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Abstract. Ion implantation is widely used as a surrogate for neutron irradiation in the 

investigation of radiation damage on the properties of materials. Due to the small depth 

of damage, micromechanical methods must be used to extract material properties. In 

this work, nanoindentation has been applied to ion irradiated silicon carbide to extract 

radiation-induced hardening. Residual stress is evaluated using HR-EBSD, AFM 

swelling measurements, and a novel microcantilever relaxation technique coupled with 

finite element modelling.  Large compressive residual stresses of several GPa are found 

in the irradiated material, which contribute to the significant hardening observed in 

nanoindentation measurements. The origin of these residual stresses and the associated 

hardening is the unirradiated substrate which constrains radiation swelling. 

Comparisons with other materials susceptible to irradiation swelling show that this 

effect should not be neglected in studying the effects of ion irradiation damage on 

mechanical properties. This constraint may also be influencing fundamental radiation 

defects. This has significant implications for the suitability of ion implantation as a 

surrogate for neutron irradiations. These results demonstrate the significance of 

swelling-induced residual stresses in nuclear reactor components, and the impact on 

structural integrity of reactor components. 
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Introduction 

 Silicon carbide (SiC) is a structural ceramic material useful in extreme environments, 

primarily aerospace and nuclear applications, because of its excellent high-temperature 

properties, including creep resistance, high strength at elevated temperatures, corrosion 

resistance and general chemical inertness, high thermal conductivity, and low thermal 

expansion coefficient  [1–3]. SiC is desirable for applications as fission fuel cladding, or as a 

component of the blanket, first wall, or divertor of fusion reactors due to its low neutron 

absorption cross-section, low level of long-lived radioisotopes, and stability under high 

temperature-high dose neutron irradiation [1,4–9].  

For nuclear applications, a thorough understanding of radiation defects and their effects 

on material properties is required to evaluate the suitability of a material for its application, and 

to predict the evolution of its properties over time. To accelerate radiation damage processes 

and material investigations, ion implantation is commonly used as a surrogate for neutron 

irradiation [10,11]. It allows displacement damage to be introduced to a material in controlled 

conditions in a matter of hours as compared to many days for comparable damage in a nuclear 

fission reactor. Additionally, it does not introduce radiological hazards due to sample 

activation, avoiding the requirements for specialist “active” laboratories, sample cooling, and 

remote handling.  

 Due to the shallow damage layer introduced by ion implantation (a few microns), 

evaluating the material properties requires miniaturisation of testing techniques. An array of 

micromechanical techniques have been developed which can be applied to materials on the 

scale of an ion implanted layer: micropillar compression [12,13], microcantilever bending 

[14,15], and nanoindentation [16]. Due to the non-uniform damage profile in ion implantations, 

it is difficult to extract mechanical properties as a function of damage as the indentation plastic 

zone interacts with a range of radiation doses, although this can be accounted for using the 

method of Kareer et al.[17]. Damage gradients can somewhat be accounted for in experimental 

design. Proton irradiation has a high penetration depth and a flatter damage layer before the 

Bragg peak, but damage in this region is limited to low dpa unless long irradiations are carried 

out [10]. Multi-energy ion implantations can create a flattened damage profile, but implanted 

ions will remain in this region [14].  

 As ceramics typically fail from a flaw, statistical macroscopic testing is important to 

understand whether a component and manufacturing process is suitable for its intended 

application. For nuclear applications this necessitates neutron irradiation of many specimens 
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for statistical strengths. Where a lab has access to neutron irradiated silicon carbide, they tend 

to focus on macroscopic testing. From a material design and improvement perspective, 

micromechanical testing is vital to understand microstructural features and their influence on 

macroscopic properties, and as an input for multi-scale modelling. This appears to have been 

neglected in favour of macroscopic tests, and there is little nanoindentation of neutron 

irradiated SiC in the literature to compare ion irradiations to, especially of single crystals of 

6H-SiC which are of interest for fundamental studies, removing the influence of 

microstructure.  

