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Abstract. Disruption prediction and avoidance is a critical need for next-step tokamaks such 

as ITER. The Disruption Event Characterization and Forecasting Code (DECAF) is used to 

fully automate analysis of tokamak data to determine chains of events that lead to disruptions 

and to forecast their evolution allowing sufficient time for mitigation or full avoidance. 

Disruption event chains related to local rotating or global MHD modes and vertical instability 

are examined with warnings issued for many off-normal events including density limits, 

plasma dynamics, confinement transitions, and profile variations. Along with Greenwald 

density limit evaluation, a local radiative island power balance theory is evaluated and 

compared to the observation of island growth. Automated decomposition and analysis of 

rotating tearing modes produce physical event chains leading to disruptions. A total MHD 

state warning model comprised of 15 separate criteria produces a disruption forecast about 

180 ms before a standard locked mode detector warning. Single DECAF event analyses have 

begun on KSTAR, MAST, and NSTX/-U databases with thousands of shot seconds of device 

operation using from 0.5 - 1 million tested sample times per device. An initial multi-device 

database comparison illustrates a highly important result that plasma disruptivity does not 

need to increase as N increases. Global MHD instabilities such as resistive wall modes 

(RWM) can give the least amount of warning time before disruption. In an NSTX database 

with unstable modes, the RWM onset, loss of boundary and current control, and disruption 

event warnings are found in all cases and vertical displacement events are found in 91% of 

cases. An initial time-dependent reduced physics model of kinetic RWM stabilization created 

to forecast the disruption chain predicts instability 84% of the time for experimentally 

unstable cases with relatively low false positive rate. Instances of disruption event chain 

analysis illustrate dynamics including H-L back transitions for rotating MHD and global 

RWM triggering events. Disruption warnings are issued with sufficient time before the 
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disruption (on transport timescales) to potentially allow active profile control for disruption 

avoidance, active mode control, or mitigation. 

 

1. Introduction 

Disruption prediction and avoidance is a critical need for next-step tokamaks such as ITER, 

since plasma disruptions
1,2

 can place significant thermal heat loads and electromagnetic 

forces on the device and can potentially lead to damage from runaway electrons.
3
 Meeting 

these challenging goals with the high reliability required for ITER and future tokamaks goes 

beyond active instability control alone and will require multiple approaches, including an 

understanding of the connection between events leading to disruptions, and the ability to 

forecast such events well before they occur. Studies often aim to predict the onset of a 

disruption with sufficient time to successfully trigger disruption mitigation systems. This 

criterion will mitigate potential damage to the device in question, however, it will also 

terminate the plasma and is expected to require time to reset the tokamak to a proper 

operational state to continue operation. With sufficiently early forecasting of a potential 

disruption, appropriate control systems and actuators could be used to alter the plasma state 

in a way that would avoid disruption entirely. The Disruption Event Characterization and 

Forecasting Code (DECAF), under development for this purpose, is used to automate 

analysis of tokamak data to determine chains of events that lead to disruptions and to forecast 

their evolution to inform plasma profile and mode control systems aimed to most preferably 

avoid plasma disruption entirely, or if needed to mitigate the deleterious effects of a 

disruption. The DECAF approach also provides the understanding required to control the 

plasma best avoid unfavorable plasma operational states. 

 

The disruption chain “events” as defined in DECAF largely follow the paradigm established 

by the analysis performed by de Vries, et al.
4
 for JET. These studies, in which the results 

were produced by individual, manual examination of each discharge studied, established a 

framework for quantifying disruption “events”. The temporal combination of these events 

were considered in that work, which have the analog of disruption event “chains” in DECAF. 

The DECAF approach aims to automatically determine the relation of the events and quantify 

their appearance to characterize the most probable and deleterious event chains. It 

additionally aims to forecast the onset of the events and chains, especially for events that 

experimentally manifest in close time proximity to the disruption and would elude disruption 

avoidance control systems, or even disruption mitigation systems. Earlier work by de Vries, 

et al.
5
 using the JET database was also an important element of the evolution of disruption 

research, especially as it showed fairly low disruptivity in carbon wall operation (dropping to 

near 5%), but did not address disruption chain events and their interconnection. This, and the 

studies in Reference 4 contrast the higher disruptivity in JET experienced with the ITER-like 
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wall operation, illustrating the need for a more physics-based assessment to understand the 

causes of the disruptions more universally.
6
 Other studies have attempted an automatic 

disruption classification in a statistical manner utilizing generative topographic mapping 

applied to the JET operation with the ITER-like wall.
7
 Initial studies of real-time assessment 

allowing early reaction to potential disruption causes, including attempts at disruption 

avoidance have been conducted on machines such as ASDEX-U and TCV.
8
  

 

