3
UK Atomic

Energy
Authority

UKAEA-CCFE-PR(21)20

lpek Caliskanelli, Matthew Goodliffe, Craig Whiffin,
Michail Xymitoulias, Edward Whittaker, Swapnil
Verma, Craig Hickman, Chen Minghao, Robert
Skilton

CorteX: A software framework for
interoperable, plug-and-play,
distributed robotic systems-of-
systems

Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/

CorteX: A software framework for
interoperable, plug-and-play,
distributed robotic systems-of-
systems

lpek Caliskanelli, Matthew Goodliffe, Craig Whiffin, Michail
Xymitoulias, Edward Whittaker, Swapnil Verma, Craig Hickman,
Chen Minghao, Robert Skilton

This is a preprint of a paper submitted for publication in
RoboSoft

CorteX: A software framework for
interoperable, plug-and-play, distributed,
robotic systems-of-systems

Ipek Caliskanelli, Matthew Goodliffe, Craig Whiffin, Michail Xymitoulias, Edward
Whittaker, Swapnil Verma, Craig Hickman, Chen Minghao and Robert Skilton

Abstract In the worlds of nuclear energy, mining, petrochemical processing, and
sub-sea, robots are being used for an increasing number and range of tasks. This is re-
sulting in ever more complex robotics installations being deployed, maintained, and
extended over long periods of time. Additionally, the unstructured, experimental, or
unknown operational conditions frequently result in new or changing system require-
ments, meaning extension and adaptation is necessary. Whilst existing frameworks
allow for robust integration of complex robotic systems, they are not compatible with
highly efficient maintenance and extension in the face of changing requirements and
obsolescence issues over decades-long periods. We present CorteX that attempt to
solve the long-term maintainability and extensibility issues encountered in such sce-
narios through the use of a standardised, self-describing data representations and
associated communications protocols. Progress in developing and testing the Cor-
teX framework, as well as an overview of current and planned deployments, will be
presented.

1 Introduction

Systems that will be used to maintain and inspect future fusion powerplants (e.g.
ITER [3] and DEMO [18]) are expected to integrate hundreds of systems from multi-
ple suppliers with a lifetime of several decades, over which requirements evolve and
obsolescence management is required. There are significant challenges associated
with the integration of such large systems from multiple suppliers, each operating
using bespoke interfaces and having their training requirements.

Nuclear robotics in complex facilities, comprising hundreds of interoperating
systems, will become increasingly commonplace as safety and productivity require-

Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon,
OX14 3DB e-mail: ipek.caliskanelli, matthew.goodliffe, craig.whiffin, michail. xymitoulias, ed-
ward.whittaker, swapnil.verma, craig.hickman, chen.minghao, robert.skilton @ukaea.uk

2 Caliskanelli and Goodliffe et al.

ments drive facility design and operation. In order to be efficient and operate for years
or decades without significant downtime, future systems will be dependent on au-
tomation and the sharing of information. Within current nuclear robotic applications,
there are fundamental limitations regarding long-term maintainability, extensibility,
dependability, reliability, security, and compatibility with regulatory requirements.
Existing networked and cloud-based robotics lack interoperability, heterogeneity, se-
curity, multi-robot management, common infrastructure design, Quality-of-Service
(QoS), and standardisation. There is a need for a new robotic framework, specif-
ically tailored for such applications, that can adapt to new challenges, new user
requirements, and new advances in technology. RACE is working towards providing
a future-proof communications and control framework, capable of meeting these
requirements, essential for future large-scale nuclear robotic facilities.

Development has been focused around five key design principles, namely reusabil-
ity, extensibility, modularity, standardisation, and integrated user interfaces. To guar-
antee reusability, control solutions must be implemented in a generic fashion in order
to be agnostic of their application. These control solutions must also be implemented
in such a way as to allow them to be extended by later applications, which may require
additional functionality. Modularity ensures the ability to replace components of a
control system with newer or alternative counterparts, providing the ability to adapt
to changing requirements. Interoperability is essential for large-scale integration ap-
plications and can only be achieved through the use of agreed standards. However,
these standards should not restrict the capability of a platform and therefore need to
be customisable while maintaining backwards compatibility. If these four principles
are followed, it is then possible to create standard integrated user interfaces to all
systems, providing users and developers with a standardised experience.

CorteX is built around a self-describing protocol that contains both the data in the
system and supporting metadata. The structure of data within the system is similar
to that found in other robot control system platforms, such as ROS [40]. The key
difference is that CorteX communication messages are standardised; there is only one
message type. In the proposed interoperable solution, data belonging to a particular
component is complimented with a combined architecture and inheritance type
structure of the component, allowing for interpretation and discovery of previously
unknown systems. The implementation of this solution takes the form of a core library
containing standardised structures for storing the data and metadata. Additionally,
a selection of supporting libraries have been developed to allow communication
between instances of these data structures to create a distributed system.

The proposed solution delivers a long-term maintainable and extensible robotic
framework including an interoperable communication standard, control methods
applicable to current robotic technologies, and validation routines to test the stability
of the developed platform.

The chapter is organised as follows. Section 2 provides background information
on the sectoral requirements of the nuclear industry, reviews the related academic
work, and available market products in the areas of robotic middlewares and control
platforms. Our specific problem definition is presented in Section 3. Section 4
covers future-proofing, interoperable implementation of the proposed framework.

Caliskanelli and Goodliffe et al. 3

Section 5 describes the evaluation techniques and analysis of the experimental results.
The chapter is closed with software infrastructure quality and provides information
on software maintainability in Section 6 and the main conclusion of this study is
presented in Section 7.

2 Background and Related Work
2.1 Software-engineering Requirements in the Nuclear Industry

High energy physics research devices are often large, and complex environments
that are hazardous to humans due to temperature, radiation and toxic materials.
Joint European Torus (JET) [50] experimental fusion reactor is the only active one
in Europe, whereas a few others including the ITER [3], the European Spallation
Source (ESS) [13] and DEMO [18] are currently under construction across the world.

Systems that will operate future fusion powerplants are expected to integrate
hundreds of systems from multiple suppliers with multiple bespoke interfaces and
training requirements. The lifespans of these reactors are expected to exceed 30
years, where maintenance and reconfiguration requirements evolve and obsolescence
management is required. Such operations are typically conducted using tele-robotic
devices and remotely controlled tools and equipment. Tele-robotic systems used for
the remote handling and maintenance themselves require frequent reconfiguration
to adapt to the evolving needs of the facility and maintenance operations (i.e. tasks
required to perform the maintenance activities). Furthermore, operations carried out
in these facilities are often time, safety or mission-critical, causing an additional
burden on the control systems in terms of high-fidelity, real-time performance to
successfully meet the time, safety or mission goals.

In the scientific context, sectoral requirements and challenges presented above can
be translated into software requirements for long-term maintainability, extensibility,
high-fidelity and interoperability. However, the existing control system architectures
used for remote handling and maintenance are highly coupled, often monolithic
systems, which fail to adapt to the changing nature of hazardous nuclear environments
and often become unmanageable due to ad-hoc, bespoke adaptations causing them to
become prohibitively expensive to rectify. An extensive literature review is presented
in the next section on the existing market products and control systems explaining
why these systems are not well suited for nuclear applications.

The most important criteria for future-proofing long-lived nuclear applications
are long-term maintainability, extensibility and interoperability. The design princi-
ples for CorteX development have been mostly focused on these three key factors.
Nevertheless, performance measures including fidelity and real-time performance
are also important for time or mission-critical nuclear applications. First, we define
functional requirements that affect performance measures, namely, fidelity and real-
time character. Later, we follow defining three non-functional design principles in
this section.

4 Caliskanelli and Goodliffe et al.

In generic terms, fidelity is the extent to which the appearance and behaviour of a
system / simulation reflect the appearance / behaviour of the real world [42, 15, 44].
The concept of fidelity has two distinctive types: physical and functional fidelity.
Physical fidelity refers to the degree of similarity between the equipment, materials,
displays, and controls used in the operational environment and those available in
the simulation (e.g. EtherCAT, TCP, serial). Functional fidelity refers to how the
processes are implemented (e.g. how information requirements are mapped onto
response requirements).

Real-time performance of a system can be defined as the systems reaction time
to apply environmental changes [9]. Real-time systems guarantee a response within
a defined period and missing a deadline have varied affects depending on the con-
straints on the system. Real-time systems are divided into two categories based on
their constraints as hard, soft deadlines [9]. Most nuclear applications contain safety
or mission critical (sub-)system (i.e. hard constrained) where a missed deadline is
greater damage than any correct or timely computation. Although the solution pro-
vided in the chapter is not a real-time system, going forward further development and
research is required to make the provided solution real-time given that most nuclear
system contain safety or mission criticality.

Maintainability is a concept that suggests how easily the software can evolve
and change over time [37]. Measuring maintainability is not a straight-forward task,
however, cohesion, coupling and granularity are measurable metrics that collectively
provide information about the level of maintainability of the software. Cohesion and
coupling are attributes of software that summarise the degree of connectivity or
interdependence among and within subsystems. Cohesion refers to the strength of
association of elements within a system [33, 24]. Gui and Scott defined cohesion
as the extent to which the functions performed by a subsystem are related [22].
If a subcomponent is responsible for a number of unrelated functions, then the
functionality has been poorly distributed to subcomponents. Hence high cohesion
is a characteristic of a well-designed subcomponent. Coupling is a measure of
independence among modules in a computer program [1]. Coupling can also be
described as inter-relatedness among components [24]. High cohesion and loose
coupling is a tactic to enhance modifiability of a complex system. As Bass et al. so
concisely described it: "high coupling is an enemy of modifiability" [4]. Granularity
is associated with the size or the complexity of system components [24, 21]. As
the granularity size of a module increases, the probability of interchangeability
decreases. On the other hand, as the granularity size of a module decreases, the
maintenance of the system gets more complex. Low coupling between modules
and high cohesion of a fine-grained module are desired properties in the modular
architecture design [21].

Extensibility is a design principle that provides for future growth. Extensibility
is a measure of the ability to extend a system and the level of effort required
(i.e. cost, development time, development effort) to implement the extension [31].
Extensions can be through the addition of new functionality or modification of
existing functionality. The principle provides for enhancements and increases in
software consistency, through reusing system components where possible, without

Caliskanelli and Goodliffe et al. 5

impairing existing system functions. Literature in the field of software engineering
collectively suggests a strong relationship between extensibility and highly cohesive,
loosely coupled, highly granular software.

Interoperability is defined as the ability of two or more software components to co-
operate despite differences in language, interface, and execution platform [46]. In the
context of software design, modularity or modular software components/programs
help improve software reliability, allows multiple uses of common designs and pro-
grams, make it easier to modify programs (i.e. improve modifiability) and support
extensibility.

Component-based software engineering is a field that focuses on creation and
maintenance of software at a lower cost with increased stability through the reuse
of approved components in flexible software architecture [23]. We believe the key
to achieving long-term maintainability and extensibility whilst developing modular,
reusable, interoperable architecture that holds high-fidelity, deterministic functional
characteristics is through developing a component-based software solution. Using
modern object-orientated design paradigms, encapsulation, low coupling between
components and high cohesion of a fine-grained components will help us to achieve
the desired functional and non-functional sectoral requirements that long-lived nu-
clear facilities require.

2.2 Related Work

There are several existing middleware, communication frameworks, and control
systems in the market able to perform some of the tasks required for remote handling
robotic systems and that could be considered for use in the nuclear sector. Whilst
existing frameworks allow for robust integration of complex robotic systems, they
are not compatible with highly efficient maintenance and continues extension in the
face of changing requirements and obsolescence issues over decades-long periods.
Simulators play a critical role in robotics research as these tools facilitate rapid and
efficient testing of new concepts, strategies, and algorithms [32]. The Player/Stage
project [19] began in 1999 as one of the first distributed multi-robot platforms,
and has widely been used among the research community. Player [20] is a robotic
device server allowing offline development of robot control algorithms and is also
capable of interfacing with robotic hardware. Although Player does not provide a
high level of fidelity, or determinism, it has been well accepted as an open-source,
general-purpose, multi-lingual robotic development and deployment platform. Stage
is a configurable, lightweight 2D robot simulator capable of supporting large multi-
robot simulations. Given that scalability is one of the most important aspects of
the studies involving multi-robot research, Player/Stage provide a balance between
fidelity and abstractions for its users. 3D dynamics simulator Gazebo [32] is also
developed within the Player/Stage Project at first as one of the components; later it
became independent. Gazebo is integrated with the Open Dynamics Engine (ODE)
[48], Bullet [11] and a few other high-performance physics engines, and therefore is

6 Caliskanelli and Goodliffe et al.

capable of simulating rigid body dynamics. To facilitate fast and complex visualisa-
tion, Gazebo chose OpenGL and GLUT (OpenGL Utility Toolkit) [30] as the default
visualisation tools for 3D rendering. Today, Gazebo continues to gain popularity
not only in the robotic research community, but also in industry and it can simulate
complex, real-world scenarios with high-quality graphics.

