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Abstract.
A novel high-performance computing algorithm, developed in response to

the next generation of computational challenges associated with burning plasma
regimes in ITER-scale tokamak devices, has been tested and is described herein.
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The Lorentz-Orbit Code for Use in Stellarators and Tokamaks (LOCUST) is
designed for computationally scalable modelling of fast-ion dynamics, in the
presence of detailed first wall geometries and fine 3D magnetic field structures.
It achieves this through multiple levels of single instruction, multiple thread
(SIMT) parallelism and by leveraging general-purpose graphics processing units
(GPGPU). This enables LOCUST to rapidly track the full-orbit trajectories of
kinetic Monte Carlo markers to deliver high-resolution fast-ion distribution
functions and plasma-facing component power loads.

LOCUST has been tested against the prominent NUBEAM and ASCOT fast-ion codes.
All codes were compared for collisional plasmas in both high and low-aspect ratio
toroidal geometries, with full-orbit and guiding-centre tracking. LOCUST produces
statistically consistent results in line with acceptable theoretical and Monte Carlo
uncertainties. Synthetic fast-ion D-α diagnostics produced by LOCUST are also
compared to experiment using FIDASIM and show good agreement.
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1. Introduction

The size, power and performance of the ITER tokamak
represents a paradigm shift in both experimental and
computational fusion science. ITER will be one of the
first tokamaks to generate a burning plasma, where
a significant population of energetic particles must
be sufficiently confined to simultaneously sustain the
reaction and protect the plasma-facing components
(PFC). Hence the transport of energetic particles in
ITER remains a vital area of study [1] (see the
activities of the ITPA Energetic Particle Physics
Topical Group). Nevertheless, the spatiotemporal
scales involved make detailed systematic analyses
challenging with traditional computational methods.
Resolving heat loads over the greater PFC surface areas
of larger tokamaks requires evaluating additional gyro-
resolved trajectories. Similarly, the extra compute
time required to track ions over the increased (∼
1s) slowing-down time is compounded by the need
for smaller timesteps (∼ ns) and finer topological
resolution to minimise numerical drift. With similar
large-scale devices on the horizon, such as STEP, this
type of metaproblem has recently begun to attract
more urgent attention [2][3][4].

There are multiple ways to advance computational
capabilities, and adapting to novel or specialised
hardware is one. This approach is advantageous
for a number of reasons other than an immediate
speed boost: the lower cost, energy consumption
and space required can make specialised hardware
more efficient for specific tasks; specialised hardware
can be more accessible at the hardware level, for
example interfacing with workstation devices directly
via PCIe buses to avoid the need for remote data
centres; minimal adaptation is required for modular
or encapsulated code; and future hardware generations
bring passive performance improvements more rapidly,
depending on the type of hardware market [5]. This
costs time tuning and adapting codes and algorithms.
Additionally, sometimes hardware may be inaccessible
if particularly new or prohibitively expensive for
individual users. But high-performance computing
platforms, including the cloud, now routinely offer
heterogeneous hardware, often featuring combinations
of central processing units (CPU), GPGPUs and even
field-programmable gate arrays (FPGA). Likewise,
user-level accessibility is constantly improved by
high-level APIs [6][7]. For embarassingly parallel
tasks, which describe most linear energetic particle
physics, GPGPUs in particular offer scalable hardware
acceleration for little deployment cost; GPGPUs
are energy-efficient, have a low capital cost per
computational thread and can be hosted by basic
desktop computers. Despite this, the application
of GPGPUs to computational plasma physics is not

widespread.
LOCUST is an algorithm designed specifically

to use off-the-shelf GPGPU hardware to reach
a computational performance that enables routine
simulations of fast-ions in ITER-scale devices. For
an ITER burning plasma scenario (electron density
∼ 1020m−3, electron temperature ∼ 25keV, 12 3D
field components at 1cm precision and a wall mesh
comprising 6×107 tetrahedra/3×106 surface triangles),
LOCUST can track 250, 000 markers to thermalisation
over 2s in 1ns time steps in 30 hours on a node with
eight Nvidia P100 GPGPUs controlled by one Intel
Xeon E5-2689. This performance itself demonstrates
that LOCUST is readily capable of studying the most
challenging of problems.

