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ABSTRACT. The weight function W (X) is a diagnostic sensitivity to phase-space vari-
ables X that relates the measured signal C to the distribution function F (X) through the
equation C =

∫
W (X)F (X) dX. In the present work, an algorithm to calculate W for

a diagnostic that measures 3 MeV protons produced in d(d,p)t fusion reactions between
a fast ion and a thermal deuteron is developed. The emitted protons escape the toka-
mak on curved orbits and are detected. These curved orbits constitute effective diagnostic
”sightlines.” The presented algorithm accounts for the complications associated with these
curved sightlines. An initial calculation of time-reversed proton orbits computes effective
solid angles and sightlines for the relevant range of incident proton velocity vectors. These
precomputed orbits are then used within the framework of FIDASIM [Plasma Phys. Cont.
Fusion 62 (2020) 105008] to calculate the reactivity averaged over the thermal distribu-
tion of the “target” deuterons and the probability that a fast ion of specified energy and
pitch has a gyroangle that is consistent with the kinematic equations along each of the
sightlines. Comparisons with analytic formulas and with independent calculations for the
MAST 3-MeV proton diagnostic verify the algorithm.

1 Introduction

The weight function plays a key role in Energetic Particle research. The weight function
W (X) describes the sensitivity to phase-space variables X of a diagnostic signal and is
used in forward modeling of expected signals [1], in tomographic inversions to infer the
distribution function [2] and for qualitative interpretation of experimental dependencies
[3]. Mathematically, W determines which portions of the energetic particle distribution
function F (X) contribute to a measured signal C,

C =

∫
W (X)F (X) dX. (1)

Weight functions have already been developed for many fast-ion diagnostics such as fast-ion
D-alpha (FIDA) [4, 5], collective Thomson scattering [6], neutral particle analyzer (NPA)
[1, 7], neutron [8, 9, 10], gamma-ray [11, 12] and fast-ion loss detector [13] diagnostics.
In the present work, an algorithm to calculate W for a 3 MeV proton diagnostic such as
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the one at MAST [14] is developed. To date, the majority of these weight functions were
developed for two-dimensional velocity space but recent work [5] utilizes three-dimensional
orbit weight functions.

The MAST diagnostic measures 3 MeV protons produced in d(d,p)t fusion reactions be-
tween fast ions and thermal deuterons in the plasma core. The emitted protons escape the
tokamak on curved orbits, pass through a collimating structure, and are detected. Con-
ceptually, the calculation is analogous to calculation of the weight function of a neutron
spectrometer but there are complications. Unlike with neutrons, photons, or neutrals, the
“sightlines” are curved trajectories that depend upon the proton velocity; the orbit cur-
vature also alters the solid angle accepted by the collimator. A further complication is
that the energy of the emitted proton depends upon the velocities of the reactants and
the direction of emission, so the “sightline” itself depends upon the reaction kinematics,
with the consequence that different proton energies probe different phase-space volumes.
Because the d-d reaction is anisotropic, the reaction probability also depends upon these
velocities.

The presented algorithm takes all of these complications into account. Section 2 provides
an overview of the approach. Section 3 explains how to compute the effective solid angle
of the curved “sightlines” that are accepted by the collimating structure. Calculation of
the rate of relevant d-d reactions involves two steps: the basic reaction rate (Sec. 4.1)
and determination of the portion of the fast-ion population that produces a proton with
the measured energy and trajectory (Sec. 4.2). The computational approach adopted
to calculate these weight functions is described in Sec. 5, followed by verification of the
calculations in Sec. 6. Section 7 contains formulas for velocity-space and orbit weight
functions and shows an example for a MAST detector. Conclusions appear in Sec. 8.

2 Formulation of the problem

If the signal-to-noise ratio of the instrument permits, the measured quantity is an energy-
resolved count rate at the detector. We express the d-d reaction in standard nuclear
physics notation 2(1,3)4, where particle 2 is the thermal deuterium, particle 1 is the fast
ion, particle 3 is the 3-MeV proton, and particle 4 is the triton. Our concern is the d(d,p)t
reaction so m1 = m2 = 2mp, m3 = mp and m4 = 3mp, with mp the proton mass. The
measured energy-resolved count rate is C(E3,∆Ebin), where E3 is the proton energy and
∆Ebin is the energy resolution of the measurement.

