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On monitoring tearing modes stability in toroidally
rotating tokamak equilibria

E. Lazzaro,L. Bonalumi, S. Nowak, Brunetti

Abstract—In tokamak operation the control of dangerous
MHD instabilities, possibly in r-t scenarios, must rely on prompt
robust diagnostics of the state and stability of the system. The set
of magnetic signals measured on the outside of the plasma bound-
ary, based on the Zakharov-Shafranov, Shkarowsky,Wootton
(ZSSW) [5] current moments has been always used for reliable
monitoring of key characteristics of the instantaneous equilib-
rium condition, such as the quantities ∆h, the Shafranov centroid
shift,βp related to the thermal energy content, and li related to
the current profile peakedness. In addition the fast pick up coils
monitor the external magnetic field fluctuations due to internal
MHD activity, however without possibility of radial localization
of the source. Here we explore the potential usefulness of a more
complete use of ZSSW moments in association with the informa-
tion from fast B perturbation signals to detect tearing stability
conditions. For clarity we set up an analysis of the measurable
response to tearing perturbations based on an exact equilibrium
model, which is an extension of the Solove’ev case with the
addition of an equilibrium, non uniform plasma rotation Ω(ψ).
The relation of selected (externally measurable) ZSSW moments
to the calculated stability index, is mapped for different rotation
values. The footprint of the stability condition ∆′ < 0 on some
current moments on the outer surface [5], [14] can then identify
stability boundaries, for different rotation conditions.This first
discussion on an idealized exact model is proposed for testing the
concept for application to realistic equilibria, since it relies on
few, externally monitorable quantities and very basic assumptions
on the tearing modes physics.

Index Terms—tokamak, current moments,tearing modes,Bayes
observer

I. INTRODUCTION

THIS work offers a contribution to the question of robust
identification of some tokamak magnetic instabilities,

which is crucial for the successful operation of the fusion
oriented devices. Although the argument is based on well
known and well developed physics,it is helpful for the reader
to start with a, non pedantic, concise summary of the relevant
equilibrium conditions,and basic description of the tearing
instability considered. Therefore in the second Section the
notation is established, and a general tokamak equilibrium
equation is derived a-new including a steady rotation; the
third Section contains the explicit solution of a Solove’ev
type and its transformation to a parametric representation that
allows easy construction of the metrics and identification of
physical and geometric properties. In the next Section,the
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specific reconnection process at rational surfaces is succinctly
described, focussing on the specific toroidal metrics effects
on the current perturbation giving rise to the instabiliy. The
crucial argument on the scaling of the source of the instability
is introduced and discussed. On this basis in the subsequent
Section the concept of external magnetic measurements is
revisited and extended; the solution of the homogeneous Grad-
Shafranov equation in spherical coordinates is recalled to
generate Zakharov-Shafranov, Shkarowsky,Wootton (ZSSW)
[5] current moments; the relation of generalized (externally
measurable) ZSSW moments to the calculated stability index
∆′, is mapped for different rotation values. The footprint of
the stability condition ∆′ < 0 on some current moments on the
outer surface [5], [14] can then identify stability boundaries,
for different rotation conditions. The simplicity of the physical
assumptions is believed to constitute a ground model which
can be improved but not contradicted by more complete
descriptions of the inner profiles.In the last section a Bayesian
inference approach is used to test the theoretical detectability
of the relevant information amidst the other measurements.
In the conclusions,this first example based on an idealized
analytical model is proposed for testing the method in view
of application to realistic equilibria, since it relies on few,
externally monitorable quantities and very basic assumptions
on the T.M. physics.

II. BASIC EQUILIBRIUM FRAMEWORK

The purpose of this work is to explore and eventually
propose an extended use of the magnetic measurements taken
outside the Last Closed Magnetic Surface (LCMS) of a
tokamak, to contribute means of continuous monitoring of
the stability conditions of the configuration relative,in a first
instance, to tearing perturbations. In order to set up the
problem as clearly as possible we find convenient to choose
as demonstrative playground the geometry of the simplest,
abeit not fully realistic, tokamak equilibrium, namely a variant
of the Soloveev type [1], [2]. In particular we first re-
derive a solution of the Grad-Shafranov equation, including
in the equilibrium a non uniform toroidal rotation,and cast the
solution in the inverse coordinate parametric representation
which highligths simply the geometric characteristics of the
configuration.The first step is to consider the steady state,
incompressible single fluid MHD equations

ρ
(
v · ∇v

)
= J×B−∇p (1)

−∇Φ + v ×B = 0 (2)
∇ ·
(
ρv
)

= 0 (3)
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where the second equation represents Ohm’s law, with Φ the
electrostatic potential. Due to axisymmetry and the incom-
pressibility condition, the B field and the mass density flow
can be written in the Clebsch notation as:

B = T∇φ+∇φ×∇ψ (4)
ρv = Θ∇φ+∇φ×∇F (5)