As part of the software lifecycle, it is vital to
continually verify that new tools like LOCUST are
correctly implemented and to validate the accuracy of
any underlying models by comparing with experiment.
To this end, LOCUST has been benchmarked over
a range of test scenarios, with the aim that its
performance matches multiple well-established tools.
Emphasis has subsequently been placed on accurately
verifying the fundamental implementation of the
code, whilst reducing possible interference from high-
order physics models, before validating this against
experiment.

In this paper, LOCUST is both described and
rigorously tested. Section 2 describes the physical
model, including its assumptions, their computational
implications and the resulting information calculated
by LOCUST. A description of the algorithm and its
execution, alongside the required inputs and ouputs, is
given in section 3. Results from cross-code benchmarks
are presented in 4. Finally a summary of findings is
made in section 5.

2. Model overview

The primary goal of LOCUST is to calculate the steady-
state distribution function of fast-ion species as ef-
ficiently as possible, whilst also resolving individual
ion trajectories in a realistic 3D geometry to calculate
PFC power loads. To complement massively parallel
memory-bound hardware, we opt for a mathematically
simple but computationally intensive approach: solv-
ing the Lorentz equation of motion (1) for individual
kinetic markers i representing real-space position ri(t)
and velocity vi(t) Monte Carlo samples of the fast-ion
distribution function:

d2ri
dt2

=
dvi
dt

=
qi
mi

(vi ×B(ri) + E(ri)). (1)

with B(ri) and E(ri) the magnetic and electric
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fields evaluated at the ith marker position ri. In
LOCUST these trajectories are evaluated either by
tracking the particle’s guiding-centre (GC) [8] and
gyro-phase or its real-space position over the full orbit
(FO), using a fixed-step numerical scheme to minimise
thread divergence. Multiple such integrators are
included: Strang-Splitting [9]; the recent BGSDC [10];
Runge-Kutta-type integration methods such as RK45
[11], McClements-Thyagaraja-Hamilton, Fehlberg [12],
Cash-Karp [13], Dormand-Prince [14], and Goeken-
Johnson [15]; and Euler methods such as the popular
Leapfrog/Boris [16].

LOCUST relies on approximations to enhance the
computational tractability of the model. Firstly, the
electromagnetic field experienced by each fast particle
is evaluated without the relatively weak contributions
from other fast-ion species. If we further assume that
the background plasma is in static equilibrium and
self-consistent with the fast-ion distribution, we can
simplify the computation in three ways:

(i) We ignore the influence of fast ions on the
thermal plasma. If and only if we chose to do
so then it becomes valid to track independent
sub-samples of the fast-ion distribution (see item
(ii)). Without this approximation, these sub-
samples of the fast-ion population would be
self-coupled via their exchanges with the bulk
plasma, but they can be treated independently
in the case where the background equilibrium
is assumed to be static and self-consistent with
the final steady-state fast-ion distribution. In
practice, equilibria are taken from preconverged
time-dependent transport simulations, which use
simplified fast-ion models. In a given LOCUST

simulation, the equilibrium is held constant
by fixing the background plasma temperature,
density and rotation profiles as well as the
magnetic field.

(ii) We utilise the entire trajectory history of each
marker when calculating the distribution function
such that a marker ensemble of constant size
need only be tracked from source to sink
once to estimate the steady-state distribution
function. By extending the logic from item
(i), one can treat individual points along a
marker trajectory as independent subsamples of
a common distribution function. This effectively
parallelises the calculation across time similar to
other fast-ion codes such as ASCOT [17].

(iii) Each fast ion is tracked independently in parallel
by non-blocking processes. This is again enabled
by item (i).

