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Abstract
The evolution of the defect microstructure in materials at high temperature is dominated by

diffusion-mediated interactions between dislocations, vacancy clusters and surfaces. This gives rise

to complex non-linear couplings between interstitial and vacancy-type dislocation loops, cavities

and the field of diffusing vacancies that adiabatically follows the evolution of microstructure. We

expand a formalism for the climb of curved dislocations to include the population of very small

defects and dislocation loops that are below the experimental detection limit. These are taken into

account through a mean field approach coupled with an explicit real-space treatment of discrete de-

fect clusters. We find that randomly distributed small defects screen diffusive interactions between

larger discrete clusters, renormalizing the free diffusion Green’s functions and transforming them

into Yukawa-type propagators. The evolution of the coupled system is modelled self-consistently,

showing how the defect microstructure evolves through a non-monotonic variation of the distribu-

tion of sizes of dislocation loops and cavities, treated as discrete real-space objects.
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I. INTRODUCTION

In a material heated to sufficiently high temperatures the defect microstructure evolves in

time by diffusion. Point defects, predominantly vacancies, propagate between dislocations,

vacancy clusters and surfaces leading to modifications of their shapes and sizes. The evo-

lution rate of each microstructural component is governed by the imbalance between the

vacancy atmosphere surrounding it, determined non-linearly by its characteristic free energy,

and the bulk vacancy concentration. In turn, each object acting as a sink or source of va-

cancies introduces a perturbation of the vacancy concentration in the medium, which scales

with the inverse distance from it. It is therefore clear that dislocations, vacancy clusters

and surfaces are coupled by long-range interactions carried by the vacancy field, and their

evolution depends on the global defect microstructure.

A general model able to describe the high temperature evolution of an arbitrary configuration

of vacancy clusters and dislocations would be particularly useful in the context of nuclear

reactors. High energy neutrons produced by nuclear reactions displace atoms in structural

components, generating vacancies and interstitials that aggregate to form prismatic vacancy

and interstitial dislocation loops and cavities [1–5], which in turn degrade the thermal and

mechanical properties of the material. To design annealing protocols for the recovery of

neutron irradiation damage [2], we have to be able to predict the evolution of arbitrary

populations of such defects as a function of temperature and time.

In an earlier paper [6] we presented a formalism that extends the non-local dislocation

climb model of Gu, Xiang et al. [7] to simulate the high temperature evolution of discrete

dislocation loops and vacancy clusters inside a finite medium. One of the motivations for

developing a real-space model, in contrast to a rate-theory approach, is that the sizes of clus-

ters of vacancies or interstitials produced by neutron irradiation appear to obey a power-law

probability distribution [8, 9] of the form f(n) ∼ n−s, with n the number of interstitials or

vacancies in the cluster. For s < 2 the average of the size distribution is not defined, and so

a representative cluster needed in a rate theory model does not exist. A real-space model
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can also treat local variations in the number density of clusters, for instance those arising

from depleted zones [10] at grain boundaries and free surfaces.

It is likely that the experimentally determined number of the smallest defect clusters is always

underestimated owing to detection limits of the instrumentation. The sizes of experimentally

observed defect clusters is usually assumed to obey a Gaussian-like distribution. Such a

distribution can be understood as a product of the true distribution with a sigmoid function

representing the instrumental sensitivity, as sketched in Fig. 1.

Therefore, experimental data on radiation induced defect clusters is generally incomplete

and the number density of the smallest “invisible” defect clusters can be much greater than

the observed population, as recently noted by Liu et al. [11].
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Figure 1. Qualitative explanation of the observed Gaussian-like size distribution of defect clusters
in neutron irradiated tungsten. The dashed black line represents the true, power-law like, size
distribution. The dashed blue line represents the experimental sensitivity function plotted as a
function of cluster size. The solid black line is the observed distribution, given by the product
of the true distribution and the sensitivity function. The red shaded area is proportional to the
number density of the observed clusters, while the yellow shaded area is proportional to the number
density of mostly “invisible” clusters.

It would be useful, therefore, to include a statistical description of the unknown small-size
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cluster population, introducing an effective mean field which evolves self-consistently with

the observable cluster population. This approach would provide an efficient way to investi-

gate the effect of invisible clusters on the distribution of sizes of visible clusters. It turns out

that the mean field is governed by only a few low-order moments of the size distribution of

visible clusters, which can be determined by the experimentally measured evolution of the

observable population.

In this paper we present a hybrid model that couples the evolution of an experimentally

visible, discrete population of defect clusters in real space with a mean field, representing

the experimentally invisible clusters.

In sec.II we estimate the expected timescales for the evaporation of nanometric cavities as a

function of temperature in W, Fe and Be. In sec. III we introduce the mean field formulation

by averaging the positions and sizes of the small clusters, using a technique developed in

scattering theory by Edwards [12]. In this way we obtain a general expression, eq. (32),

for the coarse-grained vacancy concentration in the presence of an arbitrary distribution of

small clusters.

We then present in appendix B a perturbative approach that expands eq. (32) in terms of

an increasing number of scattering events, deriving an analogue of the self-energy expansion

for condensed matter systems. In the case of homogeneous and uncorrelated distributions,

we provide closed form expressions for the self-energy up to the 3rd order terms in eq. (B11).

By considering the first order approximation to the effective self-energy, we show that the

effective Green’s function governing the interaction between the observable clusters takes the

form of a Yukawa propagator, eq. (40). Thus, we show that diffusive interactions mediated

by vacancies between larger clusters are screened by the mean-field of small clusters. We

found the resulting formalism to have similarities to the diffusion screening theory, origi-

nally due to Marqusee and Ross [13] and further developed by other authors [14–18], which

addresses the issue of divergences in Ostwald ripening theories for finite volume fractions of

particles. In diffusion screening theory the usual Laplacian diffusive interactions are screened

as a result of coarse-graining second phase particles, which is analogous to our mean-field
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treatment of invisible defect clusters.

This procedure enables us in eq. (43) to provide a closed form expression for the vacancy

field where only observable clusters are treated explicitly.

The rates of growth of cavities can be calculated self-consistently in the same manner as in

our previous model [6] by evaluating the vacancy field at the cluster positions with defined

boundary conditions. We couple the evolution of the mean field with large clusters via

eq. (46) and eq. (49).

The theory is developed for an infinite medium. However, the majority of experimental data

on radiation-induced defect clusters has so far been obtained using thin film samples.

In sec.IV we present an extension of the theory to a thin film infinitely extended in the lateral

direction, making use of a variant of Ewald summation developed for Yukawa potentials [19].

In sec.V we briefly present a mean-field treatment of all defect clusters.

Finally, in sec.VI we present numerical simulations to illustrate applications of the theory to

the evolution of distributions of cluster sizes in irradiated thin films of W, Be and Fe.

A list of mathematical symbols and notations used in the present work is provided after the

appendices.

II. PRELIMINARY ESTIMATE OF GOVERNING TIMESCALES

An estimate of the timescale required for the complete evaporation of a nanometric defect

cluster can be obtained by considering an isolated spherical cavity in a vacancy atmosphere

in local thermodynamic equilibrium. Assuming a steady state solution1 for the vacancy

concentration throughout space, the rate of change of the cavity radius R is:

dR

dt
= Dv

R
[c0 − cΣ(R)] , (1)

where Dv is the vacancy diffusion coefficient, cΣ is the local vacancy concentration at the

cavity surface, and c0 is the equilibrium vacancy concentration per atomic site, given by

1 The applicability of this assumption is discussed quantitatively in [6]
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c0 = exp(−Ev/kBT ) where Ev is the vacancy formation energy. cΣ(R) is determined by the

condition of local equilibrium, i.e. there is no change in free energy if vacancies attach to or

detach from the cavity, which leads to the Gibbs-Thomson expression:

cΣ(R) = c0 exp
(

2γΩ
RkBT

)
, (2)

where γ is the cavity surface energy per unit area and Ω is the atomic volume. Therefore, if

we consider a system of cavities of average radius R̄ evolving adiabatically with a vacancy

field in local thermodynamic equilibrium we can estimate the characteristic timescale for

cavity evaporation as follows:

τe = R̄2

Dv[c0 − cΣ(R̄)]
= R̄2

D0
v

exp
(
Ev + Em

kBT

) [
exp

(
2γΩ
R̄kBT

)
− 1

]−1

, (3)
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Figure 2. Estimated timescales τe for the annihilation of ∼ 1 nm cavities (solid lines), vacancy
dislocation loops (dashed lines) and interstitial dislocation loops (solid-dashed lines) in W (red),
Fe (yellow) and Be (blue), as functions of homologous temperature T/Tm.
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where Ev and Em are respectively the vacancy formation and migration energies, and D0
v is

the pre-exponential factor of the diffusion coefficient.

In a similar way, we can estimate the characteristic timescale of dislocation loop evaporation

by considering the rate of change of the radius of an isolated circular prismatic loop due to

non-conservative dislocation climb [7]:

dR

dt
= ± 2πDv

be ln(8R/rd)
[c0 − c∆(R)] , (4)

where the plus/minus sign denote respectively the case of a vacancy or interstitial loop, be is

the edge (out of plane) component of the dislocation Burgers vector, rd is the radius of the

dislocation core and c∆ is the vacancy concentration infinitesimally close to the dislocation

line. The assumption of local equilibrium between the dislocation loop and the vacancy field

surrounding it leads to the following relation:

c∆(R) = c0 exp
[
−fcl(R)Ω
bekBT

]
, (5)

where, for a circular prismatic loop

fcl(R) = ∓ µb2
e

4π(1− ν)R

[
ln
(8R
rd

)
− 1

]
(6)

is the climb force per unit length of the dislocation2, ν is Poisson’s ratio and µ is the shear

modulus and the minus/plus signs distinguish between vacancy type an interstitial type,

respectively. We can therefore estimate the characteristic timescale for the evaporation of a

dislocation loop of radius R̄ as:

τe = ±beR̄ ln(8R̄/rd)
2πD0

v

exp
(
Ev + Em

kBT

){
exp

[
± µΩbe

4π(1− ν)kBT

(
ln
(

8R̄
rd

)
− 1

)]
− 1

}−1

.