Here T, F,Θ,Φ are all functions of the poloidal flux ψ(R,Z),
therefore are constant on magnetic surfaces . Using expres-
sions 5 in equations 1, with straightforward algebra one
obtains:

Φ′ =
1

ρR2

[
TF ′ −Θ

]
(6)

The projection of the momentum balance equation 1 along
the ∇φ direction, yields another surface quantity, from which
a final expression for the flow velocity follows:

X(ψ) = T
(
1− (F ′)2

ρ

)
+R2F ′Φ′ (7)

v =
F ′

ρ
B∇φ−R2Φ′∇φ (8)

The projection of the momentum balance equation 1 along B
vanishes, and equations 6,8 yield the following relations:

B ·
[1
2

(
∇v2

)
+

Φ′

ρ
(F ′T − Φ′ρR2) +

∇p
ρ

]
= 0 (9)

Finally the last equation 9 can be rewritten, using equation 6,
as a generalized Bernoulli equation

B · ∇
[
p+ ρ

(v2

2
+ Φ′

Θ

ρ

)]
= 0 (10)

The quantity Ps(ψ) = p+ρ
(
v2

2 +Φ′Θρ
)

is a surface function ;
it is convenient to introduce the poloidal Mach number M2 ≡
v2p
v2A

= (F ′)2

ρ and write the projection of the momentum balance
equation in the ∇ψ direction, obtaining the Grad- Shafranov
equation generalized with the presence of a stationary toroidal
plasma velocity vφ = Θ/Rρ:

(1−M2)4∗ ψ − (M2)′

2
|∇ψ|2 +

1

2

( X2

1−M2

)′
+R2

(
Ps −

XF ′Φ′

1−M2

)′
+
R4

2

( ρ(Φ′)2

1−M2

)′
= 0 (11)

The Beltrami operator is explicietely 4∗ψ = ∂2ψ
∂R2 − 2

R
dψ
dR +

∂2ψ
∂Z2 .In absence of equilibrium flow, the Grad-Shafranov equa-
tion, and the toroidal current density are:

4∗ψ = −µ0RJφ Jφ = R
dp

dψ
+

T

2πµ0R

dT

dψ
(12)

In the following we shall consider just the subsonic cases
M2 << 1 for which the equation 11 remains elliptic. Com-
parison of eq.11 and eq. 12 in the subsonic range, leads to
identify the current density in presence of rotation:

Jφ = − 1

2µ0R

(
X2
)′

+R
(
Ps−XF ′Φ′

)′
+
R3

2

(
ρ(Φ′)2

)′
(13)

A. Paradigmatic Case with Exact Solution

In this section eqs.13 and 11, will be simplified choosing
particular profiles.Although thy might not picture a realistic
situation, they provide a clear insight in the role and effects
of the configuration geometry. In the following we shall be
concerned with external measurements, which are generally
considered rather ”blind” to the internal features,but we can
show that even the coarse description used can provide general
conclusions. Noting that X → T and choosing

F ′ = 0 (14)
T = const (15)

ω(ψ) =
Θ(ψ)

ρR2
= −Φ′(ψ) (16)

p = p0(1− ψ

ψb
) (17)

ρω2 = Ω0(1− ψ

ψb
) (18)

Ω = µ0Ω0/2ψb (19)
P0 = µ0p0/ψb (20)

where [P0] = [µ0Jl
−1] and [Ω = µ0Ω0/2ψb] = [µ0l

−5qt−1 ≈
µ0Jl

−3] labels the rotation effect on the current density;the
equation 12 becomes:

4∗ψ = −R2P0 −R4Ω (21)

Following the classical procedure by Solove’ev [1] an exact
solution is obtained in the form

ψ(R,Z) = c0R
2Z2 + k(R2 −R2

0)2 + αRβ (22)

After further de-dimensionalization of eq.21, the coefficients
and the final form of the solution are obtained, assigning
boundary conditions ψ = ψb = 4kR2

0r
2
b , going through the

points r = rb , Z = Zs = Z(rb, π/2) and vanishing on the
magnetic axis. With k =

Zs
√
µ0p0

4R0rb
√

2(Z2
s+r2b )

, c0 =
8r2b
Z2

s
k one

gets:

ψ(R,Z) = c0R
2Z2 + k(R2 −R2

0)2 +
Ω

24
R6 − ψax (23)

The last constant makes the flux vanish at the magnetic axis,
and is ψax = Ω

24R
6
0 − Ω2

256kR
8
0. The poloidal Bθ field in

rectified flux coordinates (r, θ, φ) is Bθ(r) = ψ′(r)√
g where

√
g is the Jacobian of the transformation from the (R.φ, Z)

coordinates. A simple but crucial observation should be made
on the structure of the current density on the r.h.s. of eq.21.
It is basically an expression of the fundamental force balance
in toroidal geometry, and is strictly related to the geometric
and global properties of the equilibrium configuration, which
are efficiently identified by ”moments” measured outside the
plasma;toroidicity and shaping help removing certain degen-
eracies, allowing for instance separation of βp and `i [4], [15].
A first conjecture, is that this ”irreducible” toroidal effect may
carry also other global information, so far disregarded, related
to certain stability conditions.
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B. Parametric Representation of Exact Solution and Metric
Coefficients