Robot Operating System (ROS) [40] came after the Player/Stage Project as a
follow-up project with the intension of implementing a more modular, tool-based,
re-usable system. ROS is an open-source, multi-lingual platform, primarily used
within the academic community. Over the years, it has gained popularity and has
also been accepted in industry, for non-critical applications where time, mission,
safety-criticality, and QoS are not required. ROS is a powerful tool. It provides a
structured communications middleware layer which is designed around commonly
used sensory data (e.g. images, inertial measurements, GPS, odometry). Although
the structured messages promote modular, re-usable software, ROS messages do
not cope well with the continuously evolving nature of software, causing compati-
bility issues. The highly coupled solutions created in ROS create issues for lasting
maintainability and extensibility, crucially important factors for large scale industrial
systems. Integration of ROS components is fairly easy for small-scale projects, but
they are not practical solutions for large-scale engineering problems due to the efforts
required for integration and modification when the system configuration changes (i.e.
not extensible easily).

The second generation of Robot Operating System, ROS2 [36], provides deter-
ministic real-time performance in addition to the existing ROS features. Proprietary
ROS message formats are converted into Distributed Data Service (DDS) [45] par-
ticipants and packages; thus providing a high-performing, reliable communication
backbone which helps to achieve determinism at the communication layer. ROS2
is backwards compatible with ROS via message converters. Although ROS2 has
resolved the reliability, timeliness, determinism and high-fidelity issues ROS previ-
ously contained, it has not resolved the maintainability and limited re-usability issues
for large-scale engineering problems, as there is no change in message structures.

Evolution of Player/Stage to ROS2, took over 20 years, with thousands of contrib-
utors to the open-source platform developing extraordinary, state-of-the-art robotic
research on it. Player/Stage, ROS and ROS2 frameworks are important milestones
in today’s robotic community and technologies. These three platforms are some of
the shining examples of visionary research, leading into the development of ROS2
platform for wide industrial use. Despite all the useful tools ROS and ROS2 contain
(e.g. rviz, relaxed_ik, Gazebo), the structured message types offer limited capac-
ity to support interoperable, future-proof, modular architecture required/desired in
long-lived nuclear facilities.

Fig. 1 illustrates modules of a control stack on the left of the image and lists the
associated products capable of carrying out the set of tasks required in each module
on the right. Hardware is placed at the bottom of the stack, and the applied control
principles (therefore the modules drawn) become more abstract going further away
from the hardware. Hardware communications are the protocols that interact with the
hardware directly. Fieldbus protocols (e.g. EtherCAT, Modbus, PROFIBUS, Con-

Caliskanelli and Goodliffe et al. 7

Agent

T

Control
(Distributed)

Gazebo.

| rviz,
eu ARVIZ

ROS

Control
Communication

L

Control

T TWINCAT

Hardware Interface

¢

Hardware EtherCAT Serial Comms
Communications

T

Hardware

Fig. 1 Comparison between market products on control system stack.

trol Area Network (CAN) bus, serial communications) that are standardised as IEC
61158 for industrial use, are listed in this category. The hardware interface module
represents the fieldbus network (e.g. TwinCAT, Modbus, PROFINET, Control Area
Network (CAN) open, OPC-UA). TwinCAT contains an operating system that hosts
control systems. It also has a built-in EtherCAT master that interfaces to the fieldbus
network. Modbus can run over TCP, UDP or RS485. OPC Unified Architecture
(OPC-UA) [26] is a machine-to-machine communication protocol used in industrial
automation under IEC 62541 specification. OPC-UA TSN [7] is a specific version of
OPC-UA that implements the IEEE 802.1 standards for time-sensitive networking
(TSN). These add deterministic behaviour to standard Ethernet and therefore guar-
antee Quality-of-Service (QoS). Unlike regular OPC-UA, which is a client-server
application, OPC-UA TSN introduces a publish-and-subscribe (Pub/Sub) model for
OPC-UA. The Control module represents particular control algorithms and tools
used on a local machine. TwinCAT, ROS, ROS2 have control ability integrated and
can be used to operate hardware that is connected to a local machine running the
control algorithm. In order to achieve a distributed control system, the information
from a local machine has to be distributed over a network.

Caliskanelli and Goodliffe et al.

"SYIOMIUWEBL,] SIEMI[PPIJA| PUE SWASAS [011U0)) Usamlaq uostiedwo) | Iqey,

[euIu] diquedwo) osjqnedwo) ySIH ystg ysig SOX SOX SOX SOX ++D ON Xa10)
[PuwIXy [euIIXy [eurxyg YysSiH YysSiH ySiH SOX [PUIXY [eUINXH SO #'++D ON SLI
pajWIY/[eusoju] OoN ON SUON wnIpIly MO OoN ON OoN OoN ++D SO [6€] SOON
TeuIajuy ON MO M0 Mo MO SOX SOX SOR. SOX. ++D SR [8] s0o010
pajwIry/[eusoju] ON Mo Mo WnIpapy WnIpAN ON ok SO sak ++D Sx L1911 10€I00D
P/ [euIdu] ON Mo] ySiH WNIpIN WIS ON 9K oN SO ++D SOk [£5] AVIVTID
pajwIry/[euIa)uy ON MO ON MO MO SOA SOA ON SOX o) SOX [16 ‘TS uowre)y
pajwIY/[eusoju] oN Mo ON MOT wnIpdly ON SO oN 9K o) sk [s¢ ‘pel vaasy
panmuryeuwR ON Mo OoN UStH YySiH ok ok oN OoN ++D oK [s] vrav
N 3k Mo ON MO WNIPON S ok ON 3k #0 oN [6T] SUSN
P /[euIu] ON wWnIpay wnIpajy ySIH ySiy SO SOX SOX sox 1duogeae[+oo[Sig SOX (L] doH
[PuIXy SOX MO MO M0 MO SOX ON ON ON ++DD SR [z€] 0gazen
[euIaN] oN u-yng Mo wnIpajy wnpAN ON SO SOK 9K ++D SOk [9¢] ZSod
Teurajuy ON MO M0 wNIpajN WNIPI]A ON SOX ON SOX. dsrTuopAg ++D SR [ov] SO
[euIXyg ON MO QUON '\ ySiH SOX ON ON ON ++D°D SR [61] 28®1S
PpoII/[eUIU] ON MO MO Mo wnipdpy d[quedwo) SOA SOk SOk ++2D SOK [0z] 1okeld
ON ON YStH YStH Mo YStH SO OoN SOK 9K BAR[HD ++D SO [zl AD1 D017
paywry OoN u-yng yStH wnpdN ySig 9K 9K SOk SOX uogAdieAR[‘++DD SOK [92] vN-DdO
ON ON slquedwo) ySiH YSIH UsSH ON ON SOK SR ++D SR [svl saa
& SYIoMaWRI]
s %@v ,%om & s %%m = %%(,%% s ° & %ao
< g 2 N . QY el Q
5© o> F & @%, S o/o« ~ ¢ %%% o%oo

Caliskanelli and Goodliffe et al. 9

The Control Communications module refers to middlewares (e.g. DDS, OPC-
UA, MQTT, ZeroC ICE) that can be used to drive the information out from a local
machine to networked devices. The data-centric Pub/Sub protocol Data Distribution
Service (DDS) OpenSplice [6] offers highly dynamic, timely, reliable QoS. Device-
centric OPC-UA [26] standardises the communication of acquired process data,
alarm and event records, historical data and batch data to multi-vendor enterprise
systems. The standardised communication process allows users to organise data
and the semantics in a structured manner, which makes OPC-UA an interoperable
platform unique for multi-vendor, industrial systems. To ensure interoperability and
increase re-usability, standardised but extensible base message types are provided
by the OPC-UA Foundation. The Message Queuing Telemetry Transport (MQTT)
protocol [2] provides a lightweight and low-bandwidth approach which is more
suitable for resource-constraint internet-of-things (IoT) applications and machine-
to-machine communications and is orthogonal to OPC-UA, but not interoperable like
OPC-UA. ZeroC ICE [25] provides a remote procedure call (RPC) protocol that can
use either TCP/IP or UDP as an underlying transport. Similar to DDS, MQTT and
OPC-UA, ZeroC ICE is also a client-server application. Although asynchronous,
event-driven nature of ZeroC ICE makes it unsuitable for real-time applications
where QoS and durability are key; the same characteristic helps improve scalability.
Its neatly packaged combination of a protobuf-like compact IDL, an MQTT-like
architecture, some handy utility executables to run brokers, autodiscovery features,
and APIs in half a dozen languages make ZeroC ICE a popular middleware choice for
non-real-time applications. Createc Robotics has been developing Iris [27], an open
platform for deployment, sensing and control of robotics applications. Iris combines
3D-native visualisation, a growing suite of ready to use robotics applications and
system administration tools for application deployment. As a platform, Iris intends to
introduce an open standard designed to enable high-level interoperability of robotics
and telepresence system modules. Iris is not a framework or middleware in itself,
but aims to provide an abstraction layer to a growing number of middlewares such
as ZeroC Ice, and ROS.

Table 1 compares and categorises existing frameworks and middleware products
in terms of source openness, development language, distributed or centralised con-
trol, deterministic real-time characteristic, interface to hardware features, existing
graphical user interface (GUI), scalability, extensibility, interoperability, security,
physics engine and control system capabilities. Source openness encourages trans-
parency, correctness and repeatability and is extremely beneficial in academia. The
openness of Player/Stage, ROS and ROS2 to the robotics community is invaluable in
this regard. Within the nuclear industry open-source applications are not preferred
due to the perceived security risks that arise. OPC-UA and ROS2 have built-in se-
curity authentication, whereas DDS and IRIS are compatible with secure protocols.
Single points of failure should be avoided at all cost. Distributed and scalable ar-
chitectures are desired for the nuclear industry. Modularity encourages reusability;
a key to achieving maintainable and extensible software is through highly granular,
loosely-coupled and highly cohesive design. Although ROS, ROS2 and IRIS are
modular and encourage reusability, integration efforts to put in these frameworks

10 Caliskanelli and Goodliffe et al.

suggests that they are not easily extensible. This results in lasting maintainability
issues which are far from being ideal for long-lived nuclear applications.

Gazebo is a 3D dynamics simulator, whereas rviz is a visualisation tool. CorteX
comes with several integrated GUIs, and example screens are illustrated in Section
4.6. Orocos [8], Open Motion Planning Library (OMPL) [49], OpenRave [14] and
Robotics Library (RL) [41] are robotic calculation libraries providing kinematics,
motion planning including 3D paths and trajectory estimations, vector translations,
etc. Orocos and ROS were integrated to combine the deterministic real-time aspect
of Orocos with large ROS control paradigms.

The Experimental Physics and Industrial Control System (EPICS) [12] was de-
signed by Los Alamos National Laboratory, and ITER has identified EPICS as a
standard operating framework for all of ITER control systems [43, 10]. EPICS is
a distributed process control system built on a software communication bus. As
such, it provides brook-less communications where computer processes run EPICS
databases that represent system units. EPICS databases held records of functional
algorithms used for the system. EPICS is capable of running on RTOS and provides
deterministic real-time performance with fairly high-fidelity. ITER has identified
EPICS as its control system framework due to EPICS wide range of functional-
ity, rapid development and modifiability and extensibility characteristic. As such,
ITER’s choice of control system clearly shows the importance of maintainability,
extensibility, and high-fidelity for nuclear operations.