(7)

The parameters used for the investigated materials throughout the present work are given
2 In this treatment we neglect the additional contributions to the climb force due to stresses imposed on the
system as a whole or arising from other loops. This is a good approximation because we are considering
very small loops (a few nanometers wide) for which the self-interaction stress dominates. We have defined
the climb force as the projection of the Peach-Koehler force in the direction of the cross product between
the dislocation line direction and the Burgers vector. Therefore, the climb force acting on a vacancy loop
is the negative of that acting on an interstitial loop.7



in table I.

Material γ [eV/nm2] µ [GPa] ν b [nm] Ω [nm3] Ev [eV] Em [eV] D0
v [nm2/s]

W 20.4 a 161 b 0.28 b 0.27 b 0.016 b 3.56 c 1.78 c 4.0×1012 d

Fe 15.3 a 82 b 0.29 b 0.29 b 0.012 b 2.07 c 0.65 c 2.8×1014 e

Be 12.5 a 132 b 0.03 b 0.18 b 0.008 b 0.95 c 0.81 c 5.7×1013 f

Table I. Material parameters used in the present work. Parameters for Be are averages of basal
and non-basal values. References: a[20], b[21], c[22], d[23], e[24], f[25]. 1 eV/nm2 ∼ 0.16 J/m2.

We applied eq. (3) to bcc iron, tungsten and beryllium, which are candidate materials for

nuclear fusion engineering applications, with R̄ = 1 nm, which is within the range of exper-

imentally observed sizes of radiation-induced cavities and dislocation loops. The computed

τe are plotted in Fig. 2 as a function of the homologous temperature T/Tm, where Tm is

the melting point. It is evident that τe can vary over many orders of magnitude: from

milliseconds to years, depending on temperature and material properties.

We note that although W shares the same crystal structure as Fe in Fig. 2, there is a

systematic difference of at least one order of magnitude in the timescale τe for cavities and

dislocation loops, even after scaling the temperature to the relevant melting point.

In Fig. 3 we plot the dependence of the relative change of predicted timescales ∆τe/τe
for cavity evaporation on relative changes in the activation energy for diffusion ∆Ea/Ea,

where Ea = Ev + Em, and relative changes in the surface energy ∆γ/γ, of up to ±10%, at

T = 0.4Tm. In Fig. 3(a) we see that an overestimation of Ea by just ∼ 2% leads to a relative

error of at least 100% for τe in all three materials.

This extreme sensitivity should be kept in mind when attempting to compare experimen-

tally observed timescales with theoretical estimates. Activation energies for diffusion can be

affected by a number of factors which may not be under experimental control, such as the
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Figure 3. Relative change of the estimated timescale τe for cavity evaporation at T/Tm = 0.4 with
respect to small deviations of activation energy Ea = Ev + Em (a) and surface energy γ (b). In
plot (a) the scale of the y axis is linear between -1% and 1% and logarithmic elsewhere.

presence of bound impurity-vacancy complexes, or a dependence of the entropy of activation

on temperature, which may become significant at higher temperatures [26]. The sensitivity

to errors in the assumed surface energy is less extreme, but also a source of uncertainty

because the surface energy per unit area of clusters with radius as small as 1 nm or less may

differ significantly from the surface energies per unit area of larger clusters.

III. DEFINITION OF THE MEAN FIELD FORMALISM

A. Adiabatic vacancy field in the presence of a small defect cluster

Consider an infinite crystal containing a circular prismatic dislocation loop of radius R, with

its center at the origin and lying in the x−y plane. The loop may be of vacancy or interstitial

character. Since the loop lies in the x − y plane the component, be, of the Burgers vector

normal to the loop (i.e. along the z-axis) is constant at all points around the loop. Let c(x)

be the vacancy concentration per atomic site, i.e. c(x) is the (dimensionless) probability of

finding a vacancy at a lattice site at x, and let us assume that vacancies are the only mobile

point defects. If we further assume that the evolution of the vacancy field is adiabatic with
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respect to changes in the loop configuration3, we can write [7] the following equation:

c(x) = − be
4πDv

∮
Γ

vcl(x′)
|x− x′|

dl′ + c∞, (8)

where Γ denotes the dislocation line, vcl(x) is the dislocation climb velocity, and c∞ is the

vacancy concentration at infinity. We define vcl(x) as the projection of the velocity of a

point on Γ along the vector defined by the cross product between the tangent vector to the

dislocation line at x and the Burgers vector.

Throughout this paper we adhere to the definition of the Burgers vector used by Hirth and

Lothe [27], i.e. given a circular path C, drawn around a dislocation line according to the

right hand rule with respect to the dislocation line direction, the Burgers vector b is defined

as:

b =
∮
C

∂u
∂l
dl (9)

where u is the displacement field arising from the dislocation. This implies that the cross

product between the tangent vector to the dislocation line and the Burgers vector points

inward toward the center of a prismatic interstitial loop, and outward away from the center

of a prismatic vacancy loop. We warn the reader that the opposite convention is used by

Landau [28], Trinkaus [29] and others, where the direction of the Burgers vector is reversed

with respect to the dislocation line. We also define the normal direction n̂ to the surface

enclosed by a dislocation loop according to the right hand rule with respect to the dislocation

line direction, so that b and n̂ are parallel for a prismatic vacancy loop and anti-parallel for

a prismatic interstitial loop.

We point out that eq. (8) is the scalar form of a general vector equation (see appendix A for

details):

c(x) = − 1
4πDv

∮
Γ

v(x′)
|x− x′|

· (dl′ × b) + c∞ =
∮

Γ
G(|x− x′|)v(x′) · (dl′ × b) + c∞, (10)

3 this assumption implies that local equilibrium exists between each dislocation segment and the surrounding
vacancy field. For quantitative bounds on this assumption see [6]
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where G(|x|) = −1/4πDv|x| is the free space Green’s function of the steady-state diffusion

equation, Dv∇2G(|x|) = δ(x), v(x′) is the vector velocity of a point x′ ∈ Γ, b is the Burgers

vector of the dislocation loop, and the differential dl′ is tangential to the dislocation line at

x′.

By evaluating eq. (8) on Γ and using eq. (5) we can self-consistently find an analytical

solution for vcl(x), leading to a closed-form expression for the vacancy concentration in the

medium:

c(x) = c∞ −
1

2 ln(8R/rd)

∮
Γ

1
|x− x′|

[c∞ − c∆(R)] dl′. (11)

Let r denote the distance between x and the center of the dislocation loop and let φ =

cos−1(z/r), where z is the component of x out of the x− y plane. In the limit of r � R we

can expand the above integrand in powers of R/r to obtain:

c(r, φ) = c∞−[c∞ − c∆(R)] π

ln (8R/rd)

(
R

r

) [
1 + 1

2

(
R

r

)2 (3 sin2 φ

2 − 1
)

+O
(
R

r

)3]
, (12)

where φ = cos−1(z/r), and z is the component of x out of the x − y plane. The above ex-

pression shows that to second order in R/r, a dislocation loop, or in fact any defect cluster,

can be treated as a spherically symmetric vacancy source or sink.

On the other hand, the vacancy field sufficiently far from an isolated spherical cavity at

the origin can be exactly interpreted as originating from a point-like source. Indeed, at all

r > R, Newton’s shell theorem shows that the vacancy concentration is a function of the

distance to the center of the cavity r, and is given by [6, 30]:

c(r) = c∞ − [c∞ − cΣ(R)]
(
R

r

)
. (13)

We note that the above expressions are examples of a more general equation that admits

a clear physical interpretation. The vacancy field at large distances from any point defect

cluster situated at the origin, which can be approximated as an isotropic point-like source,
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is characterized by the rate of change of the volume of the cluster4 V :

c(x) = c∞ −
dV
dt G(|x|). (14)

This statement can be proven straightforwardly for a spherical cavity, where:

dVcav
dt = d

dt

(
−4π

3 R3
)

= −4πR2dR

dt
= −4πDvR [c∞ − cΣ(R)] , (15)

which, upon substitution in eq. (14), leads to eq. (13).

For a prismatic dislocation loop we prove in appendix A that:

dVloop
dt

= −
∮

Γ
v(x′) · (dl′ × b) = −

∮
Γ

b · (v(x′)× dl′) = −
∮

Γ
vcl(x′)be(x′)dl′, (16)

which, assuming constant vcl(x′) and be(x′) over Γ, becomes:

dVloop
dt

= −2πRvclbe = − 4π2RDv

ln(8R/rd)
[c∞ − c∆(R)] , (17)

giving the leading order term of eq. (12) upon substitution in eq. (14).

To simplify the presentation, we will consider only interstitial dislocation loops forming the

invisible cluster population. This assumption is justified by the fact that the energy gain

associated with the formation of a vacancy cluster is smaller than that of an interstitial

cluster [31, 32], and in general a vacancy cluster has to be of appreciable size to remain

stable at a finite temperature [33].