The DECAF approach differs from these studies. It is primarily physics-based and aims to 

provide a quantitative and, importantly, a deterministic (rather than a statistical) predictor for 

disruptions. It also aims to provide an understanding of the dynamics of the events leading to 

disruptions to best ensure disruption prediction extrapolability to future devices. This is 

highly important in high fusion power devices such as ITER in which the production of 

disruptions to teach purely automated model building approaches is highly restricted. Still, 

the DECAF approach and code are highly flexible and allow a large range of models from 

simple empirical comparisons, to reduced explicit analytic models based on computationally 

intensive first-principles physics analysis, machine learning reductions of first-principles 

physics models, or hybrid machine learning models that use both physics-based and pure 

machine-based techniques. DECAF events are not simply labels. Instead, they contain both 

attributes and methods in an object-oriented programming sense. In this way, the collected 

understanding of these events can be programmed and continually validated against tokamak 

data to improve their general validity. To best validate the expanding models being added to 

DECAF, significant effort is being placed on testing the algorithms against full tokamak 

databases on multiple tokamak devices throughout the world. As shown later, this approach 

is required to avoid errant determination of plasma parameters from databases limited to time 

periods that are only in close time proximity to the disruption. A larger variety of devices 

also provides essential depth in testing physics models and determining uniqueness and 

commonality in the events and their chains leading to disruptions. In the present work, the 

KSTAR, MAST, and NSTX/NSTX-U databases are examined, with analysis expanding to 

the DIII-D and TCV databases that are also available. Importantly, DECAF meets all of the 

disruption predictor requirements outlined by Humphreys, et al.
9
 that a predictor must (i) 

predict specific phenomena, (ii) provide a continuous variable quantifying proximity to 

disruptive states, and that can trigger actions, (iii) provide sufficient lead time for mitigation 

or avoidance, (iv) be extrapolable to new devices, and (v) be real-time calculable. To clarify, 

the goal of the research presented here is the automated characterization of disruptions by 

event chains and their forecasting using input data and analysis that are not computed in real-

time. However, the implementation and development of the present DECAF code has been 

performed to efficiently allow analogous analysis to be performed in real-time. Future work 
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is planned to do this, and also to compare the performance of the offline and real-time 

DECAF analysis. 

 

The following sections examine an important subset of the event analysis in the code and 

insights gained on the connection of plasma dynamics to the events. Section 2 describes the 

DECAF approach further, including the concept of disruption warning levels (with 

connection to past work). Section 3 describes the continuing development of the physical 

models in DECAF, with examples including density limits and MHD instabilities – including 

both their automated characterization and present forecasting capabilities. Section 4 describes 

the initial investigation of large, general databases (from KSTAR, NSTX, and MAST), 

including full disruption event chains, the importance of analysing long periods of the plasma 

evolution in the devices, the increasing capability of the code to produce early disruption 

forecasting, and a brief summary of the disruption prediction model performance evolution. 

A summary and discussion are included in Section 5. 

 

2. Disruption chain events and warning levels 

Fig. 1 simply illustrates the paradigm that DECAF follows in providing automated 

understanding of the dynamics leading to a tokamak disruption along with an example from 

experiment. Continuous tokamak plasma operation at high fusion performance is desired 

(Fig. 1a). However, at some point this “normal” operational plasma state can be altered by 

various “events” ranging from purely technical considerations (e.g. magnetic field power 

supply interruption) to more complex reasons such as the onset of plasma instabilities, loss of 

heating power balance, or loss of torque balance. This alteration is considered as a chain of 

individual events, starting with a trigger event and evolving toward the plasma disruption 

(here labelled by the acronym DIS representing the plasma current quench). DECAF analysis 

of device databases aims to automatically determine not only the frequency of occurrence of 

events, but also understanding of this chain of events. Future real-time implementations of 

DECAF diagnostic interpretation and forecasting models of such events can then be used to 

trigger disruption avoidance systems. This expanded strategy can be contrasted to present 

disruption avoidance systems, e.g. MHD instability control systems
10

 that essentially wait 

until the “disruption precipice” to address avoidance of the oncoming disruption. Fig. 1b) 

shows a DECAF analysis of a plasma with “mid-range” normalized beta βN ≡ 10
8
<βt>aB0/Ip 

(where βt ≡ 2μ0<p>/B0
2
 = 4.5 toroidal beta, p is the plasma pressure, B0 is the vacuum 

toroidal magnetic field at the plasma geometric center, and a is the plasma minor radius at the 

midplane) in the NSTX
11

 device. In this case, a global magnetohydrodynamic instability 

(resistive wall mode, RWM) is identified by DECAF as the event chain trigger, which in the 

past was thought to be the direct precursor to the disruption (DIS). However, DECAF 

identifies several interceding events. Next in the chain, 7 ms after the RWM event, is a 
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vertical displacement event (VDE). The algorithm for determining whether a VDE event has 

reached a critical warning level is described in the next section. Five milliseconds later, a 

wall proximity warning (WPC) is issued indicating that the plasma boundary is about to 

touch the device first wall (and does soon after the warning). A low plasma density warning 

