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Abstract. This paper presents results of extensive analysis of mode excitation observed

during the operation of the Alfvén Eigenmode Active Diagnostic (AEAD) in the JET

tokamak during the 2019-2020 deuterium campaign. Six of eight toroidally-spaced antennas,

each with independent power and phasing, were successful in actively exciting stable MHD

modes in 479 plasmas. In total, 4768 magnetic resonances were detected with up to fourteen

fast magnetic probes. In this work, we present the calculations of resonant frequencies

f0, damping rates γ < 0, and toroidal mode numbers n, spanning the parameter range

f0 ≈ 30 − 250 kHz, −γ ≈ 0 − 13 kHz, and |n| ≤ 30. In general, good agreement is seen

between the resonant and the calculated toroidal Alfvén Eigenmode frequencies, and between

the toroidal mode numbers applied by the AEAD and estimated of the excited resonances.

We note several trends in the database: the probability of resonance detection decreases with

plasma current and external heating power; the normalized damping rate increases with edge

safety factor but decreases with external heating. These results provide key information to

prepare future experimental campaigns and to better understand the physics of excitation

and damping of Alfvén Eigenmodes in the presence of alpha particles during the upcoming

DT campaign, thereby extrapolating with confidence to future tokamaks.

Keywords : Alfvén Eigenmodes, stability, fast magnetics, damping rate, toroidal mode number

1. Introduction

In tokamaks, an energetic particle (EP) population, such as radio frequency (RF) heated ions

or DT alphas, can destabilize Alfvén Eigenmodes (AEs). In turn, these AEs can lead to an

increase in EP transport and decrease in fusion performance. Understanding AE stability,

i.e. driving and damping mechanisms, is therefore essential to the operation and success of

future tokamaks with significant alpha particle populations, such as ITER [1], SPARC [2],

and other devices.

‡ Author to whom correspondence should be addressed: rating@mit.edu
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In the JET tokamak, Toroidal Alfvén Eigenmodes (TAEs) can be destabilized by fast ion

populations from ion cyclotron resonance heating. These unstable modes are typically easily

identifiable as coherent structures, with well-defined frequencies and toroidal mode numbers,

in the Fourier spectra of fast magnetic probe data. For unstable AEs, their total growth rate is

positive, γ > 0, as the fast ion drive overcomes various damping mechanisms, e.g. continuum,

radiative, and electron/ion Landau damping. However, in the case of overwhelming damping,

AEs cannot be seen in the magnetic spectra without external excitation; this scenario may

even occur in upcoming JET DT experiments if the alpha particle population is insufficient

to destabilize the modes. Thus, in order to better study and understand AE stability, the

Alfvén Eigenmode Active Diagnostic (AEAD, or AE antenna) [3,4] is used in JET to actively

excite, or probe, stable AEs and measure their resonant frequencies ω0 = 2πf0, toroidal mode

numbers n, and total damping rates γ < 0.

In this paper, we provide an overview of the operation and measurements of the AE

antenna during the 2019-2020 JET deuterium campaign. We note that many past works have

analyzed or reported data from previous campaigns; these include studies with the original,

low-n saddle coils [3, 5–24], the intermediate-to-high-n, eight antenna system [25–33], and

the most recent upgrade [4, 34, 35], among others. The outline of the rest of the paper is

as follows: In Section 2, we briefly review active excitation of Alfvén modes with the AE

antenna. Section 3 describes resonance detection with the fast magnetics system and details

the calculations of f0, γ/ω0, and n. In Section 4, we further explore operational and parameter

spaces, noting trends in the data and suggesting opportunities for further analysis. Finally,

a summary is provided in Section 5.

2. Active antenna excitation

The original AE antenna system consisted of saddle coils capable of exciting AEs with

low toroidal mode numbers |n| ≤ 2 [3, 6]. From 2007-2008, an upgrade [25, 36, 37]

involved the installation of eight in-vessel, toroidally-spaced antennas - two sets of four -

situated below the midplane at R ≈ 3.68 m, Z ≈ −0.65 m and with toroidal positions

φ ≈ {0, 4.7, 9.4, 14.1, 180, 184.7, 189.4, 194.1} degrees. Each antenna comprises 18 turns and

has poloidal and toroidal dimensions ∼ 20 cm × 20 cm. The antennas can be operated in

three frequency ranges f = 25−50 kHz, 75−150 kHz, and 125−250 kHz, with each frequency

filter allowing antenna currents up to Iant ≈ 10 A, 7 A, and 4 A, respectively, at the maximum

frequencies. A synchronous detection system is used to identify [5] and track [7] resonances

in real time.

To find stable AEs, the antennas’ frequencies are simultaneously scanned within a given

filter’s range at rates |df/dt| ≤ 50 kHz/s, 100 kHz/s, and 200 kHz/s, respectively, for the

filters above. The operational space of the AE antenna during the 2019 JET deuterium

campaign is visualized in Fig. 1a; the histogram (black) shows the number of data points

Nbin collected within each frequency bin, normalized to the total number of data points Ntot.