Three researchers have published nanoindentation results from neutron irradiated 

monolithic SiC. Osborne et al. [18] and Nogami et al. [19,20] used CVD 3C-SiC samples as a 

surrogate for the matrix of CVI SiCf/SiC composites while Chen et al. [21] used 6H-SiC single 

crystals as part of their comparison with ion implantation. Osborne et al. found that hardening 

saturated at ~8% by ~1 dpa but was higher at 500 °C due to growth of interstitial dislocation 

loops. Nogami et al. meanwhile found no dependence on hardening with temperature above 

100 °C, with hardening of ~10% in their experiments. Chen et al. observed no hardening in 

their neutron irradiated samples at 0.1 and 0.2 dpa at ~50 °C. It is worth pointing out that 

Osborne’s and Nogami’s works are from the early days of nanoindentation. Nogami’s 

measurements come with very large standard deviation error bars which significantly overlap 

the unirradiated hardness values.  

Chen et al.’s recent results are particularly valuable as they compare neutron and ion 

irradiation at similar nominal temperatures and doses in 6H-SiC single crystal [21]. Carbon 

and silicon ion irradiations at the same temperature and dose as the neutron irradiation cause 

significant hardening: +14.3% and +12.5% for silicon and carbon at 0.1 dpa, and +11.8% and 

+9% at 0.2 dpa. As these experiments are by the same group, the nanoindentation and analysis 

methodology should therefore be consistent, whereas the procedures for nanoindentation can 

vary between researchers making comparisons unreliable.  

 Most ion irradiations of 6H-SiC have been conducted at room temperature, with these 

showing a hardening between 13% - 20.5% [22–24]. Of the elevated temperature ion 

irradiations, Su et al. [25] show 16.7 % hardening after 3.16 dpa, and 14.7% after 0.95 dpa at 

600 °C using argon ions. Kerbiriou et al. implanted gold ions into 6H-SiC single crystals at 

room temperature and 400 °C and found hardening saturated at 9.8% after ~0.15 dpa and stayed 

approximately at that hardness without amorphising up to their highest dose of 27 dpa at 400 

°C [26]. At room temperature, hardening after ion implantation below the amorphisation dose 

is ~12.5%. Their unirradiated nanoindentation hardness value of 48 GPa is significantly higher 
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than 38 GPa found by most other researchers. Kerbiriou et al. also measured out of plane 

swelling using atomic force microscopy, finding expansions between 2.2% and 3.8% 

increasing with dose [26].  

 Existing research appears to show that ion irradiations cause more hardening than 

neutron irradiations (especially at low doses). A more thorough understanding of the 

mechanism behind large hardening in ion implanted layers of silicon carbide is required. This 

is both for evaluating the use of ion implantation for simulating neutron irradiation, and for 

understanding the fundamental radiation response of silicon carbide. The use of single crystals 

removes the effect of microstructure on radiation damage and mechanical properties, giving a 

better understanding of the intrinsic material response to radiation damage. This is particularly 

relevant as SiC grain boundaries are effective defect sinks, and can have a complex response 

to irradiation including radiation induced segregation [27]. 

 

Methods 

 A pre-polished sample of 6H-SiC single crystal, with surfaces parallel to the (0001) 

basal plane was purchased from Pi-Kem Ltd (Tamworth, UK). Raman spectra of these single 

crystals demonstrate no pre-existing stress in these specimens. Ion implantation was carried 

out at the Surrey Ion Beam Centre, UK using the 2 MV Van de Graaf accelerator. Samples 

were clamped to a heated stage using washers to blank part of the specimen from the ion beam. 