Also, in general c∞ should depend on time, following adiabatically the evolution of all the

clusters in the system. However, in a real finite system c∞ is governed at equilibrium by

the surface energy and geometry of its external boundaries (free surfaces, grain boundaries),

and can thus be considered constant in time for practical applications, provided that the

morphology of external boundaries does not change appreciably during the evolution.
4 with the caveat that V is negative for vacancy clusters or voids because their growth reduces the overall
vacancy concentration in solution, and positive for interstitial clusters because their growth increases the
overall vacancy concentration in solution assuming there are no free interstitial atoms.
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B. Representing the invisible dislocation loops by a mean field fully coupled to the

visible clusters

Consider N cavities and n interstitial prismatic loops in an infinite medium. The cavities are

sufficiently large and they are visible experimentally, but the prismatic loops are too small

to be detected. In the following the evolution of the cavities will be considered explicitly as

discrete objects, but the evolution of the loops will be treated through a mean-field. The

evolution of the cavities and the mean field will be fully coupled.

Let cb(x) be the vacancy concentration field obtained by considering only the cavities. It is

given by the equation:

Dv∇2cb(x) = ΩJn(x)
N∑
i=1

δ [Σi(t)] , (18)

where Σi(t) denotes the surface of the i-th cavity at time t, Jn is the vacancy current normal

to a cavity surface, where the normal direction is considered pointing from the bulk towards

the center of the cavity, i.e. Jn(x) > 0 if vacancies are entering the cavity at x. δ(Σ)

represents a delta function evaluated on a surface, defined as:

∫
V
ϕ(x)δ(Σ)dV =

∫
Σ
ϕ(x)dS, (19)

where ϕ(x) is an arbitrary trial function and V is an arbitrary volume containing the surface

Σ.

Consider the invisible interstitial loops. Let xi and Ri denote respectively the center and the

radius of the ith loop. To simplify the notation and make clear the parametric dependencies

of the various functions, we define the following sets:
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X = {xi : i = 1, ..., n} ,

R = {Ri : i = 1, ..., n} ,

X[i] = {xj : j = 1, ..., n; j 6= i} ,

R[i] = {Rj : j = 1, ..., n; j 6= i}

(20)

and we introduce the shorthand notations:

dX =
n∏
i=1

dxi, dR =
n∏
i=1

dRi, dX[i] =
n∏
j 6=i

dxj, dR[i] =
n∏
j 6=i

dRi. (21)

The total vacancy field obtained by also considering the effect of the n dislocation loops can

then be expressed as [12]:

c(x;X ,R) = cb(x)−
n∑
i=1

dVi
dt
G(|x−xi|) = cb(x)+

n∑
i=1

ξ∆(Ri)G(|x−xi|)
[
c[i](xi;X ,R)− c∆(Ri)

]
,

(22)

where ξ∆(R) = 4π2RDv/ ln(8R/rd). The vacancy field obtained by omitting the contribution

arising from the ith loop is c[i](x;X ,R), and it is defined by the self-consistent condition:

c[i](x;X ,R) = cb(x) +
n∑
j 6=i

ξ∆(Rj)G(|x− xj|)
[
c[j](xj;X ,R)− c∆(Rj)

]
. (23)

We define the probability of finding the n dislocation loops in the n volume elements (x1 +

dx1, ...,xn + dxn), and with loop radii in the ranges (R1 + dR1, ..., Rn + dRn), as:

p(X ,R)dXdR. (24)

The average of eq. (22) with respect to the positions and radii of each loop can then be
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expressed as:

c̄(x) =
∫
c(x;X ,R)p(X ,R)dXdR

= cb(x) +
n∑
i=1

∫ [
Sinl(x;X ,R)− Sl(x; xi, Ri)

]
p(X ,R)dXdR,

(25)

where Sinl(x;X ,R) and Sl(x; xi, Ri) are respectively the non-local and local contributions of

the ith loop to the total concentration field, defined as:

Sinl(x;X ,R) = ξ∆(Ri)G(|x− xi|)c[i](xi;X ,R),

Sl(x; xi, Ri) = ξ∆(Ri)G(|x− xi|)c∆(Ri).
(26)

Sl is the perturbation to the vacancy field in the neighborhood of the i’th loop arising from

the condition of local thermodynamic equilibrium. The non-local term Sinl describes the

contribution to the vacancy field near loop i from all the other loops in the system.

By introducing the one-loop probability density function:

p1(xi, Ri) =
∫
p(X ,R)dX[i]dR[i], (27)

we can express the average of the local contribution as:

S̄l(x) =
∫
Sl(x; xi, Ri)p1(xi, Ri)dxidRi, (28)

which can be readily calculated without any knowledge of correlations in the positions or

radii of different loops, requiring only the single loop spatial and size distribution p1(x, R).

We now average the non-local contribution. Let us define the conditional probability density

p(xi, Ri|X[i],R[i]) by the relation:

p1(xi, Ri) p(xi, Ri|X[i],R[i]) = p(X ,R) (29)
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and the effective averaged vacancy field experienced by the ith loop as:

c̄ eff[i] (x; xi, Ri) =
∫
c[i](x;X ,R)p(xi, Ri|X[i],R[i])dX[i]dR[i]. (30)

By employing these definitions, we may write the average of the non-local contribution as:

S̄nl(x) =
∫
ξ∆(Ri)G(|x− xi|)c̄ eff[i] (x; xi, Ri) p1(xi, Ri)dxidRi. (31)

In summary, the governing equation for the vacancy concentration, averaged over all possible

positions and radii of the invisible interstitial loops, is given by:

c̄(x) = cb(x) + n
∫
ξ∆(Ri)G(|x− xi|) p(xi;Ri)

[
c̄ eff[i] (x; xi, Ri)− c∆(Ri)

]
dxidRi. (32)

The integral in this equation is the mean field of the invisible loops in which the visible

clusters sit. Information about correlations between the positions and sizes of the invisible

loops is contained in the effective field c̄eff[i] .

C. The simplest approximation of the field c̄eff[i] of eq. (30) and screening

A formal expansion of the effective field defined in eq. (30) is derived in appendix B, which

provides the theoretical foundation to treat correlations between the positions of the invisible

loops to arbitrary degrees of accuracy. In this section we consider the simplest approximation,

which is to neglect all these correlations. We may then characterize the loops entirely through

the size distribution function f(R), which is related to the single-loop probability density

function as follows:

p1(x, R) = n−1f(R). (33)

f(R)dR is the number of dislocation loops per unit volume with radii between R and R+dR.

Provided the concentration of invisible loops is sufficiently large, it is reasonable to assume

that the average vacancy field seen by dislocation loops is equal to the configuration averaged
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field, i.e. c̄(x) ≈ c̄ eff[i] . In these approximations eq. (32) for the configuration-averaged

concentration takes on the form:

c̄(x) = cb(x) +
∫
dV ′G(|x− x′|)

∫ ∞
b

ξ∆(R)f(R) [c̄(x′)− c∆(R)] dR, (34)

where the Burgers vector b acts as a lower bound on the possible dislocation loop size. We

now define the averages:

ξ∆ =
∫ ∞
b

dRf(R)ξ∆(R),

ξ∆c∆ =
∫ ∞
b

dRf(R)ξ∆(R)c∆(R),
(35)

where both have the dimensions of inverse time. Eq. (34) then becomes:

c̄(x) = cb(x) +
∫
dV ′G(|x− x′|)

[
ξ∆c̄(x′)− ξ∆c∆

]
. (36)

We apply the operator Dv∇2 to both sides of eq. (36), obtaining:

Dv∇2c̄(x) = Dv∇2cb(x) +
∫
dV ′δ(x− x′)

[
ξ∆c̄(x′)− ξ∆c∆

]
, (37)

which, along with eq. (18), can be reorganised as:

(Dv∇2 − ξ∆)c̄(x) = ΩJn(x)
N∑
i=1

δ [Σi(t)]− ξ∆c∆. (38)

Eq. (38) has the mathematical structure of an inhomogeneous Debye-Hückel equation.

The Yukawa Green’s function, GY (|x− x′|; ξ∆), is defined by the equation:

(Dv∇2 − ξ∆)GY (|x− x′|; ξ∆) = δ(x− x′), (39)
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for which the solution is:

GY (|x− x′|; ξ∆) = −
exp

{
−
√
ξ∆/Dv |x− x′|

}
4πDv |x− x′|

. (40)

Thus, the diffusive interaction between cavities in eq. (37) is screened by the mean field of

the dislocation loops. The screening length,
√
Dv/ξ∆, limits the range of direct diffusional

interaction between cavities.

In this continuum treatment, once the effect of the loop population is replaced by a mean

field, the medium between the cavities becomes a net adsorber for vacancies. This reflects

the reality at the atomic scale where the mean free path of propagating vacancies is reduced

by the presence of distributed sinks and sources.

An analogous picture was obtained in the case of diffusion screening theory of Ostwald

ripening [13–18], where similar screened diffusion-mediated interactions were derived from

a coarse-graining of second-phase particles. In this context, screened diffusive interactions

were originally employed as a tool to avoid divergences for finite volume fractions of particles

due to the infinite-range Laplacian field.

In our case, the coarse grained diffusion field that generates screened interactions allows us to

effectively account for the limited information about the distributions of small defect clusters.