A limitation of the present work is that the calculated weight function applies exclusively
to reactions between an energetic “fast-ion” population and a slower, thermal population.
In other words, the fast-ion (particle 1) is the beam, particle 2 is a thermal deuterium
reactant, particle 3 is the measured 3-MeV proton, and particle 4 is undetected. This

2



type of reaction is customarily called “beam-plasma” in fusion research. In reality, “beam-
beam” reactions between pairs of fast ions and “thermonuclear” reactions between pairs
of thermal deuterons also occur; in both of these situations, the two reacting ions often
have comparable speeds. Since the beam-plasma reaction rate depends linearly on the
fast-ion distribution function, its weight function is well-suited for tomographic inversion
to infer the distribution function using standard matrix methods; this is not true for beam-
beam reactions. However, on two devices where 3-MeV proton diagnostics are currently
implemented or planned, MAST-U [14] and NSTX-U [15], beam-plasma reactions predomi-
nate. For example, in the L-mode NSTX-U plasma of [16], beam-beam reactions constitute
< 11% and thermonuclear reactions constitute < 1% of the total rate.

Since the escaping proton orbits are collisionless, the phase-space volume accepted by the
detector can be related to the phase-space volume traversed by the curved “sightlines,” so
the measured count rate is [17]

C(E3,∆Ebin) =

∫ ∫ ∫
dl dAdΩS(r,v1,v2,v3), (2)

where
∫
dl represents integration over the sightline,

∫
dA represents integration over the

detector area,
∫
dΩ represents integration over the solid angle accepted by the collimating

structure, and S(r,v1,v2,v3) represents the emissivity (in reactions/volume-time) of pro-
tons that are emitted at position r along the sightline with the correct values of E3 and
solid angle. As in the formulation of the weight function for a neutron collimator [8], the
emissivity can be divided into two pieces, one piece that describes the d-d reactivity for
the selected reaction kinematics, and another piece that describes the number of fast ions
that can produce a proton with the velocity v3 accepted by the specified sightline,

S(v3, r) =

∫
dv1

∫
dv2R(v1,v2,v3, r)pgyro(v1,v2,v3)f1(v1, r)f2(v2, r). (3)

The emissivity R depends upon the d-d cross section (including anisotropy), the relative
velocities of the reactants |v1 − v2|, and the emitted proton’s velocity v3. In Sec. 4.1, the
integration over the distribution function f2 of the target deuterons is incorporated into
the emissivity R, making R a function of the ion temperature Ti, the rotation velocity
vrot, and the deuterium target density nd. In this work, the fast-ion distribution function
f1 is represented by a guiding-center distribution function F (v‖, v⊥, r); the third velocity
coordinate, the gyroangle γ associated with the fast gyromotion, is assumed of uniform
probability and is not explicitly shown. (Here, v‖ is the component of the fast-ion velocity
along the magnetic field B and v⊥ is the magnitude of the perpendicular velocity.)

The function pgyro(v1,v2,v3) represents the probability density that the gyroangle of the
fast ion has the correct value to produce the measured proton. In practice, it is advan-
tageous [8] to consider intervals of speed v3 (or proton energy E3). If v3 is interpreted
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this way, pgyro represents the probability that the selected fast ion has a gyroangle that
produces protons within the specified range of speeds.

Recall from Eq. 1 that the weight function is defined through the relation C(E3) =∫
W (X,E3)F (X) dX. The goal of the following sections is to simplify and rearrange Eqs. 2

and 3 into the form of Eq. 1 in order to extract the weight function W . To that end, the
next section explains how to simplify and calculate the

∫ ∫ ∫
dl dAdΩ term that describes

the sightlines and collimating structure. The emissivity R is simplified in Sec. 4.1 and
formulas for the probability pgyro are given in Sec. 4.2.

