ + v̂2

⊥ − 3/2
) ]

−>ωs +
>
k‖sv̂‖ + σv̂2

‖ + >ω∇Bsv̂2
⊥/2

Zse

T0s

φtb1 FMsJ0

(√
2bsv̂⊥

)
, (44)

where the parallel wavenumber is the operator

ik‖hs ≡ b̂ · ∇hs, (45)

and we define bs and v̂ as

bs =
k2
⊥T0s

msΩ2
s

, v̂ =
v

vts
. (46)
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Figure 5: The functions Γ0 and Γ1 that appear in Equation (51).

We have non-dimensionalized quantities using the modulus of the curvature magnetic

drift frequency ωκs,

σ ≡ ωκs
|ωκs|

, >ω ≡ ω

|ωκs|
, >ω∇Bs ≡

ω∇Bs
|ωκs|

, >ω∗s ≡
ω∗s
|ωκs|

,
>
k‖ ≡

k‖vts
|ωκs|

, (47)

where

ωκs ≡
v2
tsk⊥
Ωs

·
(

b̂×
(
∇ lnB +

4π

B2

∂p0

∂r
∇r
))

, ω∇Bs ≡
v2
tsk⊥
Ωs

· (b̂×∇ lnB). (48)

We write the total magnetic drift frequency as

vMs · k⊥ = ωκsv̂
2
‖ + ω∇Bs

v̂2
⊥
2
. (49)

It is important to note that Equation (44) is valid for any value of θ0, since in this work

we are paying particular attention to the radial component of k⊥ (see Equation (20))

due to its importance for the toroidal ETG instability in steep temperature gradient

regions. Thus, bs, ωκs, and ω∇Bs depend on θ0; this differs from many previous works

where only the ∇y component of the magnetic drift frequency was retained.

As a simplified model, we will take k‖ to be a number. We obtain the ETG

dispersion relation by substituting Equation (44) into quasineutrality, as demonstrated

in Appendix C. For a single ion species, this gives

T0e

T0i

Zi + 1−
∑
s

Ds = 0, (50)

where Ds is given by

Ds =iZ2
s

T0en0s

T0sn0e

∫ ∞
0

dλ
Γ0(b̂σs )

(1 + iσλ)1/2

1

(1 + i>ω∇Bsλ/2)
exp

(
iλ>ω − (λ

>
k‖)

2

4(1 + iσλ)

)
×
[
− >ω + >ω∗s

(
1 + ηs

{ 1

1 + i>ω∇Bsλ/2
− 3

2

+
2(1 + iσλ)− (

>
k‖λ)2

4(1 + iσλ)2
− b̂σs

1− Γ1(b̂σs )/Γ0(b̂σs )

1 + i>ω∇Bsλ/2

})]
.

(51)
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Figure 6: Solutions to Equation (53) with ηe = 4.28. (a): growth rates for different

ω∗eηe and be with k‖ = 0. (b): growth rates versus k‖ for different values of ω∗e/ωκe with

be = 0 and ωκe > 0. (c): growth rates k‖ for different values of ω∗e/ωκe and be. Here, we

set ωκe = ω∇Be.

The quantities Γν and b̂σs are defined as

Γν(x) = Iν(x) exp(−x), b̂σs ≡
bs

1 + i>ω∇Bsλ/2
, (52)

where Iν is a modified Bessel function of the first kind. We plot Γ0 and Γ1 in Figure 5;

the function Γ0 will be used extensively in this work.

We have numerically solved Equation (50) in the adiabatic ion limit, hi = 0,

T0e

T0i

Zi + 1−De = 0, (53)

which is justifed by k⊥ρi � 1. For information on the numerical techniques used

to solve Equation (53), refer to Appendix C. In Figure 6, we solve Equation (53),

performing a scan in ω∗eηe/ωκe and k‖vte/ω∗eηe. Note that while for Figure 6 we have

set ωκe = ω∇Be, when we solve Equation (53) with the geometry for the discharge 92174

in forthcoming sections, we use the correct values of ωκe and ω∇Be (for example, see

Figures 10, 11 and 18). For the toroidal ETG mode, we observe two stability limits in

ω∗eηe/ωκe. Figure 6(a) shows that for be = 0, toroidal ETG instability only occurs when

1.4 . ω∗eηe/ωκe . 42, and we found no instability when ω∗eηe/ωκe < 0.

We observe in Figure 6(b) and (c) that increasing k‖ causes the ETG instability

to transition from the toroidal ETG branch to the slab ETG branch for the values

of ω∗eηe/ωκe where the toroidal mode is unstable. Generally, increasing be strongly

decreases the growth rate for both the toroidal and slab branches, although small

increasing values of be can can increase the growth rate, shown by comparing the

ω∗eηe/ωκe = 21 values in Figure 6(b) and (c).

The hi = 0 limit is generally an accurate description of toroidal and slab ETG

instability in the JET pedestal discharges we analyzed, as will be described in Section 5.



Toroidal and slab ETG instability in JET-ILW pedestals 24

0 1 2 3 4 5 6 7
kyρi

0

5

10

15

20

γa
/v

ti

Toroidal ETG

R0/LTe scans(a) Standard
R0
LTe

=260
R0
LTe

=65

0 1 2 3 4 5 6 7
kyρi

0

2

4

6

8

10

γa
/v

ti

Toroidal ETG

Slab ETG

Slab ETG

R0/LTi,R0/Ln scans(b) Standard
R0
LTi

=136
hi=0
R0
Ln
=62

R0
Ln
=16

Figure 7: Electrostatic GS2 growth rates for JET shot 92174 for 0.15 ≤ kyρi ≤ 7.0

and sensitivity scans, all with θ0 = 0. (a): R0/LTe scans. (b): R0/LT i and

R0/Ln scans. ‘Standard’ denotes simulations performed with the following parameters:

R0/LTe = 130, R0/LT i = 34, R0/Ln = 31. All of the fastest growing ‘Standard’ modes

at scales ky & 0.1 are ETG-like instabilities.

This is not surprising given that for the toroidal ETG instability we require Kxρe ∼ 1,

which means that hi ≈ 0 because of the large argument of J0 (see Equation (44)). For

the fastest growing slab ETG instability we usually find that kyρi � 1, again resulting

in hi ≈ 0. However, the hi = 0 approximation might not always be justified for kyρi ∼ 1

slab ETG instability, where FLR damping has not substantially decreased the size of

the ion kinetic response.

In the next section, we proceed to use gyrokinetic simulations to study ETG

stability in the pedestal. Of particular interest, consistent with the predictions of this

section, we will find both toroidal and slab ETG modes at scales kyρi ∼ (ρi/ρe)LTe/R0 .
1, and long poloidal wavelength toroidal ETG being unstable at ŝθ ∼ R0/LTe (for

θ0 = 0).
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Figure 8: (a): Ballooning eigenmodes for toroidal and slab ETG in GS2 simulations.

(b): Toroidal ETG eigenmodes in θM space with kyρi = 1.1, using the transformation in

Equation (54) at two locations: (1) x/ρi = −0.1, y/ρi = 0.0, and (2) x/ρi = 0, y/ρi = 0.

Location (1) is where the mode amplitude is maximum.

5. ETG Stability in JET Shot 92174

In this section, we describe ETG instability in electrostatic gyrokinetic simulations of

JET shot 92174 at r/a = 0.9743.

The layout of this section is as follows. We first discuss the character of the toroidal

and slab ETG instability in the pedestal in Section 5.1. In Section 5.2, we describe the

parallel dynamics of the toroidal ETG mode, detailing how its parallel location and

mode width are determined. In Section 5.3, the effects of a nonzero θ0 for the toroidal

ETG mode are analyzed, including an estimate for the quasilinear diffusion coefficient.

Then in Section 5.4, we study the critical temperature gradient for the toroidal ETG

mode described in Section 4.

5.1. Toroidal ETG Versus Slab ETG Instability

Gyrokinetic simulations show toroidal and slab ETG instability as the fastest growing

modes for kyρi & 0.1 for JET shot 92174. Unlike ETG instability in the core, where the

linear growth rate typically peaks at kyρe ∼ 1, we find instances of maximum toroidal

ETG growth rates at spatial scales as large as kyρi ∼ (ρi/ρe)LTe/R0 . 1, strongly

supporting the arguments in Section 4. We emphasize that very similar modes have

been seen in previous works [34, 35, 36, 29, 37, 38], but have not been explained until

now. For θ0 6= 0, we find toroidal ETG as the fastest growing mode at all spatial scales

between kyρi ∼ 1 and kyρe > 1, which we will discuss in Section 5.3. In Figure 7, we

show the growth rates of modes with θ0 = 0, where we find two dominant ETG modes:

for this specific pedestal location, the toroidal ETG branch is the fastest growing mode

for 1 . kyρi . 5. Once kyρi is sufficiently large (kyρi ≈ 5) the toroidal ETG is FLR
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Figure 9: Real space images at the outboard midplane (θM = ϑ = 0), and at ϑ = 1.6,

θM = 2.1, of a single toroidal ETG ballooning mode with kyρi = 1.1 and θ0 = 0.0

from GS2 simulations, demonstrating a relatively large radial wavenumber at both θM
locations, and that the mode has a larger amplitude at θM = 2.1 than at the outboard

midplane. These were obtained using the transformation in Equation (54). We define

the coordinates δR = R − RM(rc, θr) and δZ = Z − ZM(rc, θr), where θr = −0, 2.1

is the Miller poloidal angle of the image. The gyroradius ρi is evaluated on the usual

r/a = 0.9743 flux surface. Both plots are normalized to the same colorbar. Each box

is evaluated on the same x − y grid, and therefore each box is the same size in these

variables. The small red boxes on the flux surface are a realistic size for what the

plot domains would be in the experiment. The maximum absolute mode amplitude at

θM = 0 is about 25% of the mode amplitude at θM = 2.1. The specific θM = 2.1 location

was chosen as this was the location of the maximum value of φ
tb

1 , which can be seen in

Figure 8(b).

damped, and the slab ETG branch grows faster. The slab ETG branch is not FLR

damped as quickly as the toroidal branch because the slab branch generally satisfies

Kx ∼ ky.