ASEBA [34, 35] is an event-driven, distributed, lightweight simulation platform
for mobile robotics. CLARAty [53] developed by JPL and has a multi-layer abstrac-
tion model to ensure interoperability. The control architecture promotes reusable
components and modularity through using layers of abstraction, thus assuring ex-
tensibility. Lower-levels of abstraction focus on integration of devices, motors, and
processors, whereas high-level of abstraction integrate the lower-level abstractions
to provide higher-levels of functionality such as manipulation, navigation, trajectory
planning, etc. From this perspective, CLARAty aims to achieve maintainable and
extensible frameworks, where CorteX provides timeliness and determinism which
CLARALty lacks.

RACE UKAEA is a UK government-funded lab, pioneering technologies on
industrial problems, providing state-of-the-art solutions to niche problems in the
nuclear industry. CorteX attempts to solve the main problems associated with in-
teroperable, plug-and-play, distributed robot systems-of-systems, at least from a
data/communications perspective. CorteX is designed from the ground up to work
as a decentralised, distributed control system compatible with Pub/Sub, Service-
Oriented application. Although DDS is used to distribute information across the
CorteX network, the middleware agnostic nature of CorteX allows it to interface
to ZeroC ICE, OPC-UA or ROS. This means that unlike ROS or custom solutions
using plain TCP or other transport layers, there’s no central ‘CorteX server’ to set
up, configure, and act as a potential single point of failure.

Caliskanelli and Goodliffe et al. 11

3 Problem Statement

The problems facing the development of control system software, or in this a frame-
work, that is capable of supporting an application such as nuclear remote handling
can be grouped into four main categories: interoperability, maintainability, extensi-
bility and performance.

Interoperability In order for a control system to support the various bespoke
interfaces that are required when integrating hardware from a range of suppliers,
while concurrently reducing integration efforts, a high level of interoperability is
required.

The framework should have an architecture and supporting middleware that aims
to abstract application specific data and function, in order to allow as much of
the system to be application agnostic as possible. Part of this abstraction is the
standardisation of interfaces, which can be applied both at the architectural level and
within the middleware.

A standard interface within the middleware will allow the various components of
the system to be interoperable at the fundamental level, i.e. discovery and exploration
of data and functionality within the system.

As much standardisation as possible within the architecture, i.e. in the contents
of data and functionality, will maximise interoperability between components of the
system and allow them to be reused and replaced. This also increases maintainability.

Maintainability The lifespan of robotic applications in the nuclear sector, and
their supporting control systems, is usually in terms of years and decades. This
creates a significant challenge supporting a list of requirements that will evolve as
the tasks the control system is to perform change over time. The introduction of new
technologies required to support these tasks and avoid obsolescence, requires the
control system software to be easily modifiable while ensuring the effort required to
do so remains low.

A high level of modularity in the design and structure enforced by the framework
architecture will ensure components of the system can be swapped out while min-
imising the impact on the rest of the system. As previously mentioned, this is also
strongly coupled to the standardisation of the interfaces between components so as
to abstract as much of the control solution from the hardware as possible.

The modular nature of a system with this structure also allows testing at the
component level. This is advantageous when replacing or altering components as
usually little to no modification is required to re-run the test with the new changes.
This means changes can be made with a higher level of confidence as the test ensures
the same level of functionality is maintained.

Extensibility A change in requirements often requires an increase in functionality.
Where possible, the additional functionality should be added without altering the
previous components of the system. Therefore, any errors introduced are unlikely
to be at the expense of the original functionality, and result in a higher level of
reliability. The ability to extend the capabilities of a system, while minimising the
components affected can be achieved with a highly cohesive, loosely coupled, high
granularity architecture.

12 Caliskanelli and Goodliffe et al.

Performance While the previously described features are beneficial to control
systems for nuclear applications, they cannot come at the expense of performance.
Robotic systems must be reliable, predictable, and responsive in order to meet their
critical system requirements.

To ensure performance is maintained the proposed control system software is
evaluated against the following metrics:

Loop Cycle Duration - the time between two consecutive tick signals.

Loop Cycle Jitter - the deviation in the loop cycle duration from a set frequency.
Loop Cycle Duty Cycle - the percentage of the loop cycle duration spent executing
the job.

Overflow Count - the number of ticks missed because the previous job has not been
completed.

Command Latency - the time between a simplex sending a command to another and
the command being executed.

In the next section, we describe our proposed solution, CorteX, in detail and explain
how we address these challenges.

4 CorteX Design

CorteX attempts to solve the main problems associated with interoperable, plug-and-
play, distributed robot systems-of-systems, at least from a data and communications
perspective.

CorteX could be thought of as:

* A standardised graphical data representation for robotic systems that can be
modelled as directed graphs;

* A method for communicating this representation;

* A software framework that implements the above;

* Additional software tools to add functionality.

To achieve a highly modular, loosely coupled, highly granular system infrastruc-
ture, CorteX implements a building blocks methodology. Required functionality is
provided by bringing together plug-and-play building blocks. CorteX consists of sev-
eral modules, namely CorteX Core, CorteX CS, CorteX Toolkit, CorteX Explorer,
VirteX, and many other potential future extensions.

CorteX applies an inherently concurrent architectural design through the use of
object-orientated design methodologies and implements the imperative paradigm
within the single methods only (i.e. control system functions), and for main exe-
cutables. The concept of distributed objects and actor model design methodology is
used. CorteX Core and CorteX CS, the communication backbone and the control
system module, are set up to work with real-time constraints, where possible. The

Caliskanelli and Goodliffe et al. 13

main network middleware layer (i.e. DDS) is chosen specifically for its real-time
capabilities (DDS is able to operate as a real-time publish-subscribe protocol).

In the rest of this section, we describe the modules of CorteX in detail. We will
start by exploring the standardised interface in section 4.1 and follow-up with an
explanation on how we achieve interoperability within CorteX using the standardised
interface in section 4.2. Section 4.3 will describe CorteX Core that is the data, and
the control system module CorteX CS will be described in section 4.5. This section
will end with several examples on CorteX’s human-machine interfaces in section
4.6.

4.1 Standard Interface

A system in the CorteX environment can be represented with a graph consisting of
nodes and edges, similar to the graph presented in Fig. 6. Every node in a CorteX
environment is called a simplex and every edge denotes information flow between
simplexes. Each simplex uses the same format for internal data representation and
has the same external interface. This data representation can be used as part of a
communications protocol to allow distributed components of a single control system
to exchange data without prior knowledge of each other. This means a CorteX control
system can grow to incorporate new hardware and control features without modifying
other distributed components.

The term simplex is used to describe units of data within CorteX, facilitating
functionality within the control system, including: defining data, describing input
and output relationships, calling functionality, representing (a part of) a system,
controlling an active element (i.e. controller), or communicating with other simplexes
within the system.

Relationships

Commands

Command Mailbox

Fig. 2 Simplex

14 Caliskanelli and Goodliffe et al.

A typical simplex s, € S, a self-contained unit of information, is the tuple:
Sm =< typem,idy,datay,, rlsp,, cmd,,, cmdbox,, >

typen : Set based to the ontological structure;

id,: Unique identifier, including path;

datay,: Either an int, float, bool or string. May be a single element or an array.
Auto-set by the architecture based on the ontological type;

rlspm,: Alink to another simplex, in order to obtain information or call acommand.
It may be a single element, or an array. This is automatically generated and set
based on the ontological type;

cmdy,: A function which can be called in order to perform a task or change
behaviour. Commands are declared with a list of request parameters, which are
sent with the call, and response parameters, which are returned upon completion.
cmdbox,,: A standardised interface to exchange commands.

simplexes are common building blocks in a CorteX environment, at a level of
granularity associated with minimal reusable units. Each simplex has a type and in
the next section, we describe types in detail.

4.2 Interoperablility

The basic concept behind the self-describing, distributed data model is built upon
simplexes with types that are associated with a software ontology and morphology
techniques. We have used software ontologies to provide semantic meaning to robotic
and control systems components, and have implemented morphological rules to
associate syntax with the components represented in the system. In the remainder of
this section, we describe applied ontology and morphology techniques using a case
study to illustrate the principles described.

Software ontologies have been around since the early 1990s and applied broadly
in multiple disciplines. Software ontologies aim to build the structure of information
of a certain domain, to share a common understanding of the information available
in that specific domain. Computer agents can extract and aggregate information
shared within a structure to make the best use of the presented information in an
ontology. Ontologies, by creating a structure for information, help increase common
understanding in the following ways:

* to enable reuse of domain knowledge;

* to make domain assumptions explicit;

¢ to separate domain knowledge from the operational knowledge;
* to analyse domain knowledge.

CorteX makes use of an ontology to ensure common and consistent use of domain
knowledge and to make domain assumptions explicit. CorteX shares the domain-
specific structure (the robotic and control system ontology) with every agent that runs
CorteX, before execution. At runtime, distributed CorteX agents can make explicit

Caliskanelli and Goodliffe et al. 15

assumptions using the knowledge represented in the ontology, thus ensuring the con-
sistent reuse of distributed domain knowledge among agents. Fig. 3 illustrates some
elements of an example CorteX ontology relating to robotic and control systems.

In Fig. 3, the Manipulator type model is split into four categories. In addition
to traditional serial and parallel manipulator categorisation, the ontology presented
in this chapter also considers gripper and one degree-of-freedom (DOF) categories
under the Manipulator subgroup. Kuka LBR is placed under the Serial Manipulator
category. Using the ontology built for the type inheritance model structure, the
CorteX system is capable of discovering that the Kuka LBR IIWA type also inherits
the Serial Manipulator interface, which can be used instead, if needed. Careful
examination can detect that Robotiq 2-Finger Gripper is classified under I DOF
Manipulator as well as being listed under the Gripper type model. This is not
a mistake; one can use the same technique to operate a 1DOF manipulator and
a Robotiq 2-finger gripper. Therefore, we decide to allow multiple occurrences
in this ontology-based knowledge structure. The effects of multiple inheritance and
polymorphism on the ontology and interoperability is out of the scope of this chapter
and will be analysed in the future separately.

The Concept type in this case study represents pure data modules, and they are
used as the inputs and outputs for processing simplexes. CorteX applies standardised
(but extensible) data blocks and assures standardised data exchange between blocks.
The standardised information exchange is guaranteed by the standardised simplex
interface. In Fig. 3, Concept data types are categorised into three example categories:
axis, cartesian and digital concept type models.

The ability to use a simplex of a given type at various levels of its inheritance
hierarchy allows for standardisation but also extension, in the form of polymorphism.
This is one of the advantages of using an ontological type system.

The second feature of the CorteX type model is that it does not require prior
knowledge. The type model is distributed at runtime and can be completely cus-
tomised for the particular application, rather than using predetermined types. If two
systems are required to interoperate then the types within their type models must not
contradict each other, but the overall models do not need to be identical.

Consider the following example: Agent A declares an Axis type, and it contains
position, velocity, and acceleration data. Agent B declares an Axis type but states that
it contains position, velocity, and torque data. These two agents are not interoperable
as they do not agree on the definition of the Axis type.

However, now consider this example: Agent A declares the Axis type as before.
Agent B declares an Axis type with a definition that matches Agent A, but also
declares another type that inherits from Axis, states it contains torque data, and calls
it AxisWithTorque. These two are now interoperable as they do not conflict in their
definitions of any types, but Agent B can extend the Axis type to include their

Caliskanelli and Goodliffe et al.