The stage was held at 300 °C (±5 °C) in a vacuum of ~1×10-6 mbar. The sample was implanted 

with neon ions at three energies (1450 keV, 720 keV, and 350 keV) to create a flattened damage 

profile within the approximate plastic zone of nanoindentations (Figure 1). Neon ions were 

chosen to avoid any chemical effects from the implanted ions, while producing a similar 

damage profile to our other work using silicon ions [28]. Self-ions are typically chosen for 

implantation of metals to avoid chemical effects; however literature and our own work suggests 

implanting SiC with silicon or carbon ions may influence defect types compared to neutron 

irradiations [28,29]. Chemical defects are important in SiC, so influencing defect chemistry 

with ion implantation should be avoided [30]. Displacements per atom (dpa) was calculated 

using the Stopping and Range of Ions in Matter (SRIM) Monte Carlo code with the quick 

Kinchin-Pease model [31,32]. Displacement energies for silicon and carbon were 35 eV and 

21 eV respectively, with binding energies set to 0 eV [33]. Target density was set to 3.21 g/cm3. 

The peak nominal damage is ~2.5 dpa with a mean of 1.8 dpa. 
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Figure 1: Damage profile of neon ion implantation into 6H-SiC, as calculated from SRIM [31] 

 Nanoindentation was carried out using an MTS Nanoindenter XP with a diamond 

Berkovich tip. The continuous stiffness method (CSM) was used to calculate mechanical 

properties. The CSM harmonic displacement was 2 nm with a frequency of 45 Hz and a strain 

rate of 0.05 s-1. The tip and frame were calibrated based on the modulus of fused silica (72 

GPa) before each batch of indents in a sample. Nanoindentation consisted of batches of 500 

nm and 1000 nm indents into irradiated and blanked (unirradiated) regions of the same sample 

at the same crystallographic orientation. This was to ensure the indentations were carried out 

with the same tip calibration and tip condition, sample mounting, and environmental conditions 

for comparing the effects of ion implantation and to avoid systematic errors. Orientation of the 

sample with respect to the Berkovich tip was kept constant for unirradiated and irradiated 

indentation. The results are averaged over 25 indents, with standard deviation error bars.  

Electron backscatter diffraction (EBSD) experiments were conducted using a Zeiss 

Merlin FEG-SEM with a Bruker Quantax e-flash detector controlled using Bruker Esprit 2.1 

software. Typical SEM conditions were 20 kV 20 nA with an acquisition time of 50 ms per 

pixel. Patterns were acquired with 800 x 600 pixel resolution and were all saved so that they 

could be analysed later using the high angular resolution EBSD code, XEBSD developed at the 

Department of Materials, University of Oxford, and Imperial College, London [34–36].  

The procedure for analysing EBSD patterns using high angular resolution is explained 

fully in refs. [37,38], but will be summarised here. The simple concept is to compare EBSPs 

acquired from pixels in the map to a nominally unstrained reference pattern of the same crystal 

orientation. An applied deviatoric strain will change interplanar angles which moves Kikuchi 

bands in the diffraction pattern. Additionally, crystal orientation rotations will cause Kikuchi 

bands to move cooperatively across the screen. The diffraction pattern is segmented into 40 
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partially overlapping regions of interest (ROI), each of which undergoes a fast Fourier 

transform which is used for cross-correlation image analysis. From this a translation vector for 

each ROI is calculated relative to the corresponding ROI in the reference pattern. With four or 

more translation vectors, a self-consistent deformation tensor for the diffraction pattern can be 

built up with components for strain and lattice rotations [39]. Because the analysis relies on 

changes in orientation between lattice planes, the analysis is insensitive to the hydrostatic 

component of strain. The anisotropic Hooke’s law can be used to determine stresses from 

elastic strains with elastic constants from the Materials Project database (mp-7631) [40,41]. A 

hydrostatic strain is then added to the strain tensor derived above to satisfy the requirement for 

the stress normal to the free surface to be zero [39]. It should be noted that this method is 

therefore unaffected by changes in stress-free lattice parameters resulting from the swelling 

itself, provided the swelling is isotropic. 