We use several criteria to distinguish between the toroidal and slab ETG modes in

the pedestal. First, as predicted in Section 4, toroidal ETG modes have ∆θ/θ � 1, and

have a θ location that satisfies ŝθ ∼ LTe/R0 for |θ0| sufficiently small. Parameter scans

can also be used to determine whether the location along a field line of a suspected

toroidal ETG mode changes as predicted by Equation (29). In contrast, slab ETG

modes tend to have a much larger k‖ (at a fixed kyρi), and to have eigenmodes that are

centered around θ = 0. In Figure 8, we show both toroidal and slab ETG eigenmodes in
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Figure 10: Growth rates. (a): GS2 scan in R0/LTe, (b): GS2 scan in T0i/T0e, and (c):

theory scan in T0i/T0e. These scans show the value of kyρi for the peak growth rate of

the toroidal ETG mode shifting. For T0i/T0e scans, T0i was fixed and T0e was allowed

to vary. (b): growth rates from GS2 simulations with consistent collisionality. (c):

the collisionless dispersion relation in Equation (53) was solved, along with a Fourier-

transformed value of k‖ for each kyρi mode, described in Section 5.2. The numbers in

parentheses in the legend for (a) are the multiples of the correct R0/LTe value.

(a). To go from ballooning angle θ to the physical poloidal angle ϑ, where −π ≤ ϑ ≤ π,

we use the ballooning transform,

φ
tb

1 (ϑ, x, y) =
∞∑

p=−∞

φtb1 (ϑ− 2πp) exp

(
ikyxŝ

(
ϑ− 2πp− r

ŝq

∂ν

∂r

)
− ikyy

)

+
∞∑

p=−∞

φtb1
∗
(ϑ− 2πp) exp

(
−ikyxŝ

(
ϑ− 2πp− r

ŝq

∂ν

∂r

)
+ ikyy

)
,

(54)

where ∗ denotes a complex conjugate. In Figure 8(b), the toroidal ETG eigenmode is

plotted against the Miller angle θM for x/ρi = 0, y/ρi = 0 and for x/ρi = −0.1, y/ρi =

0.0. We have normalized the mode such that the maximum of φ
tb

1 is 1, and we have

chosen the mode’s phase such that the maximum is located at y = 0. The maximum

value of φ
tb

1 occurs at x/ρi = −0.1. In Figure 9, we show the real space picture of the

mode at the outboard midplane (θM = 0) and where the amplitude is maximum, at

θM = 2.1. As expected, the toroidal ETG modes have Kx � ky at both the outboard

midplane and at θM = 2.1, and the maximum amplitude is far away from the outboard

midplane. To make the plots in Figure 9, we first evaluated Equation (54) for kyρi = 1.1

on a uniform x, y grid. We then performed a change of variables from x, y to R,Z using

the Miller formulas for RM and ZM . Finally, we changed from ϑ to θM variables.

To investigate the character of the toroidal and slab ETG modes, we have performed



Toroidal and slab ETG instability in JET-ILW pedestals 28

a scan in equilibrium gradients, as shown in the linear gyrokinetic spectrum in Figure 7.

Our simulations indicate that the fastest growing toroidal ETG modes are driven

strongly by R0/LTe because they depend strongly on this parameter, as shown in

Figure 7(a). Conversely, these modes are relatively insensitive to R0/Ln, and do

not depend on R0/LT i. Modifying R0/Ln mainly affects the slab ETG growth rate,

determining at which kyρi it will exceed the toroidal ETG growth rate. Kinetic ion

physics is usually unimportant for toroidal ETG instability because k⊥ρi � 1. This

is demonstrated by the linear spectrum for the toroidal ETG being unchanged when

the non-adiabatic part of the ion distribution function is artificially set to zero, hi = 0,

shown Figure 7(b). The simulation results in Figure 10 also show higher R0/LTe and

smaller T0i/T0e shifting the maximum growth rate of the toroidal ETG instability to

a smaller kyρi, as predicted by Equation (31). Unlike the wavenumber of the fastest

growing modes, the size of the maximum growth rate in the range of wavelengths shown

depends of T0e/T0i in a non-trivial way. We show in Figure 10 that this dependence is

consistent with a theory that we describe in Section 5.2.

To understand the θ location of the toroidal ETG eigenmodes, we solve the

dispersion relation in Equation (53) locally for JET shot 92174 at each value of θ by

choosing ky and k‖, and by using ωκe, ω∇Be and be from the Miller equilibrium. This is

an approximation that assumes the mode’s growth rate is local in θ. Note that k⊥ in

Equation (20) is a function of θ. By solving the dispersion relation, we obtain a set of

frequencies as a function of θ. Figure 11(c) shows the growth rates along θ with k‖ = 0

(for the present discussion, consider only the curve labeled ’Standard’; the curve labeled

‘ωMe → −ωMe’ will be discussed in Section 5.2). For θ0 = 0, we find that the maximum

growth rates are at |θ| ' 7.7 with the standard sign of ωκe and ω∇Be. This θ location is

very close to the θ where GS2 toroidal ETG eigenmodes have their maximum amplitude,

as shown by comparison of Figure 11(a) and (c). Therefore, the parallel location of the

toroidal ETG is fairly well described by our model.

One prediction of Section 4 was that the toroidal ETG mode is driven most strongly

at ŝθ � 1 when R0/LTe � 1. This causes the kyŝθ∇x term in k⊥ in Equation (20)

to become particularly large. In Figure 8, we show that the toroidal ETG eigenmodes

are indeed driven at ŝθ � 1. As an experiment, we set the kyŝθ∇x component of vMe

to zero. As expected, the toroidal ETG mode was not driven, and slab ETG was the

fastest growing mode.

In JET shot 92174, slab ETG instability is the fastest growing mode for kyρi & 5

when θ0 = 0 — however, the ‘slab’ ETG we observe is not always the conventional slab

ETG with ωκe = ω∇Be = 0. By artificially turning the magnetic drift off in gyrokinetic

simulations, we observed that the slab ETG growth rate was reduced by factors of order

unity. As shown in Figure 12, the slab ETG eigenmodes have quite a wide θ extent,

especially for smaller kyρi where FLR effects are less strong, and hence the magnetic

drift, which increases for increasing θ, can have a strong impact on the character of the

slab ETG in the pedestal. As kyρi increases, FLR effects become stronger and the slab

ETG eigenmode becomes more localized near θ = 0. Hence, when we refer to the ‘slab’
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Figure 11: (a): two eigenmodes obtained from two separate GS2 simulations, and the

function Γ0(be) for kyρi = 3.4. When ωMe → −ωMe, the mode moves to a location

where the sign of ωMe allows instability, where ωMe refers to either ωκe or ω∇Be. (b) The

quantities ω∗eηe/ωκe and ω∗eηe/ω∇Be. The eigenmodes in (a) have their maxima in bad

curvature regions, corresponding to ω∗eηe/ωMe > 0. (c): finding the growth rates for

the ETG dispersion relation in Equation (53) for two signs of ω∗eηe/ωMe in JET shot

92174. Note how the maximum growth rates in (c) roughly align with the eigenmode

maximum in (a). Horizontal red and blue lines denote the eigenmode location for the

two signs of ωMe in (a). Here, ω∗e < 0, ηe = 4.28, kyρi = 3.4, k‖ = 0, θ0 = 0.

ETG in the pedestal simulations described in this paper, we refer to the modes with a

k‖ much larger than the toroidal ETG, but also sometimes with a significant magnetic

drift contribution.
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Figure 12: Electrostatic slab eigenmodes from GS2 for kyρi > 7.0 instabilities at

θ0 = 0.05. The corresponding linear growth rates are shown in the inset.

The toroidal ETG modes are not affected by kinetic ion physics due to their large

radial wavenumber Kxρi � 1, but the ions can modify the slab ETG modes slightly

when kyρi ∼ 1, as we demonstrate in Figure 7, where we show results with the full ion

kinetic response and with hi = 0. This is consistent with the fact that slab modes with

kyρi ∼ 1 have Kxρi ∼ 1. We have checked that hi becomes unimportant at larger values

of kyρi.

Note that the slab ETG modes in Figure 12 are asymmetric. This asymmetry is

not a result of our choice of θ0 because we observe it in modes with θ0 = 0. Due to

the symmetry of the gyrokinetic equation described in [60], for θ0 = 0, if one obtains

an asymmetric mode, there must be two modes with opposing asymmetry that grow at

the same rate. We have run our simulations with a small value of θ0 to avoid getting

a linear combination of these two modes — the final result would depend on the initial

conditions in this case.

