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Abstract

Point defects in body-centred cubic Fe, Cr and concentrated random magnetic Fe-Cr are investigated using density func-
tional theory and theory of elasticity. The volume of a substitutional Cr atom in ferromagnetic bcc Fe is approximately
18% larger than the volume of a host Fe atom, whereas the volume of a substitutional Fe atom in antiferromagnetic bcc
Cr is 5% smaller than the volume of a host Cr atom. In an alloy, elastic dipole P and relaxation volume Ω tensors of
vacancies and self-interstitial atom (SIA) defects exhibit large fluctuations, with vacancies having negative and SIA large
positive relaxation volumes. Dipole tensors of vacancies are nearly isotropic across the entire alloy composition range,
with diagonal elements Pii decreasing as a function of Cr content. Fe-Fe and Fe-Cr SIA dumbbells are more anisotropic
than Cr-Cr dumbbells. We find that fluctuations of elastic dipole tensors of SIA defects are primarily associated with
the variable crystallographic orientations of the dumbbells. Statistical properties of tensors P and Ω are analysed using
their principal invariants, suggesting that point defects differ significantly in alloys containing below and above 10% at.
Cr. The von Mises stresses caused by dumbbells are notably larger than those caused by vacancies. The relaxation
volume of a vacancy depends sensitively on whether it occupies a Fe or a Cr lattice site. A correlation between elastic
relaxation volumes and magnetic moments of defects found in this study suggests that magnetism is a significant factor
influencing elastic fields of defects in Fe-Cr alloys.

Keywords: Point defects, Fe-Cr alloys, Elastic dipole tensor, Density functional theory, Random magnetic systems,
Relaxation volumes

1. Introduction

Defects are the stable strong local distortions of regular
atomic order that form in crystalline metals and alloys
under irradiation or during mechanical deformation [1].
Defects not only affect how a material responds to applied
stress and deformation, but they also change electronic
properties, including thermal and electrical conductivity,
and magnetism.

Microstructural evolution of an alloy occurring as a re-
sult of accumulation of defects is driven by short- and long-
range interactions of alloying elements with dislocations,
surfaces, grain boundaries, and point defects. Short-range
interactions, involving variation of chemical compositions
in the vicinity of defects, can be investigated using Den-
sity Functional Theory (DFT) [2–7]. Long-range interac-
tion between the defects is elastic, and it is mediated by
the distortions that defects generate in the crystal lattice
[8–17].
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The fundamental quantities that determine the elastic
fields and long-range elastic interaction between defects,
are the elastic dipole and relaxation volume tensors [9–
18]. These quantities can be computed using DFT or other
atomic level simulations, and can then be used in the con-
text of larger scale models, for example where the defects
and ensembles of defects are treated as objects of contin-
uum elasticity [19, 20]. So far, elastic dipole and relaxation
volume tensors of point defects have been investigated pri-
marily for pure metals [9–18, 21].

In Refs. [14, 15] it was shown that the elastic field of
an isotropic point defect in a cubic crystal, for example a
vacancy, is fully defined by a single parameter, the elastic
relaxation volume of the defect. On the other hand, a self-
interstitial atom (SIA) defect often adopts an anisotropic
configuration, and the treatment of its elastic field re-
quires using several independent parameters defining the
relaxation volume of the defect and its spatial orientation
[14, 15].

A vacancy, because of the isotropic nature of its dipole
tensor, does not interact with a shear strain field even
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in an elastically anisotropic cubic material, whereas the
anisotropic structure of an SIA defect enables elastic in-
teraction with shear strain, applied externally or generated
by other defects or dislocations [11]. The investigation of
elastic dipole tensors and relaxation volumes, as well as
other properties of point defect in concentrated alloys, is a
challenging task since these quantities depend on the com-
position of the alloy, atomic short-range order as well as
on the local environment of a defect [22–24]. In a magnetic
alloy the structure of a defect is also affected by non-linear
magneto-volume effects.

Here, we focus on the investigation of point defects in
concentrated Fe-Cr alloys, which are the base alloy system
underpinning the composition of many industrial steels.
The phase stability and properties of magnetic Fe-Cr al-
loys were extensively explored theoretically [2–4, 25–35]
and experimentally [36–39]. The analysis performed in
Ref. [40] showed that vacancies attract Cr atoms and
hence may form vacancy-Cr clusters in dilute bcc Fe-Cr
alloys. Investigation of point defects in dilute Fe-Cr alloys
[26, 29, 31, 34, 41, 42] shows that the formation energy
of SIA dumbbells depends on the local configuration of
Cr atoms surrounding a defect. However, to the best of
authors’ knowledge, elastic dipole and relaxation volume
tensors of point defects, and the long-range elastic fields of
such defects in concentrated Fe-Cr alloys have never been
systematically explored.

In this paper, we study point defects in concentrated
random Fe-Cr alloys, with Cr concentration up to 35%.
Since estimating the relaxation volume of a defect using
the stress method, which is described below, requires infor-
mation about elastic constants of the material, which vary
with alloy composition, elastic properties of random Fe-
Cr alloys are investigated as a function of Cr content. To
find the most stable point defect configurations, formation
energies of defects were determined using concentration-
dependent chemical potentials of Fe and Cr. Relaxation
volumes of dumbbells are also correlated with the magnetic
moments of atoms forming these defects. We also assess
the difference between relaxation volumes of point defects
computed using the stress method and full cell relaxation
method [43, 44].

2. Methodology

2.1. Elastic dipole tensors and relaxation volumes
A point defect induces a long range elastic field in the

surrounding lattice. The energy of interaction between
a localised defect and external homogeneous strain field
εext
ij , arising from the quadratic cross-terms in the volume
integral of the density of elastic energy of the defect and
external field, is [8]

E = −Pijεext
ij , (1)

where repeated indices imply summation, and Pij is the
ij-th element of the elastic dipole tensor, P , of the defect.

This second-rank tensor is a fundamental quantity relating
the elastic field of a defect and its atomic structure. Tensor
P fully characterizes the elastic properties of a localised
defect.

Elements of the dipole tensor of a defect can be com-
puted using the equation [11, 14, 15, 20, 21, 45]

Pij = −Vcellσ̄ij , (2)

where Vcell is the volume of the simulation cell and σ̄ij is
the difference between the average, macroscopic, stress in
the cell containing the defect and in the pristine structure.
It should be noted that, using the above definition of Pij ,
the homogeneous stress experienced by the cell, which is
built with the fixed lattice parameter, is not taken into
account and thus the elastic dipole tensor of a defect is
only related to the average stress generated by the defect.

In practice, the elements of an elastic dipole tensor are
determined using either the above stress method, Eq. (2),
where the average strain in the simulation cell is zero [14],
and hence the cell volume and its shape remain fixed and
only the positions of ions are relaxed. Alternatively, Pij
can be computed using the full cell relaxation method,
where the cell volume and its shape are relaxed to the zero
macroscopic stress condition [21, 44]. The main difference
between the two methods is that the latter one takes into
account not only the elastic relaxation effects but also non-
elastic non-linear relaxation occurring in the core of the
defect as well as everywhere in the simulation cell [46]. The
stress and cell relaxation methods are reviewed together
with other possible methods for computing elastic dipole
tensors in Refs. [13, 21, 44, 45].

In the full cell relaxation method, the dipole tensor is
computed from the elements of macroscopic strain asso-
ciated with the relaxation of the cell to the zero stress
condition

Pij = VcellCijklε
app
kl , (3)

where Cijkl is the fourth-rank tensor of elastic stiffness
and εapp

kl is the macroscopic strain developing as a result
of full relaxation of atomic positions and the shape of the
simulation cell.

The dipole tensor is related to another fundamental ten-
sor entity, also characterising the defect, via the following
relation

Pij = CijklΩkl, (4)
where Ωkl is the kl-th element of the so-called relaxation
volume tensor, Ω. It is related to the elastic dipole tensor
through the tensor of elastic compliance, Sijkl:

Ωij = SijklPkl. (5)

Tensors Sijkl and Cijkl are related as [1]

CijmnSnmkl = 1
2 (δikδjl + δilδjk) .

The energy of interaction between a defect and external
elastic field can be expressed in terms of either the elastic
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dipole or relaxation volume tensor as [16]

E = −Ωijσext
ij , (6)

where σext
ij = Cijklε

ext
kl is the stress tensor associated with

external strain.
The elastic relaxation volume of a defect Ωrel can be

computed by taking the trace of the relaxation volume
tensor

Ωrel = Tr Ω = Ω11 + Ω22 + Ω33. (7)

Ωrel is a convenient parameter characterizing the degree
of overall macroscopic expansion or contraction of the ma-
terial due to the presence of defects in it [20]. Also, it de-
scribes the “size” interaction between the defects, whereas
the deviatoric component of the relaxation volume tensor,
i.e. its off-diagonal terms and differences between diagonal
components, gives rise to the so-called “shape” interaction.
In the limit where elastic relaxation around the defect is
isotropic and the relaxation volume tensor of a defect is
diagonal [20] Ωij = 1

3Ωrelδij , where δij is the Kronecker
delta-symbol, equation (6) can be further simplified as [47]

E = −Ωijσext
ij = −1

3σ
ext
ii Ωrel = pΩrel, (8)

where p is the hydrostatic pressure, p = − 1
3σ

ext
ii .