A Zeiss Auriga FIB/SEM was used to mill a triangular cross-section micro-bridge into 

ion irradiated 6H-SiC, with the upper 1.2 µm being irradiated material, and the lower section 

being unirradiated substrate material (Figure 2). The end of this micro-bridge was cut off using 

sequential FIB milling and SEM imaging to release it into a cantilever. With lateral residual 

stress release in the irradiated layer the cantilever bent downwards, with this deflection 

measured using the SEM. In an unirradiated specimen, no deflection was measured. A similar 

technique was developed by Massl et al. to investigated stresses in multi-layer thin films 

[42,43]. 

  

Figure 2: (a) Micro “bridge” cut into a microcantilever, (b) right hand end being milled through, shortly prior to release. 

 To quantify the compressive stress in the irradiated layer which would cause this 

bending, a finite element model was implemented in Abaqus. Analytical calculations based on 

Euler-Bernoulli beam theory do not account for relaxation of the cantilever base and lateral 

expansion of the cantilever is not explicitly taken into account, but may be significant based 

on similar experiments conducted by the group in Leoben [42,44]. To simulate the swelling of 
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the ion implanted layer in the finite element model (FEM), a layer with the nominal thickness 

of the damaged layer was segmented and given a thermal expansion coefficient of 1, where the 

rest of the model had zero thermal expansion in the material properties. Young’s modulus was 

460.7 GPa, and Poisson’s ratio was 0.206. These are the in-plane values derived from the 

anisotropic elastic constants used for HR-EBSD. A temperature was applied to simulate 

radiation swelling until the cantilever bent to the experimentally measured displacement with 

the front of the base unconstrained, the same as the experiment. The stress-free swelling strain 

thus derived was then used to calculate the in-plane stress and out of plane strain in the surface 

far from the cantilever using the same anisotropic elastic constants as were used for HR-EBSD. 

Atomic force microscopy (AFM) was conducted across the blanked/irradiated 

boundary on the sample to investigate vertical, out of plane swelling. An Agilent 5400 AFM 

with a Mikro Masch NSC35 tip was operated in contact mode. The force constant of the tip 

was 4.5 N/m. Data was acquired using Keysight Picoview 1.20.2, and analysed using 

Gwyddion 2.52 [45]. Line profiles of step height are calculated as averages across the boundary 

of a 40 x 40 µm area map. User subjectivity during background subtraction in AFM data 

analysis can strongly influence the measured step heights. To minimise the influence of the 

user, the process here followed the guide on the Gwyddion website for measuring step heights 

using the “smooth bent step” function2. 

Results 

HR-EBSD method 

The area around the unirradiated-irradiated boundary was mapped by EBSD and stresses 

and strains were calculated by the HR-EBSD method. This allowed calculation of in-plane 

stress and elastic strains directly from measured diffraction patterns. The reference position for 

HR-EBSD calculation is taken in the lower right corner in the unirradiated material as a stress-

free reference. The mean in-plane biaxial stress (σxx= σyy) in the irradiated region was -1.9 GPa 

with a mean elastic biaxial strain (εxx= εyy) of -0.33%. The out of plane elastic strain εzz at the 

surface was 0.062%, which when added to the swelling strain (= - εxx) gives a total out of plane 

strain (elastic + swelling) 𝜀𝑁
(𝑡𝑜𝑡)

= 0.39%. 

 
2 http://gwyddion.net/survey2/step3.php 
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Figure 3: In-plane HR-EBSD stress maps across the boundary between blanked and irradiated material. The stripe of 

light/dark contrast is an artefact of the step which caused lattice rotations. 

Bending cantilever method 

To investigate this lateral compressive stress further, micro-bridges were made as 

described in the Methods section, incorporating an upper layer of radiation-damaged material, 

and a lower layer of the undamaged substrate. Figure 4 shows three of a sequence of images as 

the bridge is cut into a cantilever. (b) shows partial deflection before the final material is 

released in (c). Due to bending as the final release is approached, the cantilever is no longer 

being cut perpendicular to its top surface; the cantilever bends slightly into the ion beam and 

is cut perpendicular to the rest of the sample surface, away from the cantilever. Deflection in 

the FEM model considers this by measuring at the appropriate position on the top surface rather 

than at the end of the cantilever beam (which was cut off in the experiment). Some FIBed 

material is redeposited onto the bottom surface of the cantilever. This is a small amount 

compared to the cantilever dimensions, and the mechanical effect of this redeposited material 

is expected to be negligible.  