3 “Sightlines” selected by the collimating structure

The treatment of the sightlines follows [17]. Figure 1 illustrates the bundles of “rays”
collected by four MAST proton detectors in a particular equilibrium. Although the effective
solid angle is largest for a central sightline, protons have a finite probability of striking
the detector for a range of different incident velocity vectors. An orbit code calculates
the trajectory represented by

∫
dl. Since the orbit is collisionless, time is reversed in

the calculation in order to calculate orbits backward from the detector into the plasma.
Each trajectory has an effective weight represented by the product

∫ ∫
dAdΩ. Since the

magnetic field changes little on the scale of the collimating structure, incident orbits with
the same velocity can be considered identical over the entire area of the detector. With this
approximation, we can replace

∫ ∫
dAdΩ by A

∫
T (Ω) dΩ, where the transmission function

T (Ω) is proportional to the fraction of the detector area “illuminated” by a particular
incident velocity vector.

Define a central velocity vector on the axis of the collimator, i.e., from the center of the
aperture to the center of the detector. Our goal is to compute AT (Ω) for a representative
sample of orbits that strike the detector. Consider a cylindrical collimating structure of
radius a and length d (Fig. 2a). If the orbits were straight, velocity vectors that tilt from
the collimator axis by tan(2a/d) strike the edge of the detector. Select velocity vectors that
travel from the center of the detector to points on the aperture plane. Since the actual
orbits are curved, expand the area of the candidate points on the aperture plane by an
amount δa = ρ −

√
ρ2 − d2, where ρ is the gyroradius, ensuring that all possible velocity

vectors are considered. Use the sunflower algorithm that includes judiciously selected
boundary points [18] to uniformly sample velocity vectors on this plane. For each velocity
vector, calculate the actual orbit between the aperture plane and the center of the detector.
Next, to determine the fraction of the detector area “illuminated” by this velocity, use the
sunflower algorithm to uniformly sample positions on the detector plane. Shift the orbit to
various positions on the detector plane to calculate the fraction of the detector area that
is illuminated by this velocity vector. Figure 2b shows the portion of the detector area

4



illuminated by a particular incident velocity vector. This fraction is proportional to the
desired transmission function T (Ω).

To check the accuracy of this calculation, replace the actual curved orbits with straight
orbits. In this case, for small a/d, the program correctly calculates that

∫ ∫
dAdΩ =

(πa2)2/d2, a familiar result in geometrical optics.

The output of this calculation is a set of velocity vectors at the detector that have non-
zero transmission weights T . For each of these velocity vectors, follow the proton orbit
backwards in the equilibrium field. For each channel, this bundle of curved trajectories
constitutes the detector field of view or “sightline.”

Note that the measured sightlines depend upon the proton energy. Typical changes in en-
ergy (Sec. 4) shift the trajectory through the plasma by a few centimeters radially (Fig. 3).
Although the shift is modest, the fast-ion distribution function often has a large density
gradient, so the shift in orbit must be properly treated. The transmission factors T also
depend upon proton energy (Fig. 4), so this dependence is also taken into account.

4 Reaction kinematics and probability

For the reaction 2(1,3)4, particle 2 is the thermal deuterium, particle 1 is the fast ion,
particle 3 is the 3-MeV proton, and particle 4 is the triton. The energy of the proton
(Eq. 29 of [19]) is

E3 =
3

4
(Q+K) + V cos θ

√
3

2
(Q+K)mp +

1

2
mpV

2, (4)

where Q = 4.04 MeV, K = 1
2mp|v1 − v2|2, V = 1

2(v1 + v2) is the center-of-mass velocity,
and θ is the angle between V and the proton velocity in the center-of-mass frame v′3.

For a 100 keV deuterium beam (a relatively large value for positive neutral beam sources)
interacting with typical values of v2, K

<∼0.05 MeV, a small value.

The first term on the right-hand side (RHS) of Eq. 4 gives the nominal proton energy of
3.03 MeV. The shift in energy from the nominal value is determined almost entirely by
the middle term on the RHS. The largest absolute value of the middle term occurs for
cos θ = ±1, so the shift in energy of the proton from the nominal 3.03 MeV value is

∆E3 '
1

2
v1

√
3

2
Qmp =

1

2

√
3

2
E1Q

<∼0.39 MeV, (5)

for E1 = mpv
2
1 = 1

2mDv
2
1 ' 0.10 MeV. This implies that the fractional change in energy is

∆E3/E3
<∼13%. Equation 5 determines the energies E3 for which the proton spectrum is

calculated.
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At any particular location in the plasma, both the orientation and energy of the proton
is known, so the proton velocity vector in the lab frame v3 is a known quantity in the
following calculations.