In a dilute configuration of cavities each of them can be approximated as a point source with

an effective sink strength given by Qi = 4πR2
i Ṙi. A formal solution of eq. (38) is then:

c̄(x) =
N∑
i=1

QiGY (|x− xi|; ξ∆)− ξ∆c∆

∫
dV ′GY (|x− xi|; ξ∆) + c∞, (41)

where xi denotes the center of the i−th cavity. We note that:

−ξ∆c∆

∫
dV ′GY (|x− x′|; ξ∆) = ξ∆c∆

ξ∆
=
∫∞
b dR ξ∆(R)f(R)c∆(R)∫∞

b dR ξ∆(R)f(R) = 〈c∆〉 , (42)

where the average 〈...〉 is defined with respect to the weighted distribution f̃(R) = ξ∆(R)f(R).

Thus, we arrive at the following self-consistent relation between the rates of change of the
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cavity radii Ṙi, the vacancy field and the distribution of the interstitial dislocation loops

f(R):

c̄(x) = −
N∑
i=1

R2
i Ṙi

exp
[
−
√
ξ∆/Dv|x− xi|

]
Dv|x− xi|

+ c∞ + 〈c∆〉 . (43)

To solve this equation the vacancy concentration has to be evaluated at the position of each

cavity, satisfying the boundary condition of local thermodynamic equilibrium, i.e.:

cΣ(Ri) = −
N∑
j=1
j 6=i

R2
j Ṙj

exp
[
−
√
ξ∆/Dv|xi − xj|

]
Dv|xi − xj|

− RiṘi

Dv

+ c∞ + 〈c∆〉 , i = 1, .., N, (44)

where −RiṘi
Dv

is a finite size correction accounting for the self-diffusional interaction of a cavity

with itself, representing vacancies propagating between different points on the surface of the

same cavity. As a comparison, we recall the analogous of the above system of equations for

a system where the n dislocation loops are explicitly considered as discrete objects, given by

the set of N + n equations [6]:

cΣ(Ri) = −
N∑
j=1
j 6=i

R2
j Ṙj

Dv|xi − xj|
− RiṘi

Dv

+
N+n∑
k=N+1

beRkṘk

2Dv|xi − xk|
+ c∞, i = 1, .., N

c∆(Ri) = −
N∑
j=1

R2
j Ṙj

Dv|xi − xj|
+

N+n∑
k=N+1
k 6=i

beRkṘk

2Dv|xi − xk|
−
be ln(8Ri

rd
)Ṙi

2πDv

+ c∞, i = N + 1, .., N + n,

(45)

where the indices from 1 to N denote cavities and from N + 1 to N + n denote dislocation

loops. By inverting the linear system defined by eq. (44), the set of Ṙi can be then calculated

provided f(R) is known.

The screening length changes with time because it depends on the evolution of the distri-

bution of the interstitial loop sizes. Let the time-dependent size distribution function be

F (R, t). A continuity equation in particle-size space for the distribution F (R, t) can be
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written as:
∂F (R, t)

∂t
+ ∂ [F (R, t)vil(R, t)]

∂R
= ṅ(R, t), (46)

where ṅ(R, t) is the net rate at which loops of radius R are created, as a result of coalescence

of existing loops and nucleation of new loops. The growth rate vil(R, t) of a loop of radius

R at time t is given by:

vil(R, t) = − [cavg(t)− c∆(R)] 2πDv

be ln(8R/rd)
, (47)

where cavg(t) is the spatially averaged vacancy concentration. Differentiating with respect

to R:

∂vil(R, t)
∂R

= 2πDv

be ln(8R/rd)

{
[cavg(t)− c∆(R)]
R ln(8R/rd)

+ µbeΩc∆(R)
4π(1− ν)R2kBT

[
ln
(8R
rd

)
− 2

]}
. (48)

In the homogeneous mean field treatment, the term cavg(t) can be obtained by averaging

eq. (43) with respect to x:

cavg(t) = − lim
V→∞


N∑
i=1

R2
i (t)Ṙi(t)
V Dv

∫
V
d3x

exp
[
−
√
ξ∆/Dv|x− xi|

]
|x− xi|

+ c∞ + 〈c∆〉

= 〈c∆〉+ c∞ −
4πρc
ξ∆

(
1
N

N∑
i=1

R2
i (t)Ṙi(t)

)
= 〈c∆〉+ c∞ −

V̇ c(t)ρc
ξ∆

,

(49)

where ρc denotes the number density of cavities and V̇ c(t) denotes the average rate of change

of the volume of cavities, at time t. It is clear that in the limiting case of ξ∆ = 0 the above

expression diverges, and the integral of the Green’s function has to be performed up to a

suitable cutoff distance.

In summary, while the mean field of interstitial loops screens the diffusive interaction between

cavities, the rate of growth of cavities also determines the evolution of the mean field: the

cavities and the mean field are coupled. In Fig. 4 we show a flowchart that summarises

a scheme to compute the system evolution, highlighting the couplings between the cavities
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and the mean field.

Discrete cavities

Mean Field loops

Size 
distribution

Compute new
size distribution

via eq. (46)

Compute effective
 screening constant

via eq. (35) 

N positions 
N radii

Compute new
cavity radii

Compute cavity 
growth rates
via eq. (44)

Figure 4. Flowchart summarising a scheme to compute the evolution of the coupled mean field of
interstitial loops and discrete cavities.

D. Numerical estimate of the screening length

In this section we calculate the initial value, at t = 0, of the screening length of the effective

interaction between cavities in the presence of a mean field of interstitial dislocation loops.

It is helpful to introduce the scaled distribution function:

Aφ
(
R

b
, t
)

= F (R, t), (50)

where A is a normalisation factor with the dimensions of length−4, defined with respect to

the size distribution at t = 0 as:

A = ρ(0)
(
b
∫ ∞

1
du φ(u, 0)

)−1
, (51)
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where ρ(t) is the number density of the mean field clusters at time t. The screening length

∆l =
√
Dv/ξ∆, at time t = 0, is given by:

∆l(0) =
(∫ ∞

b
dR ξ∆(R)F (R, t)/Dv

)− 1
2

= 1
2πb
√
A

(∫ ∞
1

du u φ(u, 0)/ ln(8bu/rd)
)− 1

2
. (52)
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Figure 5. Plot of the prefactor (2π)−1(ρ(0)b)−1/2 of eq. (54) as a function of loop number density
ρ. The value of the Burgers vector b is 0.27 nm, which is representative of tungsten.

For the initial loop size distribution we assume a power law with an exponentially decaying

cutoff at small loop radii, i.e.:

φ(u, 0) = e−c1/uu−c2 , (53)

where c1 and c2 are constants. To ensure the existence of the integrals defining ξ∆ and ξ∆c

we require c2 > 2.

The screening length can then be recast as:

∆l(0) ≈ 1
2π
√
ρ(0)b

√√√√ ∫∞
1 du exp(−c1/u)u−c2∫∞

1 du exp(−c1/u)u−c2+1/ ln(8ub/rd)
≡ Π(c1, c2)

2π
√
ρ(0)b

, (54)
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where we have separated the dependence on the loop number density from the shape of the

size distribution contained in Π(c1, c2). For realistic loop densities of 10−6 − 10−4 nm−3 the

factor
(
2π
√
ρ(0)b

)−1
is of the order of 102−103 nm (see Fig. 5), while Π(c1, c2) is of the order

of unity for reasonable values of c1 and c2. In particular, with 0.1 < c1 < 1 and 2 < c2 < 4,

we have 0.68 . Π . 1.3. At these loop densities the screening length is comparable to the

separation of the loops, which may be substantially smaller than the separation of cavities.

Therefore the screening of the diffusive interaction between cavities by small dislocation

loops plays a significant role in the evolution of the distribution of cavity sizes during an

anneal.

IV. EXTENSION TO THIN FILM GEOMETRY

Trasmission electron microscopy is providing accurate data on the distributions of radiation

defects [2, 34]. Since TEM samples are always thin films we provide in this section an

extension of the theory to infinitely extended thin films.

Consider a region V ∈ R3 infinitely extended in the x̂ and ŷ directions and of thickness

H in the ẑ direction, i.e. V = {(x, y, z) ∈ R3 : x ∈ R, y ∈ R,−H/2 < z < H/2}. We define

a L × L × H cell Γ(0) = {x = x1a1 + x2a2 + x3a3 : −1/2 < xα < 1/2, α = 1, 2, 3}, where

a1 = (L, 0, 0), a2 = (0, L, 0), and a3 = (0, 0, H) are the three basis vectors defining the cell.

The cell Γ(0) contains N spherical cavities and a much larger number of smaller circular

prismatic dislocation loops, with size distribution function f(R), normalised to the loop

number density. The primitive cell is infinitely replicated in the x̂ and ŷ directions.

Let Σi denote the surface of the i−th cavity. We impose the following boundary conditions

on the vacancy concentration field c(x):

c(x, y,−H/2) = c(x, y,H/2) = cS,

c(x ∈ Σi) = cΣi i = 1, ..., N.
(55)
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Figure 6. 2D sketch of the primitive cell structure for the thin film configuration. The red shaded
region is a repeat cell of the thin film. Image clusters (portrayed with dashed boundaries) of
opposite effective charge are constructed in the yellow shaded regions and the original primitive cell
is extended accordingly. Periodic boundary conditions are imposed on the dashed boundaries and
in the directions perpendicular to the drawing. The size of cavities with respect to the simulation
cell is exaggerated for clarity.

Using the terminology of electrostatics, each cavity can be associated with an effective charge

Q, related to rate of growth of the cavity volume V :

Qi = −dVi
dt

= 4πR2
i

dRi

dt
, (56)

where Ri is the radius of the ith cavity. As noted in the previous section, to first order

the effect of the mean field of dislocation loops is to introduce a screened interaction with

screening length
√
Dv/ξ∆(t), and to displace the resultant concentration field by an amount

〈c∆〉 (t) =
∫
dRξ∆(R)F (R, t)c∆(R)∫

dRξ∆(R)F (R, t) .