The exact solution 23 can be usefully represented in the
general parametric form [3]

R(r, θ) = Rax + (R1(r) +R11(r,Ω))cosθ +R2(r)cos2θ − δ
(24)

Z(r, θ) = (Z1(r) + Z11(r,Ω)sinθ (25)

Here r is a flux surface function,and θ is a rectified poloidal
angle variable.From eqs.24 and 25 the metric tensor gik
is easilly calculated analytically, to be used in writing the
equation for the helical magnetic perturbations, in full toroidal
geometry. For simplicity we show in the Appendix the explicit
expressions of the coefficients of eqs.24 and 25, and display
the relevant metrics later on when needed. A fair amount
of tedious algebra is unavoidable to be able to evaluate
consistently some moments of the interior current profile and
some contour integrals on the plasma outer boundary, thereby
proving our statements, anticipated in the introduction.

III. EXTERNAL MAGNETIC MEASUREMENTS

The tokamak toroidal current density distribution, Jφ(r) is a
continuous function of points r of coordinates (R,Z),compact
within the domain (set of points) S bounded by the Last Closed
Magnetic Surface (LCMS). For convenience, in the following
we shall use the normalized profile Ĵφ(r) 'Jφ(r)Sφ/I ,where
I is the total current and Sφ a toroidal cross section. Consider
a complete numerable set < of real valued orthonormal basis
functions un(r); the normalized function Ĵφ(r) could be
represented by an expansion in un(r), in the form of a smooth
(integral) superposition of filaments:

Ĵφ(r) =

∫
dr′

∞∑
n

Cnun(r′))δ(r− r′) (26)

and the reconstruction of the current profile,albeit approxi-
mate, in principle could be expected to consist in determining
the weighting coefficients Cn by finding a large enough
number N of external measurements to be matched to N
boundary values of un(rb), obviously under the constraint that∑N
n Cnun(rb) = 0,with the integral value constrainded by

the measured total current I . However this procedure cannot
be even formally pursued, outside the general formulation
of a suitably regularized inverse MHD equilibrium problem
[13]. The use of external magnetic diagnostics has nonetheless
proved to be a powerful and robust tool to determine several
important characheristics of the tokamak configuration, such
as the plasma position and shape, associated to the Jφ profile
and the boundary conditions. Zakharov and Shafranov [4],
[5] first showed that multipole moments of current density
are given by closed-contour integrals of external magnetic
field and how these moments are related to plasma position
and shape. Their analysis limited to the case of symmetry
with respect to the midplane and first order in ε = r/R
, was later expanded by other authors [6]–[9], always with
the objective of a robust indentification of the geometrical
characteristics of the plasma meridian cross section. In the

work by [5], [7]–[9], the solution of the homogeneous Grad-
Shafranov equation, valid in vacuum is expressed in terms
functions of the type f (m)(ρ, µ) = ρm+1(1 − µ2)1/2P 1

m(µ)
(where ρ2 = R2 + Z2, µ = cosθ), related to associated
Legendre polynomials, and it is shown that m-th moments of
the internal current profile Jφ, defined in [5], [8], [9], are equal
to weighted contour integrals of the peripheral magnetic field
tangent and normal components on closed paths,surrounding
the plasma:

Ym =
1

µ0I

∫
JφfmdSφ =

1

µ0I

∮
fmBθ(rb)d`

=
1

µ0I

∫ 2π

0

fmBθ(rb)
√
gθθ(rb) dθ (27)

For convenience the set of functions f (m)(R,Z) is changed
into an equivalent set fm(x,Z) vanishing on the magnetic axis,
and for the sake of argument the integration contour is the
plasma boundary,at r = rb. In the following the moments 27
of interest shall be those generated by the functions of ref. [9]:

f1 = x(1 +
x

R0
) (28)

f2 = xZ(1 +
x

R0
)2 (29)

f3 = x2(1 +
x

2R0
)2 − Z2(1 +

x

R0
) (30)

f4 = [2Zx(1 +
x

2R0
)− 4

3

Z3

R0
](1 +

x

R0
)2 (31)

f5 = x3(1 +
x

2R0
)3 − 3xZ2(1 +

x

2R0
)(1 +

x

R0
)2 (32)

f6 = [3Zx2(1 +
x

2R0
)2 − Z3(1 +

6x

R0
+

3x2

R2
0

)](1 +
x

R0
)2 (33)
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Fig. 1. Contour plot in (x,Z) plane, of f4 multipolar function,
associated with the elongation κ.

