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Anisotropy and some limiting toroidal flow effects on the stability of non resonant ideal magne-
tohydrodynamic modes in hybrid shaped tokamak plasmas are investigated within the ideal MHD
infernal mode framework. Such effects are found to alter the plasma magnetic well/hill, which can
be interpreted as imparing the average curvature, and the strength of mode coupling. In line with
previous results, it is found that better stability properties are achieved through deepening the mag-
netic well by special cases of uniform toroidal flow and parallel plasma anisotropy. Plasma shaping
provides additional modifications to the magnetic well depth, whose global stabilising or destabil-
ising effect depends on the mutual interplay of elongation, triangularity and toroidicity. Further
stabilisation is achieved by weakening the mode drive in vertically elongated plasmas.

I. INTRODUCTION

The toroidally symmetric tokamak configuration is one
of the most promising reactor types for achieving con-
trolled thermonuclear fusion. An important figure of
merit in tokamak reactor research is the aspect ratio,
i.e. the ratio of major over minor radii of the toroidal
chamber. Spherical tokamaks (STs) have values of the
aspect ratio close to unity, and generally exhibit strong
shaping [1]. The potential advantages of such compact
devices are twofold, both economic (reduced construc-
tion costs due to the smaller dimensions) and physical
(higher β, the ratio of kinetic over magnetic pressure,
and improved stability) [2].

High plasma pressures are achieved by several heat-
ing schemes such as radio frequency heating or neutral
beam injection (NBI). While both may produce parallel
and perpendicular pressure anisotropy [3, 4], NBI induces
strong toroidal flows [5]. It has been found that centrifu-
gal effects have a significant impact on equilibrium and
stability in STs [6]. In such devices, scenarios at high β
feature optimised current profiles in which the core mag-
netic shear, a measure of the inclination of the magnetic
field lines with respect to one another, is either reversed
(advanced scenario), or small over a wide region (hybrid
scenario) with the safety factor (the pitch of the mag-
netic field lines denoted by q) always above unity [7].

Under these circumstances, long-lived saturated mag-
netohydrodynamic (MHD) activity, usually with low n
numbers, often occur [7, 8]. Indeed, scenarios with broad
current and peaked pressure profiles are prone to develop
infernal type instabilities [9–11], driven when the safety
factor is close to a rational over a wide region. Such
infernal behaviour has been observed in numerical simu-
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lations for configurations with negative central magnetic
shear [12–14]. Macroscopic MHD perturbations are sus-
ceptible to plasma shaping, anisotropy and flows, with a
very rich dynamics depending on their mutual interplay.
Since plasma performance can be severely degraded by
the presence of such instabilities [7], it is of crucial inter-
est to understand their stability properties.

The impact of plasma shaping in isotropic static plas-
mas has been extensively analysed [15–23]. A vast lit-
erature also exists on the modifications to equilibrium
and stability due to toroidal flows [24–27] and pressure
anisotropy (see e.g. Refs. [28–36]). Although these two
effects were generally treated separately, more recent
analytical and numerical investigations provided a uni-
fied framework [4, 37–44]. The current paper concen-
trates specifically on the stability analysis of non res-
onant ideal infernal modes in shaped tokamaks char-
acterised by strong degrees of pressure anisotropy and
toroidal flows. The problem of plasma anisotropy is tack-
led within the guiding centre plasma model [38, 45], in
which the macroscopic plasma motion across the mag-
netic field is fluid-like (i.e. identical to MHD), while the
dynamics parallel to the magnetic field is described by
a collisionless kinetic equation. Although the main aim
is to describe the dynamics of compact configurations, a
large aspect ratio expansion may still be employed as long
as both the equilibrium and stability analysis is carried
out sufficiently near to the magnetic axis [46].

In analogy with previous results reported in the litera-
ture [21, 26, 34], it is found that plasma shaping (elonga-
tion and triangularity), anisotropy and equilibrium flows
modify the magnetic well (or hill). Contributions due to
a flat toroidal rotation with a monotonically decreasing
pressure profile tend to increase the magnetic well im-
plying stabilisation. It is noted that combined guiding
centre-MHD model employed here is essentially isother-
mal, and as such differs from the way in which flows
are known to modify MHD instabilities (see e.g. [47]).
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Pressure anisotropy, beyond trivially affecting the av-
eraged total pressure, has a (de)stabilising effect when
T||(<) > T⊥ [32, 34, 35, 40]. Vertical elongation decreases
the magnetic well, whose depth can be restored by al-
lowing for corrections due to positive triangularity. The
same effect is achieved in negative triangularity plasmas
with an oblate cross section. Finally, elongation is found
to alter the strength of the coupling between neighbour-
ing modes, improving the global stability in vertically
elongated plasmas.

The paper is organised as follows. In section II, the
anisotropic single fluid MHD model is summarised and
subsequently employed for the derivation of the equi-
librium equations for non-circular axisymmetric toroidal
equilibria, which is outlined in section III. Section IV
is devoted to the description of the perturbed dynamics
within the infernal framework. The governing equations
for the mutually coupled harmonics are derived, distin-
guishing between regions of high and low magnetic shear.
In sections V and VI, by solving for the perturbed sys-
tem previously derived, stability boundaries are identi-
fied and analysed by exploring several plasma parame-
ters (e.g. degree of anisotropy, shaping) for monotonic
and reversed q configurations. A discussion on the fea-
tures of the physical model and the results with their
implications on present and future experiments is given
in sections VII and VIII respectively. Finally, appendix
A presents a brief analysis for the allowance for resistive
effects on the satellite harmonics.

II. THE ANISOTROPIC MHD MODEL

Under the assumption of strong heating, we regard the
plasma as ideally conducting with vanishing resistivity.
Thus, the plasma dynamics are described by the single
fluid anisotropic ideal MHD equations [38]:

∂tρ+ ∇ · (ρu) = 0, (1)

∂tB = ∇× (u×B), (2)

ρ (∂tu+ u ·∇u) = −∇ · P + J ×B, (3)

where ρ is the mass density, u the plasma fluid velocity,
B the magnetic field with |B| = B, J = ∇×B and P =
p⊥I + (p|| − p⊥)bb with I the diagonal unit tensor and
b = B/B. The parallel and perpendicular pressure are
defined as moment averages in guiding centre coordinates
as [38, 39, 48]

(p||, p⊥) =
∑
s

ms

∫
d3vfs[(v|| − b · u)2, v2

⊥/2],

where fs is the particle distribution function of the
species s of mass ms (s = i, e for ions and electrons re-
spectively), v is the microscopic particle velocity (with
parallel and perpendicular projections wrt the magnetic
field indicated by v|| and v⊥ respectively), and the sum is
extended over all species. Hereafter for a generic vector
quantity A we indicate A = |A|.