Without interactions between fast-ion species, the
equilibrium E(ri) and B(ri) terms are dominated by

background sources, such as external field coils and
short-range Coulomb interactions with the thermal
species. Whilst the background equilibrium is
prescribed numerically, the short-range interactions
with bulk species are replicated using a stochastic
perturbation to the marker velocity vector term in
equation 1. This is implemented with a Monte Carlo
Fokker-Planck collision operator that includes terms
for diffusion and drift of pitch angle (λ) and energy (ε).
These operators are based upon the binomial operators
derived in [18]:

∆λi = −λiνd∆t±
[(

1− λ2i
)
νd∆t

]1/2
(2)

∆εi =− 2νε∆t

[
εi −

(
3

2
+
εi
νε

dνε
dε

)
kBTth

]
± 2 (kBTthεiνε∆t)

1/2

(3)

where ± is a random sign with equal probability and
the νε and νd terms represent collision frequencies as
functions of the Coulomb logarithm log(Λ) and error
function [19][20]. For a given fast-ion population, these
equations are solved for each bulk species. An option to
accelerate the effects of these equations is also included
[21].

By solving these equations, LOCUST calculates and
outputs a range of physics results in many formats.
3D power loads are derived from the intersections
of orbits and PFCs. Similarly, Hamiltonian field
line trajectories can be efficiently evaluated to create
various types of Poincaré maps, each designed to
illustrate particular magnetic field structures. The
distribution function can be generated in [R,Z,v,λ]
and constants-of-motion [ε,Pφ,σ,µ] spaces. Here Pφ
is the fast-ion canonical angular momentum, σ the
sign of the first-order guiding-centre pitch and µ the
magnetic moment, which is expanded to first order [22]
to improve accuracy when binning markers in devices
with steep field gradients. LOCUST also calculates
one-dimensional poloidal flux profiles of fast-ion-driven
current, torque (J ×B and collisional), pressure and
heating to bulk species channels.

3. Code design and execution

The overall data flow to and from LOCUST is illustrated
in figure 1, along with preprocessing stages and
related external physics solvers. The background
equilibrium fields describing the 2D axisymmetric and
3D perturbative components are passed to LOCUST

as separate numerical representations. These can
be in the form of IMAS Interface Data Structures
(IDS), GEQDSKs, 3D rectilinear grids, or Fourier-
decomposed data. The bulk species temperature
and density are supplied to the collision operator
numerically as interpolated functions of poloidal
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magnetic flux. The initial fast-ion ensemble is read
from individual marker phase-space positions, often
generated by external plasma heating codes. Finally,
the 3D PFC power flux can be calculated from
an axisymmetric limiter outline or an unstructured
volumetric tetrahedral mesh, avoiding the need for
runtime octrees. 3D meshes are generated by
defeaturing and repairing elements of computer-
aided design (CAD) engineering models, typically
using CADfix or SpaceClaim, before remeshing
volumetrically in Attila [23]. Equally this geometry
can be represented by the IMAS generic grid description
(GGD) in the wall IDS.

Once runtime settings and input data are
specified, execution proceeds through stages 1-7 in
figure 1. First, the X-point, magnetic axis and last-
closed flux surface (LCFS) are precisely located. Since
LOCUST is not storage bound, the rectangular 2D field
is then effectively cached by storing pre-computed
bicubic spline coefficients for each knot - either just the
required derivatives and cross-derivatives or the entire
set. Whilst this method is also offered in LOCUST for
storing 3D fields as tricubic splines on a rectilinear grid,
a Fourier-decomposed format is also available. This
latter option is preferred if on-board memory begins
to limit grid resolution or when resolution is only
needed in particular dimensions; the freed space may
be used to redistribute resolution, reducing magnetic
field divergence enough to enable linear interpolation
- which is faster. The 3D mesh is then cached by
labelling vacuum-facing triangles as PFC surfaces. For
rapid and synchronous tracking of tetrahedra traversal,
nodes comprising the unstructured wall mesh are
also mapped to a coarse cartesian grid and adjacent
tetrahedra are linked [33].