The boundary conditions at c(z = ±H/2) = cS can be satisfied using the method of images,

by introducing an infinite number of periodic images of the thin film in the ẑ directions. The

images are constructed as follows: we extend the primitive cell by H/2 in the positive and

negative ẑ directions; for each cavity with charge Q in the original primitive cell located at

(x, y, z) we add a virtual cavity of charge −Q at (x, y, sgn(z)H − z). A new primitive cell

may then be defined containing 2N interacting cavities: Γ(0) =
{
x = x1a1 + x2a2 + x3a3 :
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−1/2 < xα < 1/2, α = 1, 2, 3
}
, with primitive vectors a1 = (L, 0, 0), a2 = (0, L, 0), and

a3 = (0, 0, 2H). A 2D sketch of such a construction is presented in Fig. 6. This new primi-

tive cell is charge neutral by construction, and it is repeated infinitely many times along z.

The self consistent system of equations that determines the set of {Qi}i=1,...,N at time t is

therefore given by:

cΣi =
N∑
j=1
j 6=i

Qj

[∑′

m
GY (|xi −m + xj|; ξ∆)−

∑
m
GY (|xi −m + x̄j|; ξ∆)

]
− Qi

4πDvRi

+ cS + 〈c∆〉 ,

i = 1, .., N,

(57)

where m = m1a1 + m2a2 + m3a3, mα ∈ Z, α = 1, 2, 3, x̄j = (xj, yj, sgn(zj)H − zj) and

primed sums denote that the term m = 0 is not included when xi = xj.

The sums over m are convergent for finite values of the screening length.

However, it is possible that the mean field loops disappear during an anneal, leading to an

infinite screening length and therefore to a 1/r diffusive interaction between the cavities. In

that case, the sums over m are only conditionally convergent.

Since the new primitive cell is charge neutral, we may use a variant of the Ewald summation

technique to derive an absolutely convergent series for all screening lengths. This can be
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achieved by introducing the following kernel:

K(xi,xj; ε) = −
∑
k

exp [−(k2 + ε2)/4β2]
V Dv(k2 + ε2) eik·xi

[
e−ik·xj − e−ik·x̄j

]
+

− 1
8πDv

∑′

m

1
|xi − xj + m|

erfc(β|xi − xj + m|+ ε

2β

)
eε|xi−xj+m|

+ erfc
(
β|xi − xj + m| − ε

2β

)
e−ε|xi−xj+m|



−
∑
m

1
|xi − x̄j + m|

erfc(β|xi − x̄j + m|+ ε

2β

)
eε|xi−x̄j+m|

+ erfc
(
β|xi − x̄j + m| − ε

2β

)
e−ε|xi−x̄j+m|

+ δij
4πDv

2βe−
ε2

4β2

√
π
− ε erfc

(
ε

2β

) .

(58)

The set of self-consistent equations to be solved become:

cΣi =
N∑
j=1
j 6=i

QjK
(
xi,xj;

√
ξ∆/Dv

)
− Qi

4πDvRi

+ cS + 〈c∆〉 , i = 1, .., N, (59)

which is the analogue of eq. (44) for the thin film configuration. A detailed derivation of

K(xi,xj; ε) is given in appendix C.

We note that the numerical scheme to compute the temporal evolution of cavities remains

the same as that presented at the end of sec.3.

By taking the limit in the kernel of an infinite screening length we obtain:

lim
ε→0

K(xi,xj, ε) = −
∑
k

exp [−k2/4β2]
V Dvk2 eik·xi

[
e−ik·xj − e−ik·x̄j

]

− 1
4πDv

[∑′

m

erfc (β|xi − xj + m|)
|xi − xj + m|

−
∑
m

erfc (β|xi − x̄j + m|)
|xi − x̄j + m|

]
+ δij

2β
4π3/2Dv

,

(60)

which is the usual expression for the Ewald sum for the unscreened Green’s function G(|x−

x′|) = − (4πDv|x− x′|)−1. Thus the kernel K(xi,xj; ε) enables us to treat within the same
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set of equations the evolution of cavities, whatever the screening length.

V. FULL MEAN FIELD DESCRIPTION

In this section we consider both dislocation loops and cavities as contributors to a mean

field. This may be useful whenever information on cluster distributions at all length scales

is incomplete. Consider the vacancy field generated by a spherical cavity in an infinite

homogeneous medium in which the vacancy concentration far from the cavity is c∞:

c(r) = c∞ − [c∞ − cΣ(R)] R
r

= c∞ + ξΣ(R)G(r) [c∞ − cΣ(R)] , (61)

where ξΣ(R) = 4πDvR and:

cΣ(R) = c0 exp
[

2γΩ
RkBT

]
. (62)

Consider the case of a spatially homogeneous, uncorrelated distribution of loops and cavities.

We define the number density respectively of vacancy loops, interstitial loops and cavities,

with radii in the range (R + dR), as fv(R)dR, fi(R)dR and fc(R)dR.

Following a similar treatment to that used in sec.3, we can write a mean field equation

analogous to that of eq. (34):

c̄(x) = c∞ +
∫
dV ′G(|x− x′|)

∫ ∞
b

dR

{
ξ∆(R)fv(R) [c̄(x′)− cv∆(R)]

+ ξ∆(R)fi(R)
[
c̄(x′)− ci∆(R)

]
+ ξΣ(R)fc(R) [c̄(x′)− cΣ(R)]

}
,

(63)

where the boundary condition cv∆(R) for vacancy loops differs from that for interstitial loops,

ci∆(R), by the sign in the exponent, i.e. cv∆(R) · ci∆(R) = c2
0.

We define the quantities: c1 = cv∆, c2 = ci∆, c3 = cΣ, f1 = fv, f2 = fi, f3 = fc, ξ1 = ξ2 = ξ∆
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and ξ3 = ξΣ. Eq. (63) then assumes the compact form:

c̄(x) = c∞ +
3∑

α=1

∫
dV ′G(|x− x′|)

∫ ∞
b

dR ξα(R)fα(R) [c̄(x′)− cα(R)] . (64)

We define:

ξ =
3∑

α=1
ξα =

3∑
α=1

∫ ∞
b

dR ξα(R)fα(R),

ξc =
3∑

α=1
ξαcα =

3∑
α=1

∫ ∞
b

dRξα(R)fα(R)cα(R),

(65)

so that:

c̄(x) = c∞ + ξ
∫
dV ′G(|x− x′|)c̄(x′)− ξc

∫
dV ′G(|x− x′|). (66)

In momentum space, using the Fourier transform definition f(x) = (2π)−3/2 ∫ dqeiq·xf̃(q),

this becomes:
˜̄c(q) = c̃∞ + ξG̃(q)˜̄c(q)− (2π)3/2ξcG̃(q)δ(q), (67)

leading to the solution:
˜̄c(q) = c̃∞ − (2π)3/2ξcG̃(q)δ(q)

1− ξG̃(q)
. (68)

In a homogeneous infinite medium, we have G(|x− x′|) = −1/(4πDv|x− x′|) leading to:

˜̄c(q) = δ(q)Dvc∞ + (2π)3/2ξc/q2

Dv + ξ/q2 = δ(q)
2π

Dvc∞ + (2π)3/2ξc/q2

Dvq2 + ξ
, (69)

and, transforming back in real space:

∫ dq
(2π)3/2 e

iq·x˜̄c(q)

= 1
(2π)5/2

∫ ∞
0

dq
∫ π

0
sinφ dφ

∫ π

−π
dθδ(q)Dvq

2c∞ + (2π)3/2ξc

Dvq2 + ξ
eiqr cosφ = ξc

ξ
,

(70)

which implicitly depends on time through the size distribution functions fα(R). We point

out that for fα(R) = δα2f(R) we recover the result of the previous sections.
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The evolution laws for the size distributions are analogous to eq. (46), where the growth

velocities are given by:

vvl(R, t) = [c̄(t)− cv∆(R)] 2πDv

b ln(8R
rd

)
,

vil(R, t) = −
[
c̄(t)− ci∆(R)

] 2πDv

b ln(8R
rd

)
,

vc(R, t) = − [c̄(t)− cΣ(R)] Dv

R
,

(71)

respectively for vacancy loops, interstitial loops and cavities.

As a consequence, the average vacancy concentration depends on time through the time-

dependent size distribution functions Fα(R, t) as:

c̄(t) = ξc(t)
ξ(t)

=
∑3
α=1

∫∞
b dR ξα(R)Fα(R, t)∑3

α=1
∫∞
b dR ξα(R)Fα(R, t)cα(R)

. (72)

A numerical scheme for the computation of the cluster size distribution as a function of time

can then be summarised as follows:

1. Starting from the size distributions fv(R, t0), fi(R, t0) and g(R, t0), compute c(t0) via

eq. (70)

2. Compute the new size distributions at time t0 + dt using eq. (46)

3. Reiterate from step 1.

VI. NUMERICAL SIMULATIONS

We present simulations of an anneal of an infinite thin film of thickness H = 200 nm with

30 cavities per periodic cell, using the technique presented in sec.IV, for tungsten, iron, and

beryllium. The sizes L of the primitive cell in both the x and y directions are respectively

133.64 nm, 422.58 nm and 2112.89 for the simulations with cavity densities of 10−5 nm−3,
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Figure 7. Time taken to remove all cavities in thin films of thickness 200 nm in tungsten (red),
bcc iron (orange) and beryllium (blue), as a function of annealing homologous temperature, for
three number densities of cavities: (a) 10−5 nm−3, (b) 10−6 nm−3, and (c) 4 · 10−8 nm−3. In each
case there are either no dislocation loops present (solid lines), or only vacancy loops (dashed lines)
or only interstitial loops (dotted solid-dashed lines) . Diffusion is assumed to occur by a vacancy
mechanism only.