(Throughout the paper, Ntot will be noted for each histogram or distribution.) Error bars -
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though impossible to see in the black histogram - are included to indicate the uncertainty from

counting statistics, calculated here as
√

Nbin/Ntot. As can be seen, the system was operated

more frequently with the high frequency filters, and no data exists in the inaccessible range

f = 50−75 kHz. In total, the AE antenna was operated during 676 plasma discharges during

the 2019-2020 deuterium campaign, spanning JPN 93063− 96855.
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Figure 1: Histograms (normalized) of the (a) antenna operational space and resonance detection

space versus frequency (Ntot = 4768) and (b) ratios comparing resonant, estimated TAE, and

MISHKA-evaluated [38] frequencies (Ntot = 3780). Uncertainties are shown as error bars.

Following a recent system upgrade [4], six new amplifiers allow antennas 1-5 and 7 to be

powered and phased independently. This marks a significant improvement over the previous

AE antenna feed system, which had only 0 or π phasing. Now, antenna phases can be

carefully chosen so that the injected power spectrum is maximal at toroidal mode numbers

as high as |n| ≈ 20. The operational space for the dominant applied toroidal mode number

is shown in the normalized histogram (black) of Fig. 2a. The antenna was operated most

frequently with phases n = 0,−1,−4 and −10, with positive n defined in the direction of

the plasma current Ip. These were effectively randomly chosen by the operators in order to

probe even vs odd and low vs high toroidal mode numbers. The predominance of negative

n values in the applied mode number was an operational oversight as Ip is typically directed

in the −φ direction in JET. The calculation of n will be discussed in the following section.

3. Resonance detection and parameter estimation

As the antenna frequency passes through the AE resonant frequency, the plasma responds

like a driven, damped harmonic oscillator. The resulting magnetic response is measured by

a set of fourteen toroidally-distributed fast magnetic probes, listed in Table 1. This marks

an improvement over past analyses for which only ten probes - or fewer - were available [33].

The magnetic signals are synchronously-detected at the antenna frequency with an effective
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Figure 2: Histograms (normalized) of (a) toroidal mode numbers applied by the antenna (Ntot =

17103) and estimated of the resonances using SparSpec (Ntot = 3549), and (b) the absolute difference

between the applied antenna toroidal mode number and that estimated of each resonance using the

chi-square (Ntot = 2328) and SparSpec (Ntot = 3505) methods. All data are restricted to |n| ≤ 10,

and estimations require a ‘confidence factor’ X ≥ 2 or A ≥ 2 (see text for details). Uncertainties

are shown as error bars.

band-pass filter of width ∆f ≈ 0.1 kHz [7]. This gives a time-evolving amplitude and phase

for each probe; for example, see those in Fig. 3b. The data from all probes are then used to

calculate the AE resonant frequency f0, damping rate γ, and toroidal mode number n.

Table 1: Fast magnetic probes and their toroidal positions rounded to the nearest degree. Those

with names beginning with H or T are used to calculate the toroidal mode number.

Probe H301 H302 H303 H304 H305 T001 T002 T006 T007 T008 T009 I801 I802 I803

Angle 77 93 103 108 110 3 42 183 222 257 290 317 317 318

3.1. Resonant frequency and damping rate

For an driven, weakly-damped harmonic oscillator, i.e. |γ/ω0| � 1, the system response to a

driving frequency ω is well-approximated by the transfer function [3, 5, 39]

H(ω) =
1

2

(
r

i(ω − ω0)− γ
+

r∗

i(ω + ω0)− γ

)
+ offset, (1)

with r a complex residue and ∗ denoting the complex conjugate. The resulting pole in the

complex plane can be seen in Fig. 3b for ten probes (see caption for details). A fit of Eq. (1)

gives values ω0 = 2πf0 and γ/ω0 for each probe, along with associated uncertainties ∆f0 and

∆(γ/ω0). In this work, the final fitted values of f0 and γ/ω0 are calculated as the mean of all

probes’ fits with inverse variance weighting; here, the variance is taken to be the square of the
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uncertainty. The total uncertainty is then calculated as the standard error of the weighted

mean in a way similar to [40], except that the inverse variance is (again) used for weighting,§
which actually makes this estimation more conservative.
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Figure 3: (a) The toroidal magnetic field and central electron density; estimated TAE, antenna,

and resonant frequencies; uncorrected and corrected damping rates; and toroidal mode numbers

calculated by both SparSpec and chi-square methods, with a ‘confidence factors’ X ≥ 2 and A ≥ 2

(see text for details), for JPN 94654. (b) For one resonance, data from ten fast magnetics probes:

amplitudes normalized to their maxima, phases (only those used for the toroidal mode number

calculation), complex representations, and resulting chi-square and SparSpec amplitude spectra

limited to |n| ≤ 7. From Table 1, probes used are H301-5, T006/7, and I801-3.