After runtime preprocessing, marker tracking is
performed in two stages: markers which start and
remain inside the LCFS are first tracked without
PFC interception checks before tracking all remaining
markers with PFC checks. Considering the constraints
outlined in section 2, optimal performance is achieved
if the number of occupied threads is maximised,
indicating GPGPUs are currently the most suitable
hardware - with thousands of threads per in-built
streaming multiprocessor each able to track an
individual marker in parallel. The Nvidia CUDA

application-programming interface (API) is used to
interface with this hardware, and the core tracking
algorithm is written in PGI FORTRAN. CUDA also
offers libraries for efficient random number generation,
including CURAND and a Mersenne Twister [34]
implementation which are optional in LOCUST.

Implementing SIMT algorithms of this type
requires some hardware-specific design considerations.
The marker tracking algorithm, which comprises the

stages in box 5 of figure 1, is illustrated in figure 2. The
required data is first transferred from the host CPU
to the GPGPU device before a non-blocking device
kernel is triggered to advance markers in phase space.
Simultaneously, fast-ion positions from the previous
timestep are sum-reduced on the host. Care is taken
to overlap these processes; upon their completion, all
processes are synchronised by a transfer of the next
fast-ion positions to the host. These positions take the
integer form of the corresponding distribution function
bin indices to lower data throughput. This process
is scaled across multiple devices within a node using
OpenMP.

As marker trajectories are evaluated, the latest
positions are cumulatively binned to build up the
steady-state distribution function. This process,
illustrated in figure 3, occurs until markers either
strike a PFC, reach a tracking time limit or slow
to a prescribed velocity cut-off - typically 3Tbulk/2.
Upon completion, incident PFC power is collated and
adaptively refined across the surface mesh.

4. Testing

4.1. Orbit tracking

The most fundamental test is to examine the full-orbit
vacuum trajectories calculated by LOCUST. These are
compared to equivalents calculated by MPI ORBF [35]
in the presence of a PFC wall model (in this case
DIII-D). Figure 4 shows that, for markers initially
distributed uniformly in [R,λ] space along the outer
horizontal midplane, both codes measure the same
prompt loss boundary to within (dλ = 0.04, dR =
1.0cm). Variations of this magnitude in the loss
boundary amount to changes of ∼0.1-0.4% in total
loss fraction: 6.8% (MPI ORBF with 2D wall), 6.9%
(LOCUST with 2D wall) and 6.5% (LOCUST with 3D
wall). Therefore the differences are within variations
caused by the wall model, as shown by the strike point
distribution.

4.2. Collisional transport

To test collisional transport in the presence of a
toroidally symmetric background plasma, comparisons
were made against ASCOT4 [17] (version 5 has since
been shown to produce similar results [36]) and
the NUBEAM [21] module of TRANSP [37] via OMFIT

[38]. LOCUST, ASCOT and NUBEAM all employ collision
operators which reduce to the same Fokker-Planck
equation (though different definitions of the Coulomb
logarithm are used). Using data from a single
time slice at 3s into DIII-D shot #157418 [39], the
deposition of a monoenergetic counter-current-injected
80keV deuterium neutral beam into a static plasma
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Figure 1. Information flow (arrows) to and from LOCUST, itself shown in the solid grey box with main pre-processing, runtime
and postprocessing stages. These stages execute in ascending order one to seven and are colour-coded to match relevant
input/output data. Included are examples of external physics codes which have been used to pre-process or post-process data
[23][24][25][26][27][28][29][30][31][21][32].