To analyse elastic dipole and relaxation volume tensors
of point defects, it is convenient to use the notion of prin-
cipal invariants, which are the quantities independent of
the orientation of Cartesian coordinate axes. The formula
relating a second-rank tensor (A) and its principal invari-
ants is [48]

A3 − I1A2 + I2A− I31 = ¯̄0, (9)

where 1 is the identity tensor, ¯̄0 is zero matrix, and I1, I2,
I3 are the principal invariants that can be expressed as

I1 = Tr A, (10)

I2 = 1
2
[
(Tr A)2 − Tr(A2)

]
, (11)

I3 = det A. (12)

The above relations apply to both elastic dipole and
relaxation volume tensors (A = P or Ω). In what follows,
the invariants of an elastic dipole tensor will be denoted
by IP1 , IP2 and IP3 , whereas those of the relaxation volume
tensor by IΩ

1 , IΩ
2 and IΩ

3 . It is worth noting that IΩ
1 is

nothing but the relaxation volume of a defect, whereas the
invariants of the elastic dipole tensor are directly related
to the volume average von Mises stress σvM generated by
the defects distributed periodically and homogeneously in
the material. This stress can be evaluated from equations
(1), (2), (6), (10), (11) as [48]

σvM = 1
Vcell

√(
IP1
)2 − 3IP2 . (13)

2.2. Elastic properties of alloys
Bulk elastic constants are required for finding the el-

ements of elastic dipole tensor using full cell relaxation,
see Eq. (3). Analysis performed in Ref. [44] shows that
relaxation volumes of clusters of point defects (voids and
interstitial loops) may vary significantly, depending on the
interatomic potential. Hence, having a correct starting es-
timate for the elastic stiffness parameters of Fe-Cr alloys
is important for the investigation of elastic dipole and re-
laxation volume tensors of defects in these alloys.

For pure elemental cubic crystals, the tensor of elas-
tic constants Cijkl can be parameterized using only three
independent parameters, C11, C12 and C44, see [49]. Elas-
tic properties of alloys are more complicated and generally
there can be up to twenty one non-zero independent elastic
constants. Elastic constants of disordered alloys adopting
crystal lattice with cubic symmetry can be approximated
as

C̄11 = C11 + C22 + C33

3 , (14)

C̄12 = C12 + C13 + C23

3 , (15)

C̄44 = C44 + C55 + C66

3 , (16)

C14 = C15 = C16 = C24 = C25 = C26 =
C34 = C35 = C36 = C45 = C46 = C56 = 0. (17)

In this study, the second-order elastic constants were
computed by deforming an unstrained equilibrium struc-
ture and analysing the corresponding variation of the total
energy Etot as a function of components of strain. Applied
deformation changes the total energy as follows [49]

U = Etot − E0

V0
= 1

2

6∑
i=1

6∑
j=1

Cijεiεj , (18)

where E0 is the total energy of the unstrained lattice, V0
is the volume of an undistorted cell and Cij are the ele-
ments of the elastic constant matrix in the Voigt notation.
Indices i and j vary from 1 to 6 following the sequence
xx, yy, zz, yz, xz, xy [49].

For each deformation, eight values of strain (±0.2%,
±0.4%, ±0.6%, ±0.8%) were considered and the corre-
sponding energies computed. Each curve showing how the
total energy varies as a function of deformation was then
fitted to a quadratic form and the respective elastic con-
stants obtained. Since random Fe-Cr alloys are elastically
anisotropic, we investigated the directional dependence of
Young’s modulus. The analysis are given in the Supple-
mentary Information.

2.3. Formation energies of point defects
The formation energy of a vacancy or a self-interstitial

atom (SIA) in an alloy is defined as

Evac,Af = Evac − (Eref − µA) + Ecorrel , (19)
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ESIA,Af = ESIA − (Eref + µA) + Ecorrel , (20)

where Evac and ESIA are the total energies of structures
containing a vacancy and a self-interstitial atom, respec-
tively, and Eref is the total energy of the corresponding
reference structure containing no defect. µA is the chem-
ical potential of atom A (here, a Cr or Fe atom), which
was removed or inserted into the original structure in or-
der to form a vacancy or a self-interstitial atom defect,
respectively. Ecorrel is a correction term resulting from the
conditions of vanishing average macroscopic strain (in the
stress method) and periodicity [12–14, 45]. Methods for
evaluating Ecorrel are described in Refs. [12–14, 16, 21, 45].
It should be noted that the origin of Ecorrel is purely elastic
[45], and it does not include non-elastic effects [46]. There-
fore, the formation energies of defects computed using full
cell relaxation are usually lower than those computed using
the stress method where the boundaries of the simulation
cell are assumed fixed [12, 45], even if the Ecorrel term is
taken into account [44].

Chemical potentials of Fe and Cr atoms are estimated
from the total energy of the system, where at T=0 K and
p=0 Pa in the thermodynamic limit [50] E = µFeNFe +
µCrNCr, whereNFe andNCr are the numbers of Fe and Cr
atoms in the corresponding structure, respectively. Using
this expression, we find the difference between the mini-
mum substitutional energies ∆EFe→Cr and ∆ECr→Fe [51]
as

µCr − µFe = 1
2(∆EFe→Cr −∆ECr→Fe). (21)

For each composition of the alloy, the minimum substitu-
tion energies are evaluated from the total energy difference
between the reference structure and three structures, for
each element, where a randomly chosen Fe (or Cr) atom
has been replaced by a Cr (or Fe) atom.

2.4. Computational details
All the total-energy calculations were performed using

density functional theory in the plane-wave basis, and
pseudopotentials derived within the projector augmented
wave (PAW) method [52, 53] implemented in the Vienna
Ab-inito Package (VASP) code [54, 55]. The PAW pseu-
dopotentials used here did not include the semicore elec-
trons. Exchange and correlation effects were treated in
the generalized gradient approximation with the Perdew-
Burke-Ernzerhof [56] parametrization. Collinear spin-
polarized calculations, with a Vosko-Wilk-Nusair spin in-
terpolation of the correlation potential, were carried out
assuming that the initial magnetic moments of Fe and Cr
atoms were 3 and −1 Bohr magnetons (µB), respectively.
The magnetic moments of Cr atoms were treated as being
initially antiferromagnetically aligned with respect to the
ferromagnetically ordered magnetic moments of Fe atoms.
The structures contained 250 (±1 Fe/Cr) atoms in the
form of 5×5×5 supercells with conventional body-centred
cubic structure. Non-collinear magnetic effects [57] were
not treated in this study. The total energies were found

using the Monkhorst-Pack [58] scheme to sample the Bril-
louin zone. A 3×3×3 k-point grid was used when per-
forming atomic relaxations. Structures of point defects
in concentrated random Fe-Cr alloys, with concentrations
up to 35% at. Cr, were taken from Ref. [59] where a
DFT database of point-defect relaxation energies and mi-
gration barriers was used for training neural-network mod-
els. Since Cr atoms are distributed randomly in the alloy
structures included in the database, this study describes
properties of point defects in concentrated random Fe-Cr
alloys where the effects associated with short-range order
are not considered.

In this work, two types of DFT calculations were per-
formed:

•fixed volume calculations – these were performed us-
ing the same parameters as in Ref. [59, 60], namely the
lattice parameter of 2.831 Å, the plane-wave energy cut-
off of 300 eV and the convergence criteria of 10−3 eV/cell
and 10−4 eV/cell set for the total energies of ions and elec-
trons, respectively. The energies of structures containing
defects and residual stresses given in Ref. [59] were directly
comparable with results of calculations performed in this
study, and they were used for determining the formation
energies as well as elastic dipole and relaxation volume
tensors of point defects using the stress method.

•calculations involving full cell relaxation – these were
performed using the energy cut-off of 400 eV and conver-
gence criteria of 10−3 eV/Å and 10−6 eV/cell set for the
total energies of ions and electrons, respectively. These
calculations were used for determining the chemical poten-
tials and elastic properties of alloys, as well as calculating
the formation energies and relaxation volumes of defects
using the cell relaxation method. We remind the reader
that at T=0 K, an accurate evaluation of chemical poten-
tials requires setting p=0 Pa, which implies full relaxation
of the simulation cell.

The impact of the choice of computational approach on
the accuracy of results is discussed in Section 4.3 below.

3. Results

3.1. Chemical potentials and formation energies of defects
Chemical potentials of Fe (µFe) and Cr (µCr) atoms

in random Fe-Cr alloys were estimated from DFT simu-
lations assuming either a fixed volume of the simulation
cell, or full atomic and volume relaxation. Simulations
were performed for twenty alloy structures with concen-
trations chosen approximately evenly across the range of
Cr concentrations. Fig. 1 shows that the chemical poten-
tial of Fe in Fe-Cr alloys remains almost constant over the
entire range of compositions explored in this study, and
its value is close to the chemical potential of pure bcc Fe,
which is −8.31 eV. The chemical potential of Cr atoms be-
haves differently below and above approximately 10% at.
Cr, which corresponds to the Cr solubility limit in Fe-Cr
alloys at low temperature [61]. Below the solubility limit,
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Figure 1: Chemical potentials of Fe and Cr derived from DFT simu-
lations involving full cell relaxation. Dashed blue and red lines show
the interpolated values of µF e and µCr as functions of Cr content
(see Table A.2).

µCr increases as a function of Cr content, whereas above
the solubility limit it slowly decreases as a function of Cr
concentration. It should be noted that earlier theoretical
and experimental studies show that properties of Fe-Cr
alloys differ significantly below and above approximately
10% at. Cr [3, 4, 30, 33, 62]. Hence, not only the analy-
sis of chemical potentials but also the study of formation
energies, elastic dipole and relaxation volume tensors for
point defects in Fe-Cr alloys in what follows is going to be
split into two separate investigations, focusing on alloys
with compositions below and above 10% at. Cr.

We note that the results shown in Fig. 1 are insensitive
to the energy cut-off and the internal degrees of freedom,
for example the chemical potentials derived from fixed-
volume DFT simulations are virtually identical to those
derived from simulations involving full cell relaxation –
the difference is smaller than 0.1%. Bearing this in mind,
still only the values obtained with full relaxation of simu-
lation cells, corresponding to vanishing pressure p=0 Pa,
are shown in Fig. 1. Interpolated values of chemical po-
tentials of Fe and Cr shown by dashed lines in Fig. 1 were
used as a reference when evaluating the formation energies
of point defects in Fe-Cr alloys. Values of µFe for pure bcc
Fe and µCr for pure anti-ferromagnetic bcc Cr were de-
rived from the total energies of bcc Fe and Cr, respectively.
Values of µCr in bcc Fe and µFe in anti-ferromagnetic bcc
Cr were computed using the method described in Section
2.4 for the structures containing one Cr atom in bcc Fe
and one Fe atom in bcc Cr, respectively. The computed
formation energies of defects in bcc Fe matrix and bcc
anti-ferromagnetic Cr matrix are given in Table 1.