Thus far, using the method described above to solve the dispersion relation in

Equation (53), we found we could predict the parallel location of the toroidal ETG

modes. We next describe the physics that determines the parallel location and width of

the toroidal ETG mode in more detail.

5.2. Location And Width Of The Toroidal ETG Mode

We now discuss the parallel location and width of the toroidal ETG mode. The parallel

location of the toroidal ETG mode is subject to four main constraints:

(i) The mode can only be driven in bad curvature regions, ω∗eηe/ωκe > 0,

which eliminates roughly half of the parallel domain.

(ii) The mode is only unstable when A > ω∗eηe/ωκe > C. According to the results

in Figure 6(a), for toroidal ETG instability the value of ω∗eηe/ωκe must be above
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Figure 13: A stability plot for the toroidal ETG mode, combining theory and GS2

simulations. For (a), the small red be = 0 stable region corresponding to 0 < ω∗eηe/ωκe .
1.8, is obtained from Figure 6. The blue be = 0 stable region is also obtained from

Figure 6, and corresponds to ω∗eηe/ωκe & 42. This is valid for θ0 = 0 and kyρi = 1.1.

(b): quantity Γ0(be) versus θ for kyρi = 1.1. (c): the associated eigenmodes from GS2

with different temperature gradients, demonstrating that these modes are centered close

to local maxima in Γ0(be), and that increasing R0/LTe moves the mode to larger ŝθ,

predicted in Equation (31). Only for (c), we artificially lowered ŝ → 1.68 to make the

mode more mobile in θ. Dashed vertical lines show the local maxima of Γ0(be) in bad

curvature regions.

some critical value C for instability, but not larger than another critical value

A. Consistent with Figure 6(a), we observe that no toroidal ETG modes with

θ0 = 0 can exist at |θ| . 6; this is because ω∗eηe/ωκe is too large and the bad

curvature region is too narrow, as shown in Figure 13(a) (note that for smaller

values of R0/LTe, the θ0 = 0 toroidal ETG mode can have its maximum amplitude

at |θ| . 6 because ω∗eηe/ωκe is smaller — see Section 5.4). Note that we discuss

‘good’ and ‘bad’ curvature using the quantity ω∗eηe/ωκe rather than ω∗eηe/ω∇Be
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Figure 14: (a): linear growth rates from GS2 for different ŝ values with R0/LTe = 520.

(b): corresponding eigenmodes for kyρi = 2.6.

because in the regions where the toroidal ETG mode is typically most unstable

(at large |θ|), ωκe/ω∇Be ' 1 (see Figure 11(b), for example). There are important

exceptions, which occur for θ0 6= 0 with larger values of kyρi, which we discuss

briefly in Section 5.4.

(iii) The parallel extent of bad curvature regions must be sufficiently wide. We

require that the ‘bad curvature’ regions not be too narrow in the parallel direction;

if this is the case, then the mode acquires a large value of k‖ and becomes damped.

(iv) The mode maximum is close to a local maximum in Γ0(be). The maximum

amplitude for the fastest growing toroidal ETG mode (at a given kyρi) is usually

centered close to a local maximum in Γ0(be) (or equivalently a local minimum in

be) to limit FLR damping. We choose to plot the quantity Γ0(be) rather than be
to demonstrate the importance of FLR damping at different θ locations. This is

because Γ0(be) ∈ [0, 1], and therefore it is easier to convey the size of FLR damping,

whereas be is unbounded and can become extremely large. Furthermore, the term

Γ0(be) appears directly in the dispersion relation in Equation (51), and thus is a

good measure of the size of FLR effects.

As an experiment, we artificially reversed the signs of the magnetic drifts in GS2.

As expected, the toroidal ETG modes only grew in regions that were previously ‘good

curvature’ regions, which due to the sign reversal of ωκe, are turned into ‘bad curvature’

regions. This is shown in Figure 11, being substantiated both by GS2 simulations

(Figure 11(a)) and the results of our model ETG dispersion relation (Figure 11(c)).

Since ω∗eηe is fixed for a given kyρi, the θ location will be such that ωκe and be have

the right value for maximum growth subject to FLR and curvature constraints. These

constraints are shown in Figure 13(a) and (b). According to Figure 13(a) and the above

arguments, the smallest |θ| that a mode with θ0 = 0 can occupy is |θ| ' 6.5. We denote

this minimum θ location as θmin. The toroidal ETG mode cannot occupy a smaller |θ|
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Figure 15: (a): growth rates versus kyρi. (b): corresponding eigenmodes and the

functions Γ0(be) and ω∗eηe/ωκe. The toroidal ETG mode shifts due to changing kyρi,

predicted by Equation (31). Here we have set ŝ = 0.45 and R0/LTe = 520, allowing the

mode to be very mobile in θ. The values of Γ0(be) are evaluated for kyρi = 5.9.

value because either ω∗eηe/ωκe < 0, ω∗eηe/ωκe is too large, or the bad curvature region

is too narrow.

From these considerations, there are several obvious parameters that can change

where the mode is located. As already predicted in Equation (31), a larger R0/LTe
causes a mode to be unstable at larger θ values; in Figure 13(c) we show that increasing

R0/LTe increases the θ location of the mode. In Figure 13(c), we use a smaller value of ŝ

(1.68 instead of 3.36), since we found that, for larger values of ŝ, increasing R0/LTe was

not particularly effective at shifting the mode to larger values of |θ| — this is because

be increases nonlinearly with ŝ, and once ŝ is sufficiently large, a toroidal ETG mode

becomes significantly more FLR damped as it moves along θ. The parallel location

of the modes with different values of R0/LTe agrees well with the curvature and FLR

constraints discussed above. Smaller ŝ and kyρi also force the mode to larger θ — as

predicted in Equation (31), the shifting of modes due to ŝ and kyρi is shown in Figures 14

and 15, respectively.

Figure 14(a) illustrates that the toroidal ETG growth rate is relatively insensitive

to ŝ, until ŝ exceeds a threshold value. Recall that ω∗eηe/ωκe ∼ R0/LTeŝθ. This implies

that if ŝ changes, then a toroidal mode would move in θ to have a R0/LTeŝθ that

maximizes its growth rate. As ŝ increases, the θ location will decrease. However, the

mode cannot be driven linearly unstable below θmin, so at a critical value of ŝ the mode

will become increasingly stabilized by FLR effects while the mode maximum remains at

fixed θ = θmin. In Figure 14(a), we show that increasing ŝ beyond some critical ŝ indeed

decreases the growth rate of the toroidal ETG mode. This increase in ŝ once the mode

was at θmin increased k⊥, and hence caused its growth rate to be lower than the slab

ETG mode — this occurred for a value of ŝ somewhere between ŝ = 3.4 and ŝ = 10 in
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Figure 16: (a): toroidal ETG eigenmodes for different values of kyρi, and numerical

definition of ∆θ used in subsequent subplots. (b): Numerical (solid) and predicted

(dashed) ∆θ versus q scaling, (c): ∆θ versus R0/LTe scaling, (d): ∆θ versus kyρi scaling.

Figure 14(b).

The θ location of the mode also depends strongly on kyρe, as shown in Figure 15(b)

where we ran GS2 simulations with a smaller value of ŝ = 0.45 and an increased value

of R0/LTe, which makes the location of the mode more sensitive to changes in ky.

Clearly, the eigenmodes are centered very close to a local minimum in be. The toroidal

ETG modes are close to this minimum because of a competition between the size of

the magnetic drift and FLR effects; as shown in Figure 6, the growth rates are very

sensitive to be. Careful inspection of the growth rates in Figure 15(a) reveals that there

is a change in mode type as the mode jumps to a new θ location — this can be seen by

discontinuities in ∂γ/∂ky.

We now examine the scalings for the mode width from Equation (35) by comparing

them with toroidal ETG eigenmodes from GS2 simulations. We calculate the width

∆θ as the length in θ for the half height of the mode; this is shown in Figure 16(a).

Equation (35) predicts that the mode width ∆θ scales with R0/LTe, kyρi, and q as

∆θ ∼
√
LTe/R0kyρeq. Scans in these quantities, shown in Figure 16, demonstrate

increasing R0/LTe, kyρi, and q narrows the toroidal ETG mode structure. However,

the scaling exponents do not appear to be quantitatively correct. The theoretical

scaling ∆θ ∼
√
LTe/R0kyρeq in Equation (35) is not perfect because the mode changes

location. Indeed, since the parallel location of the mode is sensitive to q, kyρi, and

R0/LTe, changing the location of the mode by changing these parameters changes the

local derivative of vMe · k⊥, and hence changes ∆θ. Additionally, because we have used

a Taylor expansion assuming that the variation in vMe · k⊥ is proportional to ∆θ, this
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Figure 17: (a): the Fourier transformed coefficient |φ̂tb1 (m)|2 spectrum for 2 modes from

GS2 with different values of kyρi. (b): eigenmodes. (c): the k‖ associated with the

largest coefficient |φ̂tb1 (m)|2 in (a). (d): growth rates. All of these plots have θ0 = 0.02.

expansion breaks down when ∆θ becomes too large.

As the toroidal ETG instability is FLR damped at increasing ky, the mode switches

to the slab branch, with an accompanying increase in k‖. The switch from toroidal to

slab at fixed ky is shown in the simple dispersion relation used to plot Figure 6(c). At

this transition, k‖ for the slab mode is much larger than the toroidal mode and the

eigenmodes move from being quite localized around a large value of θ, to oscillating

rapidly about smaller θ, as shown in Figure 8(a).