Host CPU

Σ
1. Sum-reduce
data on host

Push markers in blocks of threads

2. Data transfer to host

GPU
GPU

GPUGPU
device

,x
––t+1 v

–t+1

1. Trigger tracking
kernel on device

,x––t v–t

Thread
sync

OpenMP threads

Figure 2. Execution model for the kernel-level marker tracking algorithm. Steps 1 and 2 execute in serial, but operations therein are
performed asynchronously. In step 1 the GPGPU tracking kernel is triggered whilst the previous marker positions are sum-reduced
on the CPU to form the distribution function. These processes are synchronised by a memory transfer of the new marker positions
from the device to host in step 2.

was calculated by NUBEAM and used in all subsequent
simulations between all codes. Co-injection was also
explored, but it was concluded that the larger volume
of phase-space explored by counter-injected markers
is vital for creating a test rigorous enough to expose
discrepencies between the codes. Because all codes
were forced to use an identical starting marker list from
NUBEAM, which only provides the weight, real-space
position, pitch and energy of markers, this limited the
study to guiding-centre tracking. Consequently, when

calculating collisional effects and wall interceptions,
there is an unavoidable systematic spatial error ∼
rLarmor in the marker position introduced by differences
in the finite Larmor radius (FLR) model implemented
by each code:

• TRANSP assigns markers a random gyrophase,
assuming a circular orbit

• LOCUST optionally tracks gyrophase, opting to
ignore FLR corrections in this study
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marker energy f(ε). This is formed by cumulatively summing f(ε, ti), which are calculated independently at discrete time intervals
ti.
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is measured relative to the plasma current. Marker type denotes which simulations measure losses. Discrepancies are localised to
the loss boundary to within dλdR.
b) Final real-space positions of all promptly lost markers. All three runs used a slightly different wall model but predict most losses
at the outboard midplane limiter (θpol = 0◦) and divertor (θpol = −100◦).
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Table 1. Notable TRANSP namelist settings

setting value comment

GOOCON 20 low orbit acceleration
AVGTIM 0 no Monte Carlo smoothing
NZONE FB 40 —
NZONE FP 40 —
NZONE NB 200 typically 20-60 with smoothing
NZONES 200 —
XBMBND 1.5 previously locked to 1.3
NPTCLS 107 1.7× 105 in ASCOT, 1.3× 105 in LOCUST

• ASCOT ignores FLR corrections unless near the
PFC wall, where a random gyrophase is chosen

Guiding centres were followed for 100 milliseconds
and collisions disregarded for markers outside the
LCFS, as is required by NUBEAM. Furthermore,
impurities, neutral species, bulk rotation, electric
fields, atomic physics and all beam-beam interactions
were removed. All codes employed a lower energy cut-
off at 3Tbulk/2. It is worth noting that, to achieve
the required fidelity without resorting to Monte Carlo
smoothing, which may mask possible discrepencies,
NUBEAM simulations for DIII-D were conducted with the
untypical settings shown in table 1.

All codes produce similar results when fast-ion
dynamics are isolated to within the plasma. To
achieve this, an artificial axisymmetric PFC surface
was created concentric to the LCFS but 5% further
from the magnetic axis (Rfac = 1.05) - the closest
permitted by NUBEAM. Figures 5 and 6 show the [R,Z]
and [ε,λ] projections respectively of the calculated
distribution functions collected at the marker guiding
centres. Subfigures (a) show the same density contours
as produced by each code whilst subfigures (b) and (c)
both show the absolute element-wise differences, δf
and δf ′, between the ASCOT and LOCUST distribution
functions in real space. In subfigures (a) and (b)
LOCUST aims to match the ASCOT collision operator,
and in figures (c) LOCUST aims to match NUBEAM. In
the former case the operator is fully expanded whilst
in the latter ion-electron collisions were truncated
to ∼ O(V 5) and ion-ion collisions to zeroth order.
The definition of log(Λ) was also varied. A similar
comparison against NUBEAM could not be performed
reliably, since NUBEAM collates the fast-ion density onto
a flux-aligned grid.