Since most of the results for Fe-Cr alloys were obtained
using fixed volume simulations cell, defined by the lattice
parameter of pure Fe a=2.831 Å, all the results for Cr
given in this study were also computed assuming this lat-
tice parameter. The computed formation energies include
the correction term resulting from periodic boundary con-
ditions and the requirement of vanishing average strain

[14, 45].
In agreement with earlier studies [18, 63], the computed

formation energies of vacancies are significantly smaller
than those of SIAs defects. The formation energies of de-
fects in bcc Cr are notably larger than in bcc Fe. In accord
with Refs. [18, 64], the most stable configuration of a SIA
defect in pure Fe is a 〈110〉 dumbbell, with the energy of
formation of Eform = 4.019 eV found in our calculations.
This formation energy is more than 0.7 eV lower than the
formation energy of a self-interstitial atom defect with a
〈111〉 orientation.

In agreement with Refs. [15, 65], we find that the most
stable configuration of a Cr-Cr dumbbell in pure anti-
ferromagnetic bcc Cr is a symmetry-broken 〈11ξ〉 dumb-
bell, where ξ is 0.345. The difference between Eform of
〈11ξ〉 SIA and Eform of 〈110〉 and 〈111〉 SIAs in pure Cr
is 0.14 eV and 0.23 eV, respectively. This shows that the
difference between energies of various SIA dumbbell con-
figurations in bcc Cr is smaller than those in bcc Fe.

A symmetry-broken 〈11ξ〉 configuration is also the most
stable one for a Cr-Cr dumbbell in Fe matrix. This agrees
with results from Ref. [26] showing that a Cr-Cr 〈110〉
dumbbell configuration in the presence of additional Cr
atom in the neighbourhood (lowering the symmetry of a
structure) may transform into a lower energy configura-
tion, for example a

〈
221
〉
Cr-Cr dumbbell.

A mixed Fe-Cr 〈110〉 dumbbell is the most stable mixed
SIA defect configuration in bcc Fe matrix. Figs. 3a and
3b show that it can be formed either by adding a Cr atom
to a Fe site or by adding a Fe atom to a Cr site. The
formation energies of a Fe-Cr 〈110〉 dumbbell in the former
and latter cases are 3.964 eV and 3.975 eV, respectively.
In both cases, formation energies of Fe-Cr dumbbells were
more than 0.04 eV lower than that of a 〈110〉 Fe-Fe, in
agreement with Ref. [66], and they were 0.48 eV lower
than the formation energy of a 〈11ξ〉 Cr-Cr dumbbell.

In bcc Cr matrix, the difference between the energies
of the most and least stable dumbbell configurations is
significantly larger than in bcc Fe. The formation energy
of a 〈110〉 Fe-Fe SIA in bcc Cr equals 4.057 eV, and it is
more than 1 eV and 2 eV smaller than that of the most
stable Fe-Cr and Cr-Cr dumbbells, respectively.

The formation energies of approximately 300 vacancy
and 400 dumbbell configurations derived from fixed cell
volume DFT simulations are shown, as functions of Cr
content and the number of Cr atoms in the local environ-
ment of a defect, in Figs. 4a-d. The figures show that the
formation energies of vacancies and SIA dumbbells fluctu-
ate significantly, depending on the alloy composition and
the local chemical environment of a defect.

To separate the role of the two effects and investigate
properties of defects only as functions of the number of
Cr atoms in their local environment, further 120 DFT cal-
culations were performed for the defect-free structures of
Fe-Cr alloys containing 5% at. Cr, and the same struc-
tures containing defects. Even for one alloy composition
and the same number of Cr atoms in the 1st and 2nd
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Table 1: Formation energies of defects and elements of elastic dipole tensors Pij (in eV) of defects, relaxation volume tensors Ωij (in Å3),
relaxation volumes of defects and substitutional atoms Ωrel (in Å3) and relaxation volumes Ωat

rel expressed in the units of atomic volume
Ω0=a3/2. The reference atomic volume Ω0=11.345 Å3 corresponds to the bcc lattice parameter of a=2.831 Å.

Eform P11 P22 P33 P12 P23 P31
P11
P22

Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel Ωatrel
Fe

(Vac)Fe 2.183 -3.682 -3.682 -3.682 0.000 0.000 0.000 1.00 -1.015 -1.015 -1.015 0.000 0.000 0.000 -3.045 -0.268
Ref. [15] 2.190 -3.081 -3.081 -3.081 0.000 0.000 0.000 1.00 -0.831 -0.831 -0.831 0.000 0.000 0.000 -0.220
(Cr)Fe 2.531 2.531 2.531 0.000 0.000 0.000 1.00 0.698 0.698 0.698 0.000 0.000 0.000 2.093 0.184

(Fe-Fe)〈110〉
Fe 4.019 24.853 20.534 20.534 0.000 4.620 0.000 1.21 6.851 5.660 5.660 0.000 1.274 0.000 18.171 1.602

Ref. [15] 4.321 25.832 21.143 21.143 0.000 5.122 0.000 1.22 9.777 4.294 4.302 0.000 3.819 0.000 1.620
(Fe-Fe)〈111〉

Fe 4.762 21.596 21.596 21.596 5.204 5.204 5.204 1.00 5.953 5.953 5.953 1.435 1.435 1.435 17.859 1.574
(Fe-Cr)〈110〉

Fe 3.964 23.756 21.826 21.826 0.000 4.691 0.000 1.09 6.548 6.016 6.016 0.000 1.293 0.000 18.581 1.638
(Fe-Cr)〈110〉

Cr 3.975 21.065 19.136 19.136 0.000 4.691 0.000 1.10 5.807 5.275 5.275 0.000 1.293 0.000 16.356 1.442
(Cr-Cr)〈110〉

Cr 4.501 19.472 22.269 22.269 0.000 6.160 0.000 0.87 5.367 6.138 6.138 0.000 1.698 0.000 17.644 1.555
(Cr-Cr)〈11ξ〉

Cr 4.465 20.693 21.048 21.048 1.576 5.045 1.576 0.98 5.704 5.802 5.802 0.434 1.391 0.434 17.307 1.526
(Cr-Cr)〈111〉

Cr 4.554 20.092 20.092 20.092 4.585 4.585 4.585 1.00 5.538 5.538 5.538 1.264 1.264 1.264 16.614 1.462
(Cr-Cr)〈110〉

Fe 4.481 22.145 24.960 24.960 0.000 6.160 0.000 0.89 6.104 6.880 6.880 0.000 1.698 0.000 19.864 1.751
(Cr-Cr)〈11ξ〉

Fe 4.446 23.384 23.738 23.738 1.576 5.045 1.576 0.98 6.446 6.543 6.543 0.434 1.391 0.434 19.532 1.722
(Cr-Cr)〈111〉

Fe 4.535 22.782 22.782 22.782 4.585 4.585 4.585 1.00 6.280 6.280 6.280 1.264 1.264 1.264 18.839 1.661
Cr

(Vac)Cr 2.717 -7.753 -7.753 -7.753 0.000 0.000 0.000 1.00 -2.225 -2.225 -2.225 0.000 0.000 0.000 -6.675 -0.588
Ref. [15] 3.004 -5.777 -5.777 -5.777 0.000 0.000 0.000 1.00 -1.618 -1.618 -1.618 0.000 0.000 0.000 -0.414
(Fe)Cr -0.726 -0.726 -0.726 0.000 0.000 0.000 1.00 -0.208 -0.208 -0.208 0.000 0.000 0.000 -0.625 -0.055

(Cr-Cr)〈110〉
Cr 6.262 16.410 21.083 21.083 0.000 4.886 0.000 0.78 4.709 6.050 6.050 0.000 1.402 0.000 16.809 1.482

Ref. [15] 6.515 18.955 20.530 20.530 0.000 4.790 0.000 0.92 5.166 5.820 5.820 0.000 3.757 0.000 1.434
(Cr-Cr)〈11ξ〉

Cr 6.116 19.755 18.445 18.445 1.098 3.629 1.098 1.07 5.669 5.293 5.293 0.315 1.041 0.315 16.256 1.433
Ref. [15] 6.361 21.882 18.389 18.389 2.058 4.040 2.058 1.19 6.436 4.987 4.987 1.614 3.168 1.614 1.400

(Cr-Cr)〈111〉
Cr 6.354 18.056 18.056 18.056 3.682 3.682 3.682 1.00 5.182 5.182 5.182 1.057 1.057 1.057 15.545 1.370

Ref. [15] 6.617 18.728 18.728 18.728 4.617 4.617 4.617 1.00 5.244 5.244 5.244 3.622 3.622 3.622 1.343
(Fe-Cr)〈110〉

Cr 5.085 22.180 16.622 16.622 0.000 3.753 0.000 1.33 6.365 4.770 4.770 0.000 1.077 0.000 15.905 1.402
(Fe-Cr)〈110〉

Fe 5.108 23.048 17.489 17.489 0.000 3.753 0.000 1.32 6.614 5.019 5.019 0.000 1.077 0.000 16.652 1.468
(Fe-Fe)〈110〉

Fe 4.057 25.438 15.277 15.277 0.000 4.337 0.000 1.67 7.300 4.384 4.384 0.000 1.245 0.000 16.068 1.416

nearest-neighbour (NN and NNN, see Fig. 2f) coordina-
tion shells around a defect, formation energies fluctuate
by as much as 1 eV. This shows that the defect formation
energies depend not only on parameters like the average
alloy composition or the number of Cr atoms in the NN
and NNN coordination shells, but also on the configuration
of Cr atoms around a defect.

Vacancies in Fe-Cr alloys can be formed by removing
either a Fe atom or a Cr atom from a lattice site, see Figs.
3c and 3d. Figs. 4a, 4c and 4e, show that there is a notable
difference between the formation energies of vacancies on
Fe and Cr sites. The average formation energy of a vacancy
on a Fe site decreases slightly as a function of Cr content
from approx. 2.1 eV at low Cr concentration to approx.
2.0 eV at 30% at. Cr. On the other hand, the average
value of Eform for a vacancy on a Cr site increases with
Cr content. The increase is more rapid in the range of Cr
concentration below 10% at. Cr. Formation energies of
vacancies on Cr sites are also more scattered than those
associated with Fe sites, an effect that is probably related
to the magnetic frustration of Cr atoms in bcc Fe matrix.

