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Abstract. A linear perturbation theory is used to model the MHD stability of

tokamak equilibria under the application of external 3D magnetic perturbations

[C.C. Hegna, Physics of Plasmas 21:072502, 2014]. The symmetry breaking produces

the coupling of toroidal n modes. We use ELITE [H.R. Wilson et al., Physics

of Plasmas 9:1277, 2002] to produce both a linearly perturbed non-axisymmetric

equilibrium state as well as the linear axisymmetric modes, that are coupled for the

stability analysis. The symmetry breaking produces coupling of modes with different

toroidal mode number n and poloidal localisation of the non-axisymmetric peeling-

ballooning mode is observed in comparison to the axisymmetric case.

1. Introduction

The efficient production of fusion power requires large pressure at the plasma core while

retaining low pressure at the plasma edge, such that plasma facing components (PFCs)

operate in an acceptable environment. Such pressure profiles are observed in high

confinement mode (H-mode) plasmas. However, the establishment of a steep pressure

gradient at the edge, so called pedestal region, together with large bootstrap driven

edge current density is potentially destabilising for peeling-ballooning (PB) instabilities

[1]. Those instabilities are manifested as edge localised modes (ELMs) and correspond

to rapid bursts of particles and heat to PFCs, especially to the divertor of the reactor.

For large tokamaks like ITER, those transients will result in heat fluxes that exceed the

melting point of tungsten [2], the main material of the divertor tiles. Therefore, active

ELM control methods are required to minimise potential damage of the reactor [3].

One method of ELM control that is widely applied to devices around the world

and will be installed in ITER, uses external non-axisymmetric resonant magnetic

perturbations (RMPs) produced from magnetic coils placed inside the tokamak vessel.
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Experimental observations indicate two main operational states, one with ELM

mitigation and the other with complete ELM suppression. In mitigation, a decreased

energy loss per ELM ∆WELM leads to an increase of ELM frequency fELM . For ITER-

like shape low density n/nGW ∼ 0.3, where nGW = Ip/πa
2 is the Greenwald density limit,

and low collisionality ν∗ = νei
√
me/kBTeε

−3/2qR ∼ 0.01, complete suppression has only

been observed at DIII-D [4] and recently in AUG [5], while for higher collisionality

ν∗ ∼ 1 KSTAR [6] has also achieved ELM suppression. The exact physics mechanism

that allows this ELM free regime is still to be understood. In addition, ITER will

operate in a high density n/nGW ∼ 0.7 low collisionality ν∗ ∼ 0.01 regime such that

extrapolation from current machines could be challenging in the absence of a rigorous

physics basis.

In general, external 3D fields affect transport and MHD properties of the plasma.

The resonant component of the field drives current structures at rational surfaces that

can in turn lead to magnetic islands that greatly increase perpendicular transport

[7],[8],[9]. As a result, the pressure gradient in the pedestal is relaxed and global stability

boundaries are not exceeded. However, plasma flow that exists in the pedestal region can

be strong enough that island structures could heal [10],[11]. In addition, the geometrical

change of the equilibrium can affect MHD instabilities leading to potential modification

of stability boundaries that can directly affect the onset of ELMs. Ideal infinite-n

ballooning analysis reveals that the dominant effect of the applied 3D is to alter the

local shear, which has significant consequences for local MHD stability [12],[13],[14].

However, for intermediate-n modes responsible for the occurrence of ELMs, a global

3D analysis is needed. Recent work on 3D stability has been performed [15],[16] but

not yet applied to an ELM control scenario. To some extent, such an investigation has

been performed by non-linear fluid codes and mode coupling was observed to be the key

mechanism to achieve a suppressed operational regime [17].

This work focuses on the impact of toroidal symmetry breaking on the ideal MHD

stability of the plasma. In a toroidally axisymmetric system the toroidal variation of the

response is described by linearly decoupled discrete toroidal modes, i.e. toroidal mode

number n, is a good quantum number and only poloidal coupling occurs. Considering

an additional non-axisymmetric part of the equilibrium that is much smaller than

the axisymmetric part, typically δB/B ∼ 10−4, together with approximately retained

nested flux surfaces, linear perturbation theory can be employed to provide the required

geometrical coupling of the axisymmetric modes. This coupling will result in energy

transfer between neighbouring toroidal Fourier modes that can directly affect the

evolution of instabilities. In this paper, we will explore this coupling mechanism.