(LON) is issued 2 ms later, followed 5 ms later by the IPR event warning that the feedback 

control target plasma current request is no longer being met. By now, the original separatrix-

limited plasma is in contact with the wall and is decreasing in size, with the edge plasma 

safety factor, q, decreasing as plasma poloidal flux is lost. At 9 ms later, a low q warning 

(LOQ) is issued. Finally the time of the disruption (DIS) is found, based on the plasma 

current quench.
12

 The DIS event occurs over 30ms after the trigger RWM is issued, which is 

expected to be just enough time in ITER to trigger the disruption mitigation system 

effectively. However, this relatively short-duration disruption chain would be better handled 

if the RWM event itself was forecast at an earlier time. DECAF presently has a model to do 

this, as discussed in Section 3.3.2. At present, DECAF event warning levels are determined 

by a flexible diagnostic and physics model “point” system similar to that successfully used 

for NSTX
13

 but significantly expanded including results from general analysis of the 

evolving diagnostic input and plasma equilibria with a continuous warning level 

determination. A key expansion of the present DECAF approach is that several event criteria 

can be used in conglomerate to determine combined “levels” that allow DECAF to issue 

event warnings. For example, at present, 15 separate criteria are used to determine the total 

MHD warning level for rotating MHD modes (see Section 3.2.1). 

 

3. Physical Model Development 

A profound power of the DECAF approach is the ability to test any physical model 

developed by the fusion research community for practical use as part of a disruption 

prediction model ensemble. Models that can quantitatively forecast disruptions more 

accurately across all devices can then objectively be chosen as being more desirable using 

quantitative figures of merit. Over 50 disruption chain events are presently identified, with 

over 20 events that have diagnostic evaluation and physical models providing warning levels. 

Simpler evaluations examine key diagnostics in combination to compute warning levels, with 

comparison to critical levels to determine when DECAF issues event warnings. For example, 

the VDE event combines a comparison of axis position (|Z|), axis velocity (|dZ/dt|), and Z 

dZ/dt against threshold levels set in the model. Critical levels of such models will differ for 

each machine. The validation of the technical and physics-based models for each of the 5 

devices in the present DECAF database now comprises the primary near-term research effort. 

More desirable are models that more transparently reproduce the behavior of all tokamak 

devices. The simplest models in this class are empirical models such as the Greenwald 



DRAFT v1.2  DRAFT v1.2  

 6 

density limit. A next level includes models that are more closely based on first-principles 

physics, examples of which are discussed below. 

3.1 Density Limits 

The Greenwald density limit
14

 (event GWL) is included in DECAF as a universal empirical 

model for disruption forecasting. Recently several theories have been developed to explain 

the observed global Greenwald limit in tokamaks, including a ballooning stability limit at the 

separatrix
15

 and a local island power balance theory
16,17

. In the latter theory, power balance in 

an island between input Ohmic heating and radiated power loss results in a maximum local 

density that scales with local current density. If the density at the island exceeds the limit, or 

alternatively if the radiated power at the island exceeds the input power (Ploss > Pinput), then 

the island grows and can lead to plasma disruption. The limit can be written either in a form 

which mimics the global Greenwald density limit in a local form, or one that mimics a 

radiated power fraction localized to the magnetic island surface. This model has been added 

to the DECAF code including the radiated power, resistivity, and current density profiles as 

inputs. 

 

The radiated power profile (Ploss) can either be measured directly or can be estimated from 

density profiles and calculated cooling rates of deuterium and impurities such as carbon, 

which depend on electron temperature
18

. Fig. 2 shows both the measured and calculated 

profiles for an NSTX discharge. The Ploss is calculated as Ploss = ne∑nZLZ, where the species 

Z considered in this case are limited to deuterium and carbon and the cooling rates L in Wm
3
 

are given for deuterium by LD = 5.35*10
-37

Te
1/2

 with electron temperature in keV (Ref. 15), 

and for carbon by tabulated formulae in Ref. 18. The input power profile which Ploss is 

compared to in Fig. 2 is calculated from Pinput = ηj
2
. The resistivity profile, η, is calculated 

based on electron temperature and the effective charge Zeff (formula from Ref. 15) which are 

measured by Thomson scattering and charge exchange recombination spectroscopy.  The 

current density profile used here is the total surface-averaged current density profiles from 

various sources (Ohmic, bootstrap, beam-driven), which are computed by the TRANSP code. 