Figs. 4c shows the formation energy of a vacancy as
a function of the number of Cr atoms Ndef

Cr in the NN
and NNN shells around a defect. The data span the en-
tire range of alloy compositions considered here, with a
separate Figure 4e showing the data for Fe-5%Cr alloys.

Since the variation of formation energies as a function of
Cr concentration differs for configurations involving small
and large values of Ndef

Cr , the results are divided into two
intervals where Ndef

Cr is smaller or larger than 3. The value
of 3 was chosen for two reasons. Firstly, according to our
statistical analysis, it was the optimal value for which the
fitting of trend lines was the best for vacancies and dumb-
bells simultaneously. Secondly, this choice enables a direct
comparison of trend lines obtained for small values of Ndef

Cr

with the results computed for Fe-5%Cr alloys, where de-
fects are surrounded by up to three Cr atoms in the NN
and NNN shells.

The variation of the average formation energy of vacan-
cies in Fe-5%Cr alloy is similar to the variation found for
other Cr concentrations. For the smaller number of Cr
atoms, Figs. 4c and 4e show that the formation energy
Eform of a vacancy on either Fe and Cr sites decreases
with increasing Ndef

Cr . The rate of variation is more rapid
for vacancies on Cr sites. For Ndef

Cr larger than 3, the for-
mation energy of a vacancy on a Fe site slightly decreases
whereas that on a Cr site increases.

The variation formation energies of dumbbells as a func-
tion of Cr content is significantly different below and above
approximately 10% at. Cr, see Fig. 4b for more detail.
Above 10% at. Cr concentration, the average values of
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Figure 2: Schematic representation of structures: (a) a Cr atom in bcc Fe, (b) a Fe atom in bcc Cr, (c) Fe-Fe, (d) Fe-Cr and (e) Cr-Cr
〈110〉 dumbbells in bcc Fe. Fe and Cr atoms are shown as grey and blue spheres, respectively. (f) Schematic representation of atoms in
the neighbourhood of a defect (white sphere). Atoms in the first and second nearest neighbour shells are shown by red and green spheres,
respectively.

Eform of Fe-Cr and Cr-Cr SIAs remain almost constant,
whereas below that concentration there is a rapid decrease
of Eform as a function of Cr content. Only the slope of the
trend line for Eform computed for Fe-Fe SIAs remains sim-
ilar over the whole considered range of Cr concentrations.
Similarly to bcc Fe matrix, Fe-Cr dumbbells are gener-
ally the most stable interstitial defects in Fe-Cr alloys in
the range of alloys compositions explored in this study.
They exhibit the lowest mean values of Eform over the
concentration range up to approximately 32% at. Cr. For
each composition up to approximately 10-12% at. Cr, the
most stable Fe-Cr SIA exhibits the lowest Eform among
all the computed dumbbell configurations. For larger Cr
concentrations, the Cr-Cr and Fe-Fe dumbbells may be
more stable than the Fe-Cr SIAs.

Similarly to the variation of the formation energy of
dumbbells as a function of Cr content, values of Eform
shown in Fig. 4d vary differently for smaller and larger
values of Ndef

Cr . For Fe-Cr and Cr-Cr SIAs, the average
value of Eform decreases and then slightly increases as a
function of Ndef

Cr when Ndef
Cr is smaller and larger than

3, respectively. For Fe-Fe SIAs, the mean value of Eform
decreases as a function of Ndef

Cr over the range of Ndef
Cr .

For every value of Ndef
Cr , Fe-Cr SIAs have the lowest mean

Eform. However, for the majority of Ndef
Cr , the most stable

Cr-Cr dumbbells have smaller Eform than the most stable
Fe-Cr and Fe-Fe SIAs.

Similarly to the case of vacancies, the trend lines of mean
Eform for Fe-Fe and Fe-Cr dumbbells as a function ofNdef

Cr

in Fe-5%Cr alloy are generally similar to those found for
other Cr concentrations, however the values are usually
larger, as seen from the comparison of Figs. 4d and 4f.
The largest difference is found for Cr-Cr dumbbells, for
which the mean Eform in the Fe-5%Cr alloy does not de-
crease as a function of Ndef

Cr as rapidly as for other Cr
concentrations. As a result, the mean value of Eform for
a structure with three Cr atoms in the local environment
of a defect in the Fe-5%Cr alloy is approximately 0.5 eV
larger than the one averaged over structures with the same
Ndef
Cr value in all the other Fe-Cr alloys. This may stem

from the fact that the magnitudes of magnetic moments of
Cr atoms vary significantly as a function of Cr composition
in Fe-Cr alloys [3, 25, 33], and this may affect the value
of Eform for Cr-Cr dumbbells. The strong dependence on
Cr concentration of the formation energies of Cr-Cr inter-
stitial defect may also explain the larger spread of their
values in comparison with Fe-Fe and Fe-Cr dumbbell de-
fects, see Figs. 4b and 4d.

Equations interpolating the variation of formation ener-
gies of vacancies and dumbbells as a function of Cr con-
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Figure 3: Schematic representation of the process of formation of
a mixed Fe-Cr dumbbell (a) by adding a Cr atom to a Fe site and
(b) by adding a Fe atom to a Cr site. Schematic representation of
formation of a vacancy (c) on a Fe site and (d) on a Cr site. Fe and
Cr atoms are shown by grey and blue spheres, respectively.

centration and a number of Cr atoms in NN and NNN are
given in Table A.2 in Appendix.

3.2. Elastic properties

To investigate elastic properties of disordered Fe-Cr al-
loys, and their variation as a function of Cr content, 21
random structures with Cr content up to 40% at. were
fully relaxed by simultaneously minimizing atomic forces
and components of the global stress tensor. Average lattice
parameters of the structures are shown in Fig. 5a. The val-
ues found in our calculations are in agreement with earlier
DFT results obtained using special quasi-random struc-
tures [67] and are smaller than the values obtained using
the coherent potential approximation (CPA) [67, 68]. We
note that the experimental lattice parameters [69, 70] are
significantly higher than all the predicted values. This is
likely associated with the approximations involved in the
exchange-correlation functionals [67, 68]. Also, calcula-
tions predict a visible maximum of the lattice parameter
for alloys with Cr content between 7 and 12% at. Cr,
which is less well pronounced in the experimental data.

Elastic properties of a disordered Fe-10%Cr alloy struc-
ture evaluated using various approximations are sum-
marised in Table S1 in the Supplementary Materials. The

difference between elastic properties calculated using dif-
ferent approaches does not exceed 1%. Therefore, it is ap-
propriate to use the elastic constants of disordered Fe-Cr
alloys derived from Eqs. (14,15,16,17). To verify how the
elastic properties vary depending on the specific atomic
configurations of random Fe-Cr structures, calculations
were performed for three additional structures of Fe-5%Cr
alloy. As Fig. 5 shows, the difference between the maxi-
mum and minimum values of each elastic constant does not
exceed 3%. Since the differences between elastic properties
of Fe-Cr alloys with different compositions can be an or-
der of magnitude larger, the effect of atomic arrangement
in random Fe-Cr structures can be safely neglected in the
context of this study, in agreement with the principle that
since the treatment of elastic properties of an alloy implies
taking the macroscopic thermodynamic limit, the role of
microscopic fluctuations of local atomic arrangements is
expected to be small.

Average elastic constants C̄11, C̄12, C̄44 of random Fe-
Cr structures plotted as functions of Cr concentration are
shown in Fig. 5b-d. They were computed for 21 ran-
dom structures with Cr content up to 40%. For each fully
relaxed structure, nine elastic constants were computed
and average elastic constants C̄11, C̄12, C̄44 were evaluated
using Eqs. (14,15,16,17). Results for C̄11, C̄12, C̄44 were
interpolated using analytical formula in order to then use
them in the calculations of elastic interactions and relax-
ation volumes for each alloy composition, see Fig. 5b-d.
Analysis of earlier theoretical studies shows that the com-
puted elastic constants of Fe-Cr alloys can vary depending
on method used and the chosen value of the lattice pa-
rameter. The difference between the calculated values can
be as large as 30-40 GPa (see Figs. 5a and 5b). For pure
Fe, theoretical predictions often overestimate the experi-
mental values of C11 and usually C12, and underestimate
C44.

In the calculations of relaxation volume tensors and re-
laxation volumes of point defects in bcc Fe and bcc Cr we
used the following computed values of elastic constants:
C11 = 277.29 GPa, C12 = 151.29 GPa and C44 = 96.93
for bcc Fe, and C11 = 459.73 GPa, C12 = 49.29 GPa and
C44 = 93.65 for bcc Cr.

The investigation of polycrystalline elastic properties
and directional dependence of the Young’s modulus of Fe-
Cr alloys, together with the comparison of the computed
values of elastic parameters with the available experimen-
tal data, is given in the Supplementary Materials.

3.3. Elastic dipole and relaxation volume tensors of point
defects in bcc Fe and bcc Cr

Elements of elastic dipole tensor Pij , relaxation volume
tensor Ωij , and relaxation volumes Ωrel and Ωatrel of a va-
cancy as well as Fe-Fe, Fe-Cr, and Cr-Cr 〈110〉 dumbbells
in bcc Fe and bcc Cr are listed in Table 1. Relaxation
volumes Ωrel are given in Å3 units, whereas Ωatrel are given
in atomic volume units (Ω0=a3/2), where the reference
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Figure 4: Formation energy of vacancies (a,c,e) and (b,d,f) SIA dumbbells in random Fe-Cr alloys shown over the entire range of concentrations
(a-d) and for an alloy with 5% at. Cr (e,f) plotted as a function of Cr concentration (a,b) and the total number of Cr atoms in the NN and
NNN coordination shells of a defect (c-f). Linear trends are indicated by dashed lines (see Table A.2).