For the computation of p⊥,|| knowledge of the distri-
bution function for each plasma species is required. In
guiding centre theory, this satisfies the drift-kinetic equa-
tion [38, 39]

∂tfs+(u⊥ + v||b) ·∇fs+

[v||u⊥ · (b ·∇b)− b ·∇Es]
∂fs
∂v||

= 0, (4)

with Es = µB+ es
ms

Φ− u2
⊥
2 where µ = v2

⊥/2B is the par-
ticle magnetic moment, es being the particle charge and
the parallel electric field given by E|| = −b ·∇Φ. Note
that corrections due to collisions have been dropped. We
point out that these results are unaffected by gauge trans-
formations of the form Φ → Φ + h(r). Although such a
function, namely h, does not play a role in the equilib-
rium calculations, it might have an effect on perturbed
quantities. Its form will then be determined in section IV.
For a plasma with an equilibrium flow U = u0 (the sub-
script 0 indicates the corresponding equilibrium quan-
tity), we introduce the variable εs = 1

2v
2
||−v||U||+Es0 [39]

with U|| = b0 ·U , so that the parallel and perpendicular
pressure are given by

(p||, p⊥) =
∑
s,σ

2πms

∫ ∞
0

dµ

∫ ∞
εm

dεs
Bfs
|v̄|||

[(v||−b·U)2, µB]

(5)
where v̄|| = v|| − U||, σ = sign(v̄||) and εm = µB0 +
es
ms

Φ0 − U2/2. Finally, the density of each species is

ns =
∑
σ

2π

∫ ∞
0

dµ

∫ ∞
εm

dεs
Bfs
|v̄|||

, (6)

and ρ =
∑
smsns ≈ mini with ni = Zine (quasineutral-

ity for single ion species). Hereafter we take Zi = 1. The
framework in which the following analysis is performed,
is completely determined by Eqs. (1)-(6).

III. EQUILIBRIUM

We analyse a tokamak configuration of major and mi-
nor radii R0 and a respectively, with non-circular shifted
toroidal surfaces. The plasma is assumed surrounded by
a perfectly conducting metallic wall. Let us introduce
the coordinate system (r, θ, φ) where r is a flux labelling
variable with the dimensions of a length, while θ and φ
are the poloidal and toroidal angles. The covariant and
contravariant components of the vector A are indicated
by Ai and Ai respectively with i = r, θ, φ. For sake of
clarity, hereafter perturbed quantities will be denoted by
a tilde and we will drop the subscript 0 for the equilib-
rium ones. We use the notation (·)(0) for the leading

order of
∫ 2π

0
(·)dθ/2π ≡ 〈·〉. The equilibrium magnetic

field is written as B = Bφ∇φ−∇ψ×∇φ (the magnetic
field strength at the magnetic axis is denoted by B0) with
the safety factor function and magnetic shear defined by
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q = 〈Bφ/Bθ〉 and ŝ = rd ln q/dr. Note that Bθ = 1√
g
dψ
dr

where
√
g is the Jacobian associated with the coordinate

system (r, θ, φ). We assume that ŝ ≈ 0 for r1 < r < r2,
while ŝ > 0 for 0 < r < r1 and r2 < r < a.

From (4), at equilibrium fs = fs(r, µ, εs) [30, 38, 39].
Noting the necessary independence of fs on θ, we choose
a ’modified’ bi-Maxwellian equilibrium distribution func-
tion with equal temperatures for both particle species
(i.e. ions and electrons) [32, 38]

fs =
ns

(2π/ms)3/2T⊥
√
T||

exp[−ms

2
(
v̄2
||

T||
+
v2
⊥
T⊥

)].

Note that ns is allowed to depend upon θ also. We shall
point out that, depending on the physics that is analysed,
other choices for the equilibrium distribution function are
possible [3, 40]. The distribution function above allows
for analytically tractable solutions to the equilibrium and
stability problem while also accounting for the features
of anisotropy (modification of the magnetic well, average
curvature, etc.). It is noted that the distribution is a
limiting form of a model widely used for the anisotropic
features of ICRH (in Refs. [49, 50] with Bc chosen specif-
ically as Bmax ≡ B0(1 + r/R0)). By taking the parallel
gradient of Eqs. (5) and (6) and imposing quasineutrality∑
s esns = 0, we have [34, 38, 39]

∇||p⊥ = σ⊥∇|| lnB + T⊥
T||
ρ∇||U2/2,

∇||p|| = σ||∇|| lnB + ρ∇||U2/2,

∇|| ln ρ = (1− T⊥
T||

)∇|| lnB + mi
2T||

∇||U2/2,

where ∇|| = b ·∇, σ⊥ = 2p⊥(1− T⊥
T||

), σ|| = p|| − p⊥.

For an equilibrium velocity of the form U =
R2Ω(r)∇φ, the system above is solved by [38]

ρ = ρ̄(r)
T⊥
T||

exp[M2(R2/R2
0 − 1)], T⊥ =

BT||

B −Θ(r)
,

where T|| = T||(r) with p⊥,|| = 2T⊥,||ρ/mi and M2 =

ρR2
0Ω2/(2p||). Here the function Θ(r) measures the de-

gree of anisotropy, i.e. Θ(r) = B(T⊥ − T||)/T⊥. For
sake of simplicity we take ρ̄, Ω and Θ constant [26, 38]
and normalise B0 = 1. Finally, from (3) it is found that
Bφ = F (r)/(1− σ||/B2).

We employ the large aspect ratio approximation (ε =
a/R0 � 1) which has been proven, via comparison with
codes, to give reliable, at least qualitatively, results also
for compact configurations [46, 51] providing that the
analysis is performed sufficiently close to the magnetic
axis. Because the analysis will then focus on radially ex-
tended perturbations, we have to augment the local equi-
librium model presented in Ref. [52]. By taking the co-
variant radial projection of (3) with ∂t → 0 and assuming
p⊥,|| ∼ ε2 with a sufficiently small magnetic shear [15],
a tokamak shaped equilibrium is solved to leading order
by

R = R0 + r cos(θ + r δa sin θ)−∆, Z = κr sin θ. (7)

Here κ ∼ 1 and δ ∼ ε are real numbers describing
plasma elongation and triangularity respectively, with
the Shafranov shift ∆ ∼ εa fulfilling (′ ≡ d/dr)

∆′′ + 3
r∆′ +

4

1 + 3κ2

(
2q2R0p̄

′

r
+

2δ

a
− κ2

R0

)
= 0 (8)

with p̄ = (p
(0)
|| + p

(0)
⊥ )/2. Finally, ψ′ = rκ/q and

F = R0(1 − r2(1+κ2)
2q2R2

0
− p(0)
|| ). Equation (8) is valid from

T||/T⊥ � 1 to T|| ∼ T⊥. However for T⊥/T|| ∼ ε−1

additional harmonics in p||,⊥ with respect to θ are gen-
erated [36, 53]. In regions with ŝ ∼ 1, where it is not
necessary to resolve the equilibrium to such an order, we
take R = R0 + r cos θ and Z = κr sin θ. We point out
that for describing equilibria which have higher β values
and extremely pronounced shaping, different techniques
must be employed. Nevertheless, the analysis presented
above proves to be adequate in dealing with most of the
experimentally relevant configurations.

We transform θ → ϑ, where ϑ is the rectified angle for
which the field lines are straight [54] and the ratio Bφ/Bϑ

is a function of r only. It is easily verified that θ = ϑ +
λ(r, ϑ) with λ = −(r/R0 + ∆′) sinϑ. Hence, by means of
(7), the metric tensor elements gij = ∂iR∂jR+∂iZ∂jZ in
the coordinate system (r, ϑ, φ) can be straightforwardly
derived to order ε. This is the required accuracy needed
for the stability calculations outlined in the next section.