16

*SJUIUOD JO INJONIS JIAY) UT P)ddfal jou st pue Jrorjdur Ajeind st
QOULIOYIP SIY) IOPYIP SI[NPOW JO SALI0TILd 0M] 9sY) JO ,,9[01,, Y} YSNOYI[Y "Pjedrunuiuiod 9q 03 J1 Joj I9pJo ur ‘ejep xordwts ay) ojul pajoalur aq uay) pinom SOY
woij sanfeA ‘so[npow 2Androsap A[uo jo pastiduwod oq A[oNI] pinom wasAs X9110)) oy} ‘uoneyuswedwr Oy & ojdwexs 10§ ‘suedw 19Y)o dwos Aq papraoid sem
KIreuonouny Ay AI9YM WSAS © U] sty 9[040 dooj sit Surmp ejep ay) ore[ndiuewr o) S[npow 9y} 10J IPIO UL ‘PAppe uddq sey A)I[euonouny yorym ur (SOXo110D))
SWIA)SAS [01U0D XA1I0D) [[N UI PAsn aIe ‘puey JOYI0 Y} UO ‘SI[NPOW JAT)OY “PUBWIAP B SB dIBMPIRY dU) 07 ¥oDq UNLIM 9q 0) BIep UIRIUOD P[NOM UONEOYIPOUL
© pue ‘dIempley oy} wo.4f peal ejep Surejuod UONEBAIISqO Ue ‘dIempley JOo SWId) U] (UONEIYIPOW B SB O} JOJoI oM YoIym) 9q 03 JI USIM oM Se IO ‘(UOT)BAIdsqo
ue St 0] J9JoI oM YOIYM) A[JUSLIND IOYIIS ‘WAISAS) JO 9Jels 9y} 9qLIOSAp 0} 2I9Y) aIe ‘sorjdwir sweu ay) st ‘so[npowr dANdLISI("9IYM Ul UMOYS QAIIOR pue
(enyq ur umoys 2ANdLIdSIP :SALI0F2ILD UTRW 0M) OJUT [[ef sa[npowr 2d4) ‘uonejuawadwr o uryIpy “[epowr ad4A) - A30[0IU0 WSS [01UOD pue o110qoy ¢ "SI

sonsoy
s sion

sosaps
Weauod

s 1oddiy addry
1t bgonow 65 bjoaoss e

— ﬂ

sownduen
s0a1

i a t t f t i il
I
f— an was e woco -

¥ 1 T)

Joparos sonowouny 1spuey doouo yooun

prewod ook =y ot oD

Py 1sddy

Iosssaons

soedus

H

xopdurs

Caliskanelli and Goodliffe et al. 17

required data. Not only does this mean that Agent B can add their data to the
system, but Agent A can also use the simplex of type AxisWithTorque with any
interface designed for a simplex of type Axis as one inherits from the other, and
therefore must contain all the required information from the Axis type.

Arm is listed under the Sub-System category, whereas HTC Vive Headset is placed
under Human Interaction Device (HID). One can think that UAVs and UGVs cate-
gories are entirely missing, or ask why different brands of headsets and robotic arms
are not represented. Fig. 3 does not illustrate the full ontology CorteX implements;
the figure only contains the required knowledge to represent the case study presented
towards the end of this subsection, shown in Fig. 6. Please get in touch with the
authors to find out details of the full ontology.

Inverse and forward kinematic modules, different types of controllers and concept
(data) coordinators are all categorised under the Processor type model, whereas
Processor Coordinator has associated only with the Processor Selector type model
in the provided hierarchy. Fundamentally, kinematics modules are responsible for
the motion of objects and the forces required to provide the motion.

Morphology is the study of form and structure. In linguistics, it generally refers
to the study of form and structure of words. In the fields of computer science,
computational linguistics have been used to analyse complex words to define their
component parts or to analyse grammatical information.

Within the CorteX framework, we use ontology to build a common structure of
the domain-specific information, to distribute and reuse to make explicit assump-
tions. Therefore, a robotics and control system ontology is used to provide semantic
meaning to components of robotic and control system elements, represented by sim-
plexes. On the other hand, morphology is used to provide a set of rules to enforce
the syntactic meaning and a binding structure to the component types represented in
the ontology to achieve operational success among the distributed components, and
allow explicit assumptions to be made with regard to the structure of a given system,
to facilitate interoperability.

The types that are provided in the ontology, not only define functionality and
structure, but also data represented, and external interfaces. Relationships in the
context of components presented in the ontology define connections to other com-
ponents. Types can define not only the relationships a component must have (to be
considered of that particular Type), but also how many (minimum, maximum, or
absolute) components must be related to it, and define a particular Type that the
related components must be. The result of these relationship rules is that a system
develops a particular morphology, which is consistent between all systems using
common types. These morphologies tend to fall into one of two distinct groups:
structural as shown in Fig.4 and behavioural as shown in Fig.5.

Structural morphologies are either used to describe how the physical counterparts
of descriptive simplexes are connected in reality, or to compose several granular
descriptive simplexes under another. Some structural morphologies can be seen in
Fig.4. The Arm (Fig.4, top left) is an example of how relationships can be used to
describe physical assemblies. In this example an Arm is physically comprised of a
Serial Manipulator and a Gripper. This is achieved using two relationship rules:

18 Caliskanelli and Goodliffe et al.

Arm Manipulator

Serial Axis Axis
Manipulator S Concept Concept
KUKA LBR Raobotig 2-Finger
1A Gripper
Rotary Axis Rotary Axis Linear Axis Linear Axis
Concept Concept Concept Concept
HTC Vive
Handset
Cartesian Digital 10
Concept Concept

Fig. 4 Robotic and control system morphology - Morphological rules.

the first is an Arm must have an input relationship of type Serial Manipulator, the
second is an Arm must have an input relationship of type Gripper. This means that an
Arm component cannot be added to a CorteX system without a Serial Manipulator
component and a Gripper component and the relationships configured to connect
them. This makes CorteX systems and their component structure highly discoverable
and navigable, as these structures can be recognised and explored.

The HTC Vive Handset (Fig.4, bottom left) is an example of composition via
relationships. In this case, the HTC Vive Handset is described by combining (via
relationships) a single Cartesian Concept and one or more (signified by the many-to-
one symbol) Digital 10 Concepts. These components are used to describe an HTC
Vive Handset’s position in 3D space (which is provided by a tracking system) and
the state of its buttons. These relationships are both inputs of the HTC Vive Handset
component as the state of the individual components must be evaluated first, before
we have the complete knowledge that makes up the HTC Vive Handset. Similar to the
Arm example, these relationship rules allow us to create recognisable and expected
structures within the CorteX component model, which can be used to contextualise
groups and derive semantic meaning.

Caliskanelli and Goodliffe et al. 19
‘ Concept F—"Jr Processor H Concept ‘ ‘ Co"""’__‘:m
A

,,,,, Axis

‘ Concept y Jr Controller H Concept ‘ ‘ e
A

Processor A

Goncept

‘ Linear Axis

Forward

Cartesian
Kinematics

Goncept

Inverse
Kinematics

Axis.
Gongept

HEpE

Axis.
Controller Concept

v
+

Axis ‘

Hold Axis

Is.
Gontroller Goncept ‘

Linear Axis

Goneept Gontroller Gonoept

REpEE

Linear Axis ‘

Cartesian

Controller Concept

Cartesian
‘ conesp!

Cartesian Cartesian Defta
Goncept Gontroller
A

Cartesian Digital 10
Concept Concapt

v
+

Cartesian ‘

Cartesian
Goncept

T T T T T T

Fig. 5 Robotic and control system morphology - Morphological rules.

In Fig. 4, Arm, Manipulator, KUKA LBR, Robotiq 2-Finger Gripper and HTC
VIVE handset behavioural morphological rules are illustrated visually. Arrowheads
in the boxes denote the ownership of the rule; boxes that contain the arrowheads
are the owners of the morphological rules and are responsible for implementing the
associated rule. Behavioural morphologies are created when combining descriptive
and active components, and are therefore common in full CorteX control systems.
The Processor example (Fig.5, top left), is one of the simplest examples of how
descriptive and active components can be used together. This example uses the basic
types of Concept and Processor and has no functional purpose, but is used to establish
a template that specific types can follow (similar to a purely abstract class in C++).
The Processor type defines three relationship rules: 1) A processor may have one
or more (signified by the dotted line and one-to-many symbol) input relationships
of type Concept. 2) A processor may have one or more input relationships of type
Processor. 3) A processor must have at least one (signified by a solid line and one-to-
many symbol) output relationships of type Concept. These three relationship rules
exist for behavioural reasons, and exist to ensure the processor is able to function. The
first rule is to provide input to the processor. This may not be required if the process
is "open loop" and is therefore optional. The second rule is designed to allow for
sub-processes that may need to be completed first for the processor to function. This
may also not be required and is therefore also optional. The final rule is to provide
an output for the processor. This is essential, as without an output, the processor is

20 Caliskanelli and Goodliffe et al.

not making a contribution to the state of the system, and is therefore redundant. In
the given examples, the Arm type model has two components: a serial manipulator
and a gripper. In CorteX, this translates as a robotic component is considered as a
robotic arm (see Fig. 4) if it consists of a serial manipulator (e.g. KUKA LBR) and
a gripper (e.g. Robotiq 2-Finger gripper). A Serial Manipulator on the other hand,
would input and output multiple axis data information, that implement positional
move. Therefore, in Fig. 4 the Serial Manipulator type model is visualised with axis
concepts. KUKA LBR which is a 7DOF serial manipulator that contains rotary joints
only is therefore represented with rotary axis concepts. Robotiq 2-Finger Gripper is
a 1DOF linear axis slider and is visualised with linear axis concepts. An HTC Vive
Handset can output cartesian position data and digital data, separately. Therefore,
in the figure HTC Vive Handset type model is visualised as a model containing
Cartesian and Digital 10 concepts.

Fig. 5 illustrates some of the morphological rules of control system components.
Morphology rules for the Processor type model and its sub-categories, including
variations of different Controller and kinematic type models are presented as well
as for the Processor Coordinator.

The Forward Kinematics example (Fig.5, top right) is a less abstract example
of the Processor morphology. In this case, the generic Concept types have been
inherited by more concrete Axis Concept and Cartesian Concept types. Please note,
this change still satisfies the rules established by the base Processor type, as both
Axis Concept and Cartesian Concept inherit from the Concept type (see Fig.3). As
those familiar with control theory will be aware, the purpose of forward kinematics is
to derive the tip position of a manipulator using its joint positions. This functionality
is partly evident in the morphology, as the Forward Kinematics simplex takes one-
or-many Axis Concept as input (in this case the joint positions) and produces an
output of a single Cartesian Concept (in this case the tip position). Similarly to
the structural morphologies described earlier, these behavioural morphologies help
create consistent, discoverable, and navigable structures within the CorteX simplex
model.

RACE, within the Robotics and Al in Nuclear Hub (RAIN) project, has been
working on a set of complex research problems to find state-of-the-art engineering
solutions for decommissioning gloveboxes for the nuclear industry. The tele-operated
dual-arm platform, shown in Fig. 7 has been used as a development and deployment
platform for decommissioning tasks. The CorteX control system designed for one
of the tele-operated KUKA LBRs is illustrated in Fig. 6 and provided in this section
as a case study to explore the ontology and morphology principles described above.
Fig. 6 illustrates an HTC Vive Handset tele-operated KUKA LBR and its working
principle. When the operator clicks on the digital output button and starts moving
the HTC Vive handset, the KUKA LBR mimics the move of the handset and moves
accordingly. When the operator is not moving the handset, KUKA LBR is been kept
on hold using the Hold Axis Controller. The Processor Selector picks one of the
controllers based on the registered delta of the move (i.e. if there is move) and the
activity on the Digital IO Concept (i.e. if the operator passed the button). Robotig 2
Finger Gripper is operated independent to the manipulator and shown separately.

21

Caliskanelli and Goodliffe et al.

*sanx TeorSojoydiow ay) 03 Surpioooe pajquuiasse pue £30[o3uo ay) ur pajuasardar syoo[q Surpying a3 Sursn Jmnq wals£S :Apms ase) 9 ‘Sif

1daouogy Jall0qu0g 1dsouog
spyreeun [(9 spwresun € spyuesun
yv
Jadduy

Jabui4- brogoy

laspueH
P o
A
dsouog JLERTT)
ol renbig uejsapeD
1dsouog sojewaupy 1dsouog < \daouog
sy Aiejoy P al asianu] BNy < ue|sauen B30 UBISSUED uejsape)
jdeouo) 1op8|es 10}38|8S soEWauUy
sy fueloy dsouod 10558204d piemiod
\daouog Jalonuog 1daouog
spey Arejoy spypoH 4 sy fugjoy
v
il
HET B

wry

22 Caliskanelli and Goodliffe et al.

oW,

. @ o
it N\
wlmlnnﬂl\l\“‘l!!!.l‘l‘\ p). @

i \i\l“‘n\n““ﬂ

Fig. 7 Tele-operated dual-arm used in the RAIN project and case-study.