4.1 Emissivity R

The goal of this subsection is to simplify the fusion emissivity R(v1,v2,v3, r) that appears
in Eq. 3.

There are three relevant rest frames. The proton velocity v3 is known in the lab frame.
The effect of the target distribution function f2(v2) on the reaction rate is most easily
computed in the rotating plasma frame. The effect of anisotropy is known in the center-
of-mass frame.

The first step is to eliminate the integral over v2 that appears in Eqs. 2 and 3. To do
so, replace

∫
σv(|v1 − v2|)f2(v2, r) dv2 by nd〈σv〉, the emissivity after averaging over the

target distribution. (Both nd and the reactivity 〈σv〉 are functions of position.) In the

plasma frame, the velocity of the fast ion is vpl
1 = v1 − vrot. To evaluate 〈σv〉 we use

Eqs. 8 and 9 of Bosch and Hale [20], using the coefficients given in their Table IV for the

cross-section σ, with vpl1 for the projectile speed, and average σv over a Maxwellian target
that has temperature Ti. The resulting 〈σv〉 is a function of v1, vrot, and Ti.

The d(d,p)t reaction is anisotropic. Brown and Jarmie [21] parameterize the differential
cross section in the center-of-mass frame by

σ(θ) = a+ b cos2 θ + c cos4 θ. (6)

The coefficients a, b, and c are functions of energy and are given in their Table I. We know
θ from

cos θ =
V · v′3
V v′3

, (7)

where the center-of-mass velocity V is

V =
1

2
(v1 + 〈v2〉) '

1

2
(v1 + vrot) (8)

and v′3 = v3 −V is the proton velocity in the center-of-mass frame.

The relative velocity in the center-of-mass frame is v1 − V. To get the Brown-Jarmie
coefficients for this particular reaction use the relative energy to interpolate for a, b, and
c. Our goal is to compute the effect of anisotropy on the Bosch-Hale value of 〈σv〉 we have
already found. If the reaction was isotropic, the integral of the differential cross section
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over θ gives a total cross section that is proportional to a + b/3 + c/5, so the anisotropy
enhancement/deficit factor is

κ =
a+ b cos2 θ + c cos4 θ

a+ b/3 + c/5
. (9)

Therefore, the reactivity for this reaction is κ〈σv〉 and the emissivity is ndκ〈σv〉.

4.2 Calculating pgyro

The goal of this subsection is to determine the number of fast ions in velocity space that
can produce a reaction with the specified value of v3.

Jacobsen et al. [8] calculated velocity-space weight functions for neutron spectroscopy using
the d(d,n)3He reaction. Since v3 is known, they found that the calculation is simpler in the
lab frame than in the center-of-mass frame. For simplicity, they assumed negligible target
velocity (v2 = 0) in their treatment of the reaction kinematics (but not in the calculation of
R discussed in the previous subsection). In the following, we do not make this assumption
but ultimately conclude that it is justified for typical parameters.

Following Jacobsen et al., the weight function for a particular fast ion with velocity (v⊥, v‖)
[or (energy,pitch)] is proportional to a factor proportional to the reaction rate and a
kinematics-dependent velocity-space factor. Symbolically, the velocity-space weight func-
tion w(Ep1, Ep2, φ, v‖, v⊥,vrot, r) is found for emitted proton energies between Ep1 and Ep2

that are emitted at an angle φ with respect to the magnetic field by a reaction between
a fast ion with parallel and perpendicular velocities v‖ and v⊥ and target ions that rotate
at vrot and have temperature Ti at the spatial location r. This weight function is the
product of a reaction rate and a conditional probability that depends upon the reaction
kinematics,

R(φ, v‖, v⊥,vrot, Ti)× prob(Ep1 < E3 < Ep2|φ, v‖, v⊥,vrot). (10)