9



a) b)

c) d)

Figure 5: (a) Average lattice parameter of fully relaxed Fe-Cr structures and average elastic moduli (a) C̄11, (b) C̄12 and (c) C̄44 plotted as
functions of Cr content. Experimental: ref. A [69], ref. B [70], ref. C [71], ref. D [72], ref. E [73], ref. F [74]; Theoretical: ref. G [68], ref. H
[67]. Fitted functions are given in Table A.3.

atomic volume Ω0=11.345 Å3 corresponds to the bcc lat-
tice parameter of a=2.831 Å. In agreement with the anal-
ysis given in Ref. [15], Pij , Ωij , Ωrel and Ωatrel for vacancies
are negative in both pure Fe and Cr, whereas for dumbbells
they are positive and their magnitudes are significantly
larger than those for vacancies. The fact that SIA defects
have large relaxation volumes shows that self-interstitial
atom defects are primarily responsible for the swelling oc-
curring in these metals under irradiation, as a result of for-
mation of Frenkel vacancy–self-interstitial pairs, and the
subsequent clustering of SIA defects [75].

For vacancies in pure metals, all the diagonal elements
of elastic dipole tensors and relaxation volume tensors are
equal, and the off-diagonal elements vanish. Hence, the
elastic properties of vacancies can be described by only
one parameter. The values of Pij , Ωij , and Ωrel are ap-
proximately twice as large for vacancies in bcc Cr in com-
parison with bcc Fe. For example, the relaxation volume
of a vacancy in Cr is −6.513 Å3 and in Fe it is −3.045 Å3.
These values are larger (i.e. more negative) than the val-
ues found in Ref. [15]. The difference is larger for the

vacancy in bcc Cr. This is mainly due to the fact that
calculations for bcc Cr in Ref. [15] were performed for the
equilibrium lattice parameter of 2.862 Å, whereas all the
fixed-volume calculations in this work, including those for
bcc Cr, were performed assuming the lattice parameter of
bcc Fe of a=2.831 Å.
We note that substitutional atoms in bcc Fe and bcc

Cr, namely Cr in Fe, see Fig. 2a), and Fe in Cr (see
Fig. 2b), can also be treated using the relaxation volume
method formalism developed for point defects. For exam-
ple, Ωatrel of a substitutional Cr atom in ferromagnetic bcc
Fe is equal to 0.184 atomic volume units, which means that
its volume is approximately 18% larger than the volume
of a host Fe atom. Interestingly, this value is about four
times larger than the value obtained from the compari-
son of metallic radii of Fe and Cr, which are 1.26 Å and
1.28 Å, respectively [76]. The origin of the difference is
likely related to the magnetic state of a Cr atom, which is
different in anti-ferromagnetic bcc Cr and in ferromagnetic
bcc Fe matrix. The magnitude of the magnetic moment
of a substitutional Cr atom in bcc Fe matrix (1.80 µB) is
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70% larger than the magnitude of the magnetic moment
of a Cr atom in chromium metal, where according to DFT
calculations [3] it equals 1.07 µB .

We note also that the absolute values of Pij , Ωij , and
Ωrel of a Cr atom in bcc Fe are only approximately 30%
smaller than those of a vacancy. It means that elastic dis-
tortions caused by a vacancy or a Cr substitutional atom
in bcc Fe are broadly similar. The signs of Pij , Ωij , and
Ωrel for a vacancy and substitutional Cr are opposite, Ωrel
for a vacancy is negative and Ωrel for a substitutional Cr
is positive. The latter is important as it shows that a
Cr atom in bcc Fe appears significantly oversized. As a
consequence, Cr atoms should be expected to segregate to
the outside part of an interstitial dislocation loop where
strain is tensile. This is consistent with the interpretation
of experimental data obtained using atom probe tomog-
raphy by Jiao and Was [77], showing that Cr segregates
to the outside of an interstitial dislocation loop. It should
be noted that the agreement between our calculations and
the above experimental results is not fully supported by
the DFT results from Ref. [78], where it was found that
binding of a Cr atom to a 〈111〉 interstitial loop in bcc Fe
is insignificant on either the compressive or tensile side of
the curved edge dislocation forming the perimeter of an
interstitial loop.

As opposed to a Cr atom in bcc Fe, a substitutional
Fe atom in bcc Cr has a negative relaxation volume. It
means that, similarly to a vacancy, a substitutional Fe
atom in bcc Cr produces lattice contraction. The absolute
scale of Pij , Ωij , and Ωrel characterising a Fe atom in bcc
chromium matrix is almost ten times smaller than that of
a vacancy. For example, Ωatrel for a Fe atom and a vacancy
in bcc Cr equals −0.055 and −0.588 atomic volume units,
respectively. The relaxation volume of a substitutional Fe
atom in Cr matrix is similar to what is expected from the
comparison of metallic radii of Fe and Cr [76]. This means
that, as opposed to the case of a Cr substitutional atom in
bcc Fe matrix, the relaxation volume of a Fe substitutional
atom in bcc Cr is not affected by magneto-volume effects.

When treating 〈110〉 Fe-Fe, Fe-Cr and Cr-Cr dumbbells
(see Figs. 2c, 2d and 2e, respectively) in bcc Fe and Cr, we
find that only two diagonal elements of the elastic dipole
tensor or the relaxation volume tensor are equal (P22 =
P33 and Ω22 = Ω33). When referring to the specific off-
diagonal elements of tensors, we note that the results for
〈110〉 dumbbells in this work were computed for dumbbells
with [011] orientation. For a Fe-Fe dumbbell in bcc Fe, the
first element P11 is larger than either P22 or P33, whereas
the first element is smaller than the other two elements for
a Cr-Cr dumbbell in bcc Cr. The P11/P22 ratio is 1.21 and
0.78 in the former and latter cases, respectively. This effect
is likely caused by the significantly different anisotropy of
elastic properties of bcc Fe and bcc Cr, illustrated in Figs.
S2b and S2e in the Supplementary Materials. In bcc Fe
and bcc Cr, the lowest and the largest P11/P22 ratios are
observed for Cr-Cr and Fe-Fe dumbbells, respectively. As
opposed to vacancies, all the dumbbells in bcc Fe and Cr

have non-vanishing off-diagonal elements P23 and Ω23 of
elastic dipole and relaxation volume tensors. In bcc Fe
and bcc Cr, the largest value of P23 is found for Cr-Cr
dumbbells.

In general, relaxation volumes of dumbbells in bcc Fe are
larger than in bcc Cr. For example, the relaxation volume
of a Fe-Fe 〈110〉 dumbbell in bcc Fe is 18.181 Å3, which
is larger than the relaxation volume of a Cr-Cr dumbbell
in bcc Cr, where it is equal to 16.402 Å3. Finally, we
note that the values of Pij , Ωij , and Ωrel for mixed Fe-Cr
dumbbells vary, depending on the type of the atom, Cr or
Fe, on the defect site in the pristine structure (see Figs.
3a and 3b). For example, a Fe-Cr 〈110〉 dumbbell on a Fe
or a Cr site has the relaxation volume of 18.581 Å3 and
16.356 Å3, respectively.

3.4. Elastic dipole tensors and relaxation volumes of point
defects in random Fe-Cr alloys

In random Fe-Cr alloys, the elements of Pij and Ωij
depend not only on the type of the defect but also on the
atomic configuration of Cr and Fe in its local environment.
Due to the random choice of positions of Cr atoms, all the
elements of Pij and Ωij of defects differ from each other
and are non-zero, even for vacancies – whereas in pure
metals, because of the cubic symmetry, we find that P11 =
P22 = P33 and P12 = P23 = P31 = 0. Figs. 6 and 7 show
that the values of Pij for vacancies and dumbbells exhibit
significant scattering. However, similarly to the data for
defects in pure metals, there are notable identifiable trends
that we discuss below.

For vacancies, the magnitudes of P11, P22 and P33 are
notably larger than those of P12, P23 and P31, and the
mean values of the off-diagonal elements of the dipole ten-
sor are very close to zero, see Fig. 6. This is expected,
and is consistent with the argument given in Ref. [20]
that averaging over configurations generally gives rise to
the isotropic form of dipole and relaxation volume tensors.
For dumbbells, as in the case of pure metals, values of P22
and P33 are usually similar, whereas P11 can be either
smaller or larger than P22 and P33, cf. Figs. 7a and 7b.
Similarly to pure bcc Fe and Cr, the dipole tensors of

〈110〉 Fe-Fe and Fe-Cr dumbbells are characterised by a
significantly larger value of P11 in comparison with P22 and
P33 over the entire range of alloy compositions considered
here. As before, calculations for 〈110〉 dumbbells were per-
formed for the [011] orientation. On the other hand, Cr-Cr
dumbbells are characterised by notably smaller P11 values,
and larger P22 and P33 values, than Fe-Fe and Fe-Cr dumb-
bells. As a result, Cr-Cr dumbbells have the P11/P22 ratio
much closer to unity than Fe-Fe and Fe-Cr dumbbells.

The fact that the values of P11, P22 and P33 for Cr-
Cr dumbbells are similar does not mean that the elastic
field of these defects is isotropic. The dipole tensor of
every dumbbell defect has large off-diagonal terms. The
main difference between Fe-Fe, Fe-Cr and Cr-Cr dumb-
bells with the [011] orientation is that the two former ones
have only one visibly non-zero off-diagonal Pij element,
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Figure 6: (a) diagonal and (b) off-diagonal elements of elastic dipole tensor for vacancies on Fe and Cr sites in random Fe-Cr alloy structures.
The dashed trend lines equations are given in Table A.4.

namely P23, and the mean values of P12 and P31 are close
to zero, whereas the latter one often has all the off-diagonal
elements that are large. The values of these off-diagonal
elements for Cr-Cr dumbbells also fluctuate stronger than
those for Fe-Fe and Fe-Cr dumbbells. This effect may be
related to the fact that the direction of a Cr-Cr dumbbell
is not necessarily close to [011] as it is the case for Fe-Fe
and Fe-Cr dumbbells. For example, the most stable Cr-
Cr dumbbell in pure Cr is symmetry broken [17] and its
orientation is close to 〈11ξ〉. Orientations of dumbbells in
Fe-Cr alloys will be discussed in Section 4.1.

To understand the changes exhibited by Pij as a func-
tion of Cr content, we computed the trends shown in Figs.
6 and 7. For vacancies, P11, P22 and P33 decrease as a
function of Cr concentration. At low Cr concentration,
these values approximately approach the value observed
for a vacancy in pure bcc Fe. Equations for the trend lines
are given in Table A.4 in Appendix.

