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Abstract 
In this work, we use reduced and perturbative models to examine the stability of toroidal Alfven 

eigenmodes (TAEs) during the internal transport barrier (ITB) afterglow in JET experiments designed 

for the observation of alpha driven TAEs.  We demonstrate that in JET-like conditions, it is sufficient 

to use an incompressible cold plasma model for the TAE to reproduce the experimental adiabatic 

features such as frequency and position.  The core-localised modes that are predicted to be most 

strongly driven by minority ICRH fast ions correspond to the modes observed in the DD experiment, 

and conversely, modes that are predicted to be not driven are not observed. Linear damping rates 

due to a variety of mechanisms acting during the afterglow are calculated, and Landau damping by 

the thermal plasma is shown to be clearly dominant for observed modes. We show that analytical 

estimates for Landau damping can be too low by an order of magnitude in these experiments, owing 

to the neglect of higher order sideband resonances.  For DT equivalent extrapolations, we conclude 

that a different set of TAEs that exist towards the edge are more likely to be driven unstable than 

the DD observed core modes. 

Introduction 
A great deal of effort and interest has been devoted to demonstrating the possible excitation of 

Alfvenic instabilities by super-Alfvenic fusion products, particularly alpha particles, a phenomenon 

that is important to understand and control in future burning plasmas[1]. Recent work on JET [2] has 

been focused on creating the conditions for unambiguous observation of alpha driven toroidal 

Alfven eigenmodes (TAEs) by exploiting the long slowing down time of alpha particles and the more 

rapid thermalisation of beam ions, supporting some existing evidence from JET [3] and TFTR [4].  

Afterglow scenarios were designed to achieve a transient maximum performance to generate a large 

driving fusion alpha population, followed by rapid removal of neutral beam heating to minimize 

damping effects. Deuterium experiments were conducted to establish high performance ITB 

scenarios at elevated safety factor with a view that they could be repeated in DT.  Although 

generally omitting ICRH to avoid creating another fast particle population, some of these 



experiments deliberately employed ICRH during the afterglow to probe the stability of TAEs, 

allowing the validation of stability calculations. 

In this work, we test the quantitative predictive capability of reduced and perturbative models for 

TAE stability in a particular JET ITB scenario when supplied by approximate inputs from the available 

integrated modelling data. 

Experimental features reproduced by this workflow include: 

• location of rational surfaces 

• mode frequency 

• mode position 

• strongest driven modes 

• modes that are absent 

• time of onset during afterglow 

After demonstrating capabilities in reproducing experimental features in pure deuterium plasma, we 

present an extrapolation to 50:50 deuterium-tritium plasmas to assess the likelihood of alpha driven 

TAEs being excited. 

Theory 
Tokamak plasmas are known to support a broad range of wave phenomena propagating at different 

characteristic speeds.  The local wave dispersion relation includes the Alfven continuum 𝜔2 ≈ 𝑘∥
2𝑉𝐴

2 

and ion-sound continuum 𝜔2 ≈ 𝑘∥
2𝑐𝑆

2, with 𝑉𝐴 and 𝑐𝑠 denoting respectively the Alfven and ion-sound 

speeds. The squared ratio of  𝑐𝑠 and 𝑉𝐴 depend on 𝛽, the ratio of magnetic to thermal pressure. In a 

conventional tokamak such as JET, these speeds are well-separated and Alfven waves can be 

identified that are dominated by the interplay between magnetic field tension and plasma inertia, 

rather than plasma compression. For reactor-relevant conditions, these waves must be kept as small 

oscillations around an equilibrium with 
𝛿𝐵

𝐵
≪ 1% . The toroidally symmetric equilibrium magnetic 

field balances the pressure of a mostly isotropic plasma as expressed in the fluid picture with the 

Grad-Shafranov equation 

𝑅2∇ ⋅ (
∇𝜓

𝑅2
) = −𝑅𝜇0𝐽𝜙(𝑅, 𝜓)