10−6 nm−3 and 4 · 10−8 nm−3.

We compared the effect of three mean field conditions: containing only interstitial loops,

or only vacancy loops, or no loops. The initial size distribution of the loops was φ(R) =

(b/R)c2 exp(−c1b/R), c1 = 0.2, c2 = 3 and normalisation such that the loop number density

at t = 0 was 10−4 nm−3, therefore the average separation between loops was ∼ 22 nm.

The cavities were assigned to random positions in the periodic cell, satisfying the number

density and a minimum separation between cavities of 10 nm, with sizes taken from a gaus-

sian distribution of mean 1 nm and standard deviation 0.1 nm. No vacancy supersaturation

was assumed in the film, so that its free surfaces were assigned a constant vacancy concen-

tration equal to the equilibrium value c0.

In Fig. 7 we plot the time taken to remove all the cavities, as a function of homologous

annealing temperature T/Tm.

We see that the timescale estimates given in sec.II are in broad agreement with numerical

simulations, for all three investigated materials. As already noted in our previous work [6],

we see that as the number density of cavities increases the time to annihilate all cavities also
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increases. This is due to the diffusive interaction between cavities: as the distances between

cavities are reduced, the local vacancy concentration between cavities increases. The driving

force for vacancy emission from each cavity is then reduced compared to the case of a dilute

configuration of cavities.

The presence of a mean field of dislocation loops, as previously discussed, introduces a

screening of the diffusive interaction between cavities and increases of the overall back-

ground vacancy concentration. Screening accelerates the annihilation of cavities, while the

increased vacancy concentration has the opposite effect, and can even induce a transient

phase of cavity growth. Whether one effect or the other dominates depends on the type of

dislocation loops that make up the mean field.

We have assumed that the only mobile point defects are vacancies. The concentrations of

these point defects just outside interstitial and vacancy loops are highly asymmetrical due to

the exponential dependence on the climb force and the change of sign of the Burgers vector

between the loops. As a consequence, the vacancy concentration near interstitial loops is

much less than for vacancy loops. Therefore the rate of evolution of vacancy loops is faster

than that of interstitial loops.

The screening factor and the larger background vacancy concentration provided by vacancy

loops suggest that they might affect the evolution of cavities to a higher degree than inter-

stitial loops. However, it should also be kept in mind that the evolution by vacancy diffusion

of vacancy loops is faster than that of interstitial loops with the same initial distributions

of loop sizes, and by the end of the simulation a large fraction of the initial vacancy loop

population has evaporated.

To illustrate this behaviour, we plot in Fig. 8 the time required for the vacancy loops screen-

ing coefficient
√
ξ/Dv to halve with respect to its initial value, as a function of simulated
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Figure 8. Time taken to halve the screening factor
√
ξ/Dv with respect to its initial value, in thin

films of thickness 200 nm in tungsten (red), bcc iron (orange) and beryllium (blue), with a mean
field of vacancy loops, as a function of annealing homologous temperature.

temperature. We point out that the “half-lives” of the screening coefficient are always much

shorter than the time required for all cavities to evaporate. The evolution of the vacancy

loops mean field does not appear to be noticeably affected by the number density of cavities,

at least in the investigated density range from 4 · 10−8 to 10−5 nm−3.

In simulations with only interstitial loops as part of the mean field, on the other hand, the

initial size distribution function, the screening coefficient and the shift to the background

vacancy concentration are practically constant with respect to the evolution of cavities.

According to our simulations, when the mean field is made of interstitial loops there is a

systematic decrease of cavity evaporation timescales with respect to the reference values,

for every investigated cavity number density. We must conclude that the screening effect,

partially suppressing the diffusive interaction between cavities, is the dominant one for in-
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terstitial loops. The opposite holds true for the vacancy loops mean field simulations, where

a systematic and very pronounced increase in cavity evaporation timescales suggests that

the extra background vacancy concentration plays the most important role.

In order to further elucidate this point, we show in Fig. 9 the evolution in time of the size of

a single cavity in tungsten at 1800 K and with a cavity number density of 10−6 nm−3. The

coordinates of the cavity in the primitive cell are (0.37L, 0.58L, 0.39H). We note that in the

initial phases of the simulation the additional background vacancy concentration induced by

vacancy loops results in the cavity rapidly adsorbing vacancies. As the mean field evolves,

vacancy loops decrease in number and the extra vacancy concentration is reduced until the

surface energy of cavities becomes the dominant driving force, leading to their evaporation.

Due to the initial phase of growth of the cavity, the total annihilation time with the vacancy

loops mean field is therefore larger than in the case of the interstitial loops mean field.
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Figure 9. Evolution of the radius of a single cavity at (0.37L, 0.58L, 0.39H) as a function of time
for tungsten at 1800 K and for a cavity number density of 10−6 nm−3. Results are compared for
the case of an interstitial loop mean field (solid red lines), and a vacancy loop mean field (dashed
blue lines). Plot (b) is a magnification of the boxed area of plot (a).
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Figure 10. Same as Fig. 9 but for a cavity number density of 10−5 nm−3. The cavity is located at
coordinates (0.36L, 0.44L, 0.65H) in the primitive cell.

While we found this to hold true for all investigated cavity densities, the picture is slightly

more complex when only considering the evolution of a single cavity of the ensemble. In

particular, the same cavity will not always evaporate faster with an interstitial loop mean

field, especially in simulations with a high cavity density.

To illustrate such a case, we present In Fig. 10 the evolution of a single cavity with coordi-

nates (0.36L, 0.44L, 0.65H), with a cavity a number density 10−5 nm−3 and at a temperature

of 1800 K.

As we can see, the vacancy loops mean field still induces an initial phase of cavity growth

(Fig. 10), but the cavity evolves erratically in the interstitial loops mean field simulation. By

comparing Fig. 10b with a real space view of the simulation (Fig. 11) we find this behaviour

is most likely due to local interaction between cavities.

In particular, the erratic size increases and decreases of the cavity seem to be correlated with

the evaporation of cavities in its neighborhood. Such local effects are much less important

with the vacancy loops mean field because, even though the shift in background vacancy

concentration dominates, the screening coefficient is still substantially larger than for inter-

stitial loops, as already mentioned. This suggests that at higher densities local interactions
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(a) (b) (c)

(d) (e) (f)

Figure 11. Snapshots of the evolution of the cavity of Fig. 10, shaded in orange and white in the
cell center, and neighboring cavities in blue at increasing times from (a) to (f). The plots show
only a small portion of the periodic cell. The sizes of the cavities have been increased by a factor
of 2 for greater clarity.

between cavities play a large role and might lead the dynamics of single cavities to deviate

from the general behaviour with respect to mean field conditions.

VII. CONCLUSIONS

In this paper we derived a hybrid mean field and real space model that couples our earlier

[6] non-local model of evolution of cavities produced by irradiation with a mean field repre-

senting dislocation loops smaller than the experimental detection limit.

35



The main result is that the mean field screens the diffusive interactions between cavities and

adds to, or subtracts from, the vacancy concentration depending on whether the loops are

vacancy or interstitial character respectively.

We presented a general scheme to implement higher order corrections to the model. The

model was initially derived for an infinite medium, but it was then modified to treat the

case of an infinitely extended thin film, which is more useful for comparing with available

experimental data obtained by transmission electron microscopy.

Through preliminary numerical simulations we discussed some of the features of the model,

highlighting in particular the interplay between the evolution of the mean field and the

cavities, and the roles of the cavity number density and mean fields comprising vacancy vs.

interstitial loops.
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Appendix A: Relaxation volume of a dislocation loop and its evolution in time

Let us consider an arbitrarily shaped dislocation loop, not necessarily planar, with Burgers

vector b and bounded by a piecewise linear dislocation line Γ divided in N segments. Given

an arbitrary orthogonal coordinate system, let Ri and Ri+1 = Ri + ∆Li be the vectors
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Figure 12. Sketch of the vectors Ri, Ri+1 and ∆Li with respect to the boundary Γ of the dislocation
loop. The arrows on Γ denote the direction of the dislocation line.

denoting the extremes of the i-th segment on Γ, with ∆Li parallel to the dislocation line

direction, and RN+1 = R1. The vector area of the triangle identified by the origin O, Ri

and Ri+1 is given by:

Ai = 1
2 (Ri ×Ri+1) . (A1)

Summing the individual contributions given by the N triangles, we obtain the total vector

area of the loop:

A =
N∑
i=1

Ai = 1
2

N∑
i=1

(Ri ×Ri+1) , (A2)

which, in order to be a well-defined quantity, has to be independent from the choice of the

origin of coordinates. In order to prove this statement, let us shift the coordinate system by

an arbitrary vector R0 and compute the new A′:

A′ = 1
2

N∑
i=1

[(Ri + R0)× (Ri+1 + R0)]

= 1
2

N∑
i=1

(Ri ×Ri+1) + 1
2R0 ×

N∑
i=1

(Ri+1 −Ri)︸ ︷︷ ︸
0

= A.
(A3)

Therefore A is indeed a well-defined measure for the vector area of a dislocation loop. A

formula for the vector area of a dislocation loop can also be written in the form of a contour
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integral, see equation (27.11) of Ref. [28], as

A = 1
2

∮
(x× dl), (A4)

where x ∈ Γ and dl is everywhere tangential to the dislocation line. In the notations of Fig.