In summary, to achieve interoperability, CorteX applies a self-describing model
of the system. We decided to use the following concepts to achieve a modular,
self-describing and distributed CorteX control system:

* One standard building block type;

¢ Standardised (but extensible) data blocks;

¢ Standardised data exchange between blocks;

* These standard structures of the ontology must be distributed.

The common building block types are called simplexes. Each common building
type, simplex, have a type, which is the information described in the ontology. In
the next section, we will describe simplexes in detail. A small part of the ontology
tailored for the case-study has illustrated in Fig. 3. Standardised, but extensible
data blocks are the data type model represented under Concept sub-category in the
ontology. Standardised data exchange between blocks are enforced and implemented
through the morphological rules. Some of the rules used in the case-study, are
presented in Fig. 4 and 5. In our current implementation, we implement the ontology
and morphology in the XML format and distribute it across computer agents that
run CorteX to enable reuse of the domain knowledge.

4.3 Core Architecture

CorteX Core is the communication component of CorteX. The CorteX method for
communicating data (simplexes), are kept in data tables. The creation of these data
tables is initiated by a validation process. Fig. 8 shows the fundamentals of the Core
architecture using a UML diagram. Ontology, morphology and the type model that
are explained in the previous section are validated in the CorteX Core against a given
use-case. For example, the case study presented in Fig. 7 and the associated types of
each simplex are validated against the ontology and the morphological rules.

23

Caliskanelli and Goodliffe et al.

U1 UNODXEW +
U1 JUNODUIW +
Buys :saysnes +
wnua :adA) erep +
Buwys :p1 +

19joWwelred

Buuys :seysies +
<e|ni Isjaweled> +
Buus :p1 +

a|ny puewwod

Buys :saysies +
U1 JUNODXBW +

Ul :UNoJUI +
wnua :uonoalIp +
Buus :adA| pajejas +
Buwys :p1 +

sinydiysuoneisy

Buwys :saysnes +
1Ul JUNODXeW +
Ul JUNOQUIW +

adAjeyep :pj|

Buwys :p1 +

a|ny eleq

Buuys :9inysauysnes +
U1 :UN0O +

wnua :adA| ejep +
Buis :p1 +

Jajoweled

AIMOAIYITY 210D § S

Q

<odA|>+

ydean adAp

<o|ny”~puBWIWOD> +
<ony~diysuonejoy> +
<e|ny eleqg> +

P! +1

adAL

<ieloweled> +
|00q :Aujiqe|iene +

puewwod

WU :UOoNAIP +
Ul 5UNOD +

Buiys :A1060ye0 +
Buuys :a|nysaysnes +
Buwys :adA| pajejes +
Buwys :p1 +

diysuoneay

U1 :UN0O +
wnua :adAjerep +
Buus :p1 +

ejeq

9.

g

[¢

<puBWIWOD> +
<diysuonejoy> +
<eleq> +

plodfy +

pl+

xa|dwis

' 931 xojdung

<xa|dwig> +

24 Caliskanelli and Goodliffe et al.

This process is performed at the initialisation stage. The initialisation process
achieves success if, and only if, all the simplexes can compile correctly; thus require
construction of data, relationships, commands and command parameters to match
with the associated simplex type and the morphological rules. If the provided appli-
cation by the user contains simplexes that do not match the ontological structure and
morphological rules, the CorteX system does not compile.

Fig. 9 gives an abstract give on the CorteX Core components and illustrates
the information flow between these components step-by-step. simplexes update the
system and type tables in CorteX core, illustrated with step 1.1. Domain-information
is parsed through the XML file, and tables are updated in step 2.1 and step 2.2,
respectively. The type model (Fig. 3) and the system model (Fig. 6) informs system
tables in step 3.3. For example, when a simplex type, type,,, is set to Kuka LBR,
as in step 1.1, CorteX auto-generates a Rotary Axis Concept in the simplex data
field, data,, (step 4.1). The knowledge that a 7TDOF Kuka LBR contains Rotary Axis
Concepts is embedded into the ontology, illustrated in step 2.2 and 3.2, using the
morphological rules shown in step 2.1 and 3.1.

Command
Definitions[]

Datal[] Relationships[]

SYSTEM <31

TYPES

Fig. 9 Core data tables and interfaces.

4.4 Distributing CorteX Data

CorteX agents (i.e at least one cluster of simplexes running on a single PC) can
publish their current states to a shared network via the real-time publish-subscribe
protocol. This protocol is based on a standard that is maintained by the Object
Management Group, and is more commonly known as the Data Distribution Service
(DDS). CorteX abstracts the DDS communications and allows users to write new
transport methods using an API to access the data inside CorteX core. CorteX
also abstracts this interface and allows its users to use an API to construct simplex
models in CorteX either programmatically, or as a result of a parsed interface of
their choosing.

Caliskanelli and Goodliffe et al. 25

DDS allows aDDS "participant" to publish tables of data in a broadcast message to
all other DDS "participants". DDS participants can filter these broadcast messages
and process them as required. This means that as long as two or more CorteX
agents are on the same network, and are using the DDS interface, their contents are
automatically transmitted to each other. New CorteX agents (Clusters) may also be
discovered at runtime, so when new CorteX participants ‘come online’, they will
appear in the DDS interface automatically. CorteX provides fully distributed data
transmission and communication via DDS, in (almost) real-time manner. Therefore,
unlike MQTT or ROS, there is no need for a central server, as each individual
CorteX agent is able to broadcast messages to all other agents in a fully decentralised,
distributed manner.

CorteX has interfaces to ROS, which make use of the ROS API, therefore CorteX
can read and write to ROS nodes. CorteX converts Interface Definition Language
(IDL) files that describe ROS messages into CorteX system model-based structure,
which is then accessible and can be processed in a CorteX environment. CorteX
currently is only able to read ROS messages and does not translate CorteX commands
into ROS service calls, although this is a planned future development.

In summary, CorteX Core is responsible for encoding and extracting system
information, making use of the semantic meaning of the domain-specific information
shared in XML format using ontologies and handling interoperable communications
between systems. CorteX CS carries functionality of the control system to meet
functional and performance requirements of the robotic control application. CorteX
CS is discussed in the next section.

4.5 Control System Architecture

An obvious extension of the CorteX Core paradigm is the introduction of functional-
ity. In addition to simply describing a system, by augmenting the ability to manipulate
the data within each simplex, we can produce a system capable of control.

Building on the architecture described in Section 4.3, a full CorteX Control
System (CS) extends the original simplex by adding a fask (task,,) resulting in the
following simplexCS tuple:

SCSym =< typem, idy,, datay,, rlspy,, cmdy,, cmdbox,,, task,, >

The definitions of type,,, id,,, data,, rlsp,,, cmd,,, and cmdbox,, are provided
in Section 4.3, and used accordingly in simplexCS, therefore we only describe task,,
in this section.

Each simplex task is broken up into four main parts. The first is the processing of
any commands. These commands may have been sent from a simplex task executed
previously in the current job, from a simplex task executed in the previous loop cycle
job, or from another distributed agent of the control system. These commands may
request to change the behaviour of a simplex, or change the value of a piece of data,
or start and stop the functionality of the simplex entirely.

26 Caliskanelli and Goodliffe et al.

SimplexCS @

Simplex

Functions

Relationships m— e
Simplex State Machine

Commands

Command Mailbox

Fig. 10 SimplexCS.

The final three parts of the simplex task (task,,) are executed as follows: first,
a loopStart function which is executed every loop cycle regardless of state; second
a state-specific function based on the current state of the state machine (e.g. stat-
eStandby or stateActive); finally, a loopEnd function which is executed every loop
cycle regardless of state. The various states of the simplexCS state machine and its
transitions are shown in Fig.11.

[Fault Recovery](—[Fault]

Y
.—)[Default]—)[Standby]—)[Startup]—)[Active]
Y
Shutdown

Fig. 11 simplexCS State Machine

The fundamental properties of a control system, including Loop Cycle, Task, Job,
Tick signal, are defined in Section 3. The control system loop cycle is intended to
be run periodically with minimised jitter, and features are available to halt or send
warnings if this is breached. A CorteX environment may contain multiple CorteX
agents (pc running CorteX), and each CorteX agent should at least have one cluster.

27

Caliskanelli and Goodliffe et al.

()syne4teso +

(uney +

()umopinys +

()dnyels +
()spuewwo)sseooid +
()ejoApdooop +

QuIyoBNaIBIS +

suopouny

(Juns +
yse|:()yserapAndoonyeb +

suonouny +

soxa|dwis

()Aouanbai4ias +
()o1L10-4)EM +

921n0S4966111

Buuys :sinysaysies +
Ul 5JUNOD +

wnus :adA] ejep +
Buus :p1 +

J9)dweled

<Jajeweled> +
|00q :Ajjiqe|eA. +
Buws :p1 +

wnua :uonoalIp +
Ul JUNOD +

Buis :AlobBajeo +
Buiys :a|nysaysnes +
Buuys :adA] parejas +
Buiis :p1 +

“wesserp TN SO XoM0D 7T 81

Ul 5UN0O +
wnus :adAj elep +
Bus :p1 +

puewwod

diysuoneay

ejleq

9 .

i

S

<puewwoD> +
<diysuonejay> +
<eleq> +

Buis :pjadAy +
Buws :p1 +

xajdwis

100q :()ajoko +

joodpeaiyl

A

A 4

1000 :panoaxgsey+
<Aouspuadag> +

nseL

yse) :()yseleb +
<jse]> :()syse| ayelauab +

19|npayos

<xa|dwis> +

b sa1) xa|dung

adA] :()poylow +

adAl :pjay +

wy

So48I8N1D

28 Caliskanelli and Goodliffe et al.

Each ClusterCS contains simplexCSs. Fig. 12 shows the attributes of a ClusterCS
and their interactions in the UML format.

The Loop Cycle Scheduler constructs the execution sequence of simplexCS tasks.
As part of arunning CorteX agent, it is also responsible for generating an internal tick
signal. The Thread Pool is used to optimise the execution of each simplexCS loop
cycle, by using parallel threads. Threads, configured by the user, can be used to pull
tasks from the loop cycle scheduler, while still obeying any dependency driven order
(often in the form of Directed Acyclic Graph (DAG)), and execute them in parallel
where possible. This ensures tasks are executed quickly and efficiently, whilst still
maintaining the dependencies as a result of data flow requirements.

To provide a big picture, our implementation of a CorteX-compatible control
system framework (which is one example way of creating a CorteX CS) is illustrated
using a sequence diagram in Fig. 13, showing a sequence diagram implemented on
CorteX CS.

When a CorteX environment is created at runtime, the executable (main.cpp),
constructs an instance of a ClusterCS, a Simplex Tree, a number of SimplexCSs, a
Trigger Source, and a Communication Interface (in this case, DDS). The executable
then calls the populate() function on the simplexCS instances (which constructs the
various data, relationships, and command items. i.e. a simplex) before adding them
to the simplex Tree instance via the addSimplex() function.

The next step is to add the collection of simplexCSs to the ClusterCS using the
addSimplexTree() function. The executable sets the Trigger Source by calling the
setTriggerSource() function upon itself, passing the TriggerSource as a parameter.
With the system model constructed, the main.cpp calls the start() function of the
ClusterCS.

The ClusterCS then executes its constructLoopCycle() function, which creates the
Scheduler and Threadpool. With these constructed, the Scheduler must be populated
with each simplexCS’s task so that they can be used during the loop cycle. This is
done via a call of the Scheduler’s generateTasks() function, which iterates through
each simplexCS and retrieves its task via the getLoopCycleTask() function. Finally,
with the contents of the simplexCSs established the System Model and Type Model
can be communicated via a write() call on the Communication Interface(s).

The ClusterCS is now ready to begin the loop cycle. At this point, the Cluster
creates a thread on which to run the loop cycle, due to it being a blocking function.
The first call is to the waitForTick() function of the TriggerSource, which blocks
until a trigger is received. In the case of the default internal clock, this is at a
regular interval set by a configured frequency. Upon receiving a trigger, the function
continues to the following steps:

1. Read any updates from the Communications Interface(s) via the read() function.
This will update any information required from simplexes running on another
agent.