IV. LINEAR TEARING MODES PERTURBATIONS

First order helical perturbations of the type f̃(r, θ, φ) =
f̃(r)m,ne

i(mθ−nφ) in current density may lead to magnetic
instabilities growing around the closed fiel lines, rational
q surfaces and generating the externally measzured, time
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Fig. 2. Contour plot in (x,Z) plane, of f∆ multipolar function
.

periodic ”Mirnov” signals.Eventually the instability transforms
nonlinearly in finite size magnetic islands, whose evolution, up
to the saturation stage, largely depends on the linear growth
rate. The latter is governed by a dispersion relation of the type

∆′ = ∆′layer (34)

where ∆′layer depends on the physics of magnetic recon-
nection within the inner layer around r=r(q=m/n), and the
”external” ∆′ =

dln(ψ̃m,n)
dr |r(q=m/n) results from the solution

of the tearing equation. Considering linear perturbations of
current and magnetic field

J = J0 + J̃1 (35)
B = B0 + B̃1 (36)

The condition of vanishing torque density ∇× (J×B) = 0 is
expressed in the equation for the first order perturbbed helical
poloidal flux ψ̃m,n, which in curvilinear (toroidal) geometry
takes the form:〈gθθ√

g

〉∂2ψ̃m,n
∂r2

+
〈gθθ√

g

〉′ ∂ψ̃m,n
∂r

−
[
m2
〈grr√

g

〉
+

m

m− nq
〈
J∗
〉′]
ψ̃m,n = 0(37)

In explicit form,in this basic configuration,we have the follow-
ing dependence on the geometry,pressure and rotation:〈gθθ√

g

〉
=

4
√

2r(c0 + 8k)

33R0

√
c0k

+
ΩR0r(c0 + 8k)

44
√

2c0k3
(38)〈gθθ√

g

〉′
/
〈gθθ√

g

〉
=

1

r
(39)〈grr√

g

〉
/
〈gθθ√

g

〉
=

1

r2
(40)

Ultimately the source of tearing mode depends on the per-
turbation of the physical current density near the rational
surface, which is related to the contravariant toroidal current
by J0φ =

√
gφφJ

φ
0 , where √gφφ = R:

Jφ,1 ≡ J? ∝
J0φ

T
R (41)

Near the rational surface r = rs the strength of driving term
of the tearing perturbation in eq. 37 in the present test case
can be explicited as:

J? = −AR2 −BR4 (42)

where the equilibrium current used here is given by the
expression consistent with eq.21 and A = P0

T , B = Ω
T .

In the next section, for the sake of argument, we focus on
the scaling of the current perturbation with the characteristics
of this equilibrium,which, albeit particular (eqs.21,23), keeps
track of the fundamental toroidal metrics underlying also any
more detailed equilibrium current profile. As argued earlier
it is worth searching how the associated information may be
linked to the stability condition.

A. Multipolar moments of Tearing Current Density Perturba-
tion

In this section we shall investigate whether a generic tearing
current perturbation ”J∆” leaves a specific, and detectable,
multipolar ”footprint” on an outer contour (e.g. LCMS), and
construct applicable, albeit approximate expressions. We can
conjecture a scaling of the perturbation J∆(r, θ,Ω) ∝ ARλ+
BRν , where the exponents λ, ν are determined by the expected
equilibrium current profile. A moment associated with the
”tearing source” J∆ can be defined as:

Y ∆ =
1

µ0I

∮
f∆Bθ(rb)d` =

ψ′(rb)

µ0I

∮
f∆

√
gθθ(rb)√
g(rb)

dθ

(43)
From the general structure [9] of the f (m), solutions of
4?f (m) = 0 it results that some linear combination of the
functions f (1), f (3) f (5) scaling as − 1

2R0
R2, 1

4R2
0
R4 and

− 15
8 R

6 can be useful to define a moment related to ∆′:

f∆ ≈ αf (1) + βf (3) ≈ −ARλ −BRν (44)

In the specific case of eq. 41 we have λ = 2, ν = 4. By match-
ing the terms with corresponding powers of R in eq.44 R4,
the constants are determined as α = −2R0

P0

T , β = −4R2
0

Ω
T

leading eventually to the practical definitions :

f∆ := −2R0
P0

T
f1 −−4R2

0

Ω

T
f3 (45)

and from 43

Y ∆ = −2R0ψ
′(rb)

µ0I

∮ [P0

T
f1 + 2R0

Ω

T
f3

]√gθθ(rb)√
g(rb)

dθ (46)

Fig.1,and Fig.2 show the contour plots of the weight functions
f3 and f∆. It is expected that information of the internal
”tearing source” is conserved in the mapping provided by
the surface moments. A correspondence between the relevant
measured moment and ∆′ can be established by numerical
calculations, up to an irrelevant multiplication factor. Stability
domains can be constructed in operating spaces (c0, T ) and
(k,T) for different (m,n) modes and toroidal rotation Ω. In
order to test sensitivity, the strict choice of the source J∗

model of eq.42 could be relaxed,with different λ, ν leading
to different linear combinations offm, which can show higher
sensitivity to ∆′. An example is discussed in the next section
for λ = 4, ν = 6 and f̂∆ := 4R2

0Af3 + 8R3
0Bf5.
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V. SENSITIVITY AND STABILITY DOMAINS

The stability parameter ∆′ is calculated solving numerically
the tearing equation 37., The results of the physical model are
shown in Figs.3,4,5,6,7,8.