In most regions, δf ∼ 3% between all codes,
which is within the fundamental uncertainties in the
theoretical formulation of the Coulomb logarithm. A
NUBEAM-like collision operator creates a lower density in
the core and outboard edge but higher density towards
the X-point. Within the LCFS, this leads to the
average δf increasing from 3.6% to 4.7%, a change
still in line with theoretical variations. Nevertheless,

when the collision operator is matched, only regions
near the X-point and wall retain any distinguishable
difference - caused by the influence of FLR model on
wall interceptions. The remaining noise in the core
plasma is likely caused by differences in any tuning
applied to the equilibrium field by each code, which
may perturb the position of the flux surfaces and
caused a flux-aligned noise pattern. Furthermore, the
slight mismatch in the core is due to the adaptive time
step in ASCOT - as described later.

The calculated flux profiles in figure 7 also show
good agreement but highlight the importance of the
plasma boundary. The uptick in edge electron heating
is caused by the FLR corrections in NUBEAM spreading
deposited power over a gyro-orbit width; the orbits
of markers with guiding centres located just outside
the LCFS concentrate their deposited power into a
thin shell where the orbit overlaps the plasma. In
LOCUST this power is instead collected at the guiding
centre - outside the plasma for these markers - and is
thus ignored. This effect is artificial, and simulations
can avoid this by imposing ion sinks outside the
plasma boundary, such as a neutral density for charge-
exchange or an extrapolated plasma density.

The measured J × B torque suggests some
discrepancy in orbit topology, especially at the edge
[40], but this information cannot be directly extracted
from NUBEAM. To explore this further, additional
simulations were performed with similar artificial
limiters up to Rfac = 1.5. This allows orbits to
populate the vacuum region between the plasma and
first wall. The XBMBND setting in TRANSP, which,
in all DIII-D simulations previously, registered any
fast ion located at

√
ψtoroidal > XBMBND as hitting

a PFC, was permanently increased to avoid artificial
termination of markers. Figure 8 shows the measured
steady-state PFC power flux as the limiter distance
is increased. As prompt losses are sensitive to wall
model implementation, some disagreement between the
codes is expected, especially at high Rfac when vacuum
orbits may have a significant rLarmor. Hence the
agreement between ASCOT and LOCUST is satisfactory,
as it is mostly within the variations expected from
differences in wall model. However, it is unclear why
the NUBEAM power fluxes diverge so quickly, though it
is encouraging that the resulting discrepencies in the
distribution function remain solely at the plasma edge.

The previous methodology was repeated for a
spherical tokamak topology. Such devices tend to
have steeper gradients [41], meaning any inaccuracies
in fast-ion models will be exacerbated; in MAST
for example rLarmor can approach ∼ Rmajor, and
the impact on the validity of the guiding-centre
approximation has long been questioned [42][43].
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Figure 5.
a) Contours of fast-ion density integrated over velocity space. The real and artificial limiter profiles are shown in black solid and
dashed respectively. NUBEAM bins according to a flux-aligned spiralised grid whereas ASCOT and LOCUST use rectilinear, hence some
variation near the magnetic axis is expected due to numerics.
b) Absolute element-wise difference between LOCUST and ASCOT distribution functions δf ≡ log10(|fLOCUST − fASCOT|/
max(fLOCUST, fASCOT)). A high-order collision operator was used in LOCUST, as well as the ASCOT definition of log(Λ).
c) The same as plot b) except with LOCUST using a truncated collision operator and the NUBEAM definition of log(Λ). This choice
primarily affects the core region, though some differences on the outboard side are noted. The prompt loss region near the X-point
remains.
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Figure 6.
a) Contours in pitch-energy space of fast-ion density integrated over real space, where λ is defined with respect to the direction of
toroidal current flow as is convention in NUBEAM.
b) The absolute element-wise difference between the LOCUST and ASCOT distribution functions δf ≡ log10(|fLOCUST − fASCOT|/
max(fLOCUST, fASCOT)). A high-order collision operator was used in LOCUST, as well as the ASCOT definition of log(Λ).
c) The same as plot b) except with LOCUST using a truncated collision operator and the NUBEAM definition of log(Λ). The injection
energy is 80keV, so diffusive noise can be expected above here.
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Figure 7. Normalised quantities measured against normalised poloidal flux ρpoloidal. Some discrepency around ρ = 0 is expected
due to binning width. Most important is the discrepency in the J ×B torque, which suggests a difference in the measured orbit
width.
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Figure 8. PFC intercept fraction as a function of limiter wall
radius where Rfac ≡ rlimiter/rLCFS with r representing minor
radius.