An automatic resonance detection algorithm was run on all 676 plasma pulses with

AE antenna operation. Each probe was calibrated for its frequency-dependent response.

The sum of all magnetic probes’ amplitudes was used to identify peaks in signal - i.e.

possible resonances - in an unbiased way. Selection criteria for the data to be fit with

Eq. (1) include the following: The maximum amplitude of each peak must be at least 20%

higher than its neighboring minima. The time duration of each peak must be in the range

∆t = 10− 200 ms, and a phase change of ∆θ = 55− 180 degrees must occur.‖ Any fits with

uncertainties ∆f0 > 10 kHz or ∆(γ/ω0) > 10%, or R-squared “goodness of fit” R2 < 0.8

are discarded outright. Of those remaining, data from least three probes are needed to

compute the weighted average. After this initial filter, data presented in this paper are also

§ As opposed to the square of the inverse variance.
‖ During real-time resonance tracking, the transitions between positive and negative antenna scan rates, i.e.

df/dt → −df/dt, can occur so quickly that only a small phase change, e.g. ∆θ ≈ 1 rad ≈ 57 degrees, is

observed.
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subject to the constraints of Table 2: The first three constraints increase our confidence in

the probes’ collective measurement. The last constraint filters out noise due to high neutral

beam injection (NBI) power and associated edge localized modes (ELMs), as done in [24].

However, note that there are novel measurements of stable TAEs at high external heating

powers (NBI + RF) ∼ 25 MW, which will be explored in future work.

Table 2: Minimum constraints on data in this paper.

Parameter Upper bound

Uncertainty in resonant frequency ∆f0 ≤ 1 kHz

Normalized damping rate −γ/ω0 ≤ 6%

Uncertainty in damping rate ∆(γ/ω0) ≤ 1%

NBI power PNBI ≤ 7 MW

In total, there were Ntot = 4768 resonances detected in 479 pulses which satisfied the

above criteria. The frequencies of these resonances are shown in the histogram (purple)

of Fig. 1a. We see that the number of observations increases with frequency, with most

having f0 ≥ 200 kHz, a typical range for TAE frequencies in JET. An estimate of the TAE

frequency, calculated as fTAE ≈ B0/4πq0R0
√
µ0meffne0, is shown for pulse JPN 94654 in

Fig. 3a. Here, on-axis parameters are the toroidal magnetic field B0, safety factor q0, major

radius R0, and electron density ne0; the vacuum permeability is µ0, and effective mass is

meff ≈ mH(2 − nH/ne − nHe3/ne), with mH the mass of hydrogen. The estimated frequency

fTAE and resonant frequency f0 agree well for JPN 94654, and the real-time resonance tracking

system is also successfully demonstrated in this pulse.

The ratio of fitted resonant frequencies to their corresponding estimated TAE frequencies

is shown in the histogram (black) of Fig. 1b. The histogram peaks at a ratio of f0/fTAE = 1.2

and skews toward values f0/fTAE > 1, which has been observed for AE antenna data

previously [6, 19]. This can be compared with the ratio of resonant frequencies to the TAE

frequencies calculated by the MHD code MISHKA [38], also shown in Fig. 1b (purple). To

calculate fMISHKA, the code HELENA [41] was first used to convert the magnetic geometry

from EFIT [42] into the format required by code CSCAS [43], which calculates the Alfvén

continuum. Then MISHKA [38] was used to calculate mode structures and final TAE

frequency estimates for n = 0 − 7. The histogram of f0/fMISHKA uses the value of fMISHKA

with the same estimated |n| as the resonance.

As expected, f0 agrees better with fMISHKA than fTAE, although the histogram is still

skewed toward f0/fMISHKA > 1. One likely cause for this discrepancy is the uncertainty in

the safety factor profile calculated by standard EFIT; this can be better constrained with

Motional Stark Effect or Faraday rotation data, but such data were not available for every

pulse. Plasma rotation will also shift the mode frequency with respect to the lab frame;

however, because rotation was not regularly diagnosed, it has not been included in this

analysis.
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3.2. Damping rate correction

The transfer function of Eq. (1) is technically only valid for weakly-damped harmonic

oscillators with constant resonant and driving frequencies. This is not the case in these

experiments as both the antenna and resonant frequencies are changing in time. For most

cases, |df0/dt| � |df/dt|, so this is no issue. However, when |df0/dt| ∼ |df/dt|, the resonant

peak can appear much sharper or broader than the true damping rate would allow. Modifying

Eq. (1) presents a challenge as the true differential equation representing the physical system

now involves additional time dependencies ω(t) and ω0(t). Even linear approximations, e.g.

ω(t) ≈ ω + αt, introduce nonlinearities which have no analytical solution.