For the conditional probability, two components of the fast-ion velocity v1 are known but
the third component, the gyroangle γ, is not. The goal of the kinematics calculation is
twofold: (1) Find which gyroangles can produce a proton with the specified value of v3

and (2) determine the value of cos θ to use in Eq. 9. Since gyromotion is assumed uniform,
the fraction of fast ions pgyro with the specified values of (v⊥, v‖) that can produce this
proton is equal to

pgyro =
∆γ

2π
, (11)

where ∆γ represents the range of gyroangles that produces protons in a specified energy
range, Ep,1 < E3 < Ep,2.
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Including the plasma rotation but assuming zero temperature of the target species, the
equations of energy and momentum conservation in the lab frame are

1

2
m1v

2
1 +

1

2
m2v

2
rot +Q =

1

2
m4v

2
4 +

1

2
m3v

2
3 (12)

and
m1v1 +m2vrot = m3v3 +m4v4. (13)

Use momentum conservation to eliminate v4 in Eq. 12 and replace the masses with their
values for the d(d,p)t reaction. Introduce coordinates (â, b̂, ĉ) where b̂ is along the magnetic
field, â is oriented along the perpendicular component of the emitted proton, and ĉ is
orthogonal to the other unit vectors. Choose the origin of the fast-ion gyroangle γ so
cos γ = 1 when the gyroangle is aligned with â. The fast-ion velocity is

v1 = b̂v‖ + âv⊥ cos γ + ĉv⊥ sin γ, (14)

the proton velocity is
v3 = b̂v3 cosφ+ âv3 sinφ (15)

and the rotation velocity is
vrot = b̂vb + âva + ĉvc. (16)

After substitution, the equation for the gyroangle is

v⊥(sinφ−2va
v3

) cos γ = v3−
3Q

2v3mp
−(v‖+vb) cosφ−va sinφ−1

2

v21 + v2rot
v3

+
2vbv‖

v3
−v

2
rot

2v3
+

2vcv⊥ sin γ

v3
.

(17)
Since the last term on the right-hand side (RHS) is quite small, this equation is easy to
solve iteratively for cos γ.

For the anisotropy calculation, cos θ is given by Eq. 7. All of the needed velocities are
known.

In practice, the rotation velocity can be neglected in the calculation of γ and cos θ. Since
Eq. 17 is solved for cos γ, both a positive gyroangle γ+ and a negative gyroangle γ− satisfy
the equation. If rotation is neglected, these angles are equal and opposite. With rotation,
the final term in Eq. 17 that is proportional to sin γ causes an asymmetry between positive
and negative gyroangles. However, as shown in Fig. 5a, even for a relatively large rotation
velocity of 2× 105 m/s, the difference in these angles is very small. Similarly (not shown),
the center-of-mass angle cos θ depends very weakly on the sign of γ.

To get pgyro, we want to calculate a pair of gyroangles γ for two energies Ep,1 and Ep,2;
this gives us an effective width in velocity space. (We actually want to calculate this pair
for both γ+ and γ− but, since γ+ ' γ−, we can restrict the calculation to γ+ and double its
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probability.) Note that we do not want to calculate γ for two actual orbits with different E3.
Instead, we are interested in the velocity-space spread of fast-ion gyroangles that produce
protons in a specified energy bin ∆Ebin. Use Eq. 17 to find γhigh for Ep,1 = E3 + ∆Ebin/2
and γlow for Ep,2 = E3 −∆Ebin/2. The gyroradius probability factor is

pgyro '
|γhigh − γlow|

π
. (18)

There are two potential pitfalls in the numerical calculation of γ from Eq. 17. One pitfall
occurs when the factor v⊥(sinφ − 2va/v3) on the LHS of Eq. 17 is zero. This occurs
when the proton is emitted nearly parallel to the magnetic field or when v1 and v3 are
nearly parallel or anti-parallel to each other; since both of these conditions occupy small
velocity-space volumes, we set pgyro = 0 for these special cases.

The second pitfall occurs when an energy bin extends beyond the maximum or minimum
values of E3 that are compatible with the other selected parameters. The maximum and
minimum energies occur when the gyroangle is γ = 0 or γ = π. In these cases, Eq. 18 is
replaced by pgyro = γbin when γ ' 0 or pgyro = π−γbin when γ ' π. Here, γbin is the value
of γ evaluated at whichever edge of the energy bin has a value of proton energy permitted
by the kinematics.