 

The power balance model is a local condition for island growth, therefore mode marginal 

stability would occur when Ploss/Pinput > 1 at the location of the island. This defines the 

DECAF event “island power balance” (IPB) shown in Fig. 2. The rotating MHD mode 

growth that arises when Ploss/Pinput = 1 (Fig. 3) is measured as having toroidal mode number 

n = 1. The lowest order rational surface in the plasma is q = 2, so m/n = 2/1 activity is the 

most likely candidate. Therefore, the local power balance criterion is evaluated at the q = 2 

surface. The n = 1 mode onset in Fig. 3 is highly correlated with the IPB event warning in the 

plasma shown. Also shown is the computed Greenwald fraction evolution and the DECAF 

event GWL defined as the line-averaged plasma density equal to the Greenwald density. At 
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the IPB event, the Greenwald fraction is ~ 0.9. While this correlation is positive, the present 

state of analysis shows the quantitative evaluation of the IPB event to be sensitive to the 

accuracy of the local input criterion (e.g. position of the q = 2 surface). Present DECAF 

analysis shows that the local island power balance evolution follows the evolution of the 

global Greenwald fraction. For 13 discharges tested, the Greenwald fraction ranges from 0.75 

to 1.05 at the time of MHD onset and the local island power balance fraction has a range of 

about 0.60 to 1.50. Continued analysis is focussed on reducing this variation and eliminating 

the need for full TRANSP analysis for each plasma, for example through neural net 

evaluation of a representative set of TRANSP runs to determine the required input for the 

IPB event. 

 

3.2 Rotating MHD instabilities 

Automated analysis of rotating MHD modes with tearing characteristics has started by using 

a DECAF module to produce physical event chains leading to disruptions through slowing of 

the modes by resonant field drag mechanisms and subsequent locking. An algorithm portable 

across tokamaks devices has been developed that processes the spectral decomposition and 

signal phase matching of magnetic probe signals for mode discrimination. Multiple modes 

occurring simultaneously are tracked and bifurcation of the toroidal rotation frequency and 

locking for each mode due to the loss of torque balance under resonant braking are detected. 

 

3.2.1 Disruption Event Characterization 

The information analysed for these modes along with plasma rotation profile and other 

plasma measurements produces predictive warnings for the individual modes, along with a 

total MHD event warning signal showing initial success as a disruption forecaster. These 

capabilities are illustrated in Fig. 4 for the same plasma shown in Fig. 3. In the plasma 

illustrated, rotating MHD instabilities thought to be non-linearly saturated and slowly 

evolving resistive modes are found using a generalized phase matching algorithm in DECAF 

using an array of toroidal magnetic probes typically available in tokamaks. The code 

discriminates the toroidal mode number of the instabilities and tracks all modes that have 

greater than a specified amplitude. Modes that approach the disruption are indicated by the 

chevrons in the diagram (which show the mode n number). DECAF events based on the 

mode evolution are also shown, including the bifurcation of the modes (BIF-n1,2) (loss of 

torque balance leading to rapid loss of mode rotation), and events marking the locking of the 

modes in the laboratory frame of reference (LTM-n1,2). A single “total” MHD warning 

signal that varies with time is also shown. This warning is created by a set of criteria and can 

be used as a disruption predictor, as described in the next section. 
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3.2.2 Forecasting 

A significant part of DECAF research is determining the best criteria to create predictive 

warnings. The warning model shown in Fig. 4 is comprised of 15 separate criteria, also 

shown in the figure displayed as a heat map. This summary of the criteria used to produce the 

warning level provides a useful illustration of how the total warning level reaches high 

values, indicating a disruption onset. A total warning level of 4 indicates close proximity to 

the disruption for this model. The heat map also gives us an understanding of what is 

happening in the plasma to create the undesirable plasma states approaching the disruption. 

Early in the discharge (before t = 0.25s), MHD modes are also found, and core plasma 

rotation is low as the plasma starts up and typically transitions from counter-NBI rotation to 

co-NBI rotation. However, the mode frequencies are relatively high at this time, which is 

generally a safe condition. Later, near t = 0.25s, the MHD warning level increases as modes 

are again found but now with decreased and decreasing rotation frequency. However, these 

frequencies are not critically low (no mode bifurcations are found) and plasma rotation is not 

low, so the warning level remains low. However, after t ~ 0.6s the heat map clearly shows 

more negative (destabilizing) criteria occurring simultaneously including an increased mode 

amplitude, decreasing mode frequencies, and decreasing plasma rotation across the profile. 

Near t ~ 0.7s more negative criteria occur: mode frequencies are now below a recently 

evaluation of mode bifurcation frequency levels, the modes drop to very low frequency, and 

core plasma rotation (three channels of the plasma rotation profile are considered – core, 

middle, and outer) is critically low. Late in the evolution in close time proximity to the 

disruption (t ~ 0.8s), a critical level of locked mode amplitude occurs. Such a locked mode 

detector signal is typically used as the primary, and occasionally the only indicator to predict 

a possible disruption, but this indication occurs very late in the evolution. We see here that 

the DECAF analysis starts to show a significant change in the total MHD warning level about 

180 ms earlier, providing far better advanced notice of the potential disruption allowing the 

potential for control systems to alter plasma stability to avoid disruption. Additionally, and of 

critical importance, the DECAF analysis provides physical understanding of the negative 

evolution of the plasma state as it moves toward the disruption. Further forecasting of 

resistive MHD stability using the resistive DCON code is being investigated through 

supporting KSTAR research
19

. 