𝐽𝜙(𝑅, 𝜓) = 𝑅𝑝′(𝜓) + 𝑓𝑓′(𝜓)/𝜇0𝑅 (1)
 

where the poloidal flux functions correspond to the pressure force −∇𝑝 = −𝑝′(𝜓)∇𝜓 and the 

covariant toroidal magnetic field 𝑅𝐵𝜙 = 𝑓(𝜓). In the kinetic picture on collisionless timescales, a 

particle distribution function is in equilibrium if and only if it can be written in terms of particle orbit 

constants of motion 

𝐹 = 𝐹(𝐸, 𝜇, 𝑃𝜙; 𝜎) (2) 

for energy 𝐸, magnetic moment 𝜇 =
1

2
𝑚𝑣⊥

2

𝐵
+ 𝑂 (

𝜌

𝐿
), toroidal canonical momentum 𝑃𝜙 = 𝑚𝑅𝑣𝜙 +

𝑍𝑒𝜓 and 𝜎 ≡ 𝑠𝑖𝑔𝑛 (𝑣∥). The above expressions correspond to sign conventions [5] where poloidal 

flux 𝑩𝒑 ≡ ∇𝜓 × ∇𝜙 and toroidal direction �̂� × �̂� = �̂�.  

The two pictures, represented by equations (1) and (2), are reconciled for the majority thermal 

plasma with zero orbit width where 𝐹 = 𝐹(𝐸, 𝜓).  The fast particle distributions associated with NBI, 

ICRH or the fusion products cannot be said to satisfy this assumption in JET-like conditions; NBI and 



ICRH orbits can exhibit strong directionality favouring a given invariant pitch Λ ≡
𝜇𝐵0

𝐸
 and all fast 

particles exhibit a finite orbit width through 𝑃𝜙. Although these quantities feature naturally in the 

kinetic theory, integrated modelling focusing on flux-surface average quantities tends to ignore 

these effects for computational convenience with varying levels of justification in current tokamaks. 

As an example: for large aspect ratio, a fast pressure approximation [6] is justified to capture the fast 

particle forces in the Grad-Shafranov equation.  

The TAE was first identified [7] as a class of discrete oscillatory solution to the linearized ideal MHD 

equations in the limit of small 𝛽.  These global eigenmodes exist within the TAE gap of the Alfven 

continuum at angular frequencies close to  

𝜔𝑇𝐴𝐸 =
𝑉𝐴

2𝑞𝑅
(3) 

These incompressible ideal solutions from the fluid theory may also be found in the kinetic theory 

when solving for the “adiabatic” terms in the linearized gyrokinetic equation, or by assuming a cold 

plasma dispersion relation for the given field and density.  Real and imaginary corrections to the TAE 

eigenfrequency and mode structure come from non-ideal effects such as resonant wave-particle 

interaction, collisions, finite orbit width and finite Larmor radius [8][9].  When these effects are 

weak, they provide only drive, damping and frequency corrections to what are in essence ideal MHD 

solutions, inviting a perturbative approach.  

Resonant wave-particle interaction is computed perturbatively with linear codes such as CASTOR-K 

[10] and NOVA-K [11], and nonlinear codes such as HAGIS [12] and HALO [13]. These perturbative 

calculations require inputs of the ideal eigenmodes from linear MHD codes such as MISHKA [14] and 

CASTOR [15].   

The further non-ideal contributions from finite Larmor radius and parallel electric field lead to the 

coupling with kinetic Alfven waves with a combined local dispersion relation 

𝜔2 = 𝑘∥
2𝑉𝐴

2 [1 + 𝑘⊥
2𝜌𝑖

2 (
3

4
+

𝑇𝑒

𝑇𝑖
(1 − 𝑖𝛿(𝜈𝑒)))] (4) 

with ion Larmor radius 𝜌𝑖 = (𝑚𝑖𝑇𝑖)1/2/𝑒𝐵 and collisional dissipation 𝛿(𝜈𝑒), and a corresponding 

modification to the global TAE wave equation.  The collisional dissipation captures the passing 

electron resistive losses and can be computed from the collision frequency  𝜈𝑒 with trapped 

electrons. 

This modified kinetic TAE wave equation resembles the resistive MHD equations but with a complex 

number substituting for conventional resistivity, allowing non-perturbative computation of some 

nonideal effects in CASTOR [9]. The coupling between kinetic Alfven waves and TAEs leads to 

radiative damping of TAEs when their frequencies lie below the TAE gap frequency equation (3) [16]. 