-2 -1 1 2
ΔY

-5

5

10

15

20

25

Δ

Ω=0.007

(m,n)=(3,2)

(m,n)=(2,1)

(m,n)=(5,2)

(m,n)=(3,1)

Fig. 3. Plot of ∆vs. ∆Y∆ for a range of modes (m,n) at a fixed value
of the toroidal rotation label Ω = 0.007 (see definition 19);∆Y∆≥ 0
is associated with ∆′ ≤ 0.
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Fig. 4. Plot of ∆vs. ∆Y∆ for a range of modes (m,n) at a fixed value
of the toroidal rotation label Ω = 0.014 (see definition 19).

The relation of the tearing linear instability parameter ∆′,
with the externally measurable moment ∆Y∆ = Y∆ − Y∆=0,
for a range of modenumbers (m,n) ) is shown in 3,4, for two
fixed values of rotation Ω. The relation of ∆′ with ∆Y∆ =
Y∆ − Y∆=0, for modes m = 2, n = 1 and m = 3, n = 2 is
shown in Fig.5 and Fig. 6 for different values of the toroidal
rotation Ω. It is apparent that the change of sign of ∆Y∆ is
the same as that of ∆′, irrespective of rotation: this makes this
signal very suitable to monitor the (linear) stability condition.

It is possible to build the stability domains in the parameters
space (c0, k, T ).. The analysis is done for m = 2, n = 1
k = 0.007, c0 = 0.05, R0 = 1.9, rb = 1, Ω = 0.007, p0 = 0.1
and the data are summarized in two contour plots.

The Figs.7,8 show that in the upper limit of the range of k
and c0, the moment ∆Y∆ becomes larger, corresponding to a
more stable equilibrium. This is consistent with the behaviour
of ∆′ calculated using the exact equilibrium.
As a test of sensitivity to uncertainty in the basic structure of
the J∗ source,here we summarize the case with λ = 4, ν = 6
related to a different profile,not consistent with the equilibrium
eq.23. The expression 46 is evaluated choosing,arbitrarily,
the parameters m = 3, n = 2, k = 0.007, c0 = 0.05, R0 =
1.9, rb = 1,Ω = 0.007, p0 = 0.1. The parameter T modifies
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Fig. 5. Plot of Y∆vs.vs.∆Y∆ for mode m=2,n=1 at different values
of the toroidal rotation label Ω;∆Y∆≥ 0 is associated with ∆′ ≤ 0.
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Fig. 6. Plot of Y∆vs. vs. ∆Y∆fom mode m=3,n=2 at different values
of the toroidal rotation label Ω.

only the profile of the safety factor q, in this way the geometry
of the system is kept fixed. For each couple of values (c0, k)
the value of the Y∆=0 is calculated and subtracted from Y∆.
Note that in this case the sign of ∆Y{Delta is the same as
that of ∆′. In the table the sensitivity result is reported:

T ∆′ Y∆′ ∆Y∆′

0.14 -0.0758541 -36.8296 0.
0.1 -3.37647 -52.5915 -15.7619
0.11 -1.80164 -47.8105 -10.9809
0.12 -0.947699 -43.8263 -6.99665
0.13 -0.55219 -40.455 -3.6254
0.14 -0.0758541 -37.5654 -0.735759
0.15 0.443696 -35.061 1.7686
0.16 1.12254 -32.8697 3.95991
0.17 1.87055 -30.9362 5.89342
0.18 2.61012 -29.2175 7.6121
0.19 3.28078 -27.6797 9.14986

It can therefore be confirmed that external magnetic
measurements with rather flexible combinations of fm
multipolar weight functions can monitor the ∆′ stabiity
condition.