To demonstrate this transition, we need to define k‖. Our choice of θ in

Equation (11) is such that θ is proportional to the length along the magnetic field

line. Thus, Fourier analyzing in θ is equivalent to obtaining the spectrum in k‖.

To carry out the Fourier transform, we first interpolate φtb1 (θ) onto a regular θ

grid, since GS2’s θ grid is not usually regularly spaced. Next, we apply a Fast Fourier

Transform [67] to obtain the Fourier transform of φtb,

φ̂tb1 (m) =

∫ ∞
−∞

φtb1 (θ) exp(−imθ)dθ. (55)

The relation between m and k‖ is

k‖ =
2π

Lθ
m. (56)

Figure 17(a) shows that the power spectrum |φ̂tb1 |2 changes significantly at the transition

between toroidal and slab ETG. The toroidal ETG spectrum is Gaussian whereas the

slab spectrum is more complicated, with at least two peaks. It is noteworthy that
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Figure 18: The growth rates obtained in theory and in GS2. For the toroidal ETG

growth rate, we found the θ with the highest growth rate for Equation (53), which

occurred at θ = 7.7, and for the slab ETG growth rate, we evaluated the dispersion

relation at θ = 0.0 (note that ωκe is nonzero at θ = 0). The k‖ input for the toroidal

ETG was obtained by Fourier transforming the GS2 eigenmodes for each ky, and for

the ‘1.25k‖’ series, we multiplied all k‖ values by 1.25.

the toroidal ETG has a non-zero k‖ for its fastest growing mode since theory predicts

toroidal ETG with the highest growth rate at k‖ = 0, shown in Figure 6. Previous

studies of toroidal ETG have also found k‖ = 0 as the fastest growing mode [23].

We now use Equation (55) to calculate the toroidal ETG growth rates for a range

of kyρi. Our analytic model requires k‖ as an input, which we obtain from GS2 by

choosing the value of k‖ that corresponds to the largest amplitude in the poloidal Fourier

transform φ̂tb1 . Once we have obtained k‖ from the GS2 data for each value of kyρi, we

solve the model dispersion relation in Equation (53) for each value of θ, inputting the

correct value of k⊥, ωκe, and ω∇Be at each θ location. For each kyρi value, we take the

growth rate from the θ location with the highest growth rate to be the growth rate of the

toroidal ETG mode for that kyρi. There is excellent agreement between the θ location

with the highest growth rate by solving Equation (53) and the eigenmode maximum

from GS2. This method for calculating k‖ gave a toroidal ETG growth rate reasonably

close to the values obtained from GS2 shown in Figure 18, as well as the kyρi location

of the peak. Surprisingly, this method also gives a very good approximation to the slab

ETG growth rate even though slab ETG modes are very extended (see Figure 12).

The theory presented in this paper cannot self-consistently calculate k‖ and thus we

have used solutions with a k‖ associated with the numerical simulations. Until now, our

analysis has been performed with θ0 = 0. In the next section, we extend our analysis to

toroidal ETG with a nonzero value of θ0.
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5.3. Effects of θ0

We now consider ETG instability for θ0 6= 0. The growth rate of microinstabilities and

MHD ballooning instabilities has a complicated dependence on θ0. Previous works have

found that nonzero θ0 can substantially change the growth rates for toroidal ITG [68,

47], ETG [35, 36], and MTMs [32]. For MHD ballooning modes, it was found that for

smaller pressure gradients, increasing |θ0| is stabilizing, but once the gradients become

sufficiently large, increasing |θ0| is destabilizing [69].

As briefly discussed in Section 3, we find that increasing |θ0| can substantially

increase the toroidal ETG growth rate, shown in Figure 19(a). For many values of θ0,

the toroidal ETG mode can be the fastest growing mode not only at ion scales, kyρi ∼ 1,

but at scales smaller than the electron gyroradius: kyρe > 1. To be precise, we find

that at low values of kyρi (kyρi . 2), the toroidal ETG has a similar growth rate for all

values of θ0, whereas for larger values of kyρi, the toroidal ETG growth rate becomes

very strongly dependent on θ0. We proceed to explain why.

For kyρi . 2, the location and growth rate of the toroidal ETG mode are fairly

independent of θ0, as shown in Figure 19(a) and (b). For such small values of kyρi,

FLR damping is weak at many θ locations, that is, k⊥ρe � 1 (and hence Γ0(be) ≈ 1) in

many distinct bad curvature regions. Since Γ0(be) ≈ 1 in multiple regions, the fastest

growing mode will be located at θ where ω∗eηe/ωκe is optimal. The value of ω∗eηe/ωκe
is modified by θ0, shown in Figure 19(f). The modification is particularly noticeable for

|θ| . 6, where there are regions of much smaller values of ω∗eηe/ωκe when θ0 is nonzero.

For example, for θ0 = −1.05, Figure 19(f) shows that ω∗eηe/ωκe has values as small as

ω∗eηe/ωκe ' 15− 30 for 1 . θ . 2. While this value of ω∗eηe/ωκe is appropriate to have

an unstable toroidal ETG mode, at larger values of |θ| there exists an even smaller value

of ω∗eηe/ωκe (recall that smaller ω∗eηe/ωκe typically gives higher growth rates as long as

ω∗eηe/ωκe & 2− 3, see Figure 6). Again considering the θ0 = −1.05 mode, we see that

ω∗eηe/ωκe ' 3 − 10 for −8 . θ . −7. Because we are currently considering relatively

small values of kyρi, the FLR damping at θ = −7.7 is not much stronger than at θ = 1.5

(see Figure 19(g)). Therefore, a mode at θ ' −7.7 grows faster than a mode at θ ' 1.5.

The kyρi = 2.11 modes in Figure 19(b) (all with θ0 ≤ 0) have their maximum amplitude

at θ = −7.7 rather than θ = 7.7 because FLR damping is slightly weaker at θ = −7.7.

Because both the ω∗eηe/ωκe profiles and the Γ0(be) profiles are not strongly dependent

on θ0 for |θ| & 6 (see Figure 19(f)), the location of the toroidal ETG modes and their

associated growth rates are almost independent of |θ0| for kyρi . 2, although the sign

of the θ location does depend on sign(θ0).

We now consider what happens for larger values of kyρi. Here, the Γ0 profiles are

much more strongly dependent on θ0, as shown in Figure 19(h). For θ0 = 0, as kyρi
increases the toroidal ETG mode cannot grow at a smaller value of |θ| because either

ω∗eηe/ωκe is too large, or the bad curvature region is too narrow, causing the mode

to have a stabilizing value of k‖. Hence, the θ0 = 0 toroidal ETG mode becomes

increasingly FLR damped as kyρi increases and at kyρi ' 5, the slab ETG mode
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Figure 19: The effect of θ0 on growth rates and eigenmodes. (a): growth rates with

three values of θ0. Vertical dashed lines indicate the kyρi values for the eigenmodes

that are shown in (b), (c), (d), and (e). (b), (c), (d), and (e): eigenmodes for

kyρi = 2.11, 6.34, 21.15, 49.35 and different θ0. (f): ω∗eηe/ωκe for different θ0; for |θ0|
sufficiently large, new good curvature regions near θ = 0 appear. (g) and (h): Γ0(be) for

different θ0 at two values of kyρi. Vertical solid lines on rows 2 - 5 indicate the maximum

amplitude of a selected toroidal ETG eigenmode for a given θ0; if the eigenmode is not

shown for a given kyρi, then the fastest growing mode for that kyρi is not a toroidal

ETG mode. Rows 2-5 share the same θ axis. Consistent coloring and linestyle series is

used throughout the plot, determined by the legend in (a).
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Figure 20: Growth rate-associated quantities from GS2 simulations. (a): contour plot

of growth rates versus θ0 and kyρi. (b): contour plot of γ/k2
⊥ versus θ0 and kyρi. (c):

location of the maximum of |φtb1 |, θMax. (d): the maximum value of γ/k2
⊥ (over all θ0

values) for each value of kyρi.

overtakes the FLR damped toroidal ETG mode to become the fastest growing mode

(see Figure 19(a)). However, for nonzero θ0, the toroidal ETG mode can grow at a

smaller value of |θ| where FLR damping is much weaker, and have a high growth rate

because ω∗eηe/ωκe is sufficiently small. A consequence of the toroidal ETG mode moving

to a bad curvature region with reduced FLR damping is that modes can be unstable in

a wide range of poloidal locations, even close to the inboard midplane of the tokamak,

a region that has traditionally been considered to have ‘good curvature’ for all values

of θ0 (see Figure 11(b), where even the toroidal ETG mode with θ0 = 0 is unstable

close to the inboard midplane). However, the maximum eigenmode amplitude for the

fastest growing mode is typically close to θ mod 2π ' ±π/2, which is mainly due to

local magnetic shear making a local maximum in Γ0 at θ mod 2π ' ±π/2.

As shown in Figure 19(c), (d), and (e), for nonzero θ0 and larger values of kyρi, the

mode moves to a θ location that satisfies θθ0 < 0. This can be explained by including
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θ0 in the scaling for ω∗eηe/ωκe,

ω∗eηe
ωκe

∼ ky
k⊥

R0

LTe
∼ 1

ŝ(θ0 − θ)
R0

LTe
∼ 1. (57)

Hence, at larger values of kyρi when a mode needs to move to a location with a smaller

|θ| value, it will choose the location where θθ0 < 0 in order to make ω∗eηe/ωκe small.