 

3.3 Global MHD Instabilities 

Global MHD instabilities such as external kink/ballooning modes or resistive wall modes 

(RWMs)
20

 can cause the most rapid disruptions (e.g. Fig. 1) and give the least amount of pre-

disruption warning time. Therefore, attention needs to be put toward forecasting such events 

to cue profile control systems well before instability develops. 
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3.3.1 Disruption Event Characterization 

To examine disruption event chains with global MHD triggers, DECAF analysis was 

performed on a database of 45 NSTX discharges that were pre-determined to have unstable 

RWMs which lead to disruptions. Tearing modes were stable during these discharges to focus 

on global MHD in this analysis. A typical disruption event chain with an RWM trigger was 

shown in Fig. 1. In this database, the RWM, loss of boundary control (WPC), LOQ, IPR, and 

DIS events are found in 100% of the plasmas, and VDE events are found in 91% of the 

plasmas. A pressure peaking warning (PRP) occurred on a majority of the discharges 

analyzed (35 of 45), but typically occurred with or after the RWM, not before in this 

database. The GWL event warning is found in a few cases when the warning level is set at a 

Greenwald fraction of 0.9. Interestingly, GWL can start the RWM disruption chain and is 

explained by the correlation of reduced plasma rotation caused by increasing plasma density, 

leading to RWM instability by a destabilizing change in the plasma rotation profile, 

discovered in NSTX
21

. Analysis shows that 61% of RWM events in a shot occur within 20 

conducting wall current diffusion times, w, of the disruption. The other RWM events found 

occur earlier but are not false positives as they cause significant thermal collapses or “minor 

disruptions” of the plasma with subsequent recovery (plasma stored energy can drop by 30% 

or more over tens of ms, much larger than the largest ELMs in tokamaks which cause far 

smaller stored energy decreases up to ~ 6%). It is useful to examine which events are 

commonly associated with this dynamic.  For example, the low safety factor condition (LOQ) 

was clearly seen to happen often in close conjunction (either just before or just after) the 

designated time of disruption (DIS).  One way of seeing this is to examine a histogram of 

some of the timing of the events before the time of disruption (DIS), shown in Fig. 5. Here 

only the events within 14 τw of the disruption are shown, where τw is taken to be 5 ms; there 

are some RWM events at earlier times which are not shown here. It is clear that LOQ and 

IPR events occur close to the time of disruption, and these are often preceded by VSC, and 

RWM events which peak around 30 ms prior to the disruption 

 

Examining the common chains of events more closely can provide insight into how to cue 

avoidance systems to return to normal plasma operations (see Fig. 1). For example, if the 

RWM can be detected in real-time by a growing mode amplitude signal from an array of 

external magnetic sensors, it is useful to know what the typical routes of plasma behavior 

directly follow the RWM so that plasma control systems may be employed to avoid them. 

Even with the limited dataset examined here, we can find interesting trends. Of the 26 RWM 

events occurring within 100ms of the disruption, they were followed immediately by VDE 

(related to bulk plasma motion) 15 times.  Further, looking at the two-event chains that 
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happened directly after this set of RWMs, we find that even though there are theoretically 56 

two-event combinations that could occur from the eight currently tested, just two two-event 

chains accounted for 50% of the cases (VDE  PRP and VDE  WPC) and five accounted 

for 77%. 

 

3.3.2 Forecasting 

Kinetic RWM analysis has shown high success over years of quantitative comparison to 

experiment to determine the mode marginal stability allowed through plasma precession drift 

and bounce orbit resonances, collisionality, , and energetic particle effects
21,22

. To allow 

rapid processing, full kinetic RWM computations (using the MISK code
21,22

) that have been 

used successfully to predict mode stability on NSTX and DIII-D have been used to create a 

reduced model of the kinetic RWM stability growth rate in DECAF (Fig. 6a). Gaussian 

functions with parameters fit from full MISK calculations of NSTX marginally stable 

equilibria are used to define the kinetic energy functional δWK as functions of ExB frequency 

and collisionality. The model also incorporates expressions dependent on plasma pressure 

peaking, internal inductance, and aspect ratio for the ideal MHD no-wall and with-wall beta 

limits computed from thousands of DCON calculations using experimental equilibria
23

.The 

modelled growth rate can be used to forecast RWM instability based on plasma equilibrium 

reconstructions and rotation measurements and is time-dependent based on the equilibrium 

evolution. Fig. 6a) illustrates the evolution of a high normalized beta NSTX experimental 

plasma as it becomes RWM unstable near a predicted marginal stability contour (while not 

shown, the growth rate contours on Fig. 6a change as the plasma evolves). This reduced 

kinetic RWM stability model in DECAF, detailed in Reference 23, performed well in its first 

incarnation against a larger database of plasmas to determine the proximity of discharges to 

marginal stability (Fig. 6b). The model predicted instability 84% of the time (stringent 

marginal stability evaluation) for experimentally unstable cases with a relatively low false 

positive rate. DECAF also showed 44% of plasmas were predicted unstable within 320 ms 

(~ 60 w) of the disruption time, and 33% were predicted unstable within 100 ms of a minor 

disruption. Stability was predicted in 77% of experimentally stable cases. The evolution of 

discharges that were RWM stable were notably separate on the (ExB frequency, 

collisionality) stability map, not crossing the computed marginal stability contour. 