2. Perturbative Ideal MHD

The above mentioned analysis was performed to first order in Ref.[18] and then to second

order in Ref.[19]; this is required to capture perturbative non-axisymmetric effects.
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Considering the force-balance equation,

−ω2
n
~ξn = (~F + ~δF )~ξn (1)

where ω2
n is the real eigenvalue of the system, the force operator can be separated into

an axisymmetric part ~F and non-axisymmetric part ~δF part; provided ~F � ~δF , the

non-axisymmetric force can be treated as a perturbation. The axisymmetric operator ~F

is Hermitian and provides the equation for the unperturbed system which corresponds

to the 0th order equation,

−ω2
n0
~ξn0 = ~F ~ξn0 (2)

and a spectrum of real eigenvalues ω2
n0 arises, provided that (~ξn0, ~ξm0) = δnm, where

(a, b) =
∫
a∗bdV . The solution ~ξn of the perturbed system can be approximated

by a superposition of orthogonal eigenfunctions {~ξn0, ~ξn1, ~ξn2, ...} and eigenvalues

{ωn0, ωn1, ωn2, ...} that correspond to solutions of the relevant ordered equation projected

on the unperturbed sate ~ξn0. The 1st order equation,

−ω2
n0
~ξn1 − ω2

n1
~ξn0 = ~F ~ξn1 + ~δF ~ξn0 (3)

gives a correction −ω2
n1 = (~ξn0, ~δF ~ξn0) = δVnn due to axisymmetric changes of the

plasma equilibrium. The 2nd order equation,

−ω2
n0
~ξn2 − ω2

n1
~ξn1 − ω2

n2
~ξn0 = ~F ~ξn2 + ~δF ~ξn1 (4)

is required for the case of non-axisymmetric RMP fields and results in a correction

−ω2
n2 = (~ξn0, ~δF ~ξn1). The structure of the perturbation ~ξn1 is required and can be

obtained considering Eqn.3. The orthogonal nature of a perturbation (~ξn0, ~ξn1) = 0

implies that it can be expressed as a series, summing over a basis of the unperturbed

functions ~ξn1 =
∑

m6=n cnm
~ξm0. Projecting Eqn.3 with respect to ~ξm0 results in an

expression for cnm = −δVmn/(ω2
n0 − ω2

m0), where δVmn = (~ξm0, ~δF ~ξn0), such that the 1st

order correction in the displacement of a given mode is given by,

~ξn1 = −
∑
m6=n

δVmn
ω2
n0 − ω2

m0

~ξm0 (5)

Substituting Eqn.5 into Eqn.4 and taking the inner product with ~ξn0, provides a

quantitative expression for the 2nd order correction of the eigenvalue ω2
n2,

ω2
n2 =

∑
m 6=n

‖δVnm‖2

ω2
n0 − ω2

m0

(6)

It is interesting to note that for ω2
n0 − ω2

m0 < 0 the contribution is stabilising, while for

ω2
n0 − ω2

m0 > 0 the contribution is destabilising. Therefore, for a spectrum ω2
n0 > ω2

m0

for n > m, coupling to higher modes has a stabilising contribution, while coupling to

lower modes has a destabilising influence. Moreover, if the spectrum has a peak then

this peak will always get more unstable.

Low-n ELITE [20],[21] is an axisymmetric MHD stability code that can very

efficiently simulate the linear ideal plasma response from low to high n toroidal modes.

ELITE solves the equation of motion for the normal plasma displacement functional
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that minimises the axisymmetric energy principle for an ideal incompressible plasma.

In such a way, PB instabilities are captured and the ideal nature of the plasma

retains nested flux surfaces, which is required for the perturbative stability analysis

we adopt. Consequently, ELITE can be used to provide the radial axisymmetric basis

eigenfunctions and (neglecting inertia) the 3D part of the plasma equilibrium, assuming

the RMP mode is stable. We aim to use ELITE for both the equilibrium (plasma

response) calculation and for the stability calculation since the code is optimised for

the intermediate-to-high toroidal mode numbers that interest us. This is the first stage

of a project to develop a tool which can optimise plasma response and ELM stability

together.

3. Application to RMPs

The calculation of the non-axisymmetric part of the equilibrium requires an initial

axisymmetric equilibrium that is stable to low-n toroidal modes, to be driven by RMP

fields. We examine such an equilibrium here and the plasma profiles and axisymmetric

PB stability analysis are illustrated in Fig.1. The external RMP field is based on a

hypothetical even n=3 magnetic perturbation that is fixed and resonant at the plasma

surface. The coordinate system used is based on the original axisymmetric equilibrium

state.

(a) (b)

Figure 1: Equilibrium radial plasma profiles for a) the plasma pressure and current

density as well as b) the PB growth rate normalised to the Alfven frequency illustrating

a stable equilibrium for low-n perturbations.