Full non-perturbative calculations can also be performed using gyrokinetic or hybrid codes 

[17][18][19] which attempt to solve for all ideal and non-ideal effects simultaneously, including the 

difficult to resolve resonant wave-particle interaction.  The GTC code [20] is a recent example of a 

gyrokinetic code applied to TAEs. For slowly growing/decaying modes, power transfer between 

waves and particles occurs for a small fraction of particles satisfying the resonance condition [21] 

0 = 𝑛⟨𝜔𝜙⟩ + 𝑝𝜔𝜃 − 𝜔 (5) 



where 𝑛 is the wave toroidal mode number, ⟨𝜔𝜙⟩ and 𝜔𝜃 are the bounce-averaged ⟨. . ⟩ toroidal and 

poloidal frequencies of the particles, and 𝑝 is an integer that labels each Fourier component in the 

time varying power transfer. For deeply passing particles and small orbit width, the strongest Fourier 

component occurs when 𝑝 ≈ 𝑚 the poloidal mode number for one of the eigenmode harmonics, 

corresponding to when 𝜔 ≈ 𝒌 ⋅ 𝒗 for that Fourier component. Analytical expressions [22] of alpha 

drive and ion Landau damping for of TAEs have been derived for this lowest order power transfer 

corresponding to the conditions 𝑣∥ = 𝑉𝐴 and 𝑣∥ = 𝑉𝐴/3.  More generally, the linear growth rate 

𝛾𝐿  depends on the distribution function gradients at resonance  

𝛾𝐿 = ∫ 𝑑3𝑥𝑑3𝑣 ∑ ∑
𝛿𝛾(𝑥, 𝑣; 𝑝, 𝜎)

𝑛⟨𝜔𝜙⟩ + 𝑝𝜔𝜃 − 𝜔
𝑝𝜎

𝛿𝛾(𝑥, 𝑣; 𝑝, 𝜎) ∝ 𝜔 (
𝜕𝐹

𝜕𝐸
)

𝜇,𝑃𝜙

− 𝑛 (
𝜕𝐹

𝜕𝑃𝜙
)

𝐸,𝜇

(6)

 

On JET [23], resonant wave-particle interaction with TAEs occurs between ICRH, NBI, fusion products 

and thermal plasma species. For typical JET magnetic fields and densities, the ion velocities present 

in the NBI and thermal distributions fall below 𝑉𝐴 and do not contribute drive to TAEs. Drive of TAEs 

observed on JET is almost exclusively provided by ICRH.   

In the sections that follow, we compare predictions of this stability theory to experimental data on 

an existing DD discharge 92416 during the afterglow, and provide extrapolations of TAE stability in 

DT for the best performing scenario, which was achieved in discharge 96852. 

Predictions for the JET ITB afterglow 

Overview of the JET ITB afterglow 
Recent scenario development of JET ITBs has been described previously  [2][24], but here we give a 

brief summary of key features of the shot 92416.  The plasma is a monotonic 𝑞(𝜓) low shear 

discharge with 𝐵𝑣𝑎𝑐 = 3.4𝑇 and 𝐼𝑝 = 2.5𝑀𝐴 operating at elevated 𝑞0 ≈ 2. NBI heating exceeding 

approximately 25MW for JET with the ITER-like (metal) wall can lead to the formation of an internal 

transport barrier at the 𝑞 = 2 surface, with some sensitivity on timing and density, the latter being 

set as low as shine-through limits allow. Strong density and ion temperature peaking are a feature of 

this scenario which can result in ion/electron temperature ratios of order 𝑇𝑖 ≈ 2𝑇𝑒when discharges 

are successful at producing an ITB.  Figure 1 gives the measured magnetic probe signal at the 

expected TAE gap frequency before and after the full NBI power phase. Three modes are observed 

at 46.2s with toroidal mode numbers n=4,5,6. These modes occur during a period when the NBI has 

been stopped and the plasma is cooling. ICRH is maintained during the afterglow so as to 



deliberately destabilize TAEs. A higher performance version of the same shot has been developed to 

be repeated in DT, 96852, with no ICRH and peak transient neutron rate 𝑅𝑁𝑇 = 2.45 × 1016. 

 

 

Figure 1: JET shot 92416 afterglow scenario details (above) magnetic spectrum (below). 40s has been subtracted from the 
time base. 