 

4. Initial Investigation of General Databases 

4.1 Individual disruption chain events 

The DECAF code has recently produced an initial analysis of large databases for multiple 

tokamak devices for a small set of disruption characterization events. The analysis is 



DRAFT v1.2  DRAFT v1.2  

 11 

conducted over the full duration of the planned plasma current flat-top, rather than a limited 

period near the disruption time as might be available from a disruption database. Thousands 

of shot seconds are available in the databases, with upwards of 0.5 – 1 million tested sample 

times per database. For example, if the DIS event is used, the analysis produces the 

equivalent of “disruptivity diagrams” showing the probability of a disruption occurring 

within a given parameter space of tokamak operation. These diagrams are shown for NSTX, 

MAST, and KSTAR in Fig. 7 expressed as standard stability operational space (li,N) figures 

(li is the plasma internal inductance). This multi-device comparison illustrates a highly 

important and still largely unappreciated result separately published for DIII-D and NSTX
24

 

for smaller datasets that plasma disruptivity does not need to increase (and can actually 

decrease) as N increases. However, as will be shown in the next section, the high beta 

regions of low disruptivity are in fact key areas for DECAF algorithms to analyse events that 

can lead to disruptions. 

 

Unlike standard disruptivity plots, DECAF can provide additional insight by illustrating 

where in parameter space events other than DIS happen. For example, the VDE event detects 

the loss of vertical stability. When plotted in the parameter space of elongation, κ, vs. li, it 

becomes clear that vertical stability shows a strong dependence on these parameters (Fig. 8a) 

and that, additionally, the location in parameter space of an event preceding the disruption 

(like VDE) can be far from where the actual disruption event occurs (DIS, shown in Fig. 8b). 

 

4.2 Disruption event chain analysis for arbitrary discharges 

DECAF event characterization and event chain analysis shows that disruption forecasting 

analysis often start during plasma states that can appear safe. This is illustrated using the 

disruptivity database plot shown in Fig. 7a) and the figures in this section. The regions of 

high disruptivity in Fig. 7a) may be thought to be the most important based on human 

inspection. However, an apparent problem is that the region of high disruptivity at low N 

and mid-range li is not physically understood to be a dangerous operational region. The 

enigma is resolved by understanding that the plasma state can evolve significantly from more 

usual high performance parameters to the point at which the disruption actually occurs. This 

fact is completely missed, for example, by disruption database studies that only process data 

near the disruption time. Even worse, such studies may parameterize disruptive limits based 

on these misguided terminal states. In contrast, DECAF disruption event chain analysis of 

two discharges in Fig. 7a) that disrupt (DIS event in DECAF, marked by red and green X’s in 

the figure) show that the start of the event chains appears in the region indicated by the red 

and green circles – which are far from what might be expected. This also illustrates why the 

use of a numerical tool that would focus only on the regions of high disruptivity (such as a 

“black box” machine learning approach) would produce an inaccurate assessment of the 
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plasma states that produce early disruption forecasts. The disruption event chain for these 

plasmas in Fig. 7a) are shown in Fig. 9 along with the DECAF MHD mode decomposition 

and total MHD warning level. As before, we see this warning level rising toward and past the 

critical value of 4.0 as the disruption is approached. The DECAF mode decomposition adds 

information showing that the mode evolution toward lower rotation frequencies is relatively 

slow. This is one reason why the plasma disrupts far from the plasma state at the trigger 

event. 

 

The DECAF event chains in Fig. 9 provide a wealth of information. In Fig. 9a), we see a 

critical warning for the individual n = 1 rotating MHD mode (MHD-n1) as a starting point for 

the chain. Note from the top frame that the low frequency n = 1 mode itself was detected far 

earlier – near t ~ 0.22s. However, the warning level for the activity was not determined to be 

sufficiently high then. The mode bifurcation (event BIF-n1) occurs 5 ms later. The mode 

locks (event LTM-n1) 45 ms after the bifurcation. Then, a different dynamic occurs, as 