Therefore, Eq. (1) was used for the calculation of all damping rates, and a correction was

applied in post-processing, as has been done previously [7]. This corrective “lookup table”

was assembled in the following way: The amplitude and phase of a driven, damped harmonic

oscillator were simulated for a range of “true” damping rates and linearly-varying driving and

resonant frequencies, spanning all values in our database: −γ/ω0 ∈ [0.1%, 6%], (df0/dt)/f0 ∈
[0, 1] s−1, and (df/dt)/f0 ∈ [−1.7, 1.7] s−1.¶ The resulting synthetic data were fit with

Eq. (1) to create a map from “true” to “erroneous,” or corrected to uncorrected, damping

rates. Finally, the total uncertainty was taken as the sum of corrected and uncorrected

uncertainties in quadrature.

An example of the difference between corrected and uncorrected damping rates can be

seen in Fig. 3a. In JPN 94654, the AE antenna scan rate was |df/dt| = 150 kHz/s, and the

resonant frequency changed at a rate −df0/dt ≈ 20 − 40 kHz/s as determined from real-

time tracking of the mode.+ The uncorrected damping rate is observed to alternate between

lower and higher values depending on the sign of df/dt. For most resonances, the corrected

damping rate falls in between the two extremes and varies more smoothly in time. Unless

otherwise noted, all damping rates reported in this paper are the corrected values, e.g. in

Figs. 4b and 5a.

3.3. Toroidal mode number

The toroidal mode number of the detected resonance is estimated using only those probes

located on the outer wall at approximately the same radial and poloidal positions; these

probes’ names begin with H or T in Table 1. Of the eleven available probes, at least three

must have had “good” resonance fits, as described above, to be added to the database; thus,

there are instances of resonances for which we are confident in the fitted values of f0 and

γ/ω0, but have no estimate of n.

Following the standard convention [44], positive n are measured in the co-current, i.e.

co-Ip, direction. In JET, the normal operating scenario is Ip < 0 and B0 < 0, meaning

both are directed clockwise (φ < 0) when viewing the tokamak from above; this is the case

¶ For (df0/dt)/f0 < 0, the signs of df0/dt and df/dt can be flipped.
+ For isolated resonances, i.e. no real-time tracking, df0/dt is calculated from the estimated fTAE.
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for all pulses in our database. Thus, positive (negative) n are oriented clockwise (counter-

clockwise). As mentioned, this also explains the operational preference for negative phasing

(see Fig. 2a) which is in the φ > 0 direction.

The toroidal mode number is perhaps the most difficult parameter to assess of a

resonance due to the reliance on multiple probes, possible superposition of modes, and

aliasing effects. Yet knowing the toroidal mode number is critical to studying n-dependent AE

stability. Past analyses of AE antenna data have used several different methods to calculate

n, including linear fitting [18] and sparse spectral decomposition [23–33]. In this work,

we pursue two complementary methods of n evaluation: The first is a weighted chi-square

calculation using only phase information; the second utilizes the SparSpec algorithm [23] to

decompose both probe amplitude and phase information.

3.3.1. Chi-square evaluation

For the first method, we minimize a weighted, reduced chi-square spectrum within the

range of resolvable toroidal mode numbers. For N “good” probes and a range of toroidal

mode numbers n ∈ [−nmax, nmax], the reduced chi-square spectrum is computed as

χ2(n) =
1

N2

N∑
i=1

[
N∑
j=1

min{[n(φj − φi)− θj]2}
σ2
j

/
N∑
j=1

1

σ2
j

]
. (2)

Here, φj is the toroidal position of each probe j (see Table 1), θj is the corresponding phase

angle of the probe signal at the resonant frequency f = f0, and the inverse variance weighting

uses the uncertainty of the normalized damping rate measurement σj = ∆(γ/ω0). The inner

sum over all probes j is the typical chi-square calculation, while the outer sum over all probes

i allows each probe to be considered the reference at the origin φ = 0. Note that minimum

difference between angles is used in the actual computation, since φ and θ are periodic in 2π.

The range of resolvable toroidal mode numbers, |n| ≤ nmax, depends on the probes

used in each evaluation of Eq. (2). As shown in Appendix A, the theoretical nmax is

equal to the least common denominator of all probe positions φi/π, assuming that these

are rational numbers and that one probe is at the origin φ0 = 0. In practice, nmax can

be computed through brute force by comparing each n of interest. In this work, we allow

a generous uncertainty in the phase, ∆θ = 30 degrees, which makes our estimate more

conservative. Sometimes, nmax and −nmax are indistinguishable; in this case, the range

defaults to n ∈ [−nmax + 1, . . . , nmax]. For this analysis, we cap the value at nmax ≤ 10,

although the true value is often nmax ∼ 20 or greater. We have chosen this upper bound

based on the toroidal mode numbers of destabilized TAEs observed in JET; for example, see

those in Fig. 12 of [45].