The data ranges for Fe-Fe, Fe-Cr and Cr-Cr dumbbells
are divided into two categories: those corresponding to al-
loy compositions below and above 10% at. Cr. The trend
lines for these two concentration ranges may be signifi-
cantly different. For example, the mean value of P11 for
dumbbells in alloys with Cr concentration lower than 10%
at. Cr decreases with Cr content whereas for larger Cr con-
centrations it increases. In the low Cr concentration limit,
the steepest and slightest slopes are observed for the Fe-Fe
and Fe-Cr dumbbells, respectively. At a low Cr concentra-
tion, P11 is close to the value found for these defects formed
on a Cr site in bcc Fe matrix. The mean values of P22 and
P33 for Fe-Cr and Cr-Cr dumbbells are almost constant
over the range of concentrations studied here, whereas for
Fe-Fe, they decrease notably as a function of Cr content
up to the Cr concentration close to approx. 10% at.

To characterise elastic dipole and relaxation volume ten-
sors of point defects in Fe-Cr alloys in a way that is in-
dependent of rotations of coordinates, we have computed
invariants of the two tensors. Invariants of elastic dipole
tensors IP1 , IP2 and IP3 are shown in Fig. S3 and the trend
lines are given in Table S3, whereas the invariants of relax-

ation volume tensors IΩ
1 , IΩ

2 and IΩ
3 are shown in Fig. S4

and the trend lines are given in Table S3 in the Supplemen-
tary Materials. Although the invariants of elastic dipole
and relaxation volume tensor can be useful for the develop-
ment of higher scale models, in Fig. 8 we only show quan-
tities that can be readily observed, the von Mises stresses
produced in the material by the distributed defects, and
the relaxation volumes of defects.

Equation (13) shows that the von Mises stress computed
from invariants IP1 and IP2 depend on the volume of the
simulation cell or, in other words, on the density of de-
fects periodically and homogeneously distributed in the
material. The values shown in the Figs. 8a and 8b were
computed using a 5 × 5 × 5 supercell with the volume of
2836.15 Å3, corresponding to the volume density of defects
of 3.526 · 1026 m−3. Values of the von Mises stress corre-
sponding to any other density of defects can be readily
computed by scaling the values given in Fig. 8 linearly to
any other density of defects.

Fig. 8a shows that the von Mises stress (σvM ) generated
by vacancies, homogeneously and periodically distributed
in specific configurations of Fe-Cr alloys, exhibit consid-
erable fluctuations. The stress developing in the material
depends on the composition of the alloy and the location of
a vacancy in the alloy structure. In alloys containing less
that 10% at. Cr, σvM varies between 20 and 100 MPa.
The mean value is close to 50 MPa, and it appears that
vacancies located at Cr sites produce higher tensile stresses
in the material. In alloys containing higher amount of Cr,
σvM fluctuates even stronger.
σvM for SIA dumbbells also exhibits different behaviour

below and above 10% at. Cr. At lower Cr concentrations,
values of σvM are between 400 and 600 MPa, whereas at
larger Cr concentration the results are more scattered and
values of σvM are between 350 and 700 MPa. Mean val-
ues of σvM for Fe-Cr and Cr-Cr dumbbells do not change
significantly with Cr content and over the entire range of
compositions they vary between 450 and 500 MPa. Values
of σvM for Fe-Fe SIAs are larger than for Fe-Cr and Cr-Cr
dumbbells. At small Cr concentration, the mean value of
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Figure 7: Elements of elastic dipole tensor (a) P11, (b) P22 and P33, (c) P23, and (d) P12 and P13, computed for Fe-Fe, Fe-Cr and Cr-Cr
[011] dumbbells in random Fe-Cr alloys. The dashed trend lines equations are given in Table A.4.

σvM for Fe-Fe dumbbells is close to 500 MPa and it in-
creases with Cr content. For alloys with Cr concentration
above 10%, the mean value of σvM is larger, and is close
to 575 MPa, and it does not change appreciably with Cr
content.

Relaxation volumes of vacancies and dumbbells in ran-
dom Fe-Cr alloys, computed from the first invariants of
the corresponding Ωij tensors, are shown in Figs. 8c and
8d, respectively. Relaxation volumes of vacancies in ran-
dom Fe-Cr alloys are in general more negative than the
volume of a vacancy in pure bcc Fe. Even in the low Cr
concentration limit the mean value of Ωrel of a vacancy is
−2.4 Å3, which is approximately 50% more negative than
Ωrel for a vacancy in bcc Fe. Fig. 8c shows values of mean
relaxation volumes computed for vacancies located at Fe
or Cr sites. The results are noticeably different below and
above 10% at. Cr concentration, and therefore the trend
lines are described more accurately using two linear fits,
one below and another above 10% at. Cr. The most rapid
decrease of the mean relaxation volume as a function of
Cr content is observed for vacancies on a Fe site at low
Cr concentration, whereas Ωrel of a vacancy on a Cr site
increases as a function of Cr content. For Cr concentra-
tions above 10% at. Cr, Ωrel of a vacancy on both sites
decreases as a function of Cr content but the slope of the
fitted line for a vacancy on a Cr site is steeper.

Relaxation volumes of dumbbells are all positive, and

their magnitudes are much larger than those of vacancies
(see Fig. 8d). Results for Fe-Fe, Fe-Cr and Cr-Cr dumb-
bells are different above and below approx. 10% at. Cr.
For Cr concentration below 10% at. Cr, the mean values
of Ωrel for Fe-Cr and Cr-Cr SIAs increases, whereas for
Fe-Fe decrease rapidly as a function of Cr content. As a
result, the mean values of Ωrel for Fe-Fe dumbbells are the
largest at very small Cr concentrations (below approx. 2%
at. Cr) and the lowest for larger Cr concentrations. At a
low Cr concentration, the mean values of Ωrel for the three
types of dumbbells are similar to the values computed for
pure bcc Fe (results for Fe-Cr dumbbells in Fe-Cr alloys
are closer to the values for a dumbbell formed on a Cr
site than on a Fe site in bcc Fe matrix). For Cr con-
centrations above approx. 10% Cr, Ωrel for all the three
types of dumbbells decreases as a function of Cr content,
in agreement with that Ωrel for these dumbbells in bcc Cr
is notably smaller than in bcc Fe. The slopes of the fitted
lines in each case are similar.

Equations for the trend lines describing how the von
Mises stresses and relaxation volumes computed for point
defects vary as a function of Cr concentration are given in
Table A.5 in Appendix. Equations for the trend lines for
invariants IP1 , IP2 , IP3 , IΩ

1 , IΩ
2 and IΩ

3 are given in Table
S3 in the Supplementary Materials.

Comparison of relaxation volumes of vacancies and
dumbbells in random Fe-Cr alloys for the entire range of
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a) b)

c) d)

Figure 8: Von Mises stresses obtained form the invariants of elastic dipole tensors IP
1 and IP

2 (a,b) and first invariants of relaxation volume
tensor IΩ

1 , computed for (a,c) vacancies on Fe and Cr sites and (b,d) Fe-Fe, Fe-Cr and Cr-Cr dumbbells in random Fe-Cr alloys. Calculations
were performed using a 5 × 5 × 5 supercell with volume of 2836.15 Å3, corresponding to the average volume concentration of defects of
3.526 · 1026 m−3. The dashed trend lines equations are given in Table A.5.
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a) b)

c) d)

Figure 9: Relaxation volumes of vacancies on Fe and Cr sites (a,c) and dumbbells (b,d) in random Fe-Cr alloys plotted over the entire range
of compositions (a,b) and for the alloy containing 5% at. Cr (c,d), as a function of the total number of Cr atoms in the NN and NNN
coordination shells of a defect. Linear trends are indicated by dashed lines (see Table A.6).

concentrations and for the alloy with 5% at. Cr as a func-
tion of number of Cr atoms in the local environment of a
defect is given in Fig. 9. As in Fig. 4, point defects in Fe-
5%Cr alloys are surrounded by up to 3 Cr atoms in the NN
and NNN shells. To compare results with those computed
for other Fe-Cr alloys, the latter ones have been separated
into two groups: for point defects with Ndef

Cr smaller and
larger than 3.

Results for the Fe-5%Cr alloy and for all the other alloys
show that the mean relaxation volume of a vacancy on a
Fe site is larger than that on a Cr site if Ndef

Cr equals 0 and
1, and smaller if Ndef

Cr equals 2 and 3. In the group with
the small number of Cr atoms in the local environment
of a defect, Ωrel on a Cr site decreases with increasing
Ndef
Cr for both alloys. However, Ωrel for a vacancy on a Fe

site, averaged over all the alloys, decreases as a function
of Ndef

Cr whereas it slightly increases in the Fe-5%Cr alloy.
In the region with Ndef

Cr larger than 3, Ωrel decreases with
increasing Ndef

Cr for vacancies both on a Fe site and on a Cr
site, which agrees with the results presented as a function
of Cr concentration, cf. Figs. 9a and 8c.

The trends describing mean relaxation volumes of Fe-Fe
and Fe-Cr dumbbells as functions of Ndef

Cr are generally
similar in the Fe-5%Cr alloy and in all the other alloys,
however the mean values obtained for the Fe-5%Cr alloy
are approx. 0.5 Å3 larger, see Figs. 9a and 9c. Similarly

to the formation energies, the most notable difference be-
tween the groups of alloys is observed for Cr-Cr dumbbells
– the mean values for a Fe-5%Cr alloy increase whereas
those averaged over all the alloys decrease as a function
of the number of Cr atoms in NN and NNN around a Cr-
Cr dumbbell. The trends for the mean relaxation volumes
of Fe-Fe and Cr-Cr dumbbells for Ndef

Cr larger than 3 are
almost constant whereas those for Fe-Cr slightly decrease
with the number of Cr atoms in the nearest neighbour
shells. Equations for the trend lines describing mean re-
laxation volumes of point defect as functions of Ndef

Cr are
given in Table A.6 in Appendix.