Fluid equilibrium reconstruction 
The linear TAE spectrum depends sensitively on the equilibrium, particularly on the q-profile. 

Inference of equilibrium is provided on JET using the EFIT code [25]. However during the afterglow, 

MSE measurements are unavailable. A large variation in q-profiles between equally valid EFIT 

solutions is possible if internal current profile constraints are absent [26].  Considering both free 

functions in the Grad-Shafranov equation (equation (1)), detailed information on 𝑝′(𝜓) is available 

via measurements and fast ion modelling, but very little is available to constrain 𝑓𝑓′(𝜓) without MSE 

or computed parallel current constraint. Over-fitting the pressure pedestal in these ITB cases led to 

implausibly low safety factor in the core. For this study, both free flux functions 𝑝′(𝜓) and 𝑓𝑓′(𝜓) 

were instead parametrised by simple quadratic polynomials, and experimental thermal pressure and 

computed fast pressure from TRANSP [27] were used as input constraints. Although it is likely that 

this approach does not capture equilibrium features in the pedestal, our focus was to faithfully 

capture the core q-profile. 

MHD spectroscopy was used to validate this procedure for our ITB cases of interest.  The locations of 

instabilities, likely to be tearing modes, were identified using cross-correlation between electron 

cyclotron emission and Mirnov coil data. Two modes, with 𝑛 = 2 and 𝑛 = 3, were identified at 

different times. This provided measurements of the 𝑞 = 2 surface at major radius 𝑅 = 3.15 ±

0.05𝑚  and 𝑞 =
7

3
 at 𝑅 = 3.45 ± 0.05𝑚 at times 45.52s and 45.69s respectively, before the time of 

interest 46.2s. A comparison with the reconstruction is presented in Figure 2. 



 

Figure 2: Comparison of q-profile of EFIT reconstruction (curves) to measured midplane position (point with errorbar) of 
tearing modes at 45.52s (left) and 45.69s (right) in JET shot 92416 

The reconstructed position of the 𝑞 = 2 surface also agrees with the position of the ITB; an integer  

value always appears to be necessary for JET ITBs with monotonic shear [28].  A steady decay from 

𝑞𝑚𝑖𝑛 = 2 to 𝑞𝑚𝑖𝑛 = 1 can also be inferred from Alfven cascades after the time of interest, beginning 

from 46.5s. 

Incompressible linear stability 
Magnetics signals close to the TAE gap frequency computed with equation (3) were observed both 

before the time of peak performance and during the afterglow (Figure 1). A reconstructed 

equilibrium at the time of appearance during the afterglow was obtained at 46.2s and metric 

elements of the straight field line coordinates were obtained with HELENA [29] for input to linear 

MHD calculations.  

As mentioned previously, the three experimentally observed modes had toroidal mode numbers 

𝑛 = 4,5,6. On JET, the convention for positive toroidal mode number indicates a mode propagating 

in the ion-diamagnetic direction for peaked core pressure, which corresponds to a toroidal wave 

number 𝑛∇𝜉 using the �̂� × �̂� = 𝜉  sign convention. Plasma current, toroidal field, toroidal rotation 

and neutral beams are all in the same toroidal direction as the propagating modes. 

The straight field line metric elements from HELENA and a normalized mass density profile were 

used as inputs for the incompressible linear MHD code MISHKA-1. The mass density was 

approximated on the assumption of 100% deuterium with number density from fitted experimental 

LIDAR and Thompson scattering electron number density data. A range of TAE eigenmode solutions 

were found for the for toroidal mode numbers  𝑛 = 4,5,6.  The rotation of the plasma at the location 

of the observed modes was estimated as the difference in frequency for adjacent mode numbers, 

owing to the expected Doppler shift 𝜔𝑙𝑎𝑏 = 𝜔𝑝𝑙𝑎𝑠𝑚𝑎 + 𝑛Ω giving a rotational frequency at the 

modes of  Ω/2π =  10𝑘𝐻𝑧, assuming the modes are in similar location with similar rotation. 

The range of eigenmodes predicted from the incompressible theory for the measured profiles and 

assumed rotation in the lab frame occurred in the frequency range 135-165kHz. Solutions in this 

range of frequencies have been overlayed onto the measured magnetic spectrum in Figure 3. Once 

toroidal mode number is accounted for, three predicted solutions are found that correspond to 

within 1-2% of the observed signals. This supports the conclusion that the adiabatic properties of the 

modes are well modelled by TAEs from the incompressible theory. 