The deflection of this cantilever after tilt correction is 1.92 µm, with a length of 31.8 

µm, width of 3.93 µm, and height of 3.40 µm (upper 1.2 µm of damaged material, lower 2.2 

µm of substrate). A video of this experiment is provided in supplementary material. 
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Figure 4: Bending as the micro-bridge is cut into a microcantilever. (a) is after the first stage of milling, (b) is a partial 

deflection, (c) is after the cantilever has been completely freed. Red line is for reference. 

The longitudinal residual stress distribution within the FEM model of the beam is shown 

in Figure 5. The relaxation of the stresses in the cantilever modifies the stress distribution 

considerably and both the irradiated and unirradiated parts of the cross-section have tensile and 

compressive regions. There is a complex stress distribution around the root of the cantilever, 

which would be difficult to calculate analytically.   

  The stress-free swelling strain required to match the experimental deflection is 0.68%. 

This corresponds to a biaxial compressive in-plane stress far from the cantilever of -3.94 GPa.  
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The total out of plane expansion of the implanted layer  𝜀𝑁
(𝑡𝑜𝑡)

= 0.81%.. The analytical 

solution using Euler-Bernoulli beam theory ignoring the complexities of the root gives a 

swelling strain of 0.72%, an error of 6%. 

 

Figure 5: FEM model of stress along the length of the beam after “swelling” Colour scale limits are set to ±2 GPa to show 

the stress distribution more clearly. A tensile stress is observed in the substrate at its interface with the irradiated layer. 

Deformation scale factor is 1× with an overlay of the undeformed beam.  

AFM step height 

While tilting the specimen to collect EBSD patterns, a step was observed between the 

blanked and irradiated regions of the sample. This step was measured using AFM and found to 

be 18.6 nm high using the suggested analysis method for step heights (Figure 6). Over the depth 

of ion irradiation damage (~1.2 µm), this corresponds to an out of plane strain 𝜀𝑁
(𝑡𝑜𝑡)

 of 1.55%. 

Debelle & Declémy investigated lateral residual compressive stresses in ion irradiated yttria 

stabilised zirconia by measuring out of plane swelling using HR-XRD and derived elastic 

equations for stress by assuming no net in-plane strain in the irradiated layer (equation 1) [46]. 

As their derivation is for a cubic crystal, it is not valid in this case for hexagonal SiC. The 

equivalent expression for our (0001) 6H-SiC is: 

𝜎// =  − 
𝐶33(𝐶11 + 𝐶12)  −  2𝐶13

2

𝐶33 +  2𝐶13
𝜀𝑁

(𝑡𝑜𝑡)
  (1) 

 

where Cij are the stiffness constants, // is the in-plane stress and 𝜀𝑁
(𝑡𝑜𝑡)

 is the total normal 

strain in the irradiated layer (i.e. the sum of the swelling strain, assumed to be isotropic, and 

the elastic strain). Using eq. (1) with the total out of plane strain measured by AFM (1.55 %) 

and the elastic constants from the Materials Project database [40,41] gives an in-plane biaxial 

stress in the implanted layer of -7.6 GPa. The corresponding stress-free swelling strain is 1.3%.  
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Figure 6: AFM step height across the unirradiated-irradiated boundary. Black dashed line is a fit to the data used for 

measuring the step height. 