The final estimate of the toroidal mode number n0 is taken as the value which minimizes

the chi-square spectrum, min [χ2(n)] = χ2(n0), within a given range |n| ≤ nmax. To quantify

our confidence in this estimate, we define a “confidence factor” X as

X =
min [χ2(n 6= n0)]

χ2(n = n0)
≥ 1. (3)
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In other words, the minimum χ2 value is smaller than all others in the spectrum by a factor

X, and our confidence increases as X increases.

3.3.2. SparSpec evaluation

Borrowing a technique [46] from the field of astronomy, the SparSpec code [23] utilizes

the “sparse” representation of signals - i.e. data from a limited set of unevenly spaced

magnetic probes - and performs a spectral decomposition to find a superposition of toroidal

modes. Details of this calculation [23, 46], its real-time implementation on JET [27, 29, 33],

and associated analyses [24–26, 28, 30–32] can be found in a variety of references. A brief

overview is given here: For N probes at toroidal positions φ = [φ1, . . . , φN ], their complex-

valued measurements can be represented as y = [y1, . . . , yN ]. For a range of toroidal mode

numbers nj, a matrix can be created with complex-valued components Wjk = exp(injφk).

The aim is then to minimize the function

J(x) = ||y −Wx||2 + λmax
(
W †y

)∑
j

|xj|, (4)

where λ ∈ [0, 1] is a free parameter, W † is the conjugate transpose of W , and xj is the fitted

amplitude of mode nj. When λ = 0, Eq. (4) is just a linear least-square fit; however, for

λ > 0, the second term of Eq. (4) is a cost function penalizing additional non-zero amplitudes

xj.

In this work, we evaluated SparSpec over a range of toroidal mode numbers |n| ≤ 30 with

a cost function parameter λ = 0.85, a value found to work well in previous studies [27, 29].

In theory, this combination should lead to noise in the signal being “filtered out” as low-

level amplitudes at high mode numbers. Then, just as with the chi-square evaluation in the

previous section, the range of toroidal mode numbers was limited to those resolvable by the

available probes. In past works, this spectral decomposition was then used to compute the

resonant frequency and damping rate of each individual mode contributing to the observed

resonance. Here, for simplicity, we report the “dominant” mode n0 having the largest

amplitude |x0| = max(|xj|). We compute another ‘confidence factor’ A similar to Eq. (3),

but comparing the maximum (absolute) amplitude to all others in the SparSpec spectrum,

i.e.

A =
|xj(nj = n0)|

max |xj(nj 6= n0)|
≥ 1. (5)

In other words, the absolute amplitude of the dominant mode is greater than that of each

other mode by this factor A, and our confidence increases as A increases.

3.3.3. Results

Toroidal mode number estimates using both chi-square and SparSpec calculations, with

confidence factors X ≥ 2 and A ≥ 2, respectively, are shown in Fig. 3a for JPN 94654. For

this pulse, all estimates are n0 = 0. The chi-square and SparSpec spectra are also shown for

one resonance in Fig. 3b; both show a “confident” prediction of n0 = 0. Since TAEs cannot
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have n = 0, this could indicate a measurement of a Global Alfvén Eigenmode (GAE) [47,48]

which has been observed previously in JET; see [7, 14, 30,49] and others.

All resonances’ toroidal mode numbers, evaluated with SparSpec and a confidence factor

A ≥ 2, are shown in the histogram (purple) of Fig. 2a.∗ As with the antenna operational

space, most resonances are estimated to have n = 0, with the number of observations generally

decreasing as |n| increases. A similar trend was observed in past AE antenna data; see Fig. 3

in [30]. The predominance of n = 0 measurements has a few explanations: First, a subset

of these could truly be GAEs, as mentioned. Additionally, there could be a superposition of

modes dominated by n = 0; identifying subdominant modes via SparSpec will be explored

in future work. Finally, as the number of magnetic probes with “good” fits decreases, the

range of resolvable n often decreases as well; this biases measurements toward low-n.

The absolute difference between the applied antenna and estimated resonance mode

numbers, |nant − n0|, is shown in Fig. 2b for both chi-square and SparSpec evaluations

with confidence factors X ≥ 2 and A ≥ 2, respectively. Importantly, Fig. 2b confirms

the successful operation of the AE antenna. Recall that the antenna and resonant toroidal

mode numbers are estimated in the same way, but ultimately come from two different sources:

antenna currents and magnetic signals. The histogram is peaked at a difference of zero and

decreases exponentially as the separation increases. Note the “dips” at odd differences (i.e.

|nant − n0| = 3, 5, . . .) and “peaks” at even differences (i.e. |nant − n0| = 4, 6, . . .). This is

caused by the discrete antenna system injecting power into a spectrum of toroidal modes,

often preserving parity; for example, see the driven n-spectrum in Fig. 2 of [30]. Note that

the salient peak at |nant−n0| = 10 is an artifact due to the nearly n = 10 spacing of a subset

of probes in Table 1 [23,24].