VI. SOURCE AND SIGNALS

In the previous sections of this paper the baic scaling of the
metrics effect on the ”tearing mode” current perturbation was
inferred and it has been shown how a certain linear combina-
tion (possibly not unique) of the externally measurable Ym is
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sensitive to the TM stability index ∆′. An important question
remains open, namely that concerning the detectability of this
information amidst that provided by the other moments,and
the background noise. To address this question, at least in a
preliminar way, we have to introduce elements of information
theory and of statistical decision techniques. For the specific
purpose of modelling the ”origin” of TM perturbations, to be
”coded” onto externaly measurable magnetic signals,because
of the unknown non metrical effects, it is proposed to consider
the current distribution as ”source” of the multipolar moments
Ym defined in eq. 27, along the lines o ref. [9] as a set of
independent random variables. One can consider a discrete
subset of n generalized multipoles Zi =

∫
ĴφL(fi)dSφ, where

L(fi) is a linear combination more directly associated with
physical quantities [8], [9]. The symbol Z1,is associated with
the Shafranov shift ∆Shaf ,while combinations Zκ ≈ L(Y3 ,
Y4), are associated with the elongation κ, and Zδ ≈ L(Y3 ,Y6)
are related with the triangularity δ of the plasma configuration
[9];in the present case we are interested in Z∆ = αY3 + βY5.
On the basis of a statistical framework we can address the
problem of assessing the detectability of the signal of interest.

A. Statistical and probabilistic model

More specifically, we can picture the current as a ”source”
of n moments (eq.27) with amplitudes which are random
variables described by ”prior” probability distributions, taken,
without loss of generality, to be Normal density distribu-
tions ΦN (Zm|µm, σm),with mean µm = Zm and unspecified
standard deviation σm. Then by reordering and subdividing
the sequence Zmin, . . . , Zm . . . , Zmax > we evaluate the
probabilities of the ”symbols” Zm as :

P1(−∞ ≤ Z ≤ Z1) =

∫ Z1

−∞
ΦN (y)dy (47)

Pk(Zk ≤ Z ≤ Zk+1) =

∫ Zk+1

Zk

ΦN (y)dy (48)

Pm(Zm ≤ Z ≤ ∞) =

∫ ∞
Zm

ΦN (y)dy (49)

In order to asses the relevance of the information of the symbol
Z∆ in comparison with the other moments,here we follow a
rather elementary line of reasoning.

We estimate the conditional probability that the message
generated by the source is ”Z∆ when Zκ ” is also observed.
The Bayes theorem gives the conditional probability

P (Z∆ | Zκ) = P (Zκ | Z∆)× P (Z∆)/P (Zκ) (50)

Here P (Zκ | Z∆) is the Likelihood function of detection of
Z∆ when symbol Zκ has been detected, and P (Zκ | Z∆) ×
P (Z∆) is the ”posterior” probability of symbol Z∆, while
P (Zκ) is the ”evidence”, which amounts to a normalization
constant. Eventually by ordering the posterior probabilities,
the relevance of the information of the Z∆ symbol can be
assessed. In the language of information theory,the ensemble
of Zi is the set of N ”symbols”, (”letters”) of the ”alphabet” A,
of the ”source” [17], which generates random variables each
with a probability Pi. A string of ”letters”,”symbols” is an
elementary event, ”message” in a probability space and is a
random process.

B. Likelihood Ratio and Ideal Observer Analysis

We want to formulate the problem of detectability of a
specific moment (symbol), say Z∆ in presence of at least
another signal (message) [21], say (Z1, Zκ, Zδ); in general
one should consider detectability against background noise,
but here, for the sake of argument, it is sufficient just the
comparing between noiseless signals.The task is to discrimi-
nate between two classes of moments that can be measured;
we label as ”class 0” the set of symbols Zj , (j = 0, 1)
that do not include the information about ∆′, and ”class 1”
that which does include it.The optimal discriminator of two
classes of symbols, with probability densities pj(Zj) is given
by the Bayesian ideal observer [22], [23], expressed in terms
of the Likelihood ratio (or the log Likelihood ratio (see eq.
50). In the present case Zj,i, (i = 1, n) are samples of size
n=4 from normal density distributions pj(Zj) = ΦN (Zj |µ, σ),
with mean and variance µ, σ determined by seeking maximum
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Likelihood, for given ”data” Zj , for each class j . The mean
value and the value σ̂2 that maximize the Likelihood function

Ln(Zj | µ, σ) =

(
1√
2πσ

)n
exp

[
−1

2

∑n
i=1(Zi − µ)2

σ

]
(51)

turn out to be :

µ̂ = Z =
1

n

n∑
i

Z, σ̂2 =
1

n

n∑
i

(Zi − µ̂)2 (52)

Ln(µ̂, σ̂) = (
1√
2πσ̂

)ne−
n
2 (53)

For class 0, µ̂ = µ0 and for class 1 µ̂ = µ1. The likelihood
ratio statistic is defined as:

Λ(µ, σ) =
Ln,0(Z0|µ0, σ0)

Ln,1(Z1|µ1, σ1)
= (

σ2
1

σ2
0

)
n
2 = (

∑n
i (Zi − Z)2∑n
i (Zi − µ0)2

)
n
2

(54)
As particular test case we consider the discrimination
of a ”message” string of length n=6, including the Y4

moment,associated with elongation, and no Z∆, and one with
Z∆ in place of Y4. The sample means are µ0 = 1

n (Y1 + Y2 +
Y3 + Y4 + Y5 + Y6), µ1

1
n (Y1 + Y2 + Y3 + Z∆ + Y5 + Y6).