2. Call cycle() on the threadpool. Execution of the cycle() function is an initiation
of several actions carried out by the threadpool. The first is to get the list of tasks
from the Scheduler, which returns each simplexCS task and the order they must

Caliskanelli and Goodliffe et al. 29

main.cpp

{ SimplexTree } { SimplexCs m [Tr\ggevsource} {Schedulev} {Threadpool} {C""‘"‘“"icam" }

Interfaces
construct()
retum
construct()
P 1
construct()
retumn
construct()
retum
construct()
retum |
populate() ;
return -‘ ‘
0
retum .‘ ‘
addSimplexTree()
retumn ‘
setTriggerSource()
start()
gnuclLouprc\e()
construct()
T
construct()
return
generateTasks()
getloopCycleTask()
retum
retum
write()
return —‘ ‘
run()
retun 11
loop J
waitForTick()
retum —‘ ‘
read()
retun —‘ ‘
cycle()
getTasks()
[reum
executeTask()
T
return
write()
T
heartbeatFunctions()
stop()
stopQ
retum
destruction()
0
e I
0
retumn ‘ ‘
retum
destruction()
o I
0
I
0
I
0
I

Fig. 13 CorteXCS Run Sequence.

30 Caliskanelli and Goodliffe et al.

be executed, as derived by input and output relationships. The threadpool then
calls executeTask() on simplexCS instances so that each simplexCS executes its
task (Task,,).

3. Write any updates to the Communications Interface(s) via the write() function.
This will update any subscribed agents.

ClusterCS calls heartbeatFunctions() on the main executable to signal activity at
the end of each loop cycle. When a user terminates the main executable, main.cpp
calls stop() function on ClusterCS and breaks the loop cycle loop. The destruction()
function on ClusterCS initialises the destruction phase and ClusterCS calls destruc-
tion() on Scheduler and Threadpool. The main executable then calls destruction() on
Simplex Tree, simplexCS, Trigger Source and Communications Interface(s).

4.6 CorteX Explorer

The CorteX Explorer is a feature of CorteX that collects all the graphical user
interfaces (GUI) and human-machine interfaces (HMI) under the same umbrella. It
is an essential module of a control system that is designed to be used in the nuclear
industry, where the majority of people in operations teams are likely to consist
of non-technical operations engineers. CorteX GUIs and HMIs are fundamental
to guarantee high operational success. Therefore, there is a great need for highly
reliable, responsive and efficient visualisation and reporting features.

To provide the required high level of reliability, responsiveness, and efficiency,
an event-driven methodology is used for the Explorer, where the front-end interac-
tion with the back-end (i.e. pulling for updates) is on a time-based loop. The loop
frequency is parametrised and can be changed depending on the user requirement.
Custom designed GUIs have been implemented using freely available QT libraries.
Cortex visualises system parameters using a tabular view to display the content of
each simplex in a CorteX environment to help the operator in monitoring the system
activities. In addition to the monitoring features, The CorteX Explorer also renders
the content of the (selected) simplexes and provides control screens. Some of CorteX
HMIs are provided below as an example. Performance evaluation such as reliability,
responsiveness, and efficiency of the CorteX Explorer is out of the scope of this
chapter, therefore there are no results presented in this chapter on these. Through
this approach, it is possible to automate adherence to industrial and accessibility
standards and guidelines.

CorteX’s self-describing protocol allows any connecting agent to discover and
read the system model and its contents without prior knowledge. This functionality
also extends to the CorteX Explorer GUI allowing an operator, user or a developer to
explore the contents of any simplex in the system. To provide an intuitive interface
to do this we have developed the Base View.

Fig.14 illustrates the Base View. It displays the list of simplexes in a tree down
the left side of the screen in much the same way as a file browser. Upon selecting
a simplex in the tree, the right side of the screen is populated with the simplex’s

Caliskanelli and Goodliffe et al. 31

JFo01/Fo02/SimplexCSB/

¥ Shutdown

Fig. 14 CorteX Explorer: Base View

contents. Data, relationships, and command definitions are shown in a tab view
along with each item’s value, path, and availability respectively. Arrays are shown
in collapsible rows (as shown) to avoid over-populating the screen. In the case of a
simplexCS being selected, the simplex’s state is shown in the top left, and command
buttons to Startup, Shutdown, Clear Faults are provided.

As any value within a CorteX system can be read and updated over time, it is also
possible to plot any numerical value on a graph. Within the Base View, there is the
option to select any number of numerical data items within CorteX and place them
onto a graph to be plotted over time. This can be very useful when debugging or
watching for certain signals within a system.

The CorteX Explorer GUI also allows users to develop custom views for certain
simplex types, or create views for entire systems comprised of both static and dynamic
elements, examples of which are given in Fig. 15.

Fig. 15 shows a view used to observe and control a dual-axis EtherCAT DS402
(motor drive) device. The view is split into two halves (top and bottom) to display
both axes: Axis A and Axis B, respectively. Although only the DS402 Processor
simplex is selected in the tree on the left, the view not only uses data from that
particular simplex, but also uses its relationships to pull data from both the input
DS402 Observation simplex and the output DS402 Modification simplex. The left
side of each axis view shows the current state of the axis from the DS402 Observation,
the centre drive control area shows state values and control buttons for the DS402
Processor, and the right side shows the demand state of the drive from the DS402
Modification. This shows how using the standard processor morphology (see 5) we
can design views around these structures and pull data from multiple simplexes to
give clear contextualised information.

Similar to Fig. 15, Fig. 16 shows a view that encompasses data from multiple
simplexes. This is the view for the Jog Controller simplex, but again pulls data
from a related input Axis Concept and output Axis Concept. The current axis values

32 Caliskanelli and Goodliffe et al.

[EtherCat/A1/dsd02Processor/
¥ Shutdown

———— Axis A Drive Control ————— —————

> dsdoaprocessor]

v Shutdown

Actual Position Position Demand @ Actual Velocity loc m Actual Torque Torque Demand

Actual Position Actual Velocity Actual Torque Jog Mode
21.22 2.05 18.00 Velocity

Position Demand Velocity Demand Current Demand Hold

0.00 20.00
HOLD
Absolute Relative
S0 -

2L ZERO

Fig. 16 CorteX Explorer: Jog Controller View

from the input Axis Concept are shown on the graph and in the displays on the top
row. The operator can enter demand values and change the operating mode of the
Jog Controller using the bottom row controls. Demand values from the output Axis
Concept are also displayed on the graph as targets.

Fig. 17 demonstrates several capabilities of the CorteX GUI framework. First,
the view is split into two halves. The left side shows a representation of the physical
TARM manipulator, posed to show not only the current position (in white) but also
the target position (in green). This pulls data from a number of Axis Concepts, both
observations and modifications, to pose the TARM image. This side of the view is

Caliskanelli and Goodliffe et al. 33

Pose View

A3 EtherCAT — A3 Pose Control

A3b EtherCAT ———,

AS EtherCAT ———,

Fig. 17 CorteX Explorer: TARM Pose View

specific to the TARM manipulator as the robot joints are preloaded. However, the
right side of the view is generic and can be used for any multi-axis manipulator.
This selection of controls is generated dynamically by searching through the simplex
model for any Axis Controllers, and creating a set of controls for each type of
controller - in this case, they are all Axis Pose Controllers. You will also notice
that to the left of each Pose Control area is an EtherCAT control area. The controls
in this area were also auto-generated, using the morphology to discover the device
Processor related to each Axis Controller, and then generating a view for the specific
device processor type - in this case, an EtherCAT DS402 Processor. Notice how the
EtherCAT control area discovers the number of axes each processor is controlling,
producing two status displays for axes Al, A2, A3B, AS and A6, but only one for
A3 and A4.

CorteX Explorer is the manifestation of CorteX’s discoverability (via the use of
the morphology, the type model), and the self-describing nature (through the use of
standardised simplex interface) that provides auto-generating, dynamic, contextual,
and universal GUIs for exploring any and all CorteX systems.

5 Performance Evaluation

In the previous section, the CorteX framework is described in detail. In this section,
we discuss performance evaluation and the configuration parameters used to eval-
uate CorteX. Section starts with a typical CorteX system definition in Section 5.1,
followed-up with performance analysis of CorteX in terms of memory allocation and
real-time characteristics, in Section 5.2 and Section 5.3, respectively.

34 Caliskanelli and Goodliffe et al.

5.1 A Typical CorteX System

There are 50-70 simplexes in an average CorteX control system. Referring back to
Fig. 7, 44 simplexes (each rotary axis has 7 joints therefore is equal to 7 simplexes)
are shown in the figure to illustrate the ontology and morphology concept. The
communication (e.g. Fieldbus protocol) and diagnostic functionality also uses an
additional 20 simplexes. Appropriately, between a third and a half of the entire
system consists of Concepts. Referring back to Fig. 7 again, 30 out of 44 simplexes
are Concept types. This means a minimum of a third of the simplexes in the CorteX
system do not send commands, but do contain numerous pieces of data and some
relationships. An average Concept type simplex contains 5-10 pieces of data; some
Cartesian Concepts used for the inverse kinematics or arms, contain up to 20 data
item each. Therefore, the performance analysis presented in this chapter does not
represent a typical control system; the examinations on CorteX are performed for
stress-testing purposes.

5.2 Memory Footprint

Memory Footprint Over Time

1910000
1900000
@ 1890000 —=—100 Simplexes
‘E 200 Simplexes
8 1880000 300 Simplexes
g 400 Simplexes
<=(—+—500 Simplexes
Pl 1870000 ——600 Simplexes
g ——700 Simplexes
g 1860000 —+—800 Simplexes
——0900 Simplexes
1850000 —=—1000 Simplexes
1840000
0 20000 40000 60000 80000 100000 120000

Runtime (ms)

Fig. 18 Memory footprint over time for increased number of simplexes.

Dynamic memory allocation is permitted within CorteX simplex functions but
should be avoided if real-time performance is required (see section 5.3), due to how
long it can take. Within the internal CorteX Core and CS infrastructure, dynamic
memory allocation is avoided wherever possible to produce a fixed memory footprint.
Fig. 18 illustrates the allocated memory for two minutes for the increased number of
simplexes. For this test, we start analysing allocated memory for 100 empty simplexes

Caliskanelli and Goodliffe et al. 35

where there is no data, relationships or commands defined. We increase the number
of simplexes by 100 each time and log the memory change over the total run time.
Fig. 18 provides evidence for zero memory allocation by the CorteX framework
over a run time of two minutes. The same experimental data is also used to show the
linear increase of the allocated memory for an increased number of empty simplexes
in Fig. 19. These two figures hint at the scalability of the platform, without providing
further information.

Memory Allocation (kB)
1920000

1900000
1880000
1860000

1840000

IMemory Usage (Kb)

1820000

1800000
0 200 400 600 800 1000 1200

Simplex Count

Fig. 19 CorteX memory profile over the increased number of simplexes.

Fig. 20 illustrates memory allocation for an increased number of data items over
a fixed number of simplex. We gradually increased the number of data items by
10 per Simplex over the 25 Simplex and record the memory allocation. These 25
Simplex do not have any relationship or command values; they only contain data
items. As such, Fig. 20 shows the linear increase in allocated memory as the data
items increase for a fixed 25 Simplex. Again, hinting at the ability of the platform to
scale linearly.

Fig. 21 shows memory allocation for an increased number of relationship items
over a fixed number of simplexes. We increase the number of relationship items by
10 per simplex over a total of 25 simplexes and record the memory allocation. These
25 simplexes do not have any data or command values; they only contain relationship
items. Fig. 22 presents the allocated memory for the increased number of commands
over a fixed number of simplexes. Increasing the number of defined commands by 10
per simplex over 25 simplexes and recording the memory allocation. In this set, 25
simplexes do not contain any data or relationship items; they only contain command
items. As such, Fig. 21 and Fig. 22 show a linear increase in the allocated memory
for relationship and command items, hinting at the system’s ability to scale linearly.

36 Caliskanelli and Goodliffe et al.

Memory Allocation (kB)

Fixed 25 Simplex Count
1080000
1078000
1076000
1074000
1072000
1070000
1068000
1066000

1064000
0 20 40 60 80 100 120

Memaory Usage (kB)

Data ltems Count

Fig. 20 CorteX memory profile over the increased number of data.