Finally, note that while we consider toroidal mode number estimations in range |n| ≤ 10

to be most plausible, observations of |n| > 10 are still prevalent: ∼ 60 measurements via the

chi-square method with X ≥ 2 and ∼ 200 measurements from SparSpec with A ≥ 3. These

will be investigated more carefully in future work.

4. Observations in plasma parameter space

In the previous section, we compared the operational space of the AE antenna with the

resonances’ parameter space. In this section, we comment on the plasma parameter space

within which these resonances were observed. It is important to note that there are several

layers to the exploration of this parameter space: First, there are data associated with only

observations of resonances, such as the histogram of resonant frequencies in Fig. 1a. Then

there are observational data normalized to the antenna operational space. For example, we

observed fewer resonances at low frequencies f = 25−50 kHz, but also operated the antenna

less often in that frequency range. An even deeper layer could consider the existence of AEs

(or other resonances) in any frequency range and the required accessibility of our antenna

∗ Note that a histogram of data from the chi-square evaluation is not shown in Fig. 2a because it is almost

identical to - i.e. agrees well with - that from SparSpec.
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to probe them. However, to learn this accessibility/existence space would require extensive

computational efforts and would be sensitive to many uncertainties, so it is not pursued in

this paper.

Ranges of plasma parameters in our database are given in Table 3 and are denoted

by the 5th and 95th percentiles of each parameter distribution. These can be compared to

a similar database in [30]; see Table 1 therein. Note that in [30] only ohmically heated

plasmas were used to construct the database. Of the 4768 resonances in our data set,

the proportions measured in limiter and X-point magnetic configurations were ∼ 17% and

∼ 83%, respectively. Unless otherwise noted, data in this paper include both limiter and

X-point configurations. The effects of plasma shaping and plasma-antenna coupling on AE

measurements have been investigated in past works [14, 20, 22, 25, 26, 28, 30, 31, 33] and will

be explored for our database in a future study. In this section, we highlight a few salient

observations and trends, but note that extracting physics from the database will require

careful data filtering, proper statistical analysis, and physics-based guidance.

Table 3: Ranges of plasma parameters for the resonance database: plasma current, on-axis

toroidal magnetic field, central electron density and temperature, NBI and RF heating powers,

plasma-antenna separation, ELM frequency, central and edge safety factors, edge magnetic shear,

elongation, upper and lower triangularities, normalized beta and internal inductance.

Parameter 5th percentile 95th percentile

Ip (MA) 0.74 1.97

B0 (T) 1.74 3.41

ne0 (1019 m−3) 1.52 4.73

Te0 (keV) 1.04 2.50

PNBI (MW) 0.00 2.19

PRF (MW) 0.00 2.86

dsep (cm) 9.98 16.74

fELM (Hz) 0.00 14.30

q0 0.84 2.21

q95 3.21 7.79

s95 3.00 5.81

κ 1.27 1.67

δu 0.00 0.25

δl 0.02 0.35

βN 0.10 0.54

`i 1.00 1.70

The probability of resonance detection, normalized to the antenna operational space, is

shown as a function of plasma current Ip in the histogram of Fig. 4a. Each bin accounts for

the number of resonance observations and the number of times the antenna operated within

the bin’s range. The error bars represent uncertainties from counting statistics of both values,
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propagated appropriately. Interestingly, there is a steep drop-off in the detection probability

for plasma currents beyond Ip > 2 MA; that is, we were less likely to measure resonances

when operating above 2 MA. The detection probability is actually zero for Ip > 3 MA. One

explanation for this could be that the (fixed) antenna currents have a lower perturbative

effect as Ip increases. However, there could be a variety of other conflating factors in these

high performance discharges which contribute to this observation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ip (MA)

0.00

0.05

0.10

0.15

0.20
res. detection normalized to op. space

(a)

0 1 2 3 4 5 6 7
P (MW)

0.0

0.1

0.2

0.3

0.4 NBI (RF = 0)
RF (NBI = 0)

(b)

Figure 4: Histograms of the probability of resonance detection normalized to the operational space

versus (a) plasma current (Ntot = 4786) and (b) NBI (Ntot = 3777) and RF (Ntot = 4392) heating

powers. Uncertainties are shown as error bars.

In Fig. 4b, we show the probability of resonance detection, again normalized to the

antenna operational space, as a function of heating power. For NBI heating only, the detection

probability is relatively uniform for PNBI ≤ 3.5 MW, but drops sharply for higher powers.

This could be explained by ion Landau damping from an increased population of NBI ions;

such an effect has been noted before in JET [7, 17, 45]. In fact, the damping rate of n = 1

TAEs was found to decrease for PNBI = 0−3 MW but increase beyond PNBI > 3 MW in [17].