12 the above equation corresponds to the limit N →∞.

Using the convention for the Burgers vector and the dislocation line tangential vector adopted

in [27], we now define the relaxation volume of the loop as follows:

V = −(b ·A) = −1
2b ·

N∑
i=1

(Ri ×Ri+1) , (A5)

which is correctly negative for vacancy prismatic loops, where b is parallel to A, and positive

for interstitial prismatic loops, where b is anti-parallel to A. We now consider the continuous

limit for |∆Li| → 0 and N →∞, leading to the line integral:

V = −1
2

∮
Γ

b · (x× dl) . (A6)

Let us assume that the line Γ, defining the perimeter of the dislocation loop, is parameterized

by variable ϕ ∈ [0, 1) and that it evolves with time, so that for x ∈ Γ we have x = x(ϕ, t)

and dl = ∂x
∂ϕ
dϕ. We can then write V(t) as:

V(t) = −1
2b ·

∫ 1

0

[
x(ϕ, t)× ∂x

∂ϕ
(ϕ, t)

]
dϕ (A7)

and its temporal rate of change as

dV
dt

= −1
2b ·

{∫ 1

0

[
dx
dt
× ∂x
∂ϕ

]
dϕ+

∫ 1

0

[
x× ∂

∂ϕ

(
dx
dt

)]
dϕ

}
. (A8)
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Using integration by parts, the second integral in the right-hand side can be rearranged as:

∫ 1

0

[
x× ∂

∂ϕ

(
dx
dt

)]
dϕ =

[
x× dx

dt

] ∣∣∣∣∣
ϕ=1

ϕ=0︸ ︷︷ ︸
0

−
∫ 1

0

[
∂x
∂ϕ
× dx
dt

]
dϕ =

∫ 1

0

[
dx
dt
× ∂x
∂ϕ

]
dϕ (A9)

so that
dV
dt

= −b ·
∫ 1

0

[
dx
dt
× ∂x
∂ϕ

]
dϕ = −

∮
Γ

b ·
[
dx
dt
× dl

]
, (A10)

which is a slightly modified form of eq.(4-2) (where it was given without proof) found in [27].

We can recast eq. (A10) in a form more convenient for our applications:

dV
dt

= −
∮

Γ
b ·

(
dx
dt
× dl

)
= −

∮
Γ

b · (v× dl) = −
∮

Γ
v(x) · (dl× b) = −

∮
Γ
vcl(x)be(x)dl,

(A11)

where v(x) = dx/dt is the vector velocity of a point x ∈ Γ, vcl is the (scalar) dislocation

climb velocity, be is the edge component of the Burgers vector and dl is the differential arc

length on Γ.

Appendix B: Perturbative expansion of the formal scattering series

Let us combine eqs. (22) and (23) in order to obtain a formal scattering series for the

concentration field:

c(x;X ,R) = cb(x) +
n∑
i=1

ξ∆(Ri)G(x,xi) [cb(xi)− c∆(Ri)]

+
n∑
i=1

∑
j 6=i

G(x,xi)ξ∆(Ri)G(xi,xj)ξ∆(Rj) [cb(xj)− c∆(Rj)]

+
n∑
i=1

∑
j 6=i

∑
k 6=j

G(x,xi)ξ∆(Ri)G(xi,xj)ξ∆(Rj)G(xj,xk)ξ∆(Rk) [cb(xk)− c∆(Rl)] + ...

(B1)
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We can now recast eq. (B1) in a manner similar to classical scattering theory:

c(x;X ,R) = cb(x) +
n∑
i=1

∫
dx′dx′′dR G(x,x′)Ti(x′,x′′, R) [cb(x′′)− c∆(R)]

+
n∑
i=1

∑
j 6=i

∫
dx′dx′′dx′′′dxivdRdR′G(x,x′)Ti(x′,x′′, R)G(x′′,x′′′)Tj(x′′′,xiv, R′)

[
cb(xiv)− c∆(R′)

]
+ ...,

(B2)

where T is a scattering operator defined by:

Ti(x,x′, R) = ξ∆(R)δ(x− xi)δ(x′ − xi)δ(R−Ri). (B3)

Equivalently, in momentum space, using the Fourier transform definition f(x) = (2π)−3/2 ∫ dqeiq·xf̃(q),

we have:

c̃(q;X ,R) = c̃b(q) +
n∑
i=1

∫
đq′dR G̃(q)T̃i(q − q′, R)

[
c̃b(q′)− (2π)3/2δ(q′)c∆(R)

]

+
n∑
i=1

∑
j 6=i

∫
đq′đq′′dRdR′G̃(q)T̃i(q − q′, R)G̃(q′)T̃j(q′ − q′′, R′)

[
[c̃b(q′′)− (2π)3/2δ(q′′)c∆(R′)

]
+ ...,

(B4)

where:

T̃i(q, R) = ξ∆(R)δ(R−Ri)e−iq·xi (B5)

and đq = (2π)−3/2dq.

We can similarly write a corresponding equation for the configuration-averaged concentra-

tion:

c̄(x) = cb(x) +
∫
dx′dx′′dR G(x,x′)S(x′,x′′, R) [c̄(x′′)− c∆(R)]

= cb(x) +
∫
dx′dx′′dR G(x,x′)S(x′,x′′, R) [cb(x′′)− c∆(R)]

+
∫
dx′dx′′dx′′′dxivdRdR′G(x,x′)S(x′,x′′, R)G(x′′,x′′′)S(x′′′,xiv, R′)

[
cb(xiv)− c∆(R′)

]
+ ...,

(B6)
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which also serves as a definition for the “self-energy” S, physically representing the inter-

action of the mean field with itself. An analogous equation in momentum space takes the

form:

˜̄c(q) = c̃b(q) +
∫
dR G̃(q)S̃(q, R)

[
˜̄c(q′)− (2π)3/2δ(q′)c∆(R)

]
= c̃b(q) +

∫
dR G̃(q)S̃(q, R)

[
c̃b(q′)− (2π)3/2δ(q′)c∆(R)

]
+
∫
dRdR′G̃(q)S̃(q, R)G̃(q)S̃(q, R′)

[
c̃b(q′)− (2π)3/2δ(q′)c∆(R)

]
+ ...

(B7)

In order to determine the function S̃(q, R) we now have to perform the configuration-average

in terms of the scattering operators T̃i(q, R), and compare the resulting expression with

eq. (B7), using an approach similar to the one implemented by Marqusee and Ross [13].

By introducing the notation f =
∫
f(X ,R)p(X ,R)dXdR, the configuration average of

eq. (B4) takes the form:

˜̄c(q) = c̃b(q) +
n∑
i=1

∫
đq′dR G̃(q) ˜̃Ti(q − q′, R)

[
c̃b(q′)− (2π)3/2δ(q′)c∆(R)

]

+
n∑
i=1

∑
j 6=i

∫
đq′đq′′dRdR′G̃(q)T̃i(q − q′, R)G̃(q′)T̃j(q′ − q′′, R′)

[
[c̃b(q′′)− (2π)3/2δ(q′′)c∆(R′)

]
+ ...

(B8)

Let us define S̃j(q, R) as the contribution to S̃ containing the product of exactly a number

j of T̃ operators, i.e. S̃ = ∑∞
j S̃j.
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By comparing eqs. (B7) and (B8) we can determine each order of the self energy recursively:

S̃1(q, R) =
n∑
i=1

∫
đq′T̃i(q − q′, R),

S̃2(q, R) =
∫

đq′′đq′′dR′
n∑
i=1

∑
j 6=i
T̃i(q − q′, R′)G̃(q′)T̃j(q′ − q′′, R)

−
∫
dR′S̃1(q, R′)G̃(q)S̃1(q, R),

S̃3(q, R) =
∫

đq′đq′′đq′′′dR′dR′′×

n∑
i=1

∑
j 6=i

∑
k 6=j
T̃i(q − q′, R′′)G̃(q′)T̃j(q′ − q′′, R′′)G̃(q′′)T̃k(q′′ − q′′′, R)

−
∫
dR′dR′′S̃1(q, R′′)G̃(q)S̃1(q, R′)G̃(q)S̃1(q, R)

−
∫
dR′

S̃1(q, R′)G̃(q)S̃2(q, R) + S̃2(q, R′)G̃(q)S̃1(q, R)


(B9)

and so on.

The general pattern is evident: S̃n contains a term of the form T̃ G̃T̃ G̃T̃ ..., with respectively

n and n− 1 T̃ and G̃ operators, minus all the possible unique combinations of lower order S̃

and G̃ terms containing exactly a number n of T̃ operators. Let us assume that the loops are

homogeneously distributed in space and that there are no correlations either in the positions

or radii of different loops, allowing us to write:

p1(x, R) = n−1f(R), (B10)

where f(R)dR is the number density of dislocation loops with radii in the range (R,R+dR).

We also consider the thermodynamic limit of n → ∞, with constant number density. The
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first contributions to S can then be explicitly expressed as:

S̃1(q, R) = ξ∆(R)f(R),

S̃2(q, R) = −ξ∆G̃(q)ξ∆(R)f(R),

S̃3(q, R) = ξ∆ξ
2
∆(R)f(R)

∫
đq′′G̃2(q).