The maximum and minimum values of E3 occur when cos γ ' ±1 in Eq. 17. Use the
quadratic formula to find that the minima and maxima values of the proton speed v3
are

v3 =
−B +

√
B2 + 4C

2
(19)

where
B = ∓v⊥ sinφ− (v‖ + vb) cosφ− va sinφ

and

C =
3

2

Q

mp
+
v21 + v2rot

2
− 2v‖vb ∓ v⊥va.

5 Implementation into the FIDASIM framework

Calculation of the 3 MeV proton count rate has been implemented within the framework
of the FIDASIM synthetic diagnostic code [1]. Since detailed documentation is available
on the FIDASIM GitHub website [22], only a brief summary is provided here.

Data preparation of input files in HDF5 format occurs outside of the framework of the
FORTRAN FIDASIM code. As usual, plasma profiles, the fast-ion distribution function,
and the equilibrium are prepared using Python or IDL data-preparation routines. The
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FIDASIM Proton Table Inputs

Member Type Rank Dimension Units Description

nchan Int 0 Scalar unity Number of detec-
tor channels

nrays Int 0 Scalar unity Number of “rays”

nsteps Int 0 Scalar unity Maximum num-
ber of orbit
steps

nenergy Int 0 Scalar unity Number of proton
energies

earray Float 1 [nenergy] keV Proton energies

daomega Float 3 [nenergy,nrays,nchan] cm−2 Transmission fac-
tor

nactual Float 3 [nenergy,nrays,nchan] unity Number of orbital
spatial steps

sightline Float 4 [nenergy,6,nsteps,nrays,nchan] cm/s
cm

Velocity and posi-
tion in [r,phi,z]

Table 1: New inputs used by FIDASIM in the 3-MeV proton calculation.

additional input quantities for the 3-MeV proton calculation are the proton sightlines and
transmission factors described in Sec. 3; they are listed in Table 1. The user specifies
an array of energies for the proton spectrum. For each detector channel, “nrays” is the
number of orbits to consider in the “bundle” of trajectories that strikes the detector. After
reading the detector geometry and the equilibrium fields, a Lorentz orbit code calculates the
time-reversed orbit (the “sightline”) and an IDL code calculates the transmission factor
(“daomega”) for each specified “ray” for each detector. A typical calculation uses 150
orbital steps, 75 rays, and 11 proton energies.

Figure 6 shows a flowchart of the calculation within FIDASIM. After reading the input
data, a routine converts the proton orbits (the “sightlines”) into the Cartesian coordinate
system utilized in FIDASIM. Next, bilinear interpolation is performed to find the fields
and plasma parameters at each sightline step. Calculation of the probability factor and
gyroangle described in Section 4.2 is the first major process in the algorithm. Inputs to
subroutine get_pgyro are the magnetic field, proton energy, fast-ion energy, fast-ion pitch,
plasma rotation and proton velocity. Although the plasma rotation is relatively small in
Equation 17, it is kept in the computations for completeness.

Next, a gyro step is required to get the fast-ion density at the guiding center position.
Since the fields, pitch and gyroangle are known, subroutine pitch_to_vec calculates the
velocity of the fast ion. The velocity, beam mass and fields are then used to determine the
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guiding center position in subroutine gyro_step using the formula for the gyroradius in
[23]. Finally, the beam energy and pitch are used to calculate the guiding center fast-ion
density at the gyro-step position.

Calculating the reaction rate is the last major process of the algorithm and follows the
procedure outlined in Sec. 4.1. Linear interpolation is performed to determine the Brown-
Jarmie coefficients for the given beam energy. FIDASIM reads in pre-calculated tables
for the neutron and proton branches of the D-D beam-target fusion reaction. Bilinear
interpolation is performed to calculate the proton production rate for a given thermal ion
temperature and relative velocity between the fast ion and rotation velocities. Finally, the
rate is multiplied by the thermal deuterium density.

After looping over detector channels, proton energies, orbit rays, and orbit steps, the code
outputs proton spectra for each detector channel.

6 Code verification

This section discusses the selection of numerical parameters, the sensitivity of the output
to two physics effects, and tests that verify that the code works properly. Two different
sets of inputs that are representative of the MAST diagnostic installation are used for these
tests. The first set is an artificial case that Netepenko used for the tests described in his
Ph.D. thesis [15]. The second is for an actual MAST discharge, #29908. In both cases, the
equilibrium is provided by EFIT [24] and the plasma parameters and distribution function
are from TRANSP [25].