MAST shot #29034 was selected to allow for
comparison with measured fast-ion D-α (FIDA)
emission [44]. The NBI deposition code BBNBI was
included to enable comparison of full-orbit simulations.
Like before, a single time slice of data describing
the background plasma was extracted at 360ms. A
quiescent period was chosen during the flat-top phase
when core electron temperature and density were
relatively constant. To create a realistic deposition,
time-resolved NBI data from OMFIT were used to
generate the NUBEAM deposition for the south-south
neutral beam, whilst settings as similar as possible
were chosen for BBNBI: a 62keV co-current beam with
62% full, 27% half and 11% third energy fractions.
Hence it is technically inappropriate to cross-compare
the results attached to each beam code in this case.
GC and FO trajectories were then calculated by each
code over 100ms - enough to reach steady state.

The co-current NBI confines the fast ions to
the plasma core, where discrepencies are hard to
distinguish and there is a systematic shift in spatial
density due to the FLR displacement, so instead
we examine f(ε), which still encodes some real-
space information through the effects of the steep
temperature and density gradients on the fast-ion
diffusion rate. The only unexpected discrepency in
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real space is caused by noise in the NUBEAM distribution
function, since this case decreased NPTCLS to 105.

The average f(ε) across all simulations is shown
normalised in black in figures 9 and 10. The residuals
- the difference between each simulation and the un-
normalised average - are also shown normalised against
the average. Most simulations are within ±3% of the
mean, except at lower energies due to collision operator
truncation.

As a figure of merit, for simulations using a
deposition calculated by BBNBI in figure 9, the
maximum difference in total fast ions is 5%, falling
to ≤ 2% for pairs of simulations which follow similar
assumptions - even including the ASCOT GC simulation,
which differs from the LOCUST equivalent by 1.7%
(the FO equivalents differ by 0.9%). The reason for
the increased density at high energies measured by
ASCOT GC is likely due to the adaptive time step
used. NUBEAM, which also uses orbit acceleration,
shows a similar feature in figure 10. For FO and GC
simulations of a homogeneous plasma by LOCUST and
ASCOT, the only discrepency is an overestimation of
fast-ion density of ∼ 20% in the high-energy diffusive
tail by ASCOT GC. Whilst this effect is much more
pronounced in MAST than DIII-D, the total number
of fast ions in the homogeneous case still only differs
by ∼ 0.2% - small enough to be affected by slight
variations in beam deposition as shown in figure 10
where the effect is lessened.

To compare these predictions more quantitatively,
calculated Kolmogorov-Smirnov (KS) statistics D [45],
and their corresponding probabilities P (Dmeasured <
D), are shown in figure 11 for matching pairs of f(ε).
Typically, the null hypothesis of the KS test, that the
two empirical distribution functions to be compared
are drawn from the same distribution function, is
rejected if the measured KS statistic Dmeasured satisfies
P (Dmeasured < D) ≤ α, with α typically chosen to
be ≤ 0.05 - here we increase α to 0.1 for rigor. For
calibration, figure 11a first shows the KS statistic for
the GC and FO LOCUST simulations. In this case
P ≈ 1, meaning these distributions comfortably agree
as expected. Contrast this to the next KS statistic,
where the collision operator has been truncated,
and the test clearly fails. Next we see that the
LOCUST FO simulation easily agrees with the ASCOT

equivalent, with P ≈ 1 when the Coulomb logarithm
is matched. The equivalent GC comparison fails solely
due to the high-energy tail effect, since the equivalent
measurement for the NUBEAM deposition in figure 11b
now passes. Finally, we also observe that NUBEAM

decisively matches LOCUST.