Memory Allocation (kB)

Fixed 25 Simplex Count

1071500
1071000
1070500
1070000
1069500
1069000
1068500
1068000
1067500

1067000
0 20 40 60 80 100 120

Used Memary (kB)

Relationship ltem Count

Fig. 21 CorteX memory profile over the increased number of relationships.

5.3 Real-time Characterisation

The importance of timeliness, Quality of Service (QoS), and high-fidelity within
control systems for the nuclear industry was previously explained in Section 2. The
examinations of CorteX in this section use a loop cycle frequency of 1kHz and
a sample size of 5000 loop cycles. The simplexes also use a parallel dependency
structure, meaning all simplex tasks are capable of executing concurrently. However
running all simplex tasks on their thread would require heavy context switching,

Caliskanelli and Goodliffe et al. 37

Memory Allocation (kB)

Fixed 25 Simplex Count

1071500
1071000
1070500
1070000
1069500
1069000
1068500
1063000
1067500

1067000
0 20 40 60 80 100 120

Memory Usage (kB)

Command tems Count

Fig. 22 CorteX memory profile over the increased number of commands send.

which is not an efficient method for parallel systems. For this reason, the tasks are
distributed by the Scheduler among 4 reserved threads owned by the Threadpool,
each running on one core of the CPU of the CI machine, see Section ??.

Fig. 23 presents how system utilisation is effected as the number of simplexes
is increased. As we increase the system workload by inserting more simplexes, the
utilisation percentage increases. As each simplex task has an equal duration for
completion (in this case), the percentage of time between ticks spent performing
simplex tasks increases linearly with the number of simplexes in the system. In this
particular test, the CorteX control system achieves almost 100% utilisation with 105
simplexes in the system.

For the next test, we create dependency pairs. Each pair has a sender and a
recipient simplex; commands are sent from the sender and received by the recipient.
The read() and write() functions are called on both simplexes, which are known to
be more time consuming than processing empty tasks and no commands. Fig. 24
illustrates the interval between task executions on the same experimental data. As
it can be seen in the figure, Cortex runs with 1 kHz when the simplex count is less
than 105. When there are 110 or more simplexes in the system, tasks executions can
no longer be complete in one loop cycle period. This causes tasks to overflow into
the next loop cycle. Given that each loop cycle has only one command to execute
per loop cycle, the interval between the task executions should be close to loop cycle
duration when jitter is low in a system. Fig. 24 shows that a CorteX system can run
with 1 kHz and execute commands of 105 simplexes within 1 ms interval, whereas as
we introduce more simplexes into the system, the loop cycle frequency drops down
to 500 Hz and therefore the interval between task executions jumps to 2 ms.

Deviation on the duration between task execution hints at a level of latency and
jitter in a system. Fig. 25 and Fig. 26 illustrate the difference between a timely and an

38 Caliskanelli and Goodliffe et al.

Utilisation with increasing numbers of Simplexes

120 B ;
100 % T

80 =L %‘
60 %

40 -

Utilisation (%)

20 =

1 10 20 30 40 50 60 70 80 90 100 110 120 130
Simplex Count

Fig. 23 Duty cycle over the increased number of simplexes each sending 1 command per loop
cycle.

Interval between executions (1 Command per Simplex per Loop Cycle)

N
=)

L
®

g
o

=
>

=
N

g
=}

Interval between start of task execution (ms)

1 10 20 30 40 50 60 70 80 90 100 110 120 130
Simplex Count

Fig. 24 Duration between task executions over the increased number of simplexes each sending 1
command per loop cycle.

overflown CorteX system. A CorteX system, running at 1 kHz with 105 simplexes
without overflowing has a minimal deviation in the interval between the start of task
executions. This provides suggestions on the determinism of a system. As shown in
Fig. 25 a deviation of a maximum of 3 microseconds illustrates how timely is the
CorteX system. The noise introduced into the CorteX system is minimal.

Fig. 27 and Fig. 28 analyse the latency in CorteX. For this set of experiments,
we introduce 10 simplexes in a CorteX system and increase the number of com-
mands each simplex sends. A fixed number of simplexes, with increased workloads
(commands and tasks) increases the latency in the system. The deviation of latency

Caliskanelli and Goodliffe et al. 39

Interval between executions, 1 Command per Simplex per Loop Cycle

s)
I
o
o
w

g
=}
s}
N

g
=}
o
Pt

Interval between start of task execution (m

10 20 30 40 50 60 70 80 90 100
Simplex Count

Fig. 25 Deviation of duration between task executions over the increased number of simplexes
upto 100, each sending 1 command per loop cycle.

Interval between executions, 1 Command per Simplex per Loop Cycle

S

(ms)

2.004 T T

2.002

=

1.998

1.996 —

Interval between start of task execution

110 115 120 125 130
Simplex Count

Fig. 26 Deviation of duration between task executions over the increased number of simplexes
between 110-130, each sending 1 command per loop cycle.

increases as the workload of the system increases and at the maximum the deviation
gets to 14 microseconds without on overflown system running at 1 kHz. The system
starts to overflow when there are more than 10 commands per simplex per loop
cycle. When the system overflows, it outputs in 500 Hz, latency increases to 2ms
and above. The deviation is reduced by 2 ms when there are 13 or more commands
per loop cycle.

The experimental results presented in Fig. 29 were performed on a fixed number
of simplexes each sending one command per loop cycle. The analysis presented
shows the effects of changing loop-cycle frequency over latency in Fig. 29.

40 Caliskanelli and Goodliffe et al.

Command Latencies (10 simplexes)

TT -
TTToRL;

o -
©o =3
© o
|
|
|
|

m
[=}
©
=)

}7

©c o o
o o ©
o N &

Command Latency (ms)

o
©
©
\

o
©
o
|
|

o
®
i
|
I

1 2 3 4 5 6 7 8 9 10
Commands Sent per Simplex per Loop Cycle

Fig. 27 Latency over the increased number of commands per loop cycle.

Command Latencies (10 simplexes)

3.0 -

25

%)

E

>

[}

20 -
® = = ==
e 4 L
c

(]

€15

£

(o}

o

10%%%;%%%%;%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Commands Sent per Simplex per Loop Cycle

Fig. 28 An overflown analysis of latency over the increased number of commands per loop cycle.

To report jitter of a CorteX system, we use 50 empty simplexes. Fig. 30 shows
the jitter in the CorteX system when there is no processing or communication hap-
pening, which means there is no injected noise due to execution or communication.
This experiment is performed to provide a baseline for the increase in loop-cycle
frequency and to improve our perspective on any other noise that the system could
have contained. According to the Fig. 30, deviation in jitter vary between -0.02 to
0.01 for loop-cycle frequency less than 400 Hz. Jitter increases and fluctuates more
as the loop-cycle frequency increases.

Caliskanelli and Goodliffe et al.

41

Command Latency (50 Simplexes, 1 Command per Simplex per Loop Cycle)

= = = N
N 5 ~ =}
5 =} s =}

Command Latency (ms)
~ o
wv o

u
=)

N
wn

0.0

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Loop Cycle Frequency (Hz)

Fig. 29 Latency over the increased loop cycle frequency.

Jitter (50 Simplexes)

0.021

Ll

—0.021 L 1

o
o
S

Jitter (ms)

—0.011

—0.03

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Loop Cycle Frequency (Hz)

Fig. 30 Jitter over the increased loop-cycle frequency.

750 800 850 900 950 1000

6 Software Infrastructure Quality and Maintainability of the

High Performing System

Quality of the software is paramount in achieving the high performance required for
control systems in long-lived nuclear facilities. In this section we describe maintain-
ability of the CorteX codebase over the applied life-cycle management procedures.
This section is followed-up with the unit testing that is used to assure the correctness
of the required functionalities in section 6.2. In section 6.3 we explain the addi-
tional optimisation applied on the CorteX codebase to increase the efficiency of the

software.

42 Caliskanelli and Goodliffe et al.

6.1 Life-cycle Management

Component-based software engineering and life-cycle management techniques are
practised during CorteX development. Modern, maintainable software infrastruc-
tures help us in achieving the required high performance (high fidelity, timeliness,
real-time characteristics) over a long period of time. Therefore, the importance of
component-based software engineering for long-lived nuclear facilities has been dis-
cussed in Section 2. Some of the main components of CorteX namely, CorteX Core,
CorteX CS and CorteX Explorer are described in the section 4 in detail. CorteX
Profiler is the built-in evaluation module within the CorfeX framework that analyses
the system performance as a whole. The results presented in this chapter in section
5 are obtained using CorteX Profiler.

Seatch by name
Subgroups and projects Shared projects Archived projects Last created

> @ <g Configurations ®mo QN2 &Ko & -1

> <% DeveloperTools w0 Qs &0 © @

> @ “g Collections Wm0 Oz &0 & @
R R mo Q10 &1 &6 &

A selection of libraries, used as plugins for CorteX, to add functional simplexes and GUI elements
> @ Externals W0 Os &0 @& -
> @y Interfaces W0 Qs &0 @ £

.~ CorteX Profiler

€ taols and configuration files for profiling various aspecis of CorteX go
Q @ CorteXREST *0 &
= Provides a HTTP REST API to a CorteX Cluster - GET data from it, or POST commands. 1 month ago
. X *0 &
A <@ Documentation 5
5 months ago
Tutorials *0 8
A s Cortex vz . ;
Tutorials for CorteX V4 5 months ago
*0 &
R €% CorteX Explorer ;
2 months ago
*0 &
R @ CorteX Builder e
11 months ago
0 o OSAL *0 &
Operating System Abstraction Layer 1 month age
CorteX €5 *0 &
0 g - _
Contral System Components 3 months ago
o CorteX Core 1 *0 &

Core Data Strud 1 month age

Fig. 31 Life cycle and process management.

Continuous Integration (CI), Continuous Delivery, and Continuous Deployment
are commonly used processes within modern software life-cycle management, es-
pecially for large-scale engineering solutions. CorteX is compliant with sustainable
development through continuous delivery routines and continuous deployment pro-
cedures. As part of the commit process, CorteX CI runners perform several auto-

Caliskanelli and Goodliffe et al. 43

mated tests on the modified codebase to check that alterations have not introduced
any undesired change in functionality or performance.

6.2 Unit Testing

Each CorteX repository is unit tested individually, so any errors can be more easily
traced to a particular component. These tests are automated for the CI runner and the
entirety of the code library is tested module-by-module. These are combined with
integration tests that then assemble various modules together and test their overall
functionality and integration. As shown in Fig. 32 dev-unstable and dev pipelines
reach over 85% tested code coverage for both CorteX Core and CorteX CS modules.
The hardware specifications of the CI runner are a 4 core (2 real, 2 virtual) Intel(R)
Core(TM) i3-4170 CPU @ 3.70GHz processor and 4GB memory running Debian
9.5 (stretch) OS with the 4.16.8 kernel, RT patched. Soon, we intend to perform the
test routines on RTOS like operating systems, which have shown to have greater RT
performance [28].

CorteX Core

dev-unstable dev master production

Status pipeline | passed pipeline | passed pipeline | passed pipeline | passed

CorteX CS
dev-unstable dev master production

Status pipeline | passed pipeline | passed pipeline | passed pipeline | passed

Coverage

Fig. 32 Percentage of unit tested code coverage over the CI pipelines.

6.3 Optimising the CorteX Codebase

The Valgrind tool suite [38] provides a number of debugging and profiling tools
that assist with bug fixing and optimising software. Callgrind is a profiling tool

44 Caliskanelli and Goodliffe et al.

Fig. 33 Valgrind’s Callgrind profiling CorteX.

within the Valgrind suite that records the call history among functions in a pro-
gram’s run as a call-graph. By default, the collected data consists of the number of
instructions executed, their relationship to source code, the caller/callee relationship
between functions, and the number of each call. Optionally, cache simulation and/or
branch prediction can produce further information about the runtime behaviour of
the codebase. Fig. 33 shows a call-graph generated by Callgrind applied to Simplex
Commands and the Command Mailbox, to optimise implementation of command
exchange in CorteX. Analysing the codebase function-by-function, we detect the
bottlenecks that can limit the performance over case studies and make the necessary
changes to increase the code efficiency. This reflects positively on the performance
of CorteX systems and help us understand the interaction among the newly written
code versus the excising code from a traceability point of view and inform us on the
improvement areas of the entire codebase.