 

Figure 3: JET shot 92416 magnetic spectrum with MISHKA TAE solutions overlayed. All frequencies are given in the lab 
frame assuming a toroidal rotation of 10kHz. Modes are coloured by toroidal mode number and labelled with their 

normalized eigenvalue as ”n{mode number}_{𝜔/𝜔𝐴}2” 

The eigenmodes that most resemble experimental observations correspond with archetypical core-

localised TAEs which are characteristic of low magnetic shear in the analytical theory [30] and found 

to be most unstable in ITER baseline calculations [31,32]. These three modes are also of “ballooning” 

type, where the frequencies are found within the lower half of the TAE gap in the Alfven continuum, 

and the mode positions are weighted towards the outboard side of the midplane. The MHD 

prediction of the eigenmode is presented in Figure 4 along with reflectometer measurements. The 

reflectometer measures density fluctuations at a given probed frequency. The TAEs observed on the 

magnetics are clearly evident in the density fluctuations, with the n=4 and n=5 modes shown in 

Figure 4. The probed frequency is scanned in time, altering the radial position where the density 

fluctuation is measured, depending on the cut-off in the local dispersion relation. The inferred radial 

position is shown below the spectrum. The n=5 is measured at an outboard major radius of 𝑅 ≈

3.33𝑚 which agrees with MISHKA predictions. 

 

  



 

 

 

 

Kinetic ICRH minority and NBI equilibrium 
Radio-frequency heating of a hydrogen minority was included in shot 92416 for the purpose of 

probing TAE stability during the afterglow.  Calculations of resonant wave-particle TAE drive requires 

the input of the minority hydrogen distribution of the form expressed in equation (2) to capture 

effects of finite orbit width and strong anisotropy. The SELFO code [33] was used to solve the 

quasilinear equations for the ICRH fast proton distribution in constants of motion. Additionally, NBI 

heating was present during the high-performance phase, and then turned off to decrease resonant 

wave-particle TAE damping. The ASCOT code [34] was used to solve the Fokker-Plank equation for 

the fast deuterons in position and velocity coordinates, and then converted to the equilibrium form 

given by equation (2), capturing all finite Larmor orbit width and anisotropy features present in the 

beam distributions. 

The output of distribution function modelling is presented in Figure 5 and Figure 6.  Both 

distributions show significant anisotropy, particularly the SELFO distribution which is strongly peaked 

around Λ =
𝜇𝐵0

𝐸
= 1 as expected from the quasi-linear theory applied to on-axis minority heating. 

Being Monte-Carlo solutions, the distributions feature significant Monte-Carlo noise, particularly 

along edges of the topological orbit boundaries that are sparsely populated in reality and poorly 

resolved in computation. Although perfectly valid as collisionless equilibrium distribution functions 

by virtue of their representation 𝐹 = 𝐹(𝐸, 𝜇, 𝑃𝜙; 𝜎), they are not physically realisable because they 

violate a smoothness condition in the Fokker-Plank equation; drag and diffusion terms in the 

collision operators would become large around any sharp features in the equilibrium, immediately 

smoothing the distribution.  Stability calculations using such unphysical equilibria will produce 

numerically converged but physically irrelevant results if these gradients happen to occur near the 

resonance condition. Under these circumstances, numerical convergence of the entire integrated 

stability calculation would require convergence of the derivatives of the 3D distribution function in 

the Monte-Carlo simulations. 

Figure 4: MISHKA 2D perturbed radial velocity 𝑠𝑉1 where 𝑠 = √�̅� (top left) and the 1D equivalent superimposed on the 
Alfven continuum (top right) for n=5 eigenmode observed. Reflectometry measurements (bottom) give the position of the 

TAEs in JET shot 92416. 40s has been subtracted from the time base. 