Note that the AE antenna was operated for heating powers up to PNBI ≈ 30 MW in the

2019-2020 campaign. However, as discussed previously, noise in the magnetics signals, such

as that due to ELMs, is particularly prevalent for PNBI > 7 MW and can be misidentified

as resonant peaks. Therefore, these data were excluded, as has been done in previous AE

antenna studies [24].

For RF heating only, the probability of detection also decreases sharply beyond PRF >

1.5 MW, although a slight increase is observed as power increases from PRF = 4 − 5 MW.

One explanation for this could be increased AE drive from larger RF-heated fast ion

populations, bringing otherwise immeasurable damping rates into the “measurable” range,

i.e. −γ/ω0 ≤ 6%. In [7], increasing RF power was found to increase the damping rate

(stabilize) n = 0 GAEs, but decrease the damping rate (destabilize) n = 1 TAEs. Future work

will look to delineate the effects of fast ion drive for GAEs and TAEs with low, intermediate,
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and high |n| values.

Normalized damping rate measurements are shown as a function of the edge safety

factor q95, as determined by EFIT, in the scatter plot of Fig. 5a. These data come only from

resonances measured during X-point, or diverted, configuration of the magnetic geometry.

Each data point is 85% transparent, so that high density regions of parameter space are

darker, e.g. q95 = 3 − 6. While there is significant spread in the data, we observe a

general trend of increasing |γ/ω0| as q95 increases, confirmed by a simple linear fit of the

data. Increasing q95 - and thus changing the q-profile - could increase shear and continuum

damping, leading to this trend. In previous studies of AE antenna data, the damping rate has

been found to increase with increasing q95/q0 and q95− q0 for |n| = 3 TAEs [31], but decrease

with increasing q95 for |n| = 7 modes [30]. A detailed study of our database, including

discrimination by toroidal mode number, is left for future work.
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Figure 5: (a) Damping rates versus q95 for only X-point configuration (Ntot = 3842). Uncertainties

are shown as error bars, and data are restricted to ∆(γ/ω0) ≤ 0.5%. A simple linear fit is overlaid.

(b) Probability density functions of damping rate for heating with NBI only (Ntot = 395), RF only

(Ntot = 1025), or neither (Ntot = 3592). Note the logarithmic horizontal and vertical axes.

Because the uncertainty in the damping rate can be of the same order as the damping

rate itself, i.e. ∆(γ/ω0) ∼ |γ/ω0|, it is ill-advised to visualize these data in histograms.

Instead, we can construct a probability density function (pdf) assuming each measurement is

a Gaussian pdf with mean equal to |γ/ω0| and standard deviation equal to ∆(γ/ω0). Three

pdfs of the damping rate are shown in Fig. 5b for no external heating, only NBI, and only

RF. With no heating, the pdf is peaked around |γ/ω0| ≈ 0.2% and decreases exponentially

as the damping rate increases. With only NBI heating, there is an increased probability

of damping rate measurements near |γ/ω0| ≈ 0.3% − 0.4%, which could be due to NBI ion

Landau damping; damping rates above |γ/ω0| > 0.5% are less likely, however. A similar trend

is seen for RF heating only: an increase in probability around |γ/ω0| ≈ 0.3% − 0.7%, but

a decrease beyond |γ/ω0| > 0.7%. As mentioned previously, this decrease in high damping
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rate measurements might be due to AE drive from RF-heated fast ions. A closer look at this

data set is left for future analysis.

5. Summary

In this paper, we summarized the operation of the Alfvén Eigenmode Active Diagnostic, or

AE antenna, during the 2019-2020 JET deuterium campaign. Since its recent upgrade, six

of the eight toroidally-spaced antennas were independently powered and phased to excite

stable MHD modes with frequencies spanning f = 25 − 250 kHz (see Fig. 1a) and toroidal

mode numbers |n| ≤ 30 (see Fig. 2a). Synchronously-detected signals from fourteen fast

magnetic probes (see Table 1) were used to calculate mode parameters in a robust way:

Resonant frequencies f0 and damping rates γ were calculated as weighted means of all (at

least three) probes’ individual transfer function fits (see Eq. (1) and Fig. 3b). In general,

resonant frequencies agree well with both estimated TAE frequencies and those calculated

with MISHKA, although the match is better with the latter (see Fig. 1b). The damping rate

was also corrected for time-varying AE antenna and resonant frequencies (see Fig. 3a).

For each resonance, the toroidal mode number was estimated in two ways,

via (i) minimization of a weighted, reduced chi-square spectrum (see Eq. (2)) and

(ii) maximization of the mode amplitude from sparse spectral decomposition (SparSpec, see

Eq. (4)). Both methods were evaluated over the range of resolvable n, which depends on the

positions of (at least three) probes with sufficiently good measurements of that resonance.