An initial test found that 5 proton energies is insufficient to resolve the proton spectrum
but 13 energies provides adequate resolution. Increasing the number of orbital steps and
number of rays did not significantly affect the results and slowed down the algorithm. Thus,
nsteps=110 and nrays=50 are used in the following section.

In order to quantify the importance of the anisotropy correction factor, FIDASIM is run
using anisotropic (Eq. 9) and isotropic (κ = 1) cross sections. Figure 7 shows that inclusion
of the anisotropy of the d-d cross section makes a small difference of 4% for an injection
energy of 50 keV for MAST conditions. Because many protons are emitted near the
center-of-mass angle θ ' π/2, where anisotropy reduces the cross section, the isotropic
calculation is slightly higher. Since the effect of anisotropy grows with increasing energy,
proper treatment of cross-section anisotropy is more important in facilities with higher
injection energies or RF accelerated fast-ion tails.

Figure 8 compares the spectrum computed using the actual proton orbits to a calculation
that utilizes the same orbits and transmission factors for all proton energies. Because
higher-energy protons have larger gyroradii, they originate deeper in the plasma, where
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the fast-ion and thermal densities are larger and the emissivity is larger. Conversely,
lower-energy protons originate closer to the plasma edge where the emissivity is smaller.
The result is that proper treatment of the orbits shifts the spectrum to higher energies
(Fig. 8). The overall effect is modest for the MAST installation, however.

To benchmark the code, the calculated count rate was compared with an independent
calculation using the formalism described in [15] for the inputs of MAST discharge #29908.
The calculations differ by 2-5% for different channels.

As a second verification exercise, the proton spectrum was calculated for a monoenergetic,
isotropic distribution function with cold thermal deuterons. This is a condition for which
an analytical prediction of the expected spectrum is available [26]. The calculated spectrum
has the predicted shape (Fig. 9).

7 Weight functions

The algorithm and program described so far computes the proton spectrum,

C(Ep,1 < E3 < Ep,2) ' A
∫ ∫

dl dΩT (Ω)RpgyroF (v‖, v⊥) dv‖ dv⊥. (20)

If we choose to evaluate the protons that come from a single position along the proton
“sightline,” (i.e., eliminate the integral over the sightline

∫
dl), Eq. 20 can be written as

a set of factors that multiply the guiding-center fast-ion distribution function F . These
factors constitute the velocity-space weight function w2D,

w2D(E3, v‖, v⊥, r) = A

∫
dΩT (Ω)Rpgyro. (21)

Note that, although F is written as a function of v‖ and v⊥, it is straightforward to reexpress
the velocities in terms of fast-ion energy E1 and pitch (v‖/v) if one prefers. In addition to
its dependence upon fast-ion velocity, w2D depends upon spatial position along the line of
sight.

For forward modeling with a specified guiding-center distribution function F (v‖, v⊥, r), the
expected signal is

C(Ep,1 < E3 < Ep,2) =

∫
dl

∫ ∫
dv‖ dv⊥w2DF. (22)

The derived expression can also be used to find three-dimensional weight functions for orbit
tomography [5] by appropriately weighting w2D spatially based on the properties of the
selected fast-ion orbits.

12



As an example, Fig. 10 shows velocity-space weight functions for a MAST detector. In
this example, contributions to w2D have been summed over the orbit to eliminate the
spatial dependence of the weight function. The selected channel is the one with the largest
toroidal velocity component in Fig. 1. Owing to the Doppler shift associated with the
cos θ term in Eq. 4, fast ions that move away from the detector emit protons of reduced
energy, while fast ions that head toward the detector emit protons of increased energy.
This is the reason that deuterons that travel in the direction of the toroidal field are more
likely to produce a low-energy proton than deuterons that circulate against B in Fig. 10a.
Conversely, high-energy protons are produced most effectively by deuterons that travel
opposite to the toroidal field (Fig. 10c). Near the unshifted energy of 3.03 MeV, owing to
the gyromotion, two peaks appear in the weight function (Fig. 10b). This occurs because
one phase of the gyromotion can cancel the parallel component of motion along B, while
another phase cancels the opposite parallel motion. The shapes of these three proton-
energy-resolved weight functions are qualitatively similar to the FIDA weight functions of
[4] and are caused by geometrical effects associated with the gyromotion. If one integrates
over energy, the pitch dependence of the weight function essentially disappears (Fig. 10d).
However, owing to the strong energy dependence of the d-d fusion cross section, all proton
energies exhibit a strong dependence on deuteron energy. (When integrated over proton
energy and fast-ion pitch, the energy dependence of the weight function is close to the
energy dependence of the d-d reactivity σv.) The proton signal is produced primarily by
the highest energy ions in the deuterium distribution function.