IV. PERTURBED DYNAMICS

In order to investigate the stability of the system, we
employ the energy method [39, 55]. Introducing the La-
grangian displacement η [56], according to Ref. [39] the
momentum equation (3) is written as ρ(∂t +U ·∇)2η =

F (η) where F (η) = J̃ × B + J × B̃ − ∇× P̃ + ∇ ·
[ρηU · ∇U ] is self-adjoint (see also [45, 57] and refer-
ences therein). The equation above can be cast in the
form [56]

ρ(∂2
t η + 2U ·∇∂tη) = F (η)−∇ · (ρUU ·∇η), (9)

where it can be easily shown that the last term on the rhs
is self-adjoint. It follows that a necessary and sufficient
criterion for stability can be derived [56, 58]. Note that
(U ·∇η)i = Ω[∂φηi−(z×η)i] [27] with

√
gzr = −R∂ϑR,√

gzϑ = RR′ and zφ = 0. We express the perturba-

tion in the form ηj =
∑
m,n η

j
m,ne

i(mϑ−nφ)+(γr+iω)t+ c.c.

(j = r, ϑ, φ) where γr and ω are real and c.c. stands for
complex conjugate. Thus, we dot (9) with η and divide
it by e2γrt, with ω = nΩ where Ω is constant. Inte-
grating the resulting equation over the plasma volume
and averaging over an oscillation period 2π/ω, yields an
equation for γ2

r showing that this quantity is real, which
therefore indicates that unstable modes rotate with fre-
quency nΩ [26]. It follows that the stability boundaries
are identified by γr = 0.
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Having established the mode frequency characteristics,
we shall now proceed with the derivation of the sta-
bility equations. Assuming that perturbed quantities
have a time dependence of the form exp(γt) and vary
along the poloidal and toroidal angles proportionally to
exp(i`ϑ−inφ), we introduce the perturbed fluid displace-
ment ξ = ũ/(γ − inΩ). Since we assume Ω constant,
it follows that γ − iΩ is constant as well, and hence is
not affected by the differential operators. Let us de-

note (·)` =
∫ 2π

0
(·)e−i`ϑ+inφdϑdφ/4π2. Within the in-

fernal framework, we impose a wide region of flat q for
r1 < r < r2 (we shall specify r1 later) which nearly res-
onates with a dominant mode of helicity m/n accompa-
nied by its neighbouring sidebands with poloidal mode
numbers m ± 1. Hereafter, m will always denote the
poloidal mode number of the dominant harmonic. Be-
cause of the coupling induced by elongation, a larger
number of harmonics, namely m± 2,m± 3, . . . all of or-
der ε, should be in principle taken into account [19, 22].
However, it will be shown later that under appropriate
conditions, retaining all these harmonics is not neces-
sary and the system can be described by linear coupling
of three modes. Nevertheless, for illustrative purposes,
we formally allow for higher order harmonics. We write
q = m/n+ δq and we adopt the ordering m ∼ n ∼ q ∼ 1
with δq ∼ ε, ξm±` ∼ εξm ` = 1, 2, . . ., and γ ∼ Ω ∼ εωA
with ωA = 1/

√
R0ρ|r=0. Therefore, the contravariant

radial and poloidal projections of the perturbed (2) yield

respectively at leading order (
√
gB̃r)` = iκr(`/q − n)ξr`

and 1
r (rξrm)′ + imξϑm − inξφm = 0. Hereafter we indi-

cate with
√
g the Jacobian associated with the coordi-

nate system (r, ϑ, φ). Since Ω is constant and consider-

ing
√
gB̃φ small enough, which is verified a posteriori,

from the contravariant φ projection of (2) it follows that
ξφm ≈ 0. Note that although sideband harmonics have ε
times smaller fluid displacements compared to the dom-
inant mode, their associated magnetic perturbations are
of the same order.

In the covariant basis identified by vectors er,ϑ,φ, we
shall note that U⊥ = b × (U × b) ≈ (0,−Ω/q, 0), and

(̃u⊥) ≈ (ũr−ΩB̃r/Bφ, ũϑ− ũφ/q−ΩB̃ϑ/Bφ, 0). By tak-
ing the covariant φ projection of the linearised equation
(3), it can be shown that at leading order

B̃φ ≈ −R0p̃⊥. (10)

An expression for the perturbed distribution function
is required in order to obtain the fluctuation of the mass
density and the parallel/perpendicular pressure. We turn
to (4) and we change variables, replacing the variable
v̄|| with εs (this turns out to be more convenient when
working in toroidal geometry [39, 48]). By employing the
expression for the perturbed velocity given above, after
some algebra it can be shown that

[γ̂−(v|| − U||)b ·∇](f̃s + ξ ·∇fs)− (v|| − U||)×

× [b ·∇Ẽs + u? ·∇(v|| +R/R0)]
∂fs
∂εs

= 0, (11)

where γ̂ = γ−inΩ, Ẽs = µB̃+ es
ms

Φ̃−U⊥ · (̃u⊥) and u? =

(ũr, ũϑ − ũφ/q, 0) in the basis ei, having approximated
b ·∇b ≈ −∇⊥R/R0. For the calculation of the stability
boundaries, we let γ̂ → 0 so that terms involving u? ∝
γ̂ξ vanish. Let us first note that in choosing the gauge
function h defined in section II to be vanishing, we ensure
that 〈Φ̃〉 = 0. The term proportional to Ẽs in Eq. (11)
produces small corrections to p̃||,⊥ and ns, hence it can
be safely neglected. Thus, the perturbed distribution
function can be written as [34, 35, 48]

f̃s = −ξ ·∇fs,

where we dropped trapped particles contributions [48].
Note that neglecting compressibility effects is allowed
only at marginal stability. By using the equation above
for the evaluation of p̃||,⊥ and ρ̃ (obtained at leading order

from (5)-(6) with the substitution fs → f̃s) we get [48]

p̃||,⊥ = −ξr[(p(0)
||,⊥)′ − σ(0)

||,⊥
r

R0
cosϑ], (12)

ρ̃ = −2ξrρ(0)(M2)′
r

R0
cosϑ, (13)

where small corrections due to B̃ have been dropped by
virtue of (10). We recall that ρ̄ and Θ are constant and
so is ρ(0). Note that p̃||,⊥ satisfies to leading order the
parallel projection of (3), i.e.

0 ≈ B ·∇p̃|| + B̃ ·∇p|| + ψ′σ̃||∂ϑR/R0.

All the expressions for the perturbed quantities entering
the linearised Eqs. (1)-(3) have been obtained.

We now apply the operator D ≡ √g∇φ·∇×(1/Bφ) to
the linearised (3) [48, 59]. By taking the m and m±1 mo-
ments of the resulting expression, three equations for the
corresponding Fourier modes are obtained. Employing
the usual techniques for infernal modes [11], we distin-
guish between low and high shear regions.

A. Low shear region

Let us first introduce the elongation factor, or ellip-
ticity, e = (κ2 − 1)/(κ2 + 1). It is worth noting that
with an elongation of order unity, a mode m̄ couples to
all harmonics m̄± 2` (` = 1, 2, . . .) due to elongation in-
duced metric oscillations. An analytic treatment which
retains the whole spectrum is clearly hopeless. In or-
der to make the algebra analytically tractable, we follow
Ref. [21] in which a double expansion, first in ε and then
independently to first order in e, is performed (such an
approximation proves to hold for e . 1

2 [21] or κ . 2). It
can be shown that harmonics with ` ≥ (≤)m+ (−)2 can
be neglected, as they enter the analysis to second order
in e.