While the discrete AE antenna system injects power into its own n-spectrum, a comparison

of the dominant antenna-applied mode number and that estimated of the resonance showed

good agreement (see Fig. 2b). In other words, the AE antenna successfully excited modes

with similar mode number, or at least typically preserving parity. Most common were

measurements of n = 0, which could be true GAEs or caused by a superposition of modes.

Observations of TAEs generally decreased with increasing |n| ≤ 10 (see Fig. 2a). However,

some modes with 10 < |n| ≤ 30 were measured with high confidence (X > 3 in Eq. (3) and

A > 3 in Eq. (5)); these will be investigated in future work.

A database was constructed from 4768 resonances detected in 479 pulses spanning a wide

range of plasma parameters (see Table 3). Data were also filtered to reduce uncertainties and

remove noise (see Table 2). Several initial trends were observed: The probability of resonance

detection decreases sharply for plasma currents Ip > 2 MA (see Fig. 4a); while this could

simply be due to a decrease in the relative magnitude of the antenna’s perturbation, there

are also likely other conflating factors of high performance discharges. Furthermore, damping

rates increase with the edge safety factor (see Fig. 5a), likely due to increased continuum

damping. Finally, a competition between ion Landau damping and fast ion drive may be

seen in two ways: First, the probability of resonance detection decreases as external heating

power increases (see Fig. 4b), and damping rates −γ/ω0 > 1% are less likely when external

heating is applied (see Fig. 5b).

This paper has laid the groundwork for many future studies utilizing this database,
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including statistical analyses of the bulk data as well as pulse identification for detailed

analysis and comparison with modeling. Of particular interest will be the investigations

high-n (|n| > 7) modes and their stability. In addition, isotope effects and, importantly,

alpha drive will be explored as data is collected in the upcoming hydrogen, tritium, and DT

campaigns.
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Appendix A. Calculation of the maximum resolvable toroidal mode number

In this section, we will determine the range of distinguishable, or resolvable, toroidal

mode numbers n for a given set of probe toroidal locations φk. This is related to non-

uniform/aperiodic sampling of the discrete Fourier transform.

Consider a toroidal array of N fast magnetic probes located at different toroidal angles

φk ∈ [0, 2π) for k ∈ [1, N ]. For simplicity, let all probes have the same radial and poloidal

position, and let φ0 = 0. For a magnetic perturbation with toroidal mode number n, the

phase of the (appropriately-filtered) signal of probe k is θk = nφk ∈ [0, 2π).

Consider two toroidal mode numbers ni and nj, with ni > nj. The signals produced by

these two modes will be indistinguishable if

mod (niφk, 2π)−mod (njφk, 2π) = 0, ∀φk. (A.1)

Here, mod (·, 2π) is the modulo operator on 2π. Another way to write this operator is

mod (θk, 2π) = atan2

(
sin θk
cos θk

)
(A.2)

where atan2 (·) ∈ [0, 2π) is the arctangent function in four quadrants. One property of this

function is

atan2

(
yi
xi

)
± atan2

(
yj
xj

)
= atan2

(
yixj ± yjxi
xixj ∓ yiyj

)
. (A.3)

Let θi = niφk, xi = cos θi, yi = sin θi, and the same for θj, xj, and yj (where we have

dropped the subscript k). Combining Eqs. (A.1) and (A.2), and using the angle summation

trigonometric identities, our indistinguishability condition becomes

atan2

(
sin(θi − θj)
cos(θi − θj)

)
= mod ((ni − nj)φk, 2π) = 0, ∀φk. (A.4)

We only need one probe location which does not satisfy Eq. (A.4) for toroidal mode numbers

ni and nj to be distinguishable.
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Presume that all φk are some rational fraction of 2π.] Then there exists n∗ = ni − nj

(along with its integer multiples) which satisfies Eq. (A.4) for all φk. For a given n∗, we

want to minimize both |ni| and |nj|; these are then the smallest mode numbers which are

indistinguishable. Pairs including higher values can also be indistinguishable, but are the

result of aliasing. By inspection, we can minimize both |ni| and |nj| by setting nj = −ni.

Thus, we conclude that the maximum resolvable toroidal mode number is nmax = bn∗/2c,
with b·c the floor operator. Note that this satisfies the Nyquist theorem for probes with

uniform separation ∆φ = 2π/n∗.

It is not always the case that both ±nmax can be distinguished. This must be

checked separately. Hence, the range of resolvable toroidal mode number is either n ∈
[−nmax, . . . , nmax] or [−nmax + 1, . . . ,±nmax], where ±nmax is treated as “one” toroidal mode

number.

To determine nmax from φk, we use the above reasoning to require that each φk/2π =

mk/2nmax is a rational number, with mk non-negative integers. (Recall that we set φ0 = 0

so that m0 = 0.) Then, nmax can be determined by finding the lowest common denominator

of all φk/π, which can be computed by various algorithms.
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