To summarize, for smaller values of kyρi (here kyρi . 2), FLR effects are relatively

weak in multiple bad curvature regions, allowing the toroidal ETG mode to choose

between multiple θ locations in order to find the optimal value of ω∗eηe/ωκe. For the

equilibrium considered in this paper, this occurs for |θ| & 6. However, when kyρi is

much larger and θ0 = 0, FLR damping prevents instability at higher values of |θ|, even

though bad curvature regions still exist there. For larger kyρi and θ0 6= 0, instability

becomes possible at lower |θ| values due to modest FLR damping in select regions near

θ = 0.

To gauge the relative importance of toroidal and slab ETG modes for transport,

we calculate the quantity γ/k2
⊥ for all modes at 1 . kyρi . 230 and |θ0| < π. The

quantity γ/k2
⊥ is a rough quasilinear estimate for the transport diffusion coefficient

of the mode. To estimate k⊥ for each mode, we find the θ location with the largest

eigenmode amplitude, and calculate k⊥ at that location. In Figure 20(a), we show the

growth rates versus θ0 and kyρi. There is a notable maximum in the growth rate at

kyρi ≈ 80 and θ0 = 0 (which corresponds to a slab ETG mode). In Figure 20(b) we

show the quantity γ/k2
⊥ — normalized and presented as the dimensionless parameter

γa/vtik
2
⊥ρ

2
i — versus θ0 and kyρi. We observe that γ/k2

⊥ has its largest values across a

wide range of kyρi and θ0 scales, 5 . kyρi . 100 and |θ0| . 1.5. Most of these modes

are toroidal ETG, although when θ0 = 0 and kyρi & 5, the fastest growing mode is a

slab ETG mode. We stress that the quantity γ/k2
⊥ is only an approximate measure, and

that nonlinear simulations will be needed to ascertain which modes are most important

for transport. In Figure 20(c), we plot the |θ| location of the maximum of |φtb1 |, denoted

as |θMax|; we see that modes with large values of γ/k2
⊥ tend to have 0 . |θMax| . π/2. In

Figure 20(d), for each kyρi we plot the normalized value of γ/k2
⊥ that is maximum over

θ0. This plot demonstrates that there is a comparable quasilinear diffusion coefficient

estimate for all fastest growing modes between 1 . kyρi . 100, and hence suggests that

a wide range of kyρi values might be important for transport.

While significant heat might be transported by toroidal ETG modes, they are

unlikely to transport particles because the ions are very close to adiabatic (see

Figure 7(b)). However, since the ions are not fully adiabatic for the slab ETG at lower

kyρi (see Figure 7(b)), the long wavelength slab ETG instability could cause particle

transport. Finally, the ‘extended ETG’ modes, which are the fastest growing modes for

0.1 . kyρi . 1 (see Appendix B), can also have a large non-adiabatic ion response, and

thus they too, may cause particle transport.

Next, we show how the values of θ0, θmin, and ŝ determine the critical temperature

gradient of the toroidal ETG mode.
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5.4. Critical R0/LTe

We now discuss the critical temperature gradient for the toroidal ETG instability that

we are studying. We find critical R0/LTe values as large as R0/LTe ≈ 40 for toroidal

ETG modes in the pedestal (see Figure 21(a) and (b), and Figure 22(a)), significantly

larger than in the core. Unless mentioned otherwise, the quantity ηe will be kept fixed,

to prevent the ETG from becoming stable due to ηe being less than its critical value.

We want to understand the dependence of the critical R0/LTe on different

parameters. Recall from Figure 6(a) that there exists a stability boundary ω∗eηe/ωκe
for the toroidal ETG mode; that is, for instability we require

ω∗eηe
ωκe

> C. (58)

For be = 0, C ' 2. Given that ω∗eηe/ωκe ∼ R0/ŝθLTe, and that ŝ and R0/LTe are

fixed parameters, the only free parameter in our scaling theory for the ratio ω∗eηe/ωκe
for a given equilibrium is θ (note that C in Equation (58) is weakly dependent on θ,

because C depends on be, which in turn depends on θ). For the toroidal ETG mode to

be unstable we then require

R0

ŝLTe

1

C
& θ & θmin. (59)

The quantity θmin is determined by the profiles of ω∗eηe/ωκe and Γ0 (see discussion at

start of Section 5.2). If a simulation only resolves up to θ < θmin in ballooning space (or

equivalently insufficiently large values of |Kx|), a toroidal ETG mode might incorrectly

appear to be stable.

Numerical results have shown that θmin is only very weakly dependent on R0/LTe,

but can be strongly dependent on θ0, and on ŝ for large values of ŝ. For now we set

θ0 = 0, but will soon consider the θ0 6= 0 case. Thus, from Equation (59) we obtain a

critical gradient, R0/L
crit
Te ,

R0

Lcrit
Te

≈ ŝθminC. (60)

We first demonstrate the ŝ and θmin scaling of the critical temperature gradient by

performing a scan in R0/LTe for three different values of ŝ, shown in Figure 21(a). Here,

ηe and ηi are held fixed to avoid the ηs stability boundary. This scan is performed in

GS2 for kyρi = 2.8 with the standard pedestal equilibrium we have used before, except

for changing the value of ŝ. In Figure 21(a), we see that θmin ' 2 for ŝ = 3.4, as

shown by the eigenmode in Figure 21(c). For this value of ŝ, the eigenmode can have a

relatively small value of θmin because of the bad curvature region (ω∗eηe/ωκe > 0) that

appears at θ ' 2 in Figure 21(e). Once ŝ is decreased, the smallest possible value for the

mode appears to be θmin ' 8.5, as shown in Figure 21(c) and (e). Due to the scaling of

R0/L
crit
Te in Equation (60), a much larger value of θmin causes R0/L

crit
Te to increase, shown

in Figure 21(a). Both the cases ŝ = 0.8 and ŝ = 1.7 have the same value of θmin ' 8.5,

but the ŝ = 1.7 case has a much higher R0/L
crit
Te due to its value of ŝ being larger. Thus,
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Figure 21: Stability plots of the toroidal ETG mode with kyρi = 2.8. (a): growth rate

scan in R0/LTe with ηe and ηi fixed for three values of ŝ. (b): growth rate scan in R0/LTe
with R0/Ln and R0/LT i fixed for three values of ŝ. (c): eigenmodes corresponding to

values of R0/LTe denoted by the markers in (a). (d): eigenmodes corresponding to

values of R0/LTe denoted by the markers in (b). (e): the quantity ω∗eηe/ωκe for three

values of ŝ, where R0/LTe = 26, ηe = 4.3. (f): the quantity Γ0(be) for three values of ŝ.

we have demonstrated that increasing both ŝ and θmin increases R0/L
crit
Te for the toroidal

ETG mode.

As mentioned above, there is another critical value of R0/LTe that occurs due to ηe
being too small[70]. Figure 21(b) shows a scan in R0/LTe and ŝ with R0/Ln and R0/LT i
fixed, allowing ηe to vary; here, we see that the critical value of ηe for the toroidal ETG

mode is ηe ≈ 1.3. Interestingly, for smaller values of R0/LTe we find a very weakly

driven slab ITG mode.

The above arguments assumed that |θ0| � |θ|. The critical temperature gradient is

also modified by θ0. As discussed previously, larger values of |θ0| can allow a new region

of bad curvature to appear at small values of |θ|, as shown in Figure 22(d). Allowing

θ0 6= 0, for instability, we require

R0

LTe
& ŝ|θ − θ0|C. (61)

We expect that for nonzero θ0, θ and θ0 have opposite signs because the mode will grow

faster where ω∗eηe/ωκe ∼ R0/LTeŝ|θ − θ0| is smallest, giving the critical temperature
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Figure 22: Stability plots of the toroidal ETG mode with kyρi = 2.8. (a): growth rate

scan in R0/LTe with ηe and ηi fixed for four values of θ0. (b): corresponding eigenmodes

at locations indicated by markers in (a). (c): the quantity Γ0(be) for different values of

θ0. (d): the ratio ω∗eηe/ωκe for different values of θ0, using R0/LTe = 26.

gradient

R0

Lcrit
Te

≈ ŝ(|θmin|+ |θ0|)C. (62)

Consistent with this idea, we see that for |θ| . 6 the only accessible bad curvature

regions appear when θθ0 < 0 and when |θ0| is sufficiently large. To demonstrate the

scaling in Equation (62), we performed a scan in θ0 and R0/LTe at fixed ŝ, ηe, and ηi,

shown in Figure 22(a); we observe that R0/L
crit
Te indeed increases with θ0 as expected.

Furthermore, the assumption that θminθ0 < 0 is also shown to be correct, as seen by the

eigenmodes in Equation (62)(b).