Focussing the analysis in the low shear region, we note
that within the above mentioned approximations, shap-
ing and flow effects are contained in the field line bend-
ing and perturbed toroidal field contributions. The lat-
ter, along with the perturbed pressure tensor, generates
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additional anisotropy corrections. After some algebraic
manipulations, it is possible to show that

D(∇ · P̃ ) ≈ r sinϑ(p̃|| + p̃⊥)′ + cosϑ∂ϑ(p̃|| + p̃⊥)

− ∂ϑ[{R0(p
(0)
⊥ )′ + 〈 1

Bφ
d lnB

dr
〉}σ̃|| − 〈1/Bφ〉′p̃⊥]. (14)

The field line bending term contains coupling with the
` ± 2 sidebands due to the elongation induced metric
tensor oscillations. It can be shown that at leading order
the equations for the sideband harmonics are [19] (for
sake of clarity we drop the superscript r in denoting the
radial fluid displacement, viz. ξr` → ξ`)

[r−1∓2m(r2±mξm±1)′]′− e2 (m±1
m∓1 )[ 1

r (r2∓mξm∓1)′]′ =

1±m
1+κ2 [r∓mαξm]′,

with α = −2R0p̄
′q2. These two equations can be inte-

grated yielding to leading order in e

r−1∓2m(r2±mξm±1)′ = (1±m)
1+κ2 (1− e

2 )r∓mαξm+

L± − e
2 ( 1±m

1∓m )r∓2mL∓, (15)

where L± are constants, which in general depend on e, to
be determined later through matching with the sheared
region solutions [11]. If the pressure profile has a step at
r̄ so that α ∝ δ(r− r̄), expanding ξm±1 and L± in e and
integrating across r̄ shows that the constants L± are the
same on either side of r̄ [60] (this will turn to be useful
in the next sections).

Let us introduce the Newcomb’s operator [61]

L` =
1

r

d

dr

[
r3( `q − n)2 d

dr

]
− (`2 − 1)( `q − n)2.

Elongation driven coupling can be neglected in the anal-
ysis of the mode m as it enters the equations pro-
portionally to e2. Hence, the mth component of the
perturbed field line bending term can be written as

i(
√
gB · ∇J̃φ/Bφ)m ≈ 1+κ2

2mR0
Lm(ξm). Thus, employing

standard techniques and taking the limit γ̂ → 0, by
means of (10), (12), (13) and (14) after rather lengthy
algebra we obtain

[r3k2
||ξ
′
m]′ − r{(m2 − 1)k2

|| + rw′}ξm+

α
2 (1− 3e

2 )
∑
±

r1±mL±
1±m

= 0, (16)

where k|| = 1− n
mq and the function w′ associated with

the plasma magnetic well is given by

w′ = α
R0

[1− 1
q2 + (1− e)τ − 3e

4 + 3
2
eδ
ε ] + (1− e)( qΩωA )2 dM2

dr ,

(17)

with τ = ( 1
2 + T⊥

T||
)
T||−T⊥
T||+T⊥

[34] where it is understood that

T||,⊥ is taken on the magnetic axis. Note that, regardless
of either plasma shaping or pressure anisotropy, the term
associated with plasma rotation is positive for mono-
tonically decreasing pressure profiles. This indicates a

deepening of the magnetic well, and therefore a stabilis-
ing effect [26]. The dynamics in the low shear region is
completely determined by equations (15) and (16). The
derivation of the harmonics governing equations in the
high shear region is the aim of the next subsection.

B. Sheared region

In the regions of large magnetic shear, i.e. for 0 < r <
r1 and r2 < r < a, the parallel wave vector associated
with the dominant mth mode is large enough so that
inertial (viz. the lhs of (3)) and coupling terms can be
neglected. We recall that m denotes always the mode
number of the main harmonic. Thus, to leading order
(i.e. to e2) the fluid disturbance of helicity m/n obeys
the Newcomb’s equation [11]

Lm(ξm) = 0. (18)

Multiplying the equation above by ξm and integrating
from r2 to a, yields ξm = 0. In the region 0 < r < r1, the
same procedure gives ξm = 0 for m > 1 and ξm = const
for m = 1.

Thus, since the main harmonic vanishes for r2 < r < a
it follows that in this region the sidebands behave ac-
cording to

[
√
gB ·∇(J̃φ/Bφ) +

√
gB̃ ·∇(Jφ/Bφ)]m±1 = 0. (19)

Note that elongation driven coupling between satellite
harmonics of the type m ± 1 → m ∓ 1, which are of
the same order, are allowed regardless of the weakness
(or strength) of the magnetic shear. For monotonic q
profiles, it is sufficient for to require ξm(r2) = 0 and
smooth matching of the sidebands across r2 for any m ≥
1. Let us consider inverted safety factor profiles with r1 6=
0. Focussing on the internal high shear region 0 < r < r1

we distinguish between m > 1 and m = 1 dominant
modes. For m > 1, the same logic adopted above implies
that the satellite harmonics fulfil (19) in this region also.
Thus, the boundary conditions at r1 are ξm(r1) = 0 and
smooth sidebands at this point.

The analysis of the m = 1 mode is more complicated.
Since ξm does not vanish for 0 < r < r1, additional terms
must be retained in the sideband equations. Moreover, a
more careful computation of (18) (up to order ε2 even in
low shear circular plasmas [39, 48, 62, 63]) is required to
obtain the correct boundary condition (viz. ξ′m(r1)) at
r1 [63]. We point out that infernal modes with m = 1 oc-
cur when q is very close to unity over a broad region. Usu-
ally, in inverted q configurations such a region is not par-
ticularly wide. This induces us to conjecture that the dy-
namics of the m = 1 mode with an inverted q profile are
more kink-like than infernal-like, and, as such, are better
described by computing δW in the region 0 < r < r1 [64]
and matching the solution across r1 and r2 allowing for
second variations in q, i.e. q′′ [11]. Nonetheless, we may
argue that the m = 1 mode is not strictly relevant for



6

0 r
p

r
2

a

p

q

Figure 1. Approximated
pressure profile employed in
the stability analysis (i.e.
in Eqs. (15) and (16)) of
section V with r1 → 0.
The smooth pressure profile
has a parabolic dependence
upon r.

sufficiently inverted q scenarios with the minimum of the
safety factor well above unity [8, 12, 65–70]. Hence, with
a reversed magnetic shear we consider m > 1 dominant
modes only, i.e. near resonant modes with qmin > 1.

The mode stability is determined by equations (16) and
(19) with the boundary conditions given above. This will
be analysed in the next section.

V. MONOTONIC q

Let us consider a broad region of weak magnetic shear
extending from the magnetic axis to r2 (i.e. we let
r1 → 0). We denote the value of q in this region with
qm. For r2 < r < a we take q = qm(r/r2)2 so that at
leading order the flux surface averaged toroidal current
density is vanishing. By imposing the mode m + 1 hav-
ing a resonance within the plasma, the maximum allowed
extension of the current channel is r2/a <

√
m/(1 +m)

with qm ≈ m/n.
Because of the presence of a perfectly conducting

metallic wall at the plasma edge, we have ξm,m±1(a) = 0.
As discussed in section IV B, the appropriate boundary
condition for ξm at r2 is ξm(r2) = 0 (we recall that this
expression is exact to order e2). We cast (19) in the form

Lm±1(ξm±1) = Nm∓1(ξm∓1), (20)

where Nm±1 ∼ e is a linear functional. After setting
L− = 0 for regularity of the lower sideband on the
magnetic axis [71, 72] (this will be proven also in the
next section where a more general case is addressed),
matching ξm−1 smoothly (to leading order in e) at r2

yields ξm−1 ≈ 0. Hence, by joining ξm+1 across r2 we
have [11, 71]

L+

1 +m
= (1+m)(1−3e/2)

r2+2m
2

(
2 +m+ B+

m− B+

)∫ r2

0

r1+mαξmdr,

where B+ = r2ξ
′
m+1(r2)/ξm+1(r2) is obtained through

solving Lm±1(ξm±1) ≈ 0. It easily follows that

B+ = m+
2(m+ 1)

(m+ 1)− nqm
− 2(m+ 1)

1 + d(r2/rs)2m+2
, (21)

where r2/rs =
√
nqm/(1 +m) and d determines the be-

haviour of ξm+1 at rs. For an ideal mode, we choose
d = −1 so that ξm+1 is finite at rs.