DECAF finds a pressure peaking event warning (PRP) happening 23 ms later. While the 

warning literally flags that the pressure peaking factor is exceedingly high, it also importantly 

indicates that an H-L energy confinement back-transition has occurred, the H-mode pedestal 

is lost, and the neutral beams have better penetration increasing the plasma pressure 

peakedness. The IPR warning occurs 5 ms after PRP and simultaneously the plasma makes a 

close approach to the vessel wall (WPC). Finally, the plasma disrupts 4 ms after the WPC 

event. It is also interesting that the VDE event warning occurs 3 ms after DIS. Usually the 

events are reversed in time. This indicates that the plasma remains mainly on the midplane 

during the evolution, uncharacteristic of NSTX disruptions. Fig. 9b) shows a relatively slow 

RWM-triggered disruption (i.e. compared to Fig. 1b)). In this disruption event chain, the PRP 

warning again indicates an H-L back transition and a VDE is produced approximately 10 W 

after the RWM trigger occurs. As shown, the disruptions in these two plasmas occur 77 ms 

and 101 ms after the initial DECAF warnings. These intervals represent transport timescales 

(a few energy confinement times) and so would allow sufficient time for active profile 

control for disruption avoidance, or easily allow time for active mode control or disruption 

mitigation. 

 

4.3 Disruption Prediction Performance 

Disruption prediction research using the DECAF approach also importantly allows 

quantifiable figures of merit (most importantly the plasma disruptivity) to assess any 

prediction models produced. This figure of merit allows an objective assessment of the 

relative performance of different models, and allows an assessment of how close the 

predictor would come compared to ITER needs. Fig. 10 shows a progression of DECAF 

disruption forecasting models. The earliest models included about 10 events and were run in 
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databases for which the events that led to the disruption were known. For such databases, 

DECAF produced very high performance (e.g. 100% true positives). A next evaluation of 

models focused on earlier forecasting once the first forecasting model was implemented in 

the code. True positives were found to be ~84%, which was a measure mainly of the single 

forecasting model. The addition of more forecasting models (such as the MHD analysis 

shown) could improve that performance with further development. The most recent testing of 

the code has been on large databases ~ 10,000 shot*seconds of plasma run time tested. This 

was done with a smaller number of events due to computer RAM limitations. With 5 events, 

applied to all plasma shots from an NSTX database, DECAF has produced performance 

levels of over 91% true positive disruption predictions. False positives in this analysis 

reached 8.7% which is fairly high. However, further code development that allows the events 

to poll each other will reduce this level considerably. 

 

5. Summary and Discussion 

 

The Disruption Event Characterization and Forecasting Code is a physics-based, fully 

automated analysis paradigm that continues to compile the knowledge of many years of 

tokamak research by implementing a collection of models to solve the critical issue of plasma 

disruptions in tokamaks. The approach considers the evolution from normal tokamak 

operation toward a plasma disruption as occurring through a linked series, or “chain” of 

events, most or all being “off-normal”. The approach has several advantages including an 

analysis that produces greater understanding of the events as a collective, and allowing 

control systems to be guided by the events and events chains in taking early actions (e.g. on 

transport timescales) to avoid disruptions before they happen via the forecasting element of 

the analysis. The approach is inherently deterministic rather than statistical. The DECAF 

approach meets all of the disruption predictor requirements outlined by Humphreys, et al.
9
 

Four of the five requirements have been demonstrated in this paper. The DECAF events 

comprise both attributes and methods which include the ability to predict the specific plasma 

physics phenomena covered by the scope of each event. The events in combination provide a 

continuous variable quantifying the proximity to disruptive states. The events themselves, 

and more powerfully the event chains can be used to more intelligently trigger actions by 

control systems (e.g. by using gradients of the underlying physical processes to determine 

how to change the plasma state) than a system that only provides a binary classification of the 

plasma state. Present model and forecasting development has produced analysis that forecasts 

the onset of a disruption on plasma transport timescales, thereby allowing sufficient lead time 

to avoid plasma disruption through plasma control techniques (e.g. profile control, shape 

control, plasma stored energy control, plasma mode control). The DECAF paradigm puts 

high priority on the ability to characterize and forecast plasma disruptions from the full 
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databases of multiple tokamaks to allow more stringent validation of the underlying physics 

models across several devices, thereby producing superior extrapolability to future devices. 

 

While DECAF connects to the databases of several tokamaks, once read into the code the 

data used is abstracted from the specific local data names to general names (e.g. CES toroidal 

plasma rotation profile on KSTAR
25

 and CHERS plasma rotation profile on NSTX
26

 

becomes “plasma rotation” in DECAF, with a generalized input describing the measurement 

geometries. This allows straightforward comparisons between quantities and consistency 

with future common data management systems, such as IMAS for ITER
27

, the exact common 

variable names for which are presently being implemented. 

 

Modern machine learning (ML) techniques were envisioned to be used in specific ways in 

DECAF analysis since its origin once they were found to be needed. The first instance of this 

was thought to be the reproduction of the mode growth rate results for the kinetic MHD 

global mode model detailed in Reference 23 by a deep learning neural net approach
28

. 