4. Discussion

4.1. The orientation of dumbbells
Orientations of SIA, defined by the direction of the vec-

tor connecting the two central atoms forming a dumbbell
defect, and explored in the calculations, are schematically
shown – a Cr-Cr type – in Fig. 10a. Both Fe-Fe and Fe-Cr
dumbbells adopt a 〈110〉 orientation after relaxation. This
is similar to the orientation of a dumbbell defect in pure
bcc Fe, where it adopts a 〈110〉 orientation [18, 79, 80].
Variation of directions of Cr-Cr dumbbells is much larger,
see Fig. 10a. In general, most orientations can be classi-
fied as an 〈11ξ〉 orientation where ξ spans the interval from
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0.0 to 2.4. We have combined possible orientations of de-
fects into five different groups, corresponding to different
intervals of parameter ξ, namely 〈110〉 (0.0 < ξ < 0.2),
〈331〉 (0.2 < ξ < 0.4), 〈221〉 (0.4 < ξ < 0.6), 〈112〉
(1.6 < ξ < 2.4) orientations as well as others, see Fig.
10b. The number of dumbbells adopting a particular ori-
entation as a function of the number of Cr atoms in the
1st and 2nd coordination shells around a defect is shown
in Fig. 10c. Examples of alloy configurations in the local
environment of a Cr-Cr dumbbell adopting a particular
orientation are shown in Figs. 10d-g. The most com-
mon direction of a Cr-Cr dumbbell is 〈221〉 (about 48.0%
of all Cr-Cr dumbbells), however this fraction decreases
as the number of Cr atoms in the local environment of a
dumbbell increases. The prevalence of the 〈221〉 direction
(indicated by the aquamarine colour in Fig. 10b) of Cr-
Cr agrees with the earlier results by Klaver et al. [26].
For the configurations containing no Cr atoms in the 1st
and 2nd coordination shells around a self-interstitial de-
fect, the 〈331〉 (purple) and 〈110〉 (navy blue) orientations
are more common (for example, 〈331〉 and 〈110〉 orienta-
tions represent 59.1% and 35.2% of all the directions of
dumbbells that have no Cr atoms in their vicinity). The
occurrence of dumbbells with orientations 〈112〉 (indicated
by the red colour in Fig. 10b) as well as with orientations
with higher crystallographic indices, the so-called ‘others’
(green), increases with the number of Cr atoms in the local
environment of a defect.

4.2. Magneto-volume effects in Fe-Cr alloys

To understand the origin of differences between the re-
laxation volumes of dumbbells on Fe and Cr sites in bcc
Fe, values of Ωrel were correlated with the variation of
the magnitude of the magnetic moment in the supercell
∆M caused by the defect. Fig. 11 shows that smaller
values of relaxation volumes of dumbbells are correlated
with ∆M being more negative. In particular, Ωrel of a
〈110〉 Fe-Cr dumbbell on a Fe site (18.581 Å3) is larger
than that of a 〈110〉 Fe-Fe dumbbell on a Fe site (18.171
Å3) since the sum of magnitudes of magnetic moments
for the former structure is almost 0.5 µB larger. This
suggests that magnetism is a significant factor affecting
structural relaxation and hence relaxation volumes of de-
fects in Fe-Cr alloys. The difference in magnetic properties
between the structures containing Fe-Fe and Fe-Cr dumb-
bells is caused mainly by the differences in magnetic mo-
ments of atoms forming the dumbbells, which agrees with
Refs. [29, 34, 42].

In a 〈110〉 Fe-Fe SIA dumbbell, the magnetic moments
of Fe atoms are small (−0.207 µB) and they are ordered
antiferromagnetically with respect to other Fe atoms. In
a 〈110〉 Fe-Cr dumbbell the magnetic moment of Fe is
larger (0.326 µB) and it is ordered ferromagnetically with
respect to other Fe moments, and antiferromagnetically
with respect to the moment of the Cr atom in the dumb-
bell, which has a notably larger magnitude of magnetic

moment (−0.946 µB). Magnetic moments of atoms in Fe-
Fe and Fe-Cr dumbbells in bcc Fe are in agreement with
the values given in Refs. [34, 66]. Magnetic moments of
Cr atoms in a 〈11ξ〉 Cr-Cr dumbbell are −0.347 µB , and
both are aligned antiferromagnetically with respect to the
magnetic moments of Fe atoms.

Similarly to dumbbells in Fe matrix, there is a corre-
lation between the relaxation volume of a defect and the
variation of the magnitude of the total magnetic moment
in the supercell caused by a defect (∆M), see Figs. 12a-d
(equations of trend lines and R2 values are given in Tables
A.2 and A.6). For vacancies and dumbbells, Ωrel increases
as a function of ∆M . As in bcc Fe matrix, Fe-Cr dumbbells
on a Fe site in a Fe-5%Cr alloy have larger magnitudes of
magnetic moments and consequently larger relaxation vol-
umes than Fe-Fe dumbbells on a Fe site. Slopes of trend
lines for dumbbells indicate that the largest and smallest
variations of Ωrel with ∆M are observed for Fe-Fe and
Cr-Cr dumbbells, respectively. Slopes of trend lines for
vacancies and Fe-Cr do not change significantly depend-
ing on the lattice site where a defect is formed. Values of
Ωrel for defects formed on Cr sites are generally smaller.

Variation of magnitudes of magnetic moments associ-
ated with a defect also influences the formation energy of
a defect. Fig. 12c shows that Eform of vacancies decreases
with increasing ∆M . Comparing the results presented in
Figs. 12a and 12c, we see a correlation between Ωrel and
Eform of vacancies, indeed Eform decreases as the abso-
lute value of Ωrel decreases. According to Fig. 12d, values
of Eform for Fe-Cr and Cr-Cr dumbbells on a Cr site de-
crease whereas those for Fe-Fe and Fe-Cr dumbbell on a
Fe site slightly increase as a function of ∆M . At the same
time, a comparison of Figs. 12b and 12d does not show any
clear correlation between Ωrel and Eform for dumbbells in
Fe-Cr alloys.

4.3. Comparison of the cell relaxation and stress methods

A comparison of results obtained using the stress and
full cell relaxation methods for 160 random Fe-Cr struc-
tures is shown in Fig. 13. Both approaches show that
relaxation volumes and formation energies of dumbbells
in random Fe-Cr alloys decrease with Cr content, see Fig.
13a and 13b. The stress method predicts somewhat larger
values of relaxation volumes and formation energies than
the cell relaxation method, exhibiting a correlation be-
tween Eform and Ωrel. The relaxation volumes of defects
computed using the stress method are on average 2.5%
larger, however there are a few structures where they are
more than 5% larger than the values derived using the cell
relaxation method, see Fig. 13c. Figure 13d shows that
the relative difference between formation energies of de-
fects Eform deduced using the stress and cell relaxation
methods varies as a function of Cr content. Similarly to
the majority of results given in sections above, the relative
formation energy difference exhibits different behaviour in
the two composition intervals, above and below 10% at.
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a)
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d) e)

f) g)

c)

Figure 10: (a) Schematic representation of Cr-Cr dumbbell orientations – the orientations have been normalised and presented in such a way
that the equivalent directions have positive values on X and Y axes, (b) the number of 〈11ξ〉 Cr-Cr dumbbells as a function of parameter ξ
and (c) the number of Cr-Cr dumbbells in a particular orientation as a function of the number of Cr atoms in the NN and NNN coordination
shell of a defect. Examples of alloy configurations in the local environment of a Cr-Cr dumbbell adopting specific orientations: (d) 〈221〉, (e)
〈110〉, (f) 〈112〉, (g) 〈331〉. Fe and Cr atoms are shown by grey and blue spheres, respectively.

Figure 11: Relaxation volumes of dumbbells in bcc Fe matrix plotted
as a function of the change in the magnitude of the total magnetic
moment in the supercell associated with the formation of a defect.

Cr. Above 10% at. Cr, the relative formation energy dif-
ference increases slowly as a function of Cr content. Values
Eform obtained using the stress method do not differ in
general by more than 2% in comparison with values com-
puted using the full relaxation method, and the average
relative formation energy difference in that interval of Cr
concentrations is almost equal to zero. For Cr concen-
trations below 10%, the overestimation of Eform obtained
using the stress method in comparison with that computed
using the cell relaxation method increases towards low Cr
content, reaching approximately −4% for alloys containing
approximately 3% at. Cr. It is worth noting that the elas-
tic correction, implemented following Refs. [12–14, 16, 21],
improves agreement between the results obtained using
both methods. Still, the use of elastic correction often
proves insufficient, as it was found for defect clusters in
Tungsten [43, 44].
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Figure 12: Relaxation volumes (a,b) and formation energies (c,d) of vacancies on Fe and Cr sites (a,c) and dumbbells (b,d) in random Fe-Cr
alloys for the alloy with 5% at. Cr as a function of variation of the magnitude of the total magnetic moment in the supercell, caused by a
defect. Linear trends are indicated by dashed lines (their equations and R2 values are given in Tables A.2 and A.6).

There are several reasons that might be responsible for
the discrepancy. The lattice parameter used in the fixed
volume calculations may influence the predicted relaxation
volumes derived from the stress method. Here the cal-
culations were performed using the lattice parameter of
2.831 Å, whereas random Fe-Cr alloy structures can adopt
the equilibrium lattice parameters up to 2.842 Å. Also, the
computed relaxation volumes may differ depending on the
elastic constants used in the calculations. As was noted
previously, the average elastic constants C̄11, C̄12, C̄44
are the interpolations derived from DFT calculations and
hence they may differ from the values computed for each
specific structure. Moreover, the elastic constants were
computed for the equilibrium lattice parameter whereas
they were applied for the prediction of relaxation volumes
derived from stresses computed for structures with fixed
lattice parameter of 2.831 Å. Furthermore, slightly dif-
ferent convergence parameters were used in the calcula-
tions performed using stress and cell relaxation methods.
For example, the plane-wave energy cut-off for the fixed-
volume calculations was 300 eV whereas for those with full
cell relaxation it was 400 eV.