With a parabolic p
(0)
|| and p̄, by taking (M2)′ ∝ r it

is possible to find an exact solution of (16) [23, 63, 72].
The result, however, is rather convoluted. A great deal of
simplification is achieved by approximating the plasma
pressure within the shear-free region with a Heaviside

step function [60, 73], namely p
(0)
|| ∝ H(rp − r) with

0 < rp < r2 (this is shown in figure 1). Despite the
crudeness of this approximation, all the important phys-
ical ingredients are retained. Due to the rotation being
constant in r, it then follows that the Mach numberM(r)
is also distributed with a Heaviside step, so that (M2)′ ≈
δ(r−rp)[M2(r+

p )−M2(r−p )] = δ(r−rp)∆M . Similarly, we

write α ≈ −2R0[p̄(r+
p )− p̄(r−p )]q2δ(r−rp) = rpδ(r−rp)ᾱ.

We choose p̄(r+
p ) = p̄(r2) and p̄(r−p ) = p̄(0) (cf. Fig. 1).

The amplitude of the Heaviside step is determined by ar-

guing that the volume averaged β = 2µ0

B2

∫ a
0

√
gp̄dr∫ a

0

√
gdr

with
√
g ≈ κrR0 is identical to the one having parabolic

p̄ everywhere (see figure 1). Thus rp = r2/
√

2 and
ᾱ = 2β(r2/a)2q2

m/ε̄ with ε̄ = rp/R0. Finally, it is
worth pointing out that the ratio T⊥/T|| can be var-
ied independently of β, which is kept constant through-
out the following analysis as well as the current chan-
nel width r2, by allowing variations in T||. Alterna-
tively, we could have had chosen to work with a con-
stant plasma current Ip, or equivalently q(a), which cor-
responds to having βN ∝ βaB/Ip constant (this may be
more suitable for current tailoring studies). Thus, ex-
ploiting the δ-function behaviour of α and (M2)′ and
assuming qm ≈ m/n, integration of Eq. (16) across
rp [60, 73] yields (note that integrating from 0 to r2 gives
the same result)

ᾱ2

2ε̄Λ+ᾱ
(

3e
4 −

3
2
eδ
ε

)
+ (1+e)

ε̄

[
( δq
m/n )2Jrξ′mKrp−

rpᾱ
R0

(1− n2

m2 )
]
− m2Ω2

ε̄n2ω2
A

∆M = ᾱτ (22)

where JAKr = A(r+)−A(r−) having normalised ξm(rp) =
1. Note that in Refs. [22, 23] where the m = 1 mode is
studied and the quantity 1 − 1/q2 vanishes, the Mercier
term refers to the second term on the lhs in the equa-
tion above, i.e. the geometrical shaping contribution to
the magnetic well. Nevertheless, as a matter of terminol-
ogy, hereafter we call the Mercier contribution the term
1 − n2/m2. The constant Λ accounts for the sideband
coupling, i.e. L+, so that employing (21) gives

Λ = (1 +m)(1− 2e)
[
( 1+m
m )1+m − 2

]
(
rp
r2

)2m+2. (23)

Finally, the solution of (16) that is continuous at rp and
fulfilling the boundary conditions at r2 is

ξm =


(r/rp)

m−1, r < rp,

(r/r2)m−1 − (r/r2)−m−1

(rp/r2)m−1 − (rp/r2)−m−1
, r > rp,

(24)

from which Jrξ′mKrp = −2m/[1 − (rp/r2)2m]. Hence,
collating these results, equation (22) can be solved for
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Figure 2. Stability boundaries for n = 1, 2 perturbations in

the (qm,
T||
T⊥

) plane, with the unstable regions shaded, for a

static circular (e = δ = Ω = 0) configuration with ε = 1/5,
r2 = 1/2 and β = 1%.

the degree of anisotropy that yields marginal stability,
i.e. we solve for marginal τ and hence marginal T||/T⊥
for e.g. a given qm (a simplified expression for T||/T⊥
in a weak anisotropic case can be obtained by taking

τ ≈ 3
4 (

T||
T⊥
− 1)). An example of the stability regions in

the (qm, T||/T⊥) plane is shown in figure 2.

Let us first note that, as pointed out in section IV A,
the last term in the lhs of (22) is always negative for
monotonically decreasing pressure profiles, so that its ef-
fect is stabilising [26]. It is worth noting that modes with
a sufficiently large m are stable since the field line bend-
ing contribution eventually dominates over the destabil-
ising contribution due to the pressure driving terms. We
shall also note that large m, i.e. short wavelength, per-
turbations of infernal type might be suppressed by higher
order effects, such as e.g. diamagnetic corrections [74],
which have not been included in our analysis. Finally,
for given qm, the most unstable mode is expected to be
the one with m and n coprime with qm ≈ m/n (i.e. the
lowest m resonating mode).

It is immediate to verify that, for a fixed ᾱ and m > 1,
smaller aspect ratio configurations are prone to exhibit
enhanced stability by having a stronger stabilising con-
tribution from the Mercier term (always having qm > 1).
This, however, does not hold for modes with m/n = 1,
for which such term vanishes. In agreement with previous
studies, we find that with anisotropic temperatures, lon-
gitudinal injection (T|| > T⊥) improves stability, while
transverse injection (T⊥ > T||) degrades it [31–35, 40].
Assuming e > 0, we recover the elongation stabilising
effect at high plasma pressure, with the stabilising influ-
ence of a positive plasma triangularity (this was previ-
ously noted in Ref. [23] for the standard MHD isotropic
case T⊥ = T||). Pressure destabilisation at low β and suf-
ficiently large vertical elongation is more easily achieved
by the m = 1 mode because of the vanishing Mercier
contribution (which is eventually dominant for high m
modes). An example of the effect of plasma triangularity
on the stability boundaries of a MAST-like configuration
is shown in figure 3.

Note that for negative triangularity plasmas, oblate
cross sections might be beneficial in keeping the prod-
uct eδ positive, and therefore deepening the magnetic

q
m

1 1.5 2 2.5

T
|
|
/
T
⊥

0.5

1

1.5
δ=+0.3
δ=0
δ=-0.3

Figure 3. Stability boundaries (with n = 1, . . . , 10) for a
MAST-like configuration with ε ≈ 0.67, r2 = 1/2, β = 10%,
Ω/ωA = 1/10, ∆M = 1/2, e = 0.4 for different triangularity
values. The unstable regions lie below each curve.

well [75]. However, one might have the side effect of
enhancing the coupling with the sidebands, and there-
fore worsening the stability. Thus, a careful optimisation
of this effect by considering the global stability against a
broader spectrum of perturbations may be required. The
case of inverted q profiles with a core localised high shear
region is the aim of the analysis in the next section.