We can apply the analysis formulating the null hypothesis
H0 in relation to the detection of the value of one parameter,
typically the mean, µ0, of the p0 distribution and the
alternative H1 associated with µ̂ = µ1 6= µ0. Intuitively, if
the evidence (data) supports H1

¯
, then the likelihood function

Ln,1(Z1|µ1) should be large, therefore the likelihood ratio
Λ is small. Thus,the null hypothesis H0 is rejected and
the symbol Z∆ is detectable. The rejection region for H0

(acceptance for H1) is Λ ≤ k̂, which is some threshold, and
after some manipulation of eq.54, is translated into a t-Student
test criterion for the statistics t =

√
n(Z − µ0/S > k̂′,with

the standard deviation estimator S2 = 1
n−1

∑n
i (Zi − µ0)2.

The level of significance of the null hypothesis at 5% occurs
if t > 1.96.

µ0 µ1 σ0 σ1 S t
−0.495 −0.081 1.40 0.963 0.43 2.35

Furthermore, another discriminating parameter is the distance
of the peaks of the posterior density functions, divided by
the standard error estimate d′ ≡ µ1−µ0

S ≈ 0.422. Hence
the moment Z∆ should be reasonably observable in an
experimental situation,even in presence of the measurements
of the other moments, typically the moments associated with
the elongation. A plot of prior and posterior probability
distributions (ref.50) for Y4 and Y∆ is shown in Figs.9,10.
By construction, it is clear that the discriminating effect is
due to rotation, even though the change of sign of Y∆ with
∆′ appears largely independent of rotation, for all modes.

Other combinations of moments such as f̂∆ presented
previously, monitor as well the sign of ∆′, and are more
detectable.This indicates a sufficient freedom for applications.

VII. CONCLUSIONS

A new approach has been presented to the problem of
detection of meaningful characteristics of a tokamak config-
uration, based on the simplest, but fully toroidal model of

-6 -4 -2 2 4
Ym
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0.3

0.4

h1 Prior - h0 Prior

Fig. 9. Prior probability distributions of Y4 and Z∆ for H0 and H1

.
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Fig. 10. Plot of posterior probability distributions of Y4 and Z∆ for
H0 and H1.

equilibrium,Solove’ev-like, but with rotation.The detectability
of the sign of ∆′ is clearly due to an effect of rotation.
Exploiting the vacuum solution of the field equaton in terms
of Legendre functions, some new, relevant information on the
tearing stability conditions has been shown to be associated
with combinations of externally measurable multipole mo-
ments.The choice of combinations is not unique, but several
can be sensitive to the sign of ∆′ . By a statistical approach
a procedure of Bayesian inference has been used to ascertain
” theoretical” detectability of the relevant multipole moment.
Given the simplicity of the assumptions,the procedure can be
applied to more refined theoretical models and, especiallly, can
be tried on real experimental measurements, where no detailed
knowledge of the internal current profile is available.

APPENDIX

Evaluation of Coefficients of the Parametric Representation
The solution eq.23 can be usefully represented in the

general parametric form [3], in a mildly non uniform current
approximation

R(r, θ) = Rax + (εR1 + ε2R11) cos θ + ε2R2 cos 2θ − δε2 (55)
Z(r, θ) = (εZ1 + ε2Z11) sin θ (56)

with ε ∼ r
R0

is an ordering tag, eventually set to 1. A system of
equations can be built evaluating the moments of the solution
ψ(R(r, θ), Z(r, θ)):∫ 2π

0

ε2ψ̄ cosnθdθ =

∫ 2π

0

[
c0R

2Z2
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+k(R2 −R2
0)2 +

Ωψ

24
R6 − ψax

]
cosnθdθ (57)

the term ψ̄ is now seen as a labelling variable which scales
as r2 ∼ ε2 and denotes a specific magnetic surface. The
same order terms are equated to obtain the coefficients of the
equations 55, 56.

R1 = r, R11 = −ΩR2
0r

32k
, R2 =

r2

4R0
(58)

Z1 =
2
√

2kr
√
c0

, Z11 =
ΩR2

0r

8
√

2c0k
, δ =

3r2

4R0
(59)

Further steps are needed to ensure that the LCMS remains
fixed. The boundary conditions have to be imposed:

R(rb, 0)|Ω=0 = R(rb, 0), R(rb, π)|Ω=0 = R(rb, π) (60)

Z(rb,
π

2
)|Ω=0 = Z(rb,

π

2
), βp|Ω=0 = βp (61)

The coefficient k, c0, R0 and rb are functions of toroidal
flow Ω. The system is solved after a linearization of these
coefficients:

k = k0 + εk1, R0 = R00 + εR01 + ε2R02 (62)
c0 = c00 + εc01, rb = rb0 + εrb1 (63)