 



 

Figure 5: SELFO ICRH distribution function at 46.1s (above) and analytical fitted form (below) 

 

 

Figure 6: ASCOT NBI distribution function at 46.1s (above) and analytical fitted form (below) 



In order to de-couple numerical convergence of heating codes from stability calculations whilst 

retaining finite orbit width and anisotropic effects, physically motivated parametric distribution 

functions derived in [35][36] were adopted     

𝐹𝐼𝐶𝑅𝐻(𝐸[𝑒𝑉], 𝜇[𝑒𝑉/𝑇], 𝑃𝜙[𝑒𝑉𝑠]) ≡ 𝑁
(1.0 +

𝜇/𝐸
𝜆0

) (
𝐸
𝑇)

𝛼

√2𝜋
𝐸−

3
2𝑒

−
(𝑃𝜙−𝑃0)

2

Δ𝑃2 𝑒

−
𝐸
𝑇(1+

(
𝜇
𝐸

−𝜆0)
2

𝛥𝜆2 )

(7)
 

𝐹𝑁𝐵𝐼(𝐸[𝑒𝑉], 𝜇[𝑒𝑉/𝑇], 𝑃𝜙[𝑒𝑉𝑠]) ≡ 𝑁
1

√2𝜋

1

 𝐸
3
2 + 𝐸𝐶

3
2

𝑒
−

(𝑃𝜙−𝑃0)
2

Δ𝑃2 𝑒

−
𝐸
𝑇(

(
𝜇
𝐸

−𝜆0)
2

Δ𝜆2 )

(8) 

The free parameters 𝑇, 𝜆0, Δ𝜆, 𝑃0, Δ𝑃, 𝑁, 𝐸𝑐 , 𝛼 were manually fitted to best reproduce the functions 

(
𝜕𝐹

𝜕𝐸
)

𝜇,𝑃𝜙

and (
𝜕𝐹

𝜕𝑃𝜙
)

𝐸,𝜇

 and the integral velocity moments of the distribution, the density and 

pressure.  The parameters used are listed in Table 1, with the resulting distributions plotted in Figure 

5 and Figure 6. Even after this tedious procedure, the fitted ICRH distribution had missing outboard 

features in the density profile, and a resulting fitted pressure that was 30% too high compared with 

SELFO outputs. No automatic tools were available to perform fits to ICRH/NBI Monte-Carlo output, 

systematically quantifying the fitting error and propagating implications. Moreover, as the analytical 

forms do not capture all processes modelled in Monte-Carlo heating codes, trade-off decisions are 

involved in which features of the distribution function are most important to capture. We deem this 

aspect of the integrated fast-ion stability modelling an important unsolved problem beyond the 

scope of this study.   

Table 1: Fitted parameters for analytical representation of heating code output, giving the distribution functions in S.I. units. 

 T (𝑒𝑉) 𝜆0(𝑇−1) Δ𝜆(𝑇−1) 𝑃0  (𝑒𝑉𝑠) Δ𝑃(𝑒𝑉𝑠) 𝐸𝑐(𝑒𝑉) 𝛼 𝑁 

ICRH 30000 0.3 0.05 0.04375 0.143125 - 0.8 0.3 × 106 
NBI 
𝜎 = + 

29197.1 0.18 0.3 0.0 0.5525 25000 0.0 2.5 × 106 

NBI 
𝜎 = − 

28090.5 0.18 0.3 0.0 0.6744 25000 0.0 2.5 × 106 

 

Resonant ICRH linear stability 
Full-orbit calculations of linear wave-particle interaction were made with HALO using the fitted ICRH 

distribution approximation, along with the equilibrium and incompressible eigenmodes from the 

presented EFIT/HELENA/MISHKA analysis. The resulting linear growth rates are presented in Figure 

7. Even before the consideration of damping mechanisms, some important experimental features 

are evident. Firstly, the three strongest linearly driven MISHKA eigenmodes correspond exactly to 

those observed during the afterglow in Figure 3, with the most unstable of the three modes, the 

n=5, appearing first, and the remaining two also appearing in order.  Secondly, although most of the 

ICRH fast ion energy is localised in the core, the calculations correctly predict a very significant 

difference between inboard and outboard TAE stability for the core modes. This is due to the 

anisotropy of the fitted ICRH distribution function consisting of mainly trapped particles with banana 

tips along 𝑅 = 𝑅𝑚𝑎𝑔, with orbits that remain on the low field side. Experimentally, the inboard TAEs 

are not evident in Figure 3, with no modes observed above 170kHz. This is despite inboard TAEs not 

being affected by radiative damping.  