VI. INVERTED q

Let us allow a magnetic shear reversal in the region
0 < r < r1 with r1 < r2. We recall that in the fol-
lowing analysis dominant harmonics with m > 1 only
are considered. This is indeed appropriate for describing
experimental configurations with negative central shear
which have the minimum of the safety factor well above
unity [12, 70]. Since plasma anisotropy and toroidal flow,
and also triangularity, enter through a modification of
the magnetic well, the conclusions drawn in the previous
section on their effect on the stability boundaries hold
in inverted q configurations as well. Elongation, on the
other hand, affects the dynamics in a more subtle man-
ner.

Following the same analysis presented in the previous
section, in approximating the pressure within r1 < r < r2

with a step function (cf. fig. 1) and retaining the same

β of the parabolic profile, we choose rp =
√

(r2
1 + r2

2)/2
and p̄(r−p ) = p̄(r1). Therefore, we have ᾱ = 2β[(r2/a)2−
(r1/a)2]q2

m/ε̄. As shown in Sec. IV B, the main harmonic
is vanishing in the high shear regions. Therefore, main-
taining the normalisation ξm(rp) = 1, the solution of (16)
for r > rp is identical to (24), while for r < rp reads

ξm = (r/r1)m−1−(r/r1)−m−1

(rp/r1)m−1−(rp/r1)−m−1 ,

yielding

Jrξ′mKrp = − 2m{(rp/r2)2m−(rp/r1)2m}
{1−(rp/r1)2m}{1−(rp/r2)2m} . (25)

By repeating the logical steps employed in the previ-
ous section, we arrive at (22) where the constant Λ is
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now defined by Λ = 1−e/2
ᾱ

∑
±
r±mp L±

1±m . In an inverted
shear configuration the computation of the constants L±
requires a more careful treatment compared to the mono-
tonic q case. The difficulty arises because of the coupling
due to elongation which yields non-trivial expressions for
the satellite harmonics. Let us start by expanding the
sideband perturbations according to ξ` = X` + eY` with
Y`/X` ∼ 1 and Lm±1(Xm±1) = 0 (cf. (20)). It is helpful
to introduce the constant

H±(C,B, `) =
ᾱ(1±m)(2±m+C)(2±m+B)(rp/r2)2±`

(∓m±`−B)(2±m+C)−(
r1
r2

)2±`(∓m±`−C)(2±m+B)
.

Writing L± = L̄±+eL̂±, and following the standard pro-

cedure outlined in Refs. [11, 60], Eq. (15) yields
r±mp L̄±

1±m =

H±(C̄±, B̄±, 2m) and
r±mp L̂±

1±m = −H±(Ĉ±, B̂±, 2m)[ 3
2 −

( 1±m
1∓m )

r∓mp L̄∓/4

H±(Ĉ±,B̂±,0)
] where C̄± = rd lnXm±1/dr|r1 , B̄± =

rd lnXm±1/dr|r2 , Ĉ± = rd lnYm±1/dr|r1 and B̂± =
rd lnYm±1/dr|r2 . It is worth stressing that, since the
dependence in e of ξm is missing, there is no need to
expand this quantity in the elongation parameter.

In order to compute Xm±1 and Ym±1, we turn to
equation (19) which is more easily manipulated when
it is expressed in terms of the perturbed poloidal flux
ψ̃` = −κr(1/q−n/`)ξ`. This also is expanded in e yield-

ing ψ̃` = Ψ` + eχ` with χ`/Ψ` ∼ 1. By linking X` and

Y` to ψ̃`, it follows that X` = −Ψ`/[r(1/q − n/`)] and
Y` = −X` − χ`/[r(1/q − n/`)]. Hence, to leading order
equation (19) gives (` = m± 1)

∇2
?Ψ` ≡ (rΨ′`)

′ −
[
`2

r +
(
2
q−

rq′

q2 )′

1/q−n/`

]
Ψ` = 0,

which is equivalent to L`(X`) = 0. To the next order in
e, we obtain an equation for χm±1

∇2
?χm±1 +

1

2

[
(rΨ′m∓1)′ ∓ 2mΨ′m∓1 + m2−1

r Ψm∓1

+
( rq
′

q2 )′(m∓ 1)Ψm∓1 ∓ 2rq′

q2 Ψ′m∓1

m±1
q − n

]
= 0. (26)

Focussing on the region r2 < r < a first, we employ the
safety factor profile used in the previous section which is
chosen such that the mode m + 1 is resonant at rs < a.
By requiring the upper satellite harmonic to be finite at
rs with an ideal metallic wall at the boundary, we have
Ψm−1 = a−[(r/a)m−1 − (r/a)−m+1] whereas Ψm+1 = 0
for rs < r < a and Ψm+1 = a+[(r/rs)

m+1 − (r/rs)
−m−1]

for r2 < r < rs (the computation of B̄± is straight-
forward). Proceeding further, let us denote the partic-
ular solution of (26) associated with the m + 1 mode
with g (which is proportional to a−). By imposing
χm+1(rs) = 0, we eventually have

χm+1 = b+[( rrs )m+1 − ( rrs )−m−1]− g(rs)(
r
rs

)−m−1 + g,

In the region 0 < r < r1 we use a safety factor of the
form [48]

1
q = 1

q0
+ ( 1

qm
− 1

q0
)(r/r1)2.

With such a profile, the sideband equations can be ex-
pressed exactly in terms of hypergeometric functions [48,
76]. Retaining the full solutions might be helpful when
strongly reversed safety factor profiles with q0 � 1, i.e.
advanced scenarios, are considered which, however, are
beyond the scope of this work. The analysis of the prob-
lem tackled here, can be significantly simplified by assum-
ing q0/qm not too large. Hence, within this approxima-
tion, we have Ψm−1 ≈ A−(r/r1)m−1 and Xm−1 ∝ rm−2.
This yields C̄− = m − 2, and therefore L̄−/(1 −m) = 0.
By using (15), it follows that

[Xm±1(2±m+ B̄±)]r2 = r±m2 L̄±, (27)

from which a− = 0 giving g = 0 and B̂+ = B̄+. Plugging
the function Ψm−1 determined above into (26) and ne-
glecting the terms proportional to the magnetic shear, it
is promptly verified that ∇2

?χm+1 = 0 which yields Ĉ+ =

C̄+ and, as an immediate consequence, L̂+ = −3/2L̄+. It
is worth pointing out that in the limit r1 → 0 the expres-
sions derived in the previous section are recovered, also
for the m = 1 case.

In order to have the driving term Λ fully determined,
it only remains to compute the constant L̂−. Noticing
that, depending on the value of q0 the mode m+1 might
have a resonance at r̄s < r1, two cases are then examined
in the next subsections.

A. Weak reversal (nq0 < m+ 1)

Here we employ the weakly reversed q approxima-

tion, viz. 1/qm−1/q0
1/q0

� 1, so that X` ∝ Ψ`/r. Let

us denote ∆µ = 1/qm − 1/q0, m̄ =
√

(m+ 1)2 + 8
and ζ = n/[m(m + 1)]. By introducing the variable
z = (r/r1)2∆µ/[∆µ − ζ], the upper harmonic can be
written in terms of the hypergeometric function F

Xm+1 ∝ ym/2

(1−y)(m̄−3)/2F (A,A+ 1; 2 +m; y),

with y = z/(z − 1) and A = (m + 1 − m̄)/2. Since
y < 1, this expression yields approximately Ψm+1 ≈
A+(r/r1)m+1 and Xm+1 ∝ rm so that C̄+ = m. By
employing Eq. (27) with the replacements r2 → r1 and
B̄± → C̄±, it readily follows that A+ = r1ᾱ

2 [n − (m +

1)/q0)(r1/rp)
m(rp/r2)2+m[(rs/r2)2+2m − 2].