Nanoindentation 

Nanoindentation results show a peak of 15% increase in hardness after neon ion 

implantation (Figure 7). The depth of peak hardness change (550 nm) corresponds to the 

assumed plastic zone being entirely within the peak damaged layer according to the SRIM 

damage profile. Below 50 nm nanoindentation data is unreliable due to tip contact effects and 

is omitted for clarity. Near the surface (<100 nm) nanoindentation is dominated by the 

indentation size effect and the hardness change is small until the sampling volume is 

sufficiently large to be representative of the radiation-damaged material, from ~400 nm depth 

where hardening plateaus at 12-15%. This corresponds to the depth at which the hardness of 

the unirradiated specimen approaches the bulk hardness of SiC at 36-38 GPa, as reported in 

previous nanoindentation work [21–25]. This would suggest that the role of the indentation 

size effect is small compared to the effect of radiation damage at these depths. Significantly, 

there is no surface radial fracture from indents in the irradiated material. This affects the 

indentation deformation mechanism and the extracted mechanical properties and will be 

explored further in a future paper. 

Elastic modulus has a maximum reduction of -12% which returns towards the 

unirradiated value with increasing indentation depth. Elastic modulus is a long-range effect and 

the undamaged substrate is having an effect on this measurement as the irradiated modulus 

returns towards the unirradiated modulus.  



12 

 

Figure 7: Hardness (a) and modulus (b) as a function of depth for irradiated and unirradiated indents. (c) Change in 

nanoindentation hardness and modulus of 6H-SiC after 2.5 peak dpa neon ion irradiation 

Discussion 

Ion irradiation-induced residual stress 

It is well known that radiation damage causes swelling in silicon carbide [47]. The origin 

of this radiation-induced strain is lattice swelling due to defects in the sample. Li et al. modelled 

the excess volume of point defects in SiC, finding that all except the CSi anti-site defect have a 

positive volume [48]. Additionally, swelling can arise from bubbles and voids at temperatures 

over 1000°C [49]. At the irradiation temperature of this work, defect swelling is expected to 

be in the point defect swelling regime. As neutron irradiation (approximately) uniformly 

damages the bulk of a sample, defects are free to swell the specimen in all dimensions unless 

there are engineering constraints or significant crystallographic anisotropy. Bulk dimensional 
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measurements and XRD of neutron irradiated polycrystalline 3C-SiC shows uniform 

dimensional and lattice expansion in all directions [47]. At low temperatures single crystal 6H-

SiC swells identically to CVD 3C-SiC under neutron irradiation [50].  

In ion irradiation experiments, a thin layer is irradiated on a thick substrate. In this case, 

the damaged layer is ~1.2 µm thick on a 300 µm substrate. This stiff substrate constrains lateral 

swelling, resulting in a lateral compressive residual stress. The free surface is allowed to 

expand in εzz, as is observed by AFM step measurements and diffraction experiments both here 

and in the literature [26,51–56].  

The in-plane stress values calculated by the HR-EBSD, bending cantilevers, and AFM 

step height are of the same order of magnitude, but do not quantitatively agree. EBSD patterns 

arise from near the specimen surface (~40 nm depth). This corresponds to a region of lower 

irradiation damage, nominally 0.9 dpa from the SRIM calculation (Figure 1), but residual 

damage may be lower than this due to the free surface acting as a defect sink. Although peak 

damage is 2.5 dpa, the average damage in the layer is 1.8 dpa. 

Linear scaling of strain with dose has previously been observed by XRD strain analysis 

of helium implanted SiC in ref [56]. Scaling the stress and stress-free swelling strain calculated 

by HR-EBSD (-1.9 GPa and 0.33% respectively at 0.9 dpa) to the mean damage in the 

irradiated layer (1.8 dpa) gives a stress of -3.8 GPa and a swelling strain of 0.66%, closely 

matching the corresponding values of -3.9 GPa and 0.68% estimated using the bending 

cantilever method.  

The stress calculated from the AFM step method is significantly higher than the 

estimates from the other two methods. One reason for this is that measuring step heights using 

AFM is strongly dependent on background subtraction during the data analysis. Although an 

agnostic method of background subtraction was used in this work, it may not be correct. 