7 Conclusion

This chapter has proposed a novel software framework for interoperable, plug-
and-play, distributed robotic systems of systems. We developed CorteX to tackle
the implementation of control systems for robotic devices in complex, long-lived
nuclear facilities.

CorteX attempts to solve main problems associated with interoperability and
extensibility using a self-describing data representation. Standardised but extensible
data interfaces are developed to provide interoperability, whilst semantic meaning is
self-described by the components through typing, where the types are associated with

Caliskanelli and Goodliffe et al. 45

a software ontology for robotic and control system components. To aid with structural
interpretation in data exchange between these interfaces, software morphologies are
implemented and used to provide syntactic meaning. The robotic and control system
knowledge structure is distributed across the CorteX agents before run-time.

Encapsulation combined with low coupling between components and high cohe-
sion of fine-grained components, along with the use of standardised interfaces helps
in achieving modularity and testability. Quality and maintainability required from
a software platform are achieved by modern life-cycle management processes and
effective component-based development techniques. Unit tested components and a
high level of code coverage of CorteX is illustrated in Section 6 as part of the software
quality control.

Extensive analysis of CorteX memory profiling has been provided in Section
5.2. The results illustrated that CorteX is a lightweight framework. In addition to
this, CorteX runs with a constant memory footprint, which translates as no memory
leakage. Scalability, which is crucial to achieving extensibility, is briefly illustrated
as part of the memory tests with 1000 simplexes.

Timeliness and fidelity are important features of nuclear applications. Real-time
characterisation of CorteX is shown in Section 5.3. Although CorteX is not a deter-
ministic system, the deviation in latency, jitter and loop cycle duration is less than
40 microseconds while the CorteX loop cycle is running at 1 kHz. Stress testing
on the increased number of command send per simplexes and increased number of
simplexes each executing one command per loop cycle identify that error and noise
in the system is minimised. Based on the real-time characterisation and the applied
software quality management, we believe CorteX promises to deliver the needed
control system solutions for the long-lived nuclear facilities.

Future work will focus on the evaluation of CorteX on large-scale, distributed
clusters to inspect scalability and fidelity even further. Analysis of interoperability
will be part of these tests. In addition to these points, further analysis is required in
the fields of metric-based software engineering to characterise the low coupling, high
cohesion and fine-granular nature of CorteX. We believe this will be a key to achieve
long-term maintainability in software. Furthermore, performance improvements on
CorteX that will lead to increase determinism will be carried. We envision further
investigation on appropriation on task executions, and methods to improve different
approaches on overflow compensation to take place.

Acknowledgement

CorteX is intellectual property of the UKAEA. This work is partly supported by
the UK Engineering & Physical Sciences Research Council (EPSRC) Grant No.
EP/R026084/1.

46

Caliskanelli and Goodliffe et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. IEEE Standards Association et al. ISO/IEC/IEEE 24765: 2010 systems and software

engineering-vocabulary. Institute of Electrical and Electronics Engineers, Inc, 2010.

. Andrew Banks and Rahul Gupta. MQTT version 3.1.1. OASIS standard, 29:89, 2014.
. V. Barabash, The ITER International Team, A. Peacock, S. Fabritsiev, G. Kalinin, S. Zin-

kle, A. Rowcliffe, J.-W. Rensman, A. A. Tavassoli, and P. Marmy. Materials challenges for
ITER-Current status and future activities. Journal of Nuclear Materials, 367:21-32, 2007.

. Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-Wesley

Professional, 2003.

. Esubalew T. Bekele, Uttama Lahiri, Amy R. Swanson, Julie A. Crittendon, Zachary E. War-

ren, and Nilanjan Sarkar. A step towards developing adaptive robot-mediated intervention
architecture (ARIA) for children with autism. 21(2):289-299.

. Paolo Bellavista, Antonio Corradi, Luca Foschini, and Alessandro Pernafini. Data distribution

service (DDS): A performance comparison of opensplice and RTI implementations. In 2013
IEEE symposium on computers and communications (ISCC), pages 000377-000383. IEEE,
2013.

. Dietmar Bruckner, Marius-Petru Stanica, Richard Blair, Sebastian Schriegel, Stephan Kehrer,

Maik Seewald, and Thilo Sauter. An introduction to OPC UA TSN for industrial communication
systems. Proceedings of the IEEE, 107(6):1121-1131, 2019.

. Herman Bruyninckx. Open robot control software: the OROCOS project. In Proceedings

2001 ICRA. IEEE international conference on robotics and automation (Cat. No. 01 CH37164),
volume 3, pages 2523-2528. IEEE.

. Alan Burns and Andrew J Wellings. Real-time systems and programming languages: Ada 95,

real-time Java, and real-time POSIX. Pearson Education, 2001.

Paulo F Carvalho, Bruno Santos, Bruno Goncalves, Bernardo B Carvalho, Jorge Sousa, AP Ro-
drigues, Anténio JN Batista, Miguel Correia, Alvaro Combo, Carlos MBA Correia, et al. EPICS
device support module as ATCA system manager for the ITER fast plant system controller.
Fusion Engineering and Design, 88(6-8):1117-1121, 2013.

Erwin Coumans. Bullet physics engine. Open Source Software: http://bulletphysics. org,
1(3):84, 2010.

Leo R Dalesio, AJ Kozubal, and MR Kraimer. EPICS architecture. Technical report, Los
Alamos National Lab., NM (United States), 1991.

C. Darve, M. Eshraqi, M. Lindroos, D. McGinnis, S. Molloy, P. Bosland, and S. Bousson. The
ESS superconducting linear accelerator. MOP004, SRF2013, Paris, page 168, 2013.

Rosen Diankov and James Kuffner. OpenRAVE: A planning architecture for autonomous
robotics. 79.

Peter Dieckmann, David Gaba, and Marcus Rall. Deepening the theoretical foundations of
patient simulation as social practice. Simulation in Healthcare, 2(3):183-193, 2007.

Antonio C. Dominguez-Brito. CoolBOT: a component-oriented programming framework for
robotics.

Antonio Carlos Dominguez-Brito, F. J. Santana-Jorge, S. Santana-De-La-Fe, J. M. Martinez-
Garcia, Jorge Cabrera-Gamez, J. D. Herndndez-Sosa, J. Isern-Gonzalez, and Enrique
Fernandez-Perdomo. CoolBOT: An open source distributed component based programming
framework for robotics. In International Symposium on Distributed Computing and Artificial
Intelligence, pages 369-376. Springer.

G Federici, C Bachmann, L Barucca, W Biel, L Boccaccini, R Brown, C Bustreo, S Ciattaglia,
F Cismondi, M Coleman, et al. Demo design activity in Europe: Progress and updates. Fusion
Engineering and Design, 136:729-741, 2018.

Brian Gerkey, Richard T Vaughan, and Andrew Howard. The Player/Stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the 11th international conference
on advanced robotics, volume 1, pages 317-323, 2003.

Brian P Gerkey, Richard T Vaughan, Kasper Stoy, Andrew Howard, Gaurav S Sukhatme,
and Maja J Mataric. Most valuable player: A robot device server for distributed control.

Caliskanelli and Goodliffe et al. 47

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),
volume 3, pages 1226-1231. IEEE, 2001.

Morteza Ghasemi, Sayed Mehran Sharafi, and Ala Arman. Towards an analytical approach to
measure modularity in software architecture design. JSW, 10(4):465-479, 2015.

Gui Gui and Paul D Scott. Measuring software component reusability by coupling and cohesion
metrics. JCP, 4(9):797-805, 2009.

Wilhelm Hasselbring. Component-based software engineering. In Handbook of Software
Engineering and Knowledge Engineering: Volume II: Emerging Technologies, pages 289-305.
World Scientific, 2002.

Wilhelm Hasselbring. Software architecture: Past, present, future. In The Essence of Software
Engineering, pages 169—184. Springer, Cham, 2018.

Michi Henning and Mark Spruiell. Distributed programming with ICE. ZeroC Inc. Revision,
3:97,2003.

Robert Henf3en and Miriam Schleipen. Interoperability between OPC UA and AutomationML.
Procedia Cirp, 25:297-304, 2014.

http://www.createcrobotics.com. Iris.

Benjamin Ip. Performance analysis of VxWorks and RTLinux. Languages of Embedded
Systems Department of Computer Science, 2001.

Jared Jackson. Microsoft Robotics Studio: A technical introduction. IEEE robotics & automa-
tion magazine, 14(4):82-87, 2007.

Mark J Kilgard. The OpenGL utility toolkit (GLUT) programming interface. 1996.

Jungho Kim, Sungwon Kang, Jongsun Ahn, and Seonah Lee. EMSA: Extensibility metric
for software architecture. International Journal of Software Engineering and Knowledge
Engineering, 28(03):371-405, 2018.

Nathan Koenig and Andrew Howard. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149-2154. IEEE, 2004.

H Leung and Z Fan. In handbook of software engineering and knowledge engineering, 2002.
Stéphane Magnenat, Valentin Longchamp, and Francesco Mondada. ASEBA, an event-based
middleware for distributed robot control. In Workshops and tutorials CD IEEE/RSJ 2007
international conference on intelligent robots and systems. IEEE Press.

Stéphane Magnenat, Philippe Rétornaz, Michael Bonani, Valentin Longchamp, and Francesco
Mondada. ASEBA: A modular architecture for event-based control of complex robots.
16(2):321-329.

Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the performance of ROS2. In
Proceedings of the 13th International Conference on Embedded Software, pages 1-10, 2016.
Derrick Morris. Concise encyclopedia of software engineering, volume 1. Elsevier, 2013.
Nicholas Nethercote, Robert Walsh, and Jeremy Fitzhardinge. Building workload characteri-
zation tools with Valgrind. In 2006 IEEE International Symposium on Workload Characteri-
zation, pages 2-2. IEEE, 2006.

Paul Michael Newman. MOOS-mission orientated operating suite.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. ROS: an open-source robot operating system. In /CRA workshop
on open source software, volume 3, page 5. Kobe, Japan, 2009.

Markus Rickert and Andre Gaschler. Robotics library: An object-oriented approach to robot
applications. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 733-740. IEEE, 2017.

Douglas T Ross, John B Goodenough, and CA Irvine. Software engineering: Process, princi-
ples, and goals. Computer, 8(5):17-27, 1975.

D Sanz, M Ruiz, R Castro, J Vega, M Afif, M Monroe, S Simrock, T Debelle, R Marawar, and
B Glass. Advanced data acquisition system implementation for the ITER neutron diagnostic
use case using EPICS and FlexRIO technology on a PXle platform. IEEE Transactions on
Nuclear Science, 63(2):1063-1069, 2016.

48

44.

45.

46.

47.

48.
49.

50.

51
52.

53.

Caliskanelli and Goodliffe et al.

Mark W Scerbo and Steven Dawson. High fidelity, high performance? Simulation in Health-
care, 2(4):224-230, 2007.

Joseph M. Schlesselman, Gerardo Pardo-Castellote, and Bert Farabaugh. OMG data-
distribution service (DDS): architectural update. In IEEE MILCOM 2004. Military Com-
munications Conference, 2004., volume 2, pages 961-967. IEEE.

Robert W Schwanke. An intelligent tool for re-engineering software modularity. In Proceedings
of the 13th international conference on Software engineering, pages 83-92. IEEE Computer
Society Press, 1991.

Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language for programming the
web 2. 0. In OOPSLA Companion, pages 975-985.

Russell Smith et al. Open dynamics engine. 2005.

Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion planning library. /EEE
Robotics & Automation Magazine, 19(4):72-82, 2012.

Jet Team. Fusion energy production from a deuterium-tritium plasma in the JET tokamak.
Nuclear Fusion, 32(2):187, 1992.

Sebastian Thrun. Robotic mapping: A survey. 1(1):1.

Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust Monte Carlo
localization for mobile robots. 128(1):99-141.

Richard Volpe, Issa Nesnas, Tara Estlin, Darren Mutz, Richard Petras, and Hari Das. The
CLARAty architecture for robotic autonomy. In 2001 IEEE Aerospace Conference Proceedings
(Cat. No. 01TH8542), volume 1, pages 1-121. IEEE, 2001.