Because of the absence of internal resonances, in (26)
we drop effects linear with respect to the magnetic shear.
Hence it is straightforward to show that

χm−1 = C(r/r1)m−1 −A+
1+m

2 (r/r1)1+m,

where C is a constant. We point out that a similar
expression could have been derived by using (15) with
α→ 0 and the obvious replacement L± → A±.
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Similarly to the derivation of (27), expanding equation
(15) further in e yields

[(2−m)Ym−1 + rY ′m−1]r1 = r−m1 L̂− + 1
2 (m−1
m+1 )rm1 L̄+.

(28)
By plugging the expression for χm−1 into the equation
above and taking q0 ≈ n/m, we obtain

r−mp L̂−
1−m = m(1+m)

nr1
A+( r1rp )m + 1

2 ( r1rp )2m rmp L̄+

1+m .

It can be shown that L̂− = 0 so that the constant Λ is
given by (23). Therefore, the stability boundaries are de-
termined by the set of equations (22), (23) and (25). It
is immediate to note that, with r1 > 0, the stability is
improved by having a stronger field line bending stabil-
ising contribution. As previously noted, the expressions
for the monotonic q case are recovered by letting r1 → 0.
In the next subsection we allow for a stronger shear re-
versal which produces an internal resonance of the m+ 1
mode.

B. Moderate reversal (nq0 > m+ 1)

The analysis of the moderately reversed q configuration
essentially repeats the steps outlined in the paragraph
above. The only difference is a more complicated depen-
dence upon the radial variable of the upper sideband.
For nq0 > m+ 1 the harmonic Xm+1 has a resonance at

r̄s = r1

√
1/q0−n/(1+m)

1/q0−n/m < r1, hence for 0 < r < r̄s we

have Xm+1 = 0, whereas for r̄s < r < r1 the eigenfunc-
tion is (F is the hypergeometric function) [48]

Xm+1 ∝ z
−(m̄+3)/2

1−1/z [F (B,B − C + 1;B −A+ 1; 1/z)+

Dzm̄F (A,A− C + 1;A−B + 1; 1/z)],

where B = (m+1+ m̄)/2, C = 2+m and D is such that
Xm+1 is finite at r̄s.

We find that, far from r̄s, the leading order of the upper
sideband displacement is well approximated by Xm+1 ∝
rm̄−1/[1/q − n/(m + 1)]. Since |D| > 1, we may take
Ψm+1 = A+(r/r1)m̄ for r̄s < r < r1 and Ψm+1 = 0 for
0 < r < r̄s. In analogy with the case of weak reversal, we
obtain A+ = −r1

n
m (r1/rp)

mrmp L̄+/[(1 +m)(2 +m+C+)]
where

rmp L̄+

1+m = ᾱ(1+m)[m̄+(1+m)(2m/nq0−1)]Z

m̄+(1+m)(
2m
nq0
−1)+(

r1
r2

)2+2m[m̄+(1+m)(
2m
nq0
−3)]Z

(29)
with Z = (rs/r2)2+2m − 2.

It can be shown that the particular solution of the
m− 1 mode is not significantly affected by dropping the
last term in square brackets in (26). Hence, for the sake
of simplicity in the resulting expressions, this term will
be neglected. It follows that in the region r̄s < r < r1

the solution of (26) for the m− 1 harmonic reads

χm−1 = C0( rr1 )m−1 + C1( rr1 )−m+1 − A+

2 ( m̄+m+1
m̄−m+1 )( rr1 )m̄.

Under the assumption q0/qm is not too large (see sec-
tion VI) we take (m − 1)/q − n ≈ (m − 1)/q̄ − n with

q̄ = 2/(1/q0 +n/m). In order to find L̂− it is sufficient to
specify the constant C1. Some simple integrations of (26)
across r̄s show that χ′m−1 has a jump at r̄s, whereas χm−1

remains continuous. These conditions read Jχm−1Kr̄s = 0
and Jrχ′m−1Kr̄s = −1/2m̄(r̄s/r1)m̄A+. By applying such
constraints we obtain

C1 = (1+m+2m̄)
4(1−m) ( r̄sr1 )m̄+m−1A+.

If r̄s/r1 is sufficiently small, we let C1 → 0. Hence, by
means of (28), after some straightforward manipulations

we finally have
r−mp L̂−

1−m = K × rmp L̄+

1+m with

K = 1
2 ( r1rp )2m

{
1 + (1+m+m̄)n/m

[(m−1)/q̄−n][m̄+(1+m)(2m/nq0−1)]

}
.

(30)
Therefore, the parameter Λ expanded to leading order in
e reads

Λ = [1+e(K−2)]
ᾱ

rmp L̄+

1+m ,

which is computed by means of (29) and (30). It is found
that the quantity K is rather small, and in the range of
experimental relevant parameters we may approximate
Λ with (23). Thus, in analogy with the weakly reversed
q case, the stability boundaries are identified by the set
of equations (22), (23) and (25). Thus, the same conclu-
sions drawn in section V hold also for weakly and mod-
erately reversed q configuration. We note in particular
that the marginal β has a very weak dependence upon q0

and for sufficiently small r1/rp the stability boundaries
of monotonic and weakly reversed configurations coin-
cide [8]. This might be somehow expected, since accord-
ing to Refs. [8, 12, 13] the eigenfunctions are relatively
small in the region of the shear reversal indicating weak
contributions associated with this region. Indeed, the
fluid displacements, viz. the eigenfunctions, tend to be
more localised where either the shear is small or in the
external sheared region.

VII. DISCUSSION

The aim of this section is to point out the robustness
of the anisotropic model and to discuss to what extent
our results, in particular flow modifications, differ from
previous findings found in the literature (see e.g. [47]).
Such differences can be attributed essentially to (i) the
absence of rotation and averaged density gradients (this
has been chosen for mathematical ease) and (ii) the clo-
sure model.

Focussing on the first effect, it is well known that the
allowance of rotation and density gradients might have a
profound impact on the stability properties. Indeed, in
Ref. [47] it was found that the additional contributions
to the magnetic well (the dA2/dr term given by Eq. (30)
in the reference above) due to realistic radial variation
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of Ω and ρ̄ can be considerably larger than the last term
in (17). Radial variations of the equilibrium averaged
density can be included (e.g. in the model of the current
paper) rather simply, yielding

w′ = α̂
R0

[1− 1
q2 + (1− e)τ − 3e

4 + 3
2
eδ
ε ]+

q2{ Ω2

ω2
A

[2− 1
q2 − 3

2e+ (1− e)M2]}′,

where ωA(r) = R2
0ρ̄(r) and α̂ = −2R0[p̄(1+M2)]′q2 ( (we

also must replace α with α̂ in Eqs. (16) and (19)). On the
contrary, dealing with rotation gradients is much more
difficult. This is because, if rotation is radially depen-
dent, we cannot set to zero the Doppler shifted eigenvalue
across the whole low-shear region. This, therefore, re-
quires a more elaborate calculation of the perturbed dis-
tribution function (cf. Eq. (11)), which yields a compli-
cated expression of the plasma response written in terms
of the plasma dispersion function [39]. We nevertheless
stress that within the infernal framework and under ap-
propriate approximations, effects of sheared flows can be
included in the analysis, thus showing off the power of the
approach. The inclusion of these particular flows demon-
strates that a generalisation beyond simple anisotropy is
possible, and that future work will attempt to take into
account flows that resemble more realistic experimental
situations.