 

Figure 7: HALO wave-particle interaction calculations for the drive of incompressible TAEs by hydrogen minority ions 

Linear drive and damping during the DD afterglow 
A detailed examination of the core ballooning n=5 TAE observed during the DD afterglow was 

conducted to understand the strongest contributions to linear drive and damping.  Smooth 

experimental fits of 1D electron and ion temperature were used for the calculation of bulk thermal 

plasma effects. The HALO code was used for full-orbit perturbative calculations of ICRH drive, NBI 

damping and thermal ion Landau damping. CASTOR-K was used for drift-kinetic calculations of ion 

Landau damping. For non-perturbative calculations of damping, CASTOR was used to compute the 

radiative damping using the complex resistivity approximation, whilst both radiative damping and all 

other thermal plasma effects were computed with GTC. 

For the CASTOR complex resistivity calculation, values were taken at the position of the eigenmode: 

𝑅0=2.96m, R=3.30m, Ti=5.18keV,Te=3.40keV,q=1.86,|B|=3.06T, |𝐵0|=3.4T , 𝑛𝑒 = 3.52 ×

1019𝑚−3,𝑛𝑒0 = 4.93 × 1019𝑚−3. The resistivity normalized to Alfven frequency on axis 𝜔𝐴 for 

CASTOR input [32] is given by  

𝜔𝑇𝐴𝐸 =
𝑉𝐴(𝑅)

2𝑞𝑅
, 𝜔𝐴 =

𝑉𝐴(𝑅0)

𝑅0

𝜉 =
3

4
+

𝑇𝑒

𝑇𝑖
(1 − 𝑖𝛿)

𝜂 = 𝑖𝜉 (
𝜔

𝜔𝐴
) (

𝜔

𝜔𝑇𝐴𝐸
)

2

(
𝜌𝑖

𝑅0
)

2

(9)

 

giving 𝐼𝑚{𝜂} = 4.9 × 10−7. The inclusion of this imaginary component in the resistivity results in a 

combination of kinetic Alfven wave and TAE in the CASTOR solution.  Because the kinetic Alfven 

wave is very sensitive to the wave dissipation 𝛿, increasing the dissipation suppresses the kinetic 

Alfven wave, leaving only a damped TAE. Extrapolation of TAE damping to 𝛿 = 0 gives the inherent 

radiative damping of the TAE. The result of such a scanning process, shown in Figure 8, leads to a 

radiative damping value of 
𝛾

𝜔
= −1% .  



 

Figure 8: CASTOR scan of wave dissipation to obtain the radiative damping of the n=5 TAE mode of interest 

To obtain a second non-perturbative calculation of thermal damping, the linear gyrokinetic response 

of thermal plasma was scanned using a model antenna within the GTC code. A resonance was 

identified with similar spatial structure to the MISHKA result and 7% difference in real frequency. 

The quality factor was determined by fitting the antenna response to an idealised cavity resonator 

transfer function 

|𝐻(𝜔)|2 ∝
1

(𝜔 − 𝜔0)2 + 𝛾2
(10) 

with the resulting fit shown in Figure 9. This gave a value of 
𝛾

𝜔
= −5.43 ± 0.75%, which includes all 

thermal plasma contributions, including radiative damping and ion Landau damping.  

 

Figure 9: GTC results of non-perturbative thermal plasma response to an antenna for the n=5 mode of interest. The blue 
points are GTC and the black is a fitted cavity resonator transfer function 



Analytical approximations for ion Landau damping were also computed. Analytical theory of 

resonant wave-particle interaction with TAEs [22] assuming zero orbit width gives the following 

expression for damping due to a Maxwellian population  

𝛾

𝜔
= −𝑞2𝛽 [𝑔(𝜆) + 𝑔 (

𝜆

3
)]

𝑔(𝜆) =
𝜋

1
2

2
𝜆(1 + 2𝜆2 + 2𝜆4)𝑒−𝜆2

𝜆 ≡
𝑉𝑇

𝑉𝐴
 , 𝑉𝑇 ≡ √

2𝑇𝑖

𝑚
  ,   𝛽 = 2𝜇0𝑛𝑖𝑇𝑖/𝐵2 (11)

(12) 

The analytical expression in equation (11) captures the lowest order TAE resonances 𝑣∥ = 𝑉𝐴 and 

𝑣∥ = 𝑉𝐴/3 in the terms 𝑔(𝜆) and 𝑔 (
𝜆

3
) respectively.  