(B11)

Appendix C: Ewald summation of the diffusive interactions in a thin film geometry

Consider a periodic system in 3 dimensions with N clusters with effective charges {Qi}Ni=1

and N “image” clusters with effective charges {−Qi}Ni=1 per primitive cell.

The primitive cell is defined as: Γ(0) =
{
x = x1a1 + x2a2 + x3a3 : −1/2 < xα < 1/2, α =

1, 2, 3
}
, with primitive vectors a1 = (L, 0, 0), a2 = (0, L, 0), and a3 = (0, 0, 2H).

Let m = m1a1 +m2a2 +m3a3, mα ∈ Z and x̄j = (xj, yj, sgn(zj)H − zj) and GY (x,x′; ξ∆) =

−e−
√
ξ∆/Dv (4πDv|x− x′|)−1. We want to reformulate the expression:

K(xi,xj, ξ∆) =
∑′

m
GY (xi,m + xj; ξ∆)−

∑
m
GY (xi,m + x̄j; ξ∆) i = 1, .., N (C1)

as an absolutely convergent series in real and reciprocal space.

We first define a “primitive cell effective Green’s function” as follows:

GΓ
Y (x; ξ∆) =

∑
m
GY (x + m; ξ∆), (C2)

which satisfies the equation:

(Dv∇2 − ξ∆)GΓ
Y (x; ξ∆) = δΓ(x) =

∑
m
δ(x + m). (C3)
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We split the primitive cell Green’s function: GΓ
Y = GΓ

Y,F +GΓ
Y,D, where:

(Dv∇2 − ξ∆)GΓ
Y,F (x; ξ∆) =

∑
m
λρβ(x + m),

(Dv∇2 − ξ∆)GΓ
Y,D(x; ξ∆) =

∑
m

[δ(x + m)− λρβ(x + m)]
(C4)

and ρβ(x) is a normalised gaussian distribution:

ρβ(x) =
(
β2

π

) 3
2

e−β
2|x|2 . (C5)

Let us introduce a reciprocal lattice with basis vectors: b1 = (1/L, 0, 0), b2 = (0, 1/L, 0)

and b3 = (0, 0, 1/2H), and the general reciprocal space vector as: k = k1b1 + k2b2 + k3b3,

kα ∈ Z, α = 1, 2, 3.

In particular, GΓ
Y,F is more conveniently expressed in terms of reciprocal space functions. By

Fourier transforming ρβ and using the relation ∑m δ(x + m) = ∑
k exp(ik · x), we have:

GΓ
Y,F (x, ξ∆) = − λ

V

∑
k

exp (ik · x− k2/4β2)
Dvk2 + ξ∆

, (C6)

where V is the volume of the primitive cell. On the other hand, we have:

GΓ
Y,D(x; ξ∆) = GΓ

Y (x; ξ∆)−GΓ
Y,F (x; ξ∆) =

∑
m

[
GY (x + m; ξ∆)− λψβ(x + m)

]
, (C7)

where the potential ψβ(x) is given by:

ψβ(x) =
∫
dx′GY (x,x′, ξ∆)ρβ(x′)

=− eξ∆/4Dvβ
2

4πDv

e−
√
ξ∆/Dv |x|

2|x|

erf
β|x|+

√
ξ∆/Dv

2β

+ erf
β|x| −

√
ξ∆/Dv

2β



− sinh
(√

ξ∆/Dv|x|
)
erfc

β|x|+
√
ξ∆/Dv

2β

.
(C8)
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The parameter λ should be chosen in way that minimises the long tail of GΓ
Y,D. In particular,

as |x| → ∞, ψβ(x) ' eξ∆
2
/4β2−ξ∆|x|

|x| , therefore the optimal choice is λ = e−ξ∆
2
/4β2 and GΓ

Y

assumes the form:

GΓ
Y (x; ξ∆) = −

∑
k

exp
[
−(k2 + ξ∆/Dv)/4β2

]
V (Dvk2 + ξ∆)

eik·x

− 1
8πDv

∑
m

1
|x + m|

erfc
β|x + m|+

√
ξ∆/Dv

2β

 e√ξ∆/Dv |x+m|

+ erfc
β|x + m| −

√
ξ∆/Dv

2β

 e−√ξ∆/Dv |x+m|

.

(C9)

We now have to remove the spurious self interactions:

∑′

m
GY (xi,m + xi; ξ∆) = lim

x→xi

[
GΓ
Y (x,xi; ξ∆)−GY (x,xi; ξ∆)

]

= −
∑
k

exp
[
−(k2 + ξ∆/Dv)/4β2

]
V (Dvk2 + ξ∆)

− 1
8πDv

∑
m6=0

1
|m|

erfc
β|m|+

√
ξ∆/Dv

2β

 e√ξ∆/Dv |m| + erfc
β|m| −

√
ξ∆/Dv

2β

 e−√ξ∆/Dv |m|



− 1
4πDv

lim
r→0

1
r

erfc
βr +

√
ξ∆/Dv

2β

 e
√
ξ∆/Dvr

2 + erfc
βr −

√
ξ∆/Dv

2β

 e−
√
ξ∆/Dvr

2 − e−
√
ξ∆/Dvr

 .
(C10)

Expanding to first order with respect to r:

erfc
βr +

√
ξ∆/Dv

2β

 e
√
ξ∆/Dvr

2 + erfc
βr −

√
ξ∆/Dv

2β

 e−
√
ξ∆/Dvr

2 − e−
√
ξ∆/Dvr

≈


√√√√ ξ∆

Dv

erfc


√
ξ∆

2
√
Dvβ

− 2e−
ξ∆

4Dvβ2

√
π

 r +O(r2).

(C11)

We can now combine all the terms, yielding to an absolutely convergent series in real and
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reciprocal space:

K(xi,xj; ε) = −
∑
k

exp [−(k2 + ε2)/4β2]
V Dv(k2 + ε2) eik·xi

[
e−ik·xj − e−ik·x̄j

]

− 1
8πDv

∑′

m

1
|xi − xj + m|

erfc(β|xi − xj + m|+ ε

2β

)
eε|xi−xj+m|

+ erfc
(
β|xi − xj + m| − ε

2β

)
e−ε|xi−xj+m|



−
∑
m

1
|xi − x̄j + m|

erfc(β|xi − x̄j + m|+ ε

2β

)
eε|xi−x̄j+m|

+ erfc
(
β|xi − x̄j + m| − ε

2β

)
e−ε|xi−x̄j+m|

+ δij
4πDv

2βe−
ε2

4β2

√
π
− ε erfc

(
ε

2β

) .

(C12)

LIST OF SYMBOLS

In brackets the number of the equation where the symbol is first used

R Radius of dislocation loop or cavity (1)

t Time (14)

Dv Vacancy diffusion coefficient (1)

D0
v Vacancy diffusion coefficient pre-exponential (3)

T Absolute temperature (2)

Tm Melting temperature (in text, page 8)

c Vacancy concentration per atomic site (8)

c0 Equilibrium vacancy concentration (1)

c∞ Vacancy concentration at infinity (2)
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cS Vacancy concentration at thin film surface (55)

cΣ Vacancy concentration at cavity surface (2)

c∆ Vacancy concentration at dislocation loop line (5)

cb Background vacancy concentration due to macroscopic defect clusters (22)

c̄ Configuration-averaged vacancy concentration with respect to the small dislocation

loops population (25)

c[i] Vacancy concentration omitting the contribution from the ith dislocation loop (22)

c̄eff[i] Effective averaged vacancy concentration experienced by the ith dislocation loop (30)

cavg Spatial average of the vacancy concentration in the medium (47)

γ Surface energy per unit area (2)

Ω Atomic volume (2)

kB Boltzmann’s constant (2)

µ Shear modulus (6)

ν Poisson’s ratio (6)

rd Dislocation core radius (4)

Ev Vacancy formation energy (3)

Em Vacancy migration barrier (3)

be Edge component of dislocation Burgers vector (4)

τe Characteristic timescale of defect cluster evaporation (3)

vcl Dislocation climb velocity (8)

fcl Dislocation climb force (5)
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V Defect cluster volume (14)

G Free space steady-state diffusion Green’s function (14)

GY Yukawa (screened) Green’s function (39)

Jn Vacancy current normal to cavity surface (18)

Σ Locus of points belonging to a cavity surface (18)

ξ∆ Prefactor to the vacancy concentration generated by a circular dislocation loop (22)

ξ∆ Size average of the prefactor to the vacancy concentration generated by a circular

dislocation loop (35)

ξ∆c Size average of the product of the prefactor to the vacancy concentration generated

by a circular dislocation loop and the boundary condition at the dislocation loop line

(35)

Sl Perturbation to the vacancy field in the neighborhood of the ith loop arising from the

condition of local thermodynamic equilibrium. (25)

Sinl Non-local contribution to the vacancy field near the ith loop from all the other loops

in the system. (25)

p Probability density function of the positions and radii of all the dislocation loops in

the system (24)

p1 Probability density function of the position and radius of a single loop (27)

f Size distribution function for a single loop (33)

F Time-dependent size distribution function for a single loop (46)

φ Scaled non-dimensional size distribution function for a single loop (50)

vil Drift velocity in size space of interstitial dislocation loops (47)
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vvl Drift velocity in size space of vacancy dislocation loops (71)

vc Drift velocity in size space of cavities (71)

ρ Number density of dislocation loops in the medium (51)

ρc Number density of cavities in the medium (49)

V̇ c Average rate of change of the volume of cavities (49)

K Effective diffusional interaction between cavities in a thin film (58)

T Scattering operator of random scatterers (B2)

S Self energy reflecting the averaged effect of random scatterers (B6)
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