However, as shown in the reference, basis functions that produced good fits to the analysis 

results were found based on the underlying physics solutions, and so that approach was 

utilized. Having analytic forms for the models are superior to purely numerical approaches in 

that gradients of the key quantities used for forecasting and control algorithms can be 

computed analytically, producing smooth results to reduce analysis output noise. However, 

finding such basis functions is not straightforward, and so is not possible in general. 

Therefore, we have now started to implement machine learning for DECAF, but in 

significantly different ways than have been used for disruption prediction research to date, 

which typically approach the problem treating a disruption database as a binary classification 

problem, and applying deep learning or other techniques to the database as a “black box”. 

Machine learning in DECAF follows a philosophy that is more amenable to produce human 

understanding of the results and allow greater flexibility for use in control systems. 

Specifically, we are presently adopting three approaches of using machine learning to support 

DECAF. First is the reduction of results from certain complex physical models by deep 

learning neural nets to allow rapid (including real time) determination of quantities used in 

DECAF models. Two such machine learning techniques following this approach above have 

already been applied as analysis supporting the DECAF code, specifically, deep learning 

neural nets, and non-linear random forest regression analysis. These are presently being used 

to train on DCON ideal MHD stability code calculations and will be the subject of a future 

paper. Second, a “hybrid model” approach is envisioned to comprise the bulk of ML use in 

DECAF. In this approach, both a physics model and a database that the physics model is 

meant to reproduce are given. The difference between the computed physical quantities 

produced by the model and the data, e, is typically interpreted as the error between these 
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two, for which a physical model is not known. The hybrid model approach focusses on 

reproducing e, rather than the entire physical model. This approach has two advantages: (i) 

the key independent variables needed to produce the ML model of e will be a smaller set 

than required to reproduce the entire database using ML alone, and (ii) ML techniques have a 

greater probability of exposing key physics variables of e, which can produce human 

understanding of a physical model that explains it. In that case, the new physics discovered 

that reproduces e can be added to the original physical model, with the opportunity to iterate 

this process to discover more of the underlying physical model. The approach of addressing 

e is analogous to the use of an optimum observer in control system design.
29

 Finally, ML 

techniques will be used to evaluate more general linkages between DECAF events. 

 

There is one final disruption predictor requirement remaining to be demonstrated by DECAF 

– that it be real-time calculable. This characteristic can also be met by all models discussed in 

this paper, and that are presently available in DECAF. The present offline modeling and 

analysis is starting to be implemented for real-time use in the KSTAR device. In such an 

implementation, only causal analysis techniques based on real-time measurements and real-

time equilibrium reconstruction quantities can be used. Comparison of disruption prediction 

performance results between the two approaches will be made once the results from real-time 

analysis are completed. 
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Figure Captions 
 

Fig. 1: (a) Schematic diagram illustrating a paradigm of plasma state evolution away from normal 

operation toward a plasma disruption as a series of events that form a disruption event chain, (b) 

automated evaluation of the disruption event chain for a plasma discharge with N = 4.5, (c) and (d) 

higher time resolution illustration of n = 1 RWM amplitude and plasma toroidal rotation as the 

disruption is approached. 

 

Fig. 2: Profiles of calculated (deuterium and carbon) and measured total radiated power density and 

calculated input power density for NSTX discharge 134020 at 0.60s. 

 

Fig. 3: (a) spectrogram of rotating MHD activity from a toroidal array of magnetic probes for NSTX 

discharge 134020, illustrating n = 1 mode growth near the time of the loss of power island power 

balance (DECAF event IPB), (b) Greenwald fraction and local power balance criterion. 

 

Fig. 4: Rotating MHD mode discrimination capabilities in DECAF. The upper left frame shows the 

mode discrimination and decomposition into DECAF events. The lower left panel shows a total MHD 

warning level that increases as the disruption is approached. The right panel shows a heat map 

illustration of 15 event criteria that comprise the total MHD warning level. 

 

Fig. 5: Histogram of the timing of RWM event triggered disruption chain events before the time of 

disruption. 

 

Fig. 6: (a) Stability map vs. ExB frequency and collisionality from DECAF reduced kinetic RWM 

stability model; (b) statistics illustrating results of the model in forecasting instability for RWM 

unstable NSTX plasmas. 

 

Fig. 7: Event probability diagram of DECAF event DIS during Ip flat-top showing that disruption 

probability does not have to increase as plasma normalized beta is increased based on large 

databases from the NSTX, MAST, and KSTAR tokamaks. 

 

Fig. 8: Event probability diagrams of DECAF events VDE (a) and DIS (b) for a large database from 

the NSTX tokamak. 

 

Fig. 9: (top to bottom) DECAF decomposition of rotating MHD in relatively slow evolutions toward 

disruption; total MHD warning signal; DECAF event chains leading to disruption. Plasma in frame 

(a) is triggered by rotating MHD, (b) by RWM. 

 

Fig. 10: DECAF model performance evolution (true positive disruption forecast). 
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============================== (alternate version of Figure 9(a)) 
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 FIG. 10 
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