Finally, we briefly discuss the effect of the difference between ωκe and ω∇Be on

toroidal ETG stability. Throughout this paper, we have exclusively used ω∗eηe/ωκe for

our analysis, which is justifiable if ωκe ' ω∇Be in the parallel vicinity of where the

toroidal mode is most unstable. While this is true for |θ| & π (see Figure 11(b)), for

|θ| . π, the value of ωκe/ω∇Be in bad curvature regions can be as large as 1.5 in a

sufficiently-wide parallel region for some values of θ0. Thus, we might expect as much

as a 25% increase in the linear stability boundary compared to the case where one

artificially sets ωκe = ω∇Be. Therefore, for certain values of kyρi and θ0, the stability

boundary for the toroidal ETG mode is increased when ωκe > ω∇Be, which is consistent

with previous work [71].
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To summarize, we have demonstrated that the value of R0/L
crit
Te for toroidal ETG

depends on ŝ, θmin, and θ0. Most relevant to the Miller equilibrium of JET discharge

92174, scans in θ0 at fixed ŝ = 3.4 showed R0/L
crit
Te ≈ 13 − 32, depending on the value

of θ0. This is a much higher value of R0/L
crit
Te than is typically observed in the core (for

example, R0/L
crit
Te ≈ 3 for Cyclone Base Case toroidal ITG). This new type of stability

boundary for toroidal ETG directly results from the importance of the radial component

of the magnetic drift, in contrast to the core, where the ∇y component of the drift is

usually considered more important.

6. ITG Instability in JET Shot 92174

In this section, we discuss the ITG instability in JET shot 92174. Previous works have

emphasized the importance of ITG instability in the pedestal [14, 33, 72, 73, 74]. In

this work, we find that with the measured T0i profiles, the ITG growth rate is extremely

small compared with the ETG instability growth rate. This is due to R0/LT i and ηi
being relatively small, and electron collisions that decrease the ITG growth rates. If we

increase the ion temperature profiles to make them equal to the electron temperature

profiles and we ignore the E×B shear, the ITG instability is the fastest growing mode

at very large scales, kyρi ∼ LTi/R0. This finding is entirely consistent with Section 4’s

results, as the same arguments can equally be applied to ITG (since R0/LT i � 1). While

this section will discuss ITG for θ0 = 0, we also performed a scan in θ0, to see if any

other θ0 6= 0 values could be unstable at kyρi . 1 using the measured ion temperature

profile. We found no significant increase in growth rates due to θ0 with the measured

ion profiles.

Due to the symmetry of the collisionless ITG and ETG dispersion relations when

he = 0 for ITG and hi = 0 for ETG, the growth rates of ITG and ETG are isomorphic:

γITG = γETGρe/ρi at wavenumbers kyITG = kyETGρe/ρi.

Here we investigate how the non-adiabatic electron response and a difference

in equilibrium profiles in the pedestal break this isomorphism. According to the

isomorphism, ITG instability is driven at kyρi ∼ LT i/R0 � 1, and the ETG instability

is driven at kyρi ∼ (ρi/ρe)LTe/R0, as demonstrated in Figure 23. In Figure 23, we show

the growth rates of ITG at ‘ITG’ scales, kyρi ∼ LT i/R0, and the growth rates of ETG

at ‘ETG’ scales, kyρi ∼ (ρi/ρe)LTe/R0, for JET shot 92174. The isomorphism between

ITG and ETG is confirmed, with the ‘T0i = T0e, he = 0’ and ‘T0i = T0e, hi = 0’ cases

having the same isomorphic growth rates. Here, ‘T0i = T0e’ means that both the ion and

electron temperatures and their gradients are set equal to each other — specifically, T0i

is increased to match T0e. This affects the ion collision frequencies, which are decreased

self-consistently.

Electron collisions have a significant effect on the toroidal and slab ITG growth

rates. As shown in Figure 23(a), there is a substantial difference between the collisional

and collisionless simulations, indicated by ‘T0i = T0e’ and ‘T0i = T0e, Collisionless’ cases.

In the simulations we have performed, electron collisions reduce the toroidal and slab
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Figure 23: Linear ITG and ETG GS2 growth rates at (a): kyρi ∼ LT i/R0 (ITG scales)

and (b): kyρe ∼ LTe/R0 (ETG scales). Dashed series indicates an ITG mode, solid

is a mode driven by electron temperature gradients. For the ITG scales, the growth

rates and kyρi have been multiplied by ρi/ρe. The series ‘T0i = T0e’ indicates that

T0e = T0i, LT i = LTe; ‘Measured T0i’ indicates that values of T0i and LT i are taken from

the measured ion profiles. Here, ρe/ρi ≈ 82 for the measured T0i and T0e profiles.

ITG growth rates. It is not obvious that electron collisions should always decrease the

ITG growth rates.

We now describe gyrokinetic simulations with the measured ion profiles. Compared

with the equal profile case, ‘T0i = T0e’, once measured equilibrium profiles are included,

the ITG growth rates decrease substantially. In Figure 23(a), ‘Measured T0i’ is a

simulation with the measured ion temperature profiles; the fastest growing modes at

ITG scales are electron-driven modes with large electron tails [61] (see Appendix B),

switching to a toroidal ETG mode once kyρi & 0.1. In order to find the subdominant

ITG instability, we must set he = 0 (otherwise electron-driven modes dominate), as

shown in the ‘Measured T0i, he = 0’ line. The ITG instability barely grows in the runs

with adiabatic electrons, although there were well-resolved toroidal ITG eigenmodes.

Using GS2’s eigensolver function [75], we could not find any toroidal ITG instability

for kyρi ∼ LT i/R0 when using the measured profiles and kinetic electrons, indicating

that ITG is stable at kyρi � 1. However, at ETG scales (kyρe ∼ LTe/R0), we did find

weakly growing slab ITG modes by using adiabatic electrons, shown in Figure 23(b)

(‘Measured T0i, he = 0’), a result that was corroborated by very weakly growing slab

ITG modes found using GS2’s eigensolver. Therefore, for the measured profiles, ITG is
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extremely subdominant in JET shot 92174. Moreover, we will see in Section 7 that the

slab ITG is easily quenched by E×B shear.

Heuristically, we can understand the stability of the toroidal ITG mode using a

similar stability analysis performed for the toroidal ETG mode in Section 5.4. In

Figure 21(b), we show the toroidal ETG mode being stabilized at ηe ' 1.2. Due to

the isomorphism between toroidal ITG and toroidal ETG in the collisionless case where

the other species is adiabatic, we can reasonably predict that toroidal ITG also has a

similar critical ηi ≈ 1. Examining the ηi profile in Figure 1(c), we find that ηi ' 0.8−1.2

in the steep gradient region of the pedestal (r/a ≈ 0.97− 0.99). Hence, ηi is very close

to (and likely slightly below) its critical value in all regions of the pedestal for θ0 = 0,

and it is unsurprising that the toroidal ITG mode is very weakly-driven. A broader

question that merits examination is the physics that keeps ηi close to its critical value,

while ηe is far above its critical value (although this is subject to uncertainties in the ion

temperature profile, which could change ηi). Finally, the suppression of ITG instability

in pedestals is not inconsistent with what has been observed in previous analyses; for

example, [76] found that the ion heat diffusion was close to neoclassical in ASDEX-U

inter-ELM pedestal discharges.

To summarize, we find that with the measured ion temperature profiles, the ITG

mode is stable for kyρi � 1, and there is very weakly-driven ITG at kyρi ∼ 1. When

the ion temperature profile is set equal to the electron profile and ITG modes become

linearly unstable at very long wavelengths, the isomorphism between ITG with he = 0

and ETG with hi = 0 holds. Electron collisions appear to decrease the ITG growth rate

significantly. The detailed mechanism for this stabilizing impact of electron collisions

requires further investigation.

7. E×B Shear

In this paper we chose to perform most simulations without E × B shear, since in

simulations with E × B shear, the electrostatic modes were barely modified compared

to the simulations without E×B shear.

In this section, we present the results of gyrokinetic simulations with E×B shear.

First, we discuss the validity of keeping E × B shear even though it is small in the

low flow ordering. In addition to the results we presented in Section 3 where KBMs

were shown to be suppressed by E × B shear, we also show the effect of E × B shear

on ETG and ITG modes. We will see that while KBMs usually easily suppressed by

E×B shear, ETG modes are barely affected. ITG instability is easily stabilized when

using the measured ion temperature profile, but is not fully-suppressed when the ion

temperature profile is made equal to the electron temperature profile.

In our local linear simulations with E×B shear, we use a new E×B shear algorithm

[77], and also tested that the results were qualitatively similar with the previous GS2

algorithm [78]. With the newer algorithm, a typical simulation with E × B shear

contained a single poloidal mode, 150 radial wavenumbers with a spacing of ∆kx ≈ ky,
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and a E×B shear value of γEa/vti = 0.56. With the previous algorithm, the range of

kx values was held fixed, but the ∆kx spacing was reduced by a factor of 10.

In the low flow ordering, if one retains the E × B shear, one should also keep

neoclassical corrections to the Maxwellian [42, 79], but for simplicity, we have neglected

neoclassical corrections throughout this paper. When analyzing high k⊥ modes for this

equilibrium, it is inconsequential whether or not the E×B shear is kept, and we expect

the neoclassical corrections to be similarly unimportant. However, for small k⊥, we

find the small E ×B shear can suppress instabilities and hence one might expect that

neoclassical corrections are also important.

The parallel flow is one of the main physical features of neoclassical corrections.

Therefore to estimate the effect of these corrections, we will use previous studies on the

parallel velocity gradient (PVG) instability [80, 81, 82, 83, 84, 85]. The PVG growth

rate is

γPVG ∼
duζip
dr

kyρi. (63)

In regions where we see ITG stabilization by E × B shear, kyρi ∼ 0.1, and the PVG

growth rate is much smaller than the E×B shear rate. From the measured 12
6 C

+ rotation

profiles at r/a = 0.974, we find that |duζip/dr|a/vti ≈ 1.4, and thus γPVGa/vti ≈ 0.14.