The plasma response is characterised by a kink-like displacement normal to the

flux surfaces ~ξ · n̂ ∼ δB/B away from the rational surfaces. The normal displacement

is strongly peaked around rational surfaces leading to large local response. The mode

structure and the poloidal cross-section reconstruction of the normal displacement are

depicted in Fig.2. The 3D magnetic equilibrium part can be calculated using ~ξ⊥ the

plasma displacement perpendicular to the magnetic field. ELITE provides the normal

displacement and through minimisation of the potential energy the binormal components
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(a) (b)

Figure 2: a) Mode structure and b) poloidal cross-section reconstruction of the normal

displacement ~ξ · n̂ as reconstructed from ELITE output data for an even n = 3 RMP

case.

can be obtained. The normal component of the field is imperfectly screened due to

poloidal coupling in toroidal geometry, but individual modes are still screened at the

corresponding rational surfaces so that island formation is prohibited in this ideal MHD

model. This fact on its own shows that the existence of the plasma strongly modifies

the external field in various ways. The normal field and its poloidal mode structure are

illustrated in Fig.3.

(a) (b)

Figure 3: Normal component of a) magnetic field and b) poloidal mode structure in

a straight field-line angle as reconstructed from ELITE output data for an even n=3

RMP. The straight black lines indicate the position of the magnetic coils.

Fig.4 illustrates the parallel current density created around rational surfaces [22],

which has two contributions. One contribution corresponds to the existence of Pfirsch-

Schluter current density due to incompressibility and non-vanishing pressure gradient.

The second contribution also arises from current incompressibility and for nested
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(a) (b)

Figure 4: a) Pfirsch-Schluter δJPS and b) ∆mn factor of δ-like δJδ components of non-

axisymmetric equilibrium parallel current density as reconstructed from ELITE.

flux surfaces corresponds to δ-like current layers. The calculation of those layers is

numerically subtle but can be analytically quantified from the jump of the first derivative

of the normal magnetic field ∆mn according to Ref.[23].

The final perturbed equilibrium quantity needed for the coupling is the pressure

gradient ∇δP , calculated using the linearised pressure δP . The non-axisymmetric

pressure profile is shown in Fig.5a. To verify the equilibrium obtained with ELITE, the

non-linear code BOUT++ is used to perform a similar simulation. Both codes produced

similar linear equilibrium states, with ELITE being more able to resolve sharp features

around the rational surfaces due to much finer resolution. The comparison for the 3D

equilibrium pressure is illustrated in Fig.5b.

(a) (b)

Figure 5: a) Non-axisymmetric equilibrium plasma pressure δP as reconstructed from

ELITE output data, b) from BOUT++ and a comparison between the two codes for

fixed poloidal angle.

The coupling coefficients Vnk can be calculated using the above 3D equilibrium

quantities ( ~δB, ~δJ, ~δP ) and axisymmetric toroidal modes {~ξn0}. It is observed that
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above a certain external field amplitude the impact of mode coupling is significant and

that the dependence is non-linear with respect to the applied field strength. Fig.6a shows

the strong stabilising influence of the 3D modification to the equilibrium geometry,

due to stronger coupling with higher n toroidal modes, as discussed above. The

reconstruction of the 3D normal displacement eigenmode of the instability results in

a localised mode structure with respect to the poloidal location, due to the interplay of

different axisymmetric modes. This 3D feature has been observed experimentally and

reproduced successfully be infinite-n ballooning analysis [24]. A comparison between

the mode structure of the axisymmetric and non-axisymmetric mode is illustrated in

Fig.6b and Fig.6c.

(a)

(b) (c)

Figure 6: a) Perturbative 3D Peeling-Ballooning stability under the influence of varying

amplitude external even n=3 RMP coil configuration δB/B as reconstructed from

ELITE output data. Normal plasma displacement ~ξ · n̂ for a n = 12 b) axisymmetric

and c) non-axisymmetric PB mode.

Finally, with respect to the plasma stability similar observations have been made

using the non-linear code JOREK [17],[25],[26]. According to those simulations, a

stochastic region at the plasma edge leads to degradation of the pedestal and a mitigated

ELM state was observed. Although, ELM suppression was only obtained when mode

coupling was enabled, provided the external field was above a certain threshold for mode
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coupling to become effective enough.

4. Conclusion

To summarise, applied RMP fields that break the axisymmetric nature of tokamak

plasmas, are widely used to actively control ELMs. The 3D plasma stability can be

studied in a perturbative way, as long as the full 3D equilibrium and the axisymmetric

toroidal modes are known. The stability code ELITE provide both the axisymmetric

toroidal eigenmodes required for the toroidal coupling and also the 3D part of the

equilibrium. This was obtained by inserting a fixed boundary condition to represent

an external field. Screening current density is captured, but has not been observed

to have a strong impact on MHD stability. Nevertheless, the 3D equilibrium profiles

and the geometrical mode coupling had a significant stabilising impact to MHD modes

above a certain phenomenological threshold for the amplitude of the applied field. This

is a consequence of stronger coupling to the higher n sideband of the axisymmetric

system, which is more unstable for ballooning. For cases where the kink mode further

destabilises intermediate n modes, the creation of a peak in the spectrum will lead to the

opposite trend. Our results are consistent with non-linear fluid simulations and could

provide further insight regarding the dominant physics mechanism that allows an ELM

free operational state necessary for the advanced operation of ITER.
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