Background subtraction based on user judgment gave a step height of 14 nm, corresponding to  

𝜀𝑁
(𝑡𝑜𝑡)

 = 1.2% and corresponding biaxial stress from equation (1) of -5.7 GPa. This method is 

also particularly sensitive to some of the assumptions of the analysis. One of these, discussed 

further in the paragraph below, is the assumption that the swelling is isotropic. The HR-EBSD 

method also relies on this assumption but in measuring strains in a range of directions is 

arguably less sensitive to it. The cantilever method is unaffected by this consideration because 

it is an absolute measurement of in-plane strain and stress. Another assumption of the AFM 

method is that the elastic properties of the irradiated layer are the same as those in the 

undamaged material. The nanoindentation results show that the irradiation damage actually 
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reduced the stiffness by up to 12%. If accounted for, this would reduce the stress from the AFM 

method to around 5 GPa. Although this would also affect the HR-EBSD method in principle, 

the shallow depth sampled here was less damaged, as noted above. This would also affect the 

detailed conclusions from the cantilever method, but again less so because the stress measured 

is partly deduced from the response of the undamaged layer. In summary, the AFM step 

measurement technique appears to be the least reliable method due to the potential for user 

influence during analysis and its susceptibility to the assumptions it involves. 

A consequence of this constraint of the implanted layer and the resulting compressive 

stress which needs to be investigated further is the effect it has on fundamental radiation 

defects. Does it favour the formation of “small” defects? Does it hinder the growth of larger 

structures? Are some defect structures created to try to accommodate the volume of defects 

and minimise energy? Such effects may also lead to anisotropic swelling. Observations of 

chemical defects in ion irradiated layers by Raman spectroscopy is not consistent with those 

observed in neutron irradiated SiC [28,29,57]. In particular the small shift in the Si-C peak 

position after ion implantation suggests constrained bond length expansion, leading to lateral 

residual compressive stresses. Compressive stresses may favour defects with smaller excess 

volumes, possibly CSi anti-sites or VSi silicon vacancies [48]. Recent work with high resolution 

XRD on single energy ion implanted SiC has shown a strain gradient which enhances diffusion 

of interstitial atoms created near the surface towards more highly strained regions of material 

at the peak damage depth. This leads to different defect structures such as helium and void 

platelets [54,55]. This strain gradient effect was also seen in annealing experiments where 

defects migrated towards the highly strained region at the damage peak at a lower energy than 

predicted [53]. Observing the influence of this stress on defects using traditional TEM 

techniques is impossible as producing a thin TEM foil necessarily relieves residual stresses; 

analysis of stress relaxation in TEM lamella preparation using convergent-beam electron 

diffraction can be used to evaluate the residual stress in the original material [58].  

Effect of residual stress on material properties 

Large hardening has been observed for ion irradiated 6H-SiC in the literature, however 

this is not consistent with the observation of no hardening in neutron irradiated 6H-SiC in Chen 

et al’s work [21]. Additionally, Chen et al. observed a larger reduction in modulus in neutron 

irradiated 6H-SiC than is observed after ion irradiations [21]. Their irradiation conditions were 

different to this work, but it is the only literature with a systematic comparison of neutron and 

ion irradiation effects on nanoindentation in 6H-SiC. They attribute the hardening to lateral 
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compressive stresses caused by radiation swelling. Ion implantation causes a smaller reduction 

in modulus than neutron irradiation [21]. Elastic modulus should not be affected directly by 

residual stress; it is related to covalent bond density and stiffness (interatomic potential energy) 

which is reduced when radiation defects break bonds and damage the crystal lattice. Implanted 

ions can substitute into the lattice to re-form bonds to some extent, possibly explaining the 

smaller reduction in elastic modulus than in neutron irradiated materials. The ability to 

chemically substitute into a SiC lattice will likely depend on the implanted ion species and is 

explored more in [28]. Elastic measurements by nanoindentation are inherently long-ranged, 

and include a contribution from the undamaged substrate, as shown by the return towards 

unirradiated values of elastic modulus with deeper indentation. The contribution of unirradiated 

material to elastic modulus measurements at shallow depths is unclear, but it should not be 

observed in neutron irradiations.  