Therefore, given that γEa/vti = 0.56 > γPVGa/vti, this PVG mode is likely stabilized by

the E×B shear. Hence, we do not expect that the neoclassical flows will significantly

modify a mode’s growth rate, although the effect of neoclassical terms at these small

scales merits further investigation.

The E × B shear is usually more effective for low than for high k⊥ modes, as

shown in Figure 24. This is because the growth rate of the electrostatic instabilities

that we are investigating typically scales with ω∗sηs ∼ kyρsvts/LTs, and because of the

differences in a mode’s radial extent for different instabilities. If the typical timescale

for an instability, 1/γ, is comparable to the E×B shearing time, 1/γE, the E×B shear

can be effective. However, when 1/γE � 1/γ ∼ LTs/kyρsvts, the E×B shear is unable

to shear the mode sufficiently quickly. Hence, E×B shear suppresses modes at smaller

ky, and barely modifies short wavelength modes. Additionally, modes that are radially

localized (Kx � ky) are harder to shear than those with a wider radial width.

We now apply these two criteria (growth rate versus shearing rate, and radial extent

of the mode) to explain our observations for which modes are suppressed by E×B shear.

The KBM we discussed in Section 3 is easily suppressed by E × B shear because it is

radially extended and is stable for a wide range of θ0 values (see Figure 3(d)). The

KBM was shear suppressed even though γKBM > γE. This suppression is demonstrated

in Figure 24(a), where the mode’s density is shown to decay in time.

Determining the effect of the E×B shear on toroidal and slab modes separately is

challenging. To understand why this is the case, it will be useful to define an ‘effective’

θ0 that now depends on time,

Θ0(γE, t) = θ0 − ky
γE
ŝ
t, (64)
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Figure 24: Density time traces of KBM and ITG instabilities with and without E×B

shear. (a): the KBM is suppressed by the E×B shear consistent with the measured ion

temperature profile. (b) the ITG is not fully suppressed by the E ×B shear when the

ion temperature and gradient is equal to the electron temperature and gradient. The

two separate values of γEa/vti correspond to its consistent value for the measured ion

temperature profile (γEa/vti = 0.56) and when the ion temperature profile is equal to

the electron temperature profile (γEa/vti = 2.24). (c): the effective growth rates of the

ITG instability for the three separate values of γEa/vti in (b).

such that the time-dependent radial wavenumber is

Kx = ky

(
ŝ(θ0 − θ)−

r

q

∂ν

∂r

)
− kyγEt = ky

(
ŝ(Θ0 − θ)−

r

q

∂ν

∂r
.
)
. (65)

The fact that the mode has different Θ0 values at different times considerably

complicates understanding the effect of E × B shear on toroidal and slab ETG in the

pedestal separately: for kyρi & 5 in the absence of E × B shear, while for θ0 = 0

the fastest growing modes are slab ETG modes, for θ0 6= 0 the fastest growing modes

are almost always toroidal ETG modes. Since E × B shear changes Θ0 with time as

described in Equation (64), if at t = 0 a mode is a slab ETG mode (i.e. it has θ0 = 0),

after a period of time it will become a toroidal ETG mode. Therefore, we can only

determine if the E×B shear suppresses both slab and toroidal modes.

We now consider the effect of E×B shear on the ITG instability. Our simulations

indicate that the effectiveness of E × B at suppressing ITG is sensitive to several

parameters. We first test the effectiveness of E × B shear with the measured
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ion temperature profiles, which requires using adiabatic electrons, since electron

temperature gradient-driven modes are the fastest growing at all scales (see Figure 23).

We test the E×B shear on an ITG mode with kyρi = 0.7, which has a modest growth

rate of γa/vti ' 0.1. In simulations with E × B shear, the mode is easily suppressed.

This is expected, since 1/γE � 1/γ for this ITG mode, and hence, both toroidal and

slab ITG are suppressed by E×B shear at kyρi = 0.7 with the measured ion temperature

profiles.

We also test the effectiveness of the E×B shear at suppressing the ITG instability

when the ion temperature profiles are made equal to the electron temperature profiles

(that is, T0i = T0e and LT i = LTe). To investigate this, we perform a GS2 simulation with

E×B shear for a single toroidal ITG mode with kyρi = 0.04. Recall that we estimate the

radial electric field by balancing it with the pressure gradient as in Equation (16), which

requires that γE is roughly proportional to the second derivative of the pressure gradient,

as in Equation (17). Therefore, when we quadruple 1/LTi for the case where the ion

and electron temperature profiles are made equal, to be consistent with the temperature

profile we must also roughly quadruple the value of γE. In Figure 24(b), we show the time

trace of the density for three simulations of the ITG mode with T0i = T0e, LT i = LTe,

where the value of γE varies in each simulation. We show the ITG mode in the absence

of E×B shear, the mode with γEa/vti = 0.56, which is consistent with the measured ion

temperature gradients, and the mode with γEa/vti = 2.24, which is consistent with the

steepened ion temperature gradients. To calculate the effective growth rate, we used a

similar technique to that in [86], which involves fitting the mode amplification in time.

As shown in Figure 24(c), while the consistent value of E × B shear, γEa/vti = 2.24,

reduces the growth rate by 70 %, it does not fully suppress the ITG instability. We

also found a range of additional parameters that determined how successfully the E×B

shear suppressed the high gradient ITG mode such as T0i/T0e; more work is required to

understand the resilience of strongly-driven pedestal ITG to E×B shear.

We now discuss the ETG instability. We found that E×B shear was insufficient to

quench the ETG modes. Even tripling the value of γE at kyρi = 2.8 barely changed the

growth rates of the toroidal and slab ETG modes. The ineffectiveness of the E×B shear

for ETG modes is due to γ � γE for these modes. There is likely no experimentally-

realizable value of γE that would suppress these ETG modes in the pedestal.

Thus, to summarize, we establish the following hierarchy for the efficiency of E×B

shear at reducing the growth rates of linear modes. KBMs are completely suppressed by

E×B shear, and ITG is also fully suppressed when using the measured ion temperature

profiles. Using profiles with ion gradients as steep as the electron gradients, while the

toroidal ITG growth rate is significantly reduced by E × B shear, it is not necessarily

stabilized. ETG is very resistant to E×B shear.
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8. Discussion

In the steep gradient region of the fully developed pedestal of a JET H-mode discharge

(92174) where measurements indicate that T0i > T0e and R0/LTe > R0/LT i, local

gyrokinetic simulations demonstrate that electron-driven modes are the fastest growing

modes at all length scales perpendicular to B. Linearly, KBMs are quenched by E×B

shear, as is ITG when the measured ion temperature profiles are used. This leaves ETG

at 0.1 . kyρi . 400.

Using R0/LTe � 1, we predicted that a novel type of toroidal ETG would be driven

at kyρi ∼ 1 and Kxρe ∼ 1, which we have confirmed in gyrokinetic simulations. This

toroidal ETG at kyρi ∼ 1 in the linear growth rate spectrum seems to be a robust feature

of steep temperature gradient regions, having been seen in all three other pedestals we

examined (see Figure A1, and Appendix A for experimental information), as well as in

other works: DIII-D [29, 38], NCSX [37], and ASDEX-U [34, 35, 36, 38]. It is also likely

that a toroidal ITG mode of a similar nature has been observed at kyρi ∼ LT i/R0 in

[87].

A notable success of this work is that a simple theoretical model predicted the

linear growth rates of the toroidal and slab ETG and the poloidal location of the

toroidal ETG mode fairly well. If the ion temperature profile is set equal to the electron

temperature profile, ITG modes grow fastest for kyρi . 0.5, and ETG modes grow

fastest for 0.5 . kyρi . 400. With equal ion and electron temperature profiles, one

might be concerned about significant transport caused by the toroidal ITG at scales as

small as kyρi ∼ LT i/R � 1, since nonlinearly these instabilities might produce large

eddies that cause substantial heat transport. However, our simple estimate of γE by

balancing the radial electric field with the pressure gradient found that E × B shear

could fully suppresses the ITG instability for certain temperature ratios T0i/T0e when

the ion temperature gradients are as steep as the electron temperature gradients. While

the E×B shear frequency is too small to damp the ETG, impurities are known to damp

ETG [70, 88]. Therefore, further investigation might explore the effect of impurities on

toroidal ETG instability in pedestals. Work has already shown that impurities can

produce non-negligible ion-scale pedestal transport [47, 33].

With the measured ion temperature profiles, it is likely that the nonlinear state of

JET shot 92174’s pedestal is dominated by electron-driven transport. Indeed, the novel

toroidal ETG modes we have described in this work could be important for transport, as

evidenced by the heuristic estimate of γ/k2
⊥ in Figure 20. Careful work will be required

to resolve these modes in nonlinear simulations. We have not included results from

nonlinear simulations in this paper because the linear results of this work demonstrate

how challenging these simulations are to correctly resolve. For example, to resolve the

fastest growing linear modes — toroidal ETG modes — from 1 . kyρi . 100 in a

nonlinear simulation requires significant kx resolution, as well as a sufficiently large

number of independent θ0 modes. In addition, the slab ETG modes require increasingly

fine θ grids to resolve at higher values of kyρi, which significantly increases computational
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cost. Caution is required in attempting to infer transport properties from these linear

results: the modes we observe span a wide range of perpendicular scales, and complex

multiscale interactions could be important [89, 90, 91, 92, 93].