The other differences arise from the closure model. As
is well know, in standard MHD we employ the adiabatic
closure for which d(pρ−Γ)/dt = 0 where Γ = 5/3. In the
guiding centre plasma (GCP) approximation, the closure
is provided by solving the one dimensional collisionless ki-
netic equation, i.e. (4), which describes the particle mo-
tion parallel to the magnetic field [37, 38]. It was pointed
out in Ref. [37] that MHD marginal stability boundaries
are recovered by the isotropic GCP model (in the case of
shearless toroidal flows in cylindrical geometry) if Γ = 1,
i.e with the plasma being isothermal. This is indeed ap-
parent by inspecting Eqs. (12) and (13). In standard
MHD in toroidal geometry, the adiabatic index enters
inertia and magnetic well terms [73]. In toroidal geom-
etry, these contributions reduce to the ones obtaied in
the isotropic GCP limit for Γ = 1 at marginal stability
with uniform flows. Thus, it follows that within the GCP
model the Brunt-Väisälä stabilisation mechanism, com-
ing from the centrifugal force which gives a stable density
or entropy distribution within each magnetic surface, is
lost (see e.g. [25, 77, 78] and references therein). We shall
point out that other types of closure may be used [79, 80],
and different results might be expected depending on the
closure model (noticing that the inclusion of flows is par-
ticularly subtle).

Having said so, it is worth pointing out the robust-
ness of the anisotropic model, which could be more more
trustworthy in the strong parallel anisotropy limit than
the ideal MHD isotropic fluid model. Indeed, in the
limit of strong parallel anisotropy, i.e. T||/T⊥ → ∞,
the trapped particle fraction vanishes so that kinetic cor-
rections to kinetic-MHD models are negligible [40]. Al-

though kinetic models are dependent upon several pa-
rameters (collisional regime, temperature, bounce fre-
quency resonance effects, etc.), in the parallel anisotropic
limit kinetic models yield weak corrections to a fluid
model. What is left are anisotropic fluid effects which
are robustly stabilising since pressure perturbation asso-
ciated with passing particles are larger on the high field
side of the flux surface (contrarily to an isotropic plasma
in which passing particles compensate for trapped parti-
cles, where the latter tend to spend more time in the low
field side).

It is also possible to see that combined elongation
and anisotropy effects are recovered by inspecting Eq.
(3) in Ref. [40], noting that p⊥, p|| and the factor

C =
∑
sms

∫
dµdε Bv|| (µB)2 ∂fs

∂ε [29] can be written eas-

ily in terms of cos θ, T|| and T⊥ for the model used.
This equation indicates also that the effect of elonga-
tion would yield exactly the elongation correction seen
in the Mercier index (−eτ) in Eq. (17). Note that for
parallel anisotropy, changes to the metric are weak, al-
lowing the toroidal and shaping expansions presented in
Sec. III. Toroidicity and elongation effects combine with
anisotropy in such a simple way because anisotropy intro-
duces a low order poloidal dependence, which combines
with the poloidal dependence of 1/R. The other shap-
ing effects are additive, giving the well known shaping
effects on interchange modes [21]. Thus, as the physical
effects are additive in nature, and fairly intuitive, more
realistic, though perhaps ad-hoc, approaches to including
combined fluid anisotropy and flows can be sought.

Finally, it is worth pointing out that parallel
anisotropy provides stabilisation also in stellarators,
whose fields decay proportionally to 1/R [81].

VIII. CONCLUSIONS

The problem of plasma anisotropy and certain limited
equilibrium flow effects in shaped hybrid plasmas has
been addressed. Using simplified class of profiles allows
to have a manageable analytical treatment, nevertheless
retaining relevant physical effects. The main result of this
work is equation (22) which describes the stability bound-
aries for ideal non-resonant modes. Such an equation
holds both for flat and q profile reversed configurations,
whose specific case is identified by selecting appropriately
the field line bending contribution. In line with previous
results, beyond a trivial redefinition of the ballooning pa-
rameter α due to a modified averaged total pressure, it
is found that plasma anisotropy effects enter through a
modification of the magnetic well, yielding better stabil-
ity properties with tangential injection. It is found that
a uniform toroidal flow improves stability as well. Posi-
tive triangularity effects in vertically elongated plasmas
are stabilising, whereas negative triangularity tends to be
destabilising. We notice from figure 3 that even with a
relative modest parallel pressure anisotropy (T|| > T⊥),
that should be easily realisable with the MAST neutral
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beam system, the non-resonant mode can be completely
stabilised even when the minimum of q approaches unity.
Oblate cross sections might be beneficial for restoring the
stabilising contribution to the magnetic well in negative
triangularity plasmas.

Depending on β, elongation might be either stabilis-
ing or destabilising. A positive elongation parameter e
at low pressure and negligible triangularity tends to be
destabilising with a sufficiently small filed line bending
contribution, while its effect turns out to be stabilising
at sufficiently high β in accordance with [23]. Note that
equation (22) seems to suggest that mode stabilisation
could be achieved not only with current profile optimi-
sation, i.e. modifying the safety factor, but also with a
careful tailoring of the plasma shaping. We finally point
out that the stability eigen-equations for the Fourier har-
monics derived in this work, and in particular the equa-
tion for the dominant mode (16) with the allowance for
residual magnetic shear effects in the field line bending
contribution, might be helpful for analysing a broader
class of instabilities, e.g. ballooning modes.

Further work is nevertheless needed to assess more rig-
orously finite aspect ratio effects, highly relevant for com-
pact machines when ε ∼ 1, and the coupling effects re-
sulting from the inclusion of a larger number of satellite
Fourier harmonics, viz. allowing the perturbation to be
more ballooned. Moreover, additional analysis is required
for the description of cases in which the safety factor is
strongly reversed, such as either advanced scenarios or
current hole configurations. It is envisaged that such
challenging analysis, might be more suitably addressed

numerically.
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Appendix A: Allowance for resistivity at rs

We consider a safety factor of the form shown in Fig. 1,
i.e. monotonic, and a uniformly flat rotation profile. In
the eventuality that some residual resistivity is allowed
at rs, the energy method is not valid any longer to ob-
tain the stability boundaries. These are instead heuristi-

cally identified by the condition ∆′ =
rψ̃′m+1

ψ̃m+1
|rs = 0 [82]

where
√
gB̃r ≈ −∂ϑψ̃ (see section VI). Hence at marginal

stability, the constant d appearing in (21) is set to
d = −(rs/a)2m+2. It immediately follows that we must
replace (23) with

(1 +m) ᾱ
2

2ε̄ (1− 2e)[( ar2 )2+2m − 2](
rp
r2

)2m+2.

Noting that (rs/r2)2+2m = (1+m
m )1+m, the destabilising

effect of plasma resistivity is clearly apparent. Further
work is nonetheless needed to asses the effects of plasma
compressibility and sheared flows in a more rigorous man-
ner and the possibility of a second resonance in case of
strongly inverted q profiles.
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