To evaluate the effect of differences in elastic constants
computed using different energy cutoffs and cell relaxation
conditions on the relaxation volumes, we performed addi-
tional calculations of elastic constants for Fe-5%Cr alloy

structures. Ωrel for a Fe-Cr dumbbell computed using the
plane-wave energy cut-off 300 eV and the equilibrium lat-
tice parameter was 17.96 Å3, for the fixed lattice param-
eter of 2.831 Å and energy cut-off 400 eV it was 17.56 Å3

whereas for the energy cut-off 400 eV and the equilibrium
lattice parameters it was 17.80 Å3, and for the interpo-
lated average elastic constants it was 17.60 Å3. Variation
of results is of the order of 2%, which shows that the in-
accuracy of prediction of elastic constants for alloy struc-
tures might be one of the main reasons for the variation
in relaxation volumes computed using cell relaxation and
stress methods. We note also that the above inaccuracy
does not influence significantly the formation energies of
point defect since the correction terms computed with dif-
ferent elastic constants do not differ by more than 1 meV.

Finally, we note that the values computed using the
fixed cell volume method (the stress method) do not take
into account the non-elastic (non-harmonic) effects, which
are implicitly included in the results obtained using the
cell relaxation method. From the comparison of values of
Eform obtained using the stress method and the cell re-
laxation method, shown in Fig. 13d, it is reasonable to
expect that the non-harmonic effects would play a partic-
ularly significant part in magnetic Fe-Cr alloys with low
Cr concentration.
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Figure 13: Comparison of (a) relaxation volumes and (b) formation energies of SIA dumbbells evaluated using the stress and cell relaxation
methods, and the relative difference between (c) relaxation volumes and (d) formation energies computed using both methods.

5. Conclusions

Concluding this study, we would like to highlight the
clear benefits of an approach combining ab initio treat-
ment of defects with auxiliary analysis based on elasticity.
This has enabled quantifying the elastic effects of expan-
sion and contraction of the lattice due to the fact that the
atoms forming the alloy have different volumes. For exam-
ple, we found that the volume of a substitutional Cr atom
in bcc Fe lattice is approximately 18% larger than the vol-
ume of a host Fe atom. At the same time, the volume
of a substitutional Fe atom in bcc Cr is 5% smaller than
the volume of a host Cr atom. We also found that elastic
dipole and relaxation volume tensors of vacancies and SIA
defects exhibit large fluctuations, with vacancies showing
negative and SIA large positive relaxation volumes. Dipole
tensors of vacancies are nearly isotropic across the entire
alloy composition range. Fe-Fe and Fe-Cr SIA dumbbells
are more anisotropic than Cr-Cr dumbbells. Fluctuations
of elastic dipole tensors of SIA defects are primarily asso-
ciated with the variable orientation of defects. Statistical
properties of tensors elastic dipole and relaxation volume
tensors are analysed using their principal invariants, show-
ing that properties of point defects differ significantly in
alloys containing below and above 10% at. Cr. The von
Mises stresses caused by dumbbells in Fe-Cr alloys are no-
tably larger than those caused by vacancies, which means
that the accumulation of dumbbell SIA defects in irradi-

ated materials gives rise to the significantly larger internal
stresses, and the resulting deformations, than the accumu-
lation of vacancies. The relaxation volume of a vacancy
depends sensitively on whether it occupies a Fe or a Cr
lattice site. The observed correlation between the elas-
tic relaxation volumes and magnetic moments of defects
suggests that magnetism is a significant factor influenc-
ing elastic fields of defects in Fe-Cr alloys. These results
also illustrate the significance of elastic relaxation effects
in Fe-Cr alloys in the context of treatment of extended de-
fects such as dislocation or grain boundaries, where elastic
relaxation may affect segregation and diffusion of solute
atoms in the alloy.
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Appendix A.

Tables A.2, A.3, A.4 and A.6 contain equations for the
trend lines that were shown in Figures in the main text.
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Table A.2: Equations for the trend lines of chemical potentials (µF e/Cr in eV), formation energies (Eform in eV) of vacancies and dumbbells
in random Fe-Cr alloys as a function of the chromium concentration (c(Cr)) or the number of Cr atoms in the vicinity of a defect (Ndef

Cr )
and formation energies (Eform in eV) as a function of change of magnitudes of magnetic moments (∆M in µB) caused by a defect for the
alloy with 5% at. Cr.

Parameter Variation as a function of the variable
in square brackets, denoted here as x Parameter Variation as a function of the variable

in square brackets, denoted here as x
Chemical potentials (see Fig. 1)

µFe[c(Cr)] y = −0.0088x− 8.3193 µCr[c(Cr)] y =
{

3.8323x− 9.606 for x 6 0.1
−0.2328x− 9.2251 for x > 0.1

Formation energies of vacancies (see Figs. 4a and 4c)

E
vac(Fe)
form [c(Cr)] y =

{
−0.5371x+ 2.1263 for x 6 0.1
−0.3504x+ 2.1144 for x > 0.1 E

vac(Fe)
form [Ndef

Cr ] y =
{
−0.0294x+ 2.1291 for x 6 3
−0.0066x+ 2.055 for x > 3

E
vac(Cr)
form [c(Cr)] y =

{
1.09397x+ 2.02881 for x 6 0.1
0.13367x+ 2.05817 for x > 0.1 E

vac(Cr)
form [Ndef

Cr ] y =
{
−0.0613x+ 2.168 for x 6 3
0.0418x+ 1.9212 for x > 3

Formation energies of dumbbells (see Figs. 4b and 4d)

EFe−Feform [c(Cr)] y =
{
−2.47363x+ 4.10369 for x 6 0.1
−2.10125x+ 4.17765 for x > 0.1 EFe−Feform [Ndef

Cr ] y =
{
−0.0447x+ 3.929 for x 6 3
−0.0248x+ 3.8344 for x > 3

EFe−Crform [c(Cr)] y =
{
−4.7541x+ 4.06472 for x 6 0.1
−0.34985x+ 3.63797 for x > 0.1 EFe−Crform [Ndef

Cr ] y =
{
−0.0731x+ 3.78 for x 6 3
0.0125x+ 3.5232 for x > 3

ECr−Crform [c(Cr)] y =
{
−6.92687x+ 4.37945 for x 6 0.1
−0.07179x+ 3.68609 for x > 0.1 ECr−Crform [Ndef

Cr ] y =
{
−0.1225x+ 3.985 for x 6 3
0.0322x+ 3.5469 for x > 3

Formation energies of vacancies in alloy with 5% at. Cr (see Figs. 4e and 12c)
E
vac(Fe)
form [Ndef

Cr ] y = −0.0394x+ 2.1451 E
vac(Fe)
form [∆M ] y = −0.054x+ 2.072, R2 = 0.057

E
vac(Cr)
form [Ndef

Cr ] y = −0.1438x+ 2.2508 E
vac(Cr)
form [∆M ] y = −0.113x+ 2.125, R2 = 0.663

Formation energies of dumbbells in alloy with 5% at. Cr (see Figs. 4f and 12d)
EFe−Feform [Ndef

Cr ] y = −0.0365x+ 4.1879 E
Fe−Fe(Fe)
form [∆M ] y = 0.073x+ 4.501, R2 = 0.187

E
Fe−Cr(Fe)
form [∆M ] y = 0.0176x+ 3.9803, R2 = 0.0034

EFe−Crform [Ndef
Cr ] y = −0.0504x+ 3.942

E
Fe−Cr(Cr)
form [∆M ] y = −0.1552x+ 3.3731, R2 = 0.7784

ECr−Crform [Ndef
Cr ] y = −0.026x+ 4.3029 E

Cr−Cr(Cr)
form [∆M ] y = −0.104x+ 3.778, R2 = 0.738

Table A.3: Equations for the fitted curves of average lattice parameter (a in Å), average elastic moduli (C̄11, C̄12, C̄44 in GPa) as a function
of chromium concentration (c(Cr)) of fully relaxed random Fe-Cr alloy structures (see Figs. 5a-d).
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Table A.4: Equations for the trend lines of diagonal (Pii in eV) elements of elastic dipole tensor for vacancies and elements of elastic dipole
tensor (P11, P22/33, P23, P12/13 in eV) for dumbbells as a function of chromium concentration (c(Cr)) in random Fe-Cr alloy structures.

Parameter Variation as a function of the variable
in square brackets, denoted here as x Parameter Variation as a function of the variable

in square brackets, denoted here as x
Elastic dipole tensors for vacancies (see Figs. 6a-b)
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Elastic dipole tensors for dumbbells (see Figs. 7a-d)
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Table A.5: Equations for the trend lines of von Mises stresses (σvM in MPa) obtained from the invariants of elastic dipole tensors – IP
1 ,

IP
2 – and first invariant of relaxation volume tensor (IΩ

1 = Ωrel in Å3) computed for vacancies and dumbbells as a function of chromium
concentration (c(Cr)) in random Fe-Cr alloy structures with a fixed volume equal to 2836.15 Å3.

Parameter Variation as a function of the variable
in square brackets, denoted here as x Parameter Variation as a function of the variable

in square brackets, denoted here as x
σvM for vacancies (see Fig. 8a) IΩ

1 = Ωrel for vacancies (see Fig. 8c)

σ
vac(Fe)
vM [c(Cr)] y =

{
54.89x+ 46.60 for x 6 0.1
86.04x+ 36.17 for x > 0.1 Ωvac(Fe)rel [c(Cr)] y =

{
−15.957x− 3.126 for x 6 0.1
−2.175x− 4.593 for x > 0.1

σ
vac(Cr)
vM [c(Cr)] y =

{
28.97x+ 55.32 for x 6 0.1
278.33x+ 24.19 for x > 0.1 Ωvac(Cr)rel [c(Cr)] y =

{
4.515x− 4.743 for x 6 0.1
−4.021x− 3.851 for x > 0.1

σvM for dumbbells (see Fig. 8b) IΩ
1 = Ωrel for dumbbells (see Fig. 8d)

σFe−FevM [c(Cr)] y =
{

319.76x+ 503.18 for x 6 0.1
−17.90x+ 575.23 for x > 0.1 ΩFe−Ferel [c(Cr)] y =

{
−12.984x+ 17.93 for x 6 0.1
−4.776x+ 17.192 for x > 0.1

σFe−CrvM [c(Cr)] y =
{

272.57x+ 446.67 for x 6 0.1
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{
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