Although resolving the 3-MeV proton energy spectrum is a technical challenge, Fig. 10
demonstrates that energy-resolved measurements provide valuable information about the
deuterium distribution function.

8 Conclusion

An algorithm and computer program that calculates the count rate and weight function
of a 3-MeV proton diagnostic has been developed and tested. The algorithm properly
treats effects associated with curved proton orbits, as well as the anisotropy of the d-d
cross section. The algorithm and program assumes that the proton signal is produced by
beam-plasma reactions, rendering it inapplicable to plasmas with significant beam-beam
or thermonuclear reaction rates.

In future work, the 3-MeV proton weight function will be employed in tomographic recon-
structions of the fast-ion distribution function in MAST-U plasmas with proton, FIDA,
neutron collimator, and neutral particle data.
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Figure 1: Elevation (left) and plan (right) views of 3.03 MeV proton orbits (colors) that
reach the four MAST proton detectors in a particular equilibrium. The thickness of the lines
is proportional to the effective transmission T . The black lines in the elevation represent
flux surfaces.
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Figure 2: (a) Schematic diagram of a cylindrical collimator. For a given orientation of the
incident proton velocity, some orbits reach the detector (red), while others do not (blue).
(b) For a given incident velocity vector, only the red portion of the detector is illuminated.
The figure also shows the sunflower sampling of the detector area.
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Figure 3: (R, z) projection of orbits that enter the detector with the same orientation
for energies of 2730 (brown), 3030 (red), and 3330 keV (blue). The orbit shifts a few
centimeters.
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Figure 4: The overall transmission of the collimator increases with energy because the
incident orbits are straighter. A variety of different incident velocity vectors are shown.
The curves are normalized to the transmission of the maximum velocity vector for E3 =
3.03 MeV.
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Figure 5: Dependence of (a) the absolute value of the normalized gyroradius |γ|/π and
(b) the probability of gyroradii in a specified energy range pgyro on proton energy for
E1 = 50 keV and a rotation velocity of 2× 105 m/s. Solid curves: lab-frame angle φ = π/2
and fast ion pitch v‖/v = 0.5. Dashed curves: φ = −π/4 and v‖/v = 0.95. Dot-dashed
curves: φ = π/2 and v‖/v = 0. In (a), for the solid-line case, both γ+ (red) and γ− (black)
are shown; the curves nearly overlay one another.
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Figure 6: Flowchart for the portion of the algorithm that is implemented in the FORTRAN
FIDASIM code.
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Figure 7: Comparison of the proton energy spectrum calculated using the actual anisotropic
d-d cross section (solid curve) with a calculation that ignores cross-section anisotropy
(dashed).
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Figure 8: Comparison of the proton energy spectrum calculated using the true energy-
dependent orbits and transmission factors (solid curve) with a calculation that employs
identical orbits and transmission factors for all escaping proton energies (dashed).
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Figure 9: Proton energy spectrum for a monoenergetic (30 keV), isotropic, fast-ion distri-
bution function in a plasma with nearly stationary deuterium target ions as computed by
analytical theory (solid) and by FIDASIM (dashed).
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Figure 10: Velocity-space weight functions of a MAST 3-MeV proton channel for (a) down-
shifted d-d protons, (b) unshifted protons, (c) up-shifted protons, and (d) protons of all
energies. The abscissa is the fast-ion energy and the ordinate is v‖/v relative to the
magnetic field. The same linear rainbow color table is employed in panels (a)-(c); in
panel (d), the maximum value of the color table is 3.0 times larger.
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