While in this paper we have focused on a single radial location for a single discharge,

we have also investigated the growth rates at various radial locations using gyrokinetic

simulations. These simulations have demonstrated a significant sensitivity of the growth

rates to the radial location because of the sensitivity of the instabilities to local gradients.

Nevertheless, certain features such as (i) the dominance of ETG at all scales, and (ii)

the toroidal ETG at kyρe ∼ LTe/R0 were robust features. Due to the sensitivity of

microstability to the radial location, we caution against using the local growth rates at

any given flux surface to infer global properties about the pedestal, such as its width

or height. We have observed that some pedestals have consistently lower growth rates

than others, but more work, particularly nonlinear simulations, is required to connect

gyrokinetic analysis with predictions of pedestal structure.
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Appendix A. Other Discharges

Discharge 82550 92167 92168 92174

Experimental Parameters

Ip [MA] 2.5 1.4 1.4 1.4

BT0 [T] 2.7 1.9 1.9 1.9

H98(y,2) 0.7 0.9 1.0 1.0

nG 0.8 0.6 0.7 0.7

RD [electrons/s ×1022] 2.3 0.8 0.4 0.9

q95 3.3 4.3 4.4 4.2

Zeff 1.2 1.8 1.8 1.8

PNBI [MW] 14.4 17.4 17.6 17.4

βN 1.1 2.2 2.6 2.5

Simulation Parameters

r/a 0.9660 0.9784 0.9713 0.9743

q 3.65 5.14 5.07 5.08

ŝ 4.92 3.93 4.62 3.36

a/LTe 57 41 29 42

a/LT i 12 19 16 11

a/Ln 23 8 10 10

κ 1.61 1.54 1.54 1.55

δ 0.30 0.26 0.26 0.26

aβ′ -0.09 -0.06 -0.07 -0.08

dRM/dr -0.17 -0.34 -0.36 -0.35

a(dκ/dr) 1.11 1.15 0.81 0.95

a(dδ/dr) 0.97 0.85 0.67 0.74

Table A1: Experimental and simulation parameters for the discharges in this work.

Here we present the results of gyrokinetic analysis for three other JET-ILW H-mode

pedestal discharges. The basic experimental and simulation parameters for these JET-

ILW discharges in addition to the discharge discussed in the main text (shot 92174) are

shown in Table A1. Discharge 82550 is a very highly-fueled deuterium discharge with

high triangularity and low ion temperature, 92167 is a highly-fueled deuterium discharge,

92168 is is a weakly-fueled deuterium discharge, and 92174 is a highly-fueled deuterium

discharge with deuterated ethylene (C2D4) injection. In Table A1, the quantity q95 is

the safety factor measured at the location where the normalized poloidal flux is equal

to 0.95. For more information on these data types, refer to the JET data handbook.

Figure A1 shows results from local gyrokinetic microinstability analysis at the radial

location with the maximum pressure gradient (and therefore close to the maximum

γE) in the four JET-ILW H-mode pedestals described in Figure A1. These are all
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Figure A1: GS2 gyrokinetic pedestal electrostatic growth rates for 4 JET equilibria

with θ0 = 0 for different ranges of kyρi. (a) 1 . kyρi . 135. (b) 0.1 . kyρi . 1.0. (c)

1 . kyρi . 5. (d) 5 . kyρi . 50.

electrostatic, linear GS2 simulations performed without E ×B shear and with θ0 = 0.

While JET shot 92168 does not appear to have the characteristic toroidal ETG bump

at kyρi ∼ 1, an analysis of the eigenmodes demonstrates that toroidal ETG modes are

indeed the fastest growing modes for 1 . kyρi . 7 with θ0 = 0.

Appendix B. Electrostatic modes at kyρi . 1.0

For completeness, we briefly detail the electrostatic modes at kyρi . 1.0. We describe

their eigenmode structure as well as growth rate sensitivity scans in temperature

gradients and collisionality.

All of these simulations are performed with θ0 = 0.05. For 0.1 . kyρi . 1.0, we

observe modes that become increasingly extended in θ with decreasing values of kyρi. For

kyρi ≈ 1, the fastest growing mode is still the toroidal ETG mode described throughout

this paper, shown in Figure B1(a). Once kyρi decreases, the eigenmodes become more

complicated and more extended in θ, as shown by Figure B1(b) and (c); we refer to these

modes as ‘extended ETG’. We also plot the quantity ω∗eηe/ωκe when it is positive in

Figure B1(a), (b), and (c) — we observe that the extended ETG tends to have maxima

of |φtb1 | in bad curvature regions. This leads us to speculate that the extended ETG
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Figure B1: Eigenmodes for kyρi . 1 and θ0 = 0.05 for JET shot 92174. In (a), (b), and

(c), the quantity ω∗eηe/ωκe is plotted only when it is positive. In (a)-(d), the crimson

lines are Re(φtb1 ), the blue lines are Im(φtb1 ), the gold dashed lines are |φtb1 |, and the black

dashed lines are ω∗eηe/ωκe. (a): kyρi = 0.97, toroidal ETG with large amplitude far

down the field line. (b): kyρi = 0.62, extended ETG, (c): kyρi = 0.34, extended ETG,

and (d): kyρi = 0.09: modes with electron tails. Growth rates for kyρi . 1.0 modes with

scans in temperature gradients, collisions, and kinetic/adiabatic ions: (e): kyρi < 0.14

modes, and (f): 0.14 < kyρi < 1.4 modes.

modes are a more complicated version of the toroidal ETG modes described throughout

this paper. The extended ETG modes in Figure B1(b) and (c) have tearing parity for

both Re(φtb1 ) and Im(φtb1 ). We normalize the eigenmodes in Figure B1(a), (b), (c), and

(d) such that the maximum of |φtb1 | is 1, and such that the value of φtb1 is purely real

at that location. In Figure B1(f), we perform a growth rate sensitivity scan for these

modes; the growth rate of these extended modes is very sensitive to R0/LTe and only

slightly sensitive to R0/LT i and collisions for smaller values of kyρi. The extended ETG

modes are stable when run with adiabatic ions for kyρi . 0.2.

For kyρi . 0.1, we observe extremely extended eigenmodes, shown in Figure B1(d)
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— the mode extends as far as θ ≈ 100 before the typical |φtb1 | value is less than 10 %

of the eigenmode maximum value. The modes are reminiscent of modes with extended

electron tails [61]. There is no apparent relationship between the maxima of |φtb1 | and

bad curvature regions, unlike for the extended toroidal ETG modes. The mode shown

in Figure B1(d) has tearing parity for both Re(φtb1 ) and Im(φtb1 ). Sensitivity scans in

Figure B1(e) show that these modes are very sensitive to R0/LTe, but insensitive to

R0/LT i. The modes with electron tails were stable for collisionless simulations.

Appendix C. Full Dispersion Relation

Using Equation (44) in the quasineutrality Equation (22), we find Equation (50) with

Ds ≡
(eφtb1 n0e
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)−1
∫
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where we have used [94]

i
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To find growing solutions and obtain a converged integral, we require that Im(>ω) > 0.

Evaluating the integral in v̂‖ gives

Ds =2i
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The integral in v̂⊥ gives Equation (51), where we used the integrals∫ ∞
0

xJ2
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1
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and ∫ ∞
0

x3J2
0 (ax) exp(−bx2)dx =

−(a2 − 2b)Γ0

(
a2/2b

)
+ a2Γ1

(
a2/2b

)
4b3

, (C.5)

which is found by differentiating Equation (C.4) with respect to b.

We proceed to explain the numerical technique used to calculate the λ integral in

Equation (51). The λ integral in Equation (51) along the real λ axis is highly oscillatory

when γ → 0, and standard numerical integration methods can make substantial errors

in the low growth rate limit. Similarly, a straightforward change of variables such as
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Figure C1: Contour paths C0 and C1, constructed to avoid the poles along the imaginary

λ axis at σi and 2σi, as well as minimizing exponential oscillations.

λ → iλ will fail for nonzero k‖ and bs due to exponential singularities caused by k‖
and bs (at λ = σi and 2i/>ω∇Bs, respectively). To avoid these problems, we introduce a

numerically robust path of integration that avoids singularities and significantly reduces

the number of oscillations.

In the limit λ→∞, the exponential in Equation (51) reduces to,

exp

[
i

(
>ω +

>
k2
‖

4σ

)
λ

]
. (C.6)

Thus, if we wish to minimize oscillations, we should choose our path such that the

imaginary component of the exponential is constant. This is achieved with the integral

path

λ = i

(
>ω∗ +

>
k2
‖

4σ

)
λ+ a, (C.7)

where a is a constant that we need to choose to improve integral convergence. Therefore,

we choose an integration path composed of two different paths, C0 and C1. The first

path, C0, goes a short distance a along the real λ axis. The second path, C1, is the

one given in Equation (C.7). The total integration path is shown in Figure C1. The

integration path in Figure C1 gives the same result as the original path because the

integrand in Equation (51) decays as |λ| → ∞. The constant a needs to be sufficiently

large to avoid the singularities at λ = σi and 2i/>ω∇Bs. A value a = 0.5 is usually

sufficiently large.
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