4.3. Synthetic diagnostics

To validate that the comparisons for MAST are
realistic, the distribution functions calculated from the
NUBEAM deposition by LOCUST and NUBEAM were fed into
FIDASIM to generate synthetic FIDA measurements.
The predicted and total measured signals for this
spectral range are shown in figure 12a. Signals within
a 660.5-661.5nm gate are shown radially resolved in
figure 12b, along with each predicted signal from
FIDASIM.

Within the core plasma, signals from LOCUST

and TRANSP are within the smallest error bars of
each other so as to be indistinguishable by the FIDA
diagnostic. However, despite the gate, the presence of
background Bremsstrahlung emission is still observed
outside of Rmajor = 1.25m and the LCFS in figure
12b. Current error estimates do not take background
light into account, or even the lack of a time-dependent
background plasma, but if errors increased globally by
∼ 70% then the reduced χ2 ∼ 1 within Rmajor =
1.25m.

5. Summary

The LOCUST code has been described. This includes
discussions on the topics of the underlying kinetic
physics model, software and hardware implementation,
and algorithm design - as well as their mutual influence.
In short, assumptions which allow for the independent
tracking of fast-ion markers enable the adoption of
massively parallel SIMT hardware - in this case
GPGPUs.

LOCUST has been shown to compare well with
popular fast-ion codes at a fundamental level over a
range of realistic test environments. In the correct
circumstances, it was shown that the predictions of
all codes converge to within the assumptions of their
respective physics models: in this case, the accuracy of
the collision operator, choice of Coulomb logarithm and
FLR model. These comparisons have been validated
against experiment. In achieving this, credibility
has been added to the conclusions of other parallel
benchmarking activities, which may consider physics
not present here [43].

Most importantly, these results demonstrate a
readiness for the routine use of LOCUST in physics
exploration, virtual engineering and plant design, and
sophisticated integrated modelling workflows via the
IMAS platform.

Moving forwards, IMAS itself will become increas-
ingly important for the standardisation of verification
and validation activities, as codes adapt to studying
high-performance devices whereby problems grow in-
creasingly sensitive. Indeed, the prediction [46] that
computational tools will need to continually evolve into
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Figure 9. The fast-ion density f(ε) after 100 milliseconds, integrated over all dimensions except energy, is averaged across all
simulations, normalised and shown in black as f(ε)mean. The residual differences (f(ε) − fmean)/fmean for each simulation are
shown on the density residual axis. Simulations using GC and FO tracking (solid and dashed respectively); truncated and high-order
collision operators (truncated and non-truncated labels respectively); and LOCUST log(Λ) and ASCOT log(Λ) (dark green and light
green respectively), are all shown, with combinations of these linestyles representing the corresponding combinations of options. The
near-symmetrical splitting of predictions at lower energies is caused by the collision operator truncation whilst systematic differences
can be mainly attributed to the log(Λ) used.
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Figure 10. Equivalent to figure 9 but using deposition from NUBEAM, meaning only GC simulations can be performed. The overall
trend is similar to figure 9 but the ASCOT tail is reduced.
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Figure 12.
a) Theoretical and measured signal intensities in MAST shot #29034 at 300ms for one channel. The wavelength filter denoted by
vertical dashed lines encompasses 660.5-661.5nm and is used to integrate all signals across all channels to produce plot b). Some
signals are still left out near 660nm to avoid integration of beam emission in other channels.
b) Radially resolved FIDA signal measured in MAST and as produced by FIDASIM for NUBEAM and LOCUST. An FLR correction was
applied post-simulation.
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more integrated workflows is still actively being re-
alised [47]. As such, verification capabilities should
evolve accordingly via continuous testing. Fortunately,
the modelling community currently has an opportunity
to enable this type of software lifecycle framework in
the form of IMAS. With this capability, the modelling
community will be empowered to quickly and confi-
dently adapt to computationally challenging studies in
the future.
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