So, the system yields:

R00 = R0, R01 =
ΩR3

0

32k
, R02 =

(7c0 + 24k)Ω2R5
0

2048k2(c0 + 8k)
(64)

c00 = c0, c01 =
c0ΩR2

0

2c0 + 16k
(65)

k0 = k, k1 = − (c0 + 4k)ΩR2
0

8(c0 + 8k)
(66)

rb0 = rb, rb1 =
ΩrbR

2
0

32k
(67)

Using 58,59 and 64-67, the final form of the parametric
representation 55 and 56 can be written as:

R(r, θ) = R0 + εr cos θ

−ε2
r2
(
8 sin2 θ − cos 2θ + 3

)
4R0

− ε2 ΩrR2
0 cos θ

32k
(68)

Z(r, θ) = ε
2
√

2
√
kr sin θ
√
c0

+ ε2
sin θ

(
64kr2 cos θ − ΩrR3

0

)
8
√

2c0k
(69)

From the equations 68 and 69 one can calculate the metric
tensor used in eqs.37 and 46.

ACKNOWLEDGMENT

This work has been carried out within the framework of
the EUROfusion Consortium and has received funding from
the Euratom research and training programme 2014-2018 and
2019-2020 under grant agreement No 633053. The views and
opinions expressed herein do not necessarily reflect those of
the European Commission

REFERENCES

[1] L.S. Solov’ev. Journal of Experimental and Theoretical Physics, 26 400,
(1968).

[2] H. Tasso e G. N. Throumoulopoulos, Physics of Plasmas 5 2378-2383,
(1998).

[3] L. Lao, Hirshman, Wieland,The Physics of Fluids 24, 1431 (1981).
[4] V. D. Shafranov,Plasma Physics, 13, pp. 757 to 762.
[5] L.E.Zakharov,V.D. Shafranov, Zh. Tekh. Fiz., 43, 225 (1973).
[6] A. J. Wootton, Nucl. Fusion 19,987 (1979).
[7] M.F. Reusch, G.M. Neilson J. Com. Phys., 64,89(1982).
[8] I. P. Shkarofsky,The Physics of Fluids 25, 89 (1982);
[9] Seong-Heon Seo et al. The Physics of Plasmas 7,1487 (2000).
[10] A. Tautz, I. Lerche. Astronomy and Astropphysics A6,581 (2015).
[11] R.D.Jackson,Classical Electrodynamics , Wiley (1962).
[12] N.N.Lebedev,Special Functions , Dover(1962).
[13] J. Blum, E. Lazzaro, J. O’Rourke, B. Keegan and Y. Stephan Nucl.

Fusion 301475 (1990).
[14] F. Alladio and F. Crisanti, The Physics of Fluids 26,1143 (1986).
[15] E. Lazzaro, P. Mantica, Nucl. Fusion , 28,913 (1988)
[16] Shannon,C.E., ”A mathematical theory of communication,” Bell System

Technical Journal, 27, pp. 379-423; pp. 623-656. (1948).
[17] Khinchin A.I., Mathematical Foundations of Information Theory, Dover

(1963)
[18] Pierce, An introduction to Information Theory, DoverPub. Inc, New York

(1980)
[19] Kullback S., Leibler R.A.,Annals of Mathematical Statistics, 22(1), 79-

86 (1951)
[20] Galas D.J.,Dewey J.,et al, Axioms 2017, 6(2), 8;

https://doi.org/10.3390/axioms6020008 - 01 Apr 2017
[21] Senfong Zheng, Lecture notes
[22] Nghia Q Nguyen, Craig K Abbey, Michael F Insana, Proceedings of

2011 IEEE International Ultrasonics Symposium
[23] H.H.Barrett, K.J. Myers Foundations of Image Science , Hoboken,

NJ,John Wiley Sons (2004).

Enzo Lazzaro Plasma physics theorist,presently Associate Research Director
of ISTP-Cnr. Formerly Director of Intitute of Plasma Physics-CNR. From
1981 to 1990 researcher in the Theory Division of JET-Joint Undertaking and
since then actively involved in plasma theory (wave-plasma interactions, MHD
and dusty plasma) related to Tasks of Eurofusion and and other international
collaborations, authoring and co-authoring about 300 papers.

Luca Bonalumi MSc Degree in Plama Physics from Universit di Milano
-Bicocca in 2019

Dr. Silvana Nowak is presently First Reasearcher at ISTP-CNR; she has
worked at CEA (France) and JET (UK) and is currently involved in several
Tasks of Eurofusion and other international collaborations.

Dr.Daniele Brunetti got his Msc Degree at the Universit degli Studi di
Milano, and later his PhD at EPFL in Lausanne (SW) ; he has worked onl
Tasks of Eurofusio at JET and is currently Reasearcher at CCFE, Culham,
UK.