Based on their nanoindentation measurements, Chen et al. investigated the lateral 

residual stress using FEM simulations of nanoindentation in irradiated 6H-SiC, adjusting a 

compressive stress in a damaged layer until simulated load-displacement curves matched the 

experimental load-displacement curves [21]. They found compressive biaxial stresses between 

5-13 GPa, which are similar in magnitude to those measured in this work. Their ion irradiations 

were at low temperature (~50°C) which causes more swelling and more associated residual 

stress than in this work. This approach of matching experimental and FEM load-displacement 

curves ignores the effect of suppressed fracture and any effect of radiation defects in the 

experimental nanoindentation measurements.  

Even in ductile metals such as iron-chromium alloys, anomalous micromechanical 

results after ion irradiation have tentatively been attributed to lateral residual stresses in ion 

implanted layers [59]. The effect of residual stress is perhaps not as obvious in metals as in SiC 

as indents in neither the unirradiated, nor irradiated metal crack; there is not an obvious change 

in deformation response which would spark further investigation. Ion implantation into a thin 

sample of austenitic stainless steel resulted in curvature which was measured by optical 

profilometry [60]. Based on this curvature a residual stress of -250 MPa was calculated. 

Subsequently these authors developed a technique using nanoindentation coupled with FEM to 

measure residual stress in this material, and found a compressive stress of -631 MPa in an ion 

implanted sample with a thick substrate which did not bend [61]. 

In the context of nuclear materials, ion implantation is intended to introduce 

displacement damage to simulate the effects of neutron irradiation displacement damage. 

Nanoindentation is intended to measure any changes caused by this displacement damage. 
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However, for other applications ion implantation is used to intentionally introduce residual 

stresses to strengthen and improve the wear resistance of materials [62–64], and 

nanoindentation can be used to measure biaxial residual stresses [65,66].  When using 

nanoindentation to study changes to mechanical properties caused by radiation defects, it is 

important to also consider residual stresses introduced by ion irradiation.  

Conclusions 

Compressive biaxial residual stress has directly been observed in ion implanted 6H-

SiC, and is contributing to the large hardening measured by nanoindentation. The stresses 

measured in this work were several GPa in magnitude. The origin of the compressive biaxial 

stress is radiation-induced swelling constrained by the undamaged substrate. This constrained 

swelling effect appears to have a significant (non-negligible) effect on micromechanical 

properties and may also influence the radiation defects formed. This effect should be taken into 

account when measuring micromechanical properties of all ion irradiated materials which are 

susceptible to radiation-induced swelling, including metals. As this effect is due to the 

undamaged substrate and surrounding material constraining swelling in the plane of the 

specimen, any lift-out type analysis technique such as TEM is likely to be seeing a different 

structure to what is caused by the ion implantation, and which is present during measurements 

such as XRD, SEM, spectroscopy, or nanoindentation. In this case it is important to be able to 

investigate structural damage in a bulk specimen without the need for nanoscale TEM 

specimens.   

 The bending of microcantilevers FIBed into the implanted surface is a reliable method 

of measuring the residual stresses and is less affected by the assumptions involved than most 

methods. HR-EBSD gave stresses that can be reconciled with those from microcantilever 

measurements but can only sample a very thin surface layer, where irradiation damage is lower 

than deeper into the sample. The measurement of surface step heights was less reliable owing 

to experimental uncertainties and susceptibility to assumptions involved in the analysis.  

 In an operating fusion or fission reactor, components will be irradiated at different 

temperatures and to different doses, resulting in different swelling. This will cause significant 

residual stresses in components during operation of the reactor, which must be considered and 

accounted for in the design, along with degraded mechanical and thermal properties. 
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