A summary of linear findings during the afterglow are presented in Figure 10.  It is immediately clear 

that the bulk thermal plasma, through the nonideal resonant effect of ion Landau damping, is 

providing the majority of TAE suppression for this core mode. NBI damping is found to be a 

comparatively small contribution to the total damping with 
𝛾

𝜔
~ − 0.2%. There is good agreement 

between the perturbative models CASTOR-K and HALO and the non-perturbative model GTC that the 

bulk thermal plasma is responsible for suppressing the core TAEs during the high-performance 

phase. 

Given that TAEs are suppressed at 46.1s and only appear at 46.2s, the ICRH drive calculations are 

clearly too high by a factor 1.2-1.3 unless further damping mechanisms have been overlooked. 

Antenna measurements at later times in the pulse [24] seem to be fully explained by radiative 

damping and don’t suggest any further damping mechanisms not already mentioned. We conjecture 

that this is mostly to do with deficiencies in details of the fitted SELFO distribution function, as our 

analytical fits to the Monte-Carlo distribution could not simultaneously match fast density, fast 

pressure, and local gradients.  



 

Figure 10: summary of linear findings during the afterglow. TAE appears at 46.2s 

Breakdown of analytical theory in JET limit 
The difference is striking between the analytical estimate of ion Landau damping and the linear 

computation in three different models – drift-kinetic, gyrokinetic and full orbit.  The idealised 

expression given by equation (11) includes only deeply passing particle resonances, and only 

includes the lowest order bounce harmonics 𝑣∥ = 𝑉𝐴 and 𝑣∥ = 𝑉𝐴/3. Both these approximations are 

very significant under these conditions.  To illustrate this point, the HALO code was run with fixed 

wave amplitude and unperturbed orbits to accumulate the power transfer for each 𝛿𝑓 marker in the 

phase space hypercube 𝐸, 𝜇, 𝑃𝜙 and the results are presented in Figure 11. Although the whole 

hyper-cube is populated in the simulation, only a selection of markers with appreciable power 

transfer is shown to assist with visualising the key features. Most of the blue markers are where non-

resonant random power transfer occurs.  Poloidal flux in our convention is positive and small at the 

magnetic axis, and positive and large at the plasma edge, indicating that low values of 𝑃𝜙 = 𝑍𝑒𝜓 +

𝑂 (
𝜌

𝐿
) are near the bottom of  Figure 11. Furthermore, co-passing particles travel in the negative 𝜙 

direction on JET, meaning that fast co-passing particles are found at the very bottom of the figure.  

For particles at low Λ ≡ 𝜇𝐵0/𝐸, the particles are passing, and a thin surface corresponding to 𝑃𝜙 =

𝑚𝑅𝑣𝜙 + 𝑍𝑒𝜓𝑇𝐴𝐸 is traced, owing to the TAE peaking at one value of poloidal flux 𝜓𝑇𝐴𝐸 , and this 

radial position must be encountered by the particle over its orbit to perform appreciable work on 

the mode. Conversely, for slow strongly trapped particles at high Λ, higher poloidal harmonics of the 

TAE become an alternative way that stagnant particles may persistently transfer power to the TAE 

even away from its main radial peak. These two effects give the overall shape of the non-zero power 

transfer surface. On each of these poloidal harmonic surfaces, the subset of particles with the 

strongest power transfer are in resonance and form clear lines. A succession of energies associated 

with a resonance condition are 585keV, 65keV, 23keV and 12keV corresponding to 𝑉𝐴,
𝑉𝐴

3
 ,

𝑉𝐴

5
 , 

𝑉𝐴

7
  respectively.  Unsurprisingly, the 𝑉𝐴 plays no role for a thermal plasma at tens of keV, however 

more surprising is that 
𝑉𝐴

3
 has a weak contribution. The  

𝑉𝐴

5
 , 

𝑉𝐴

7
 lines are the main passing particle 



resonances, with 
𝑉𝐴

5
 the most important. Therefore, a large missing term resembling 𝑔 (

𝜆

5
) in 

equation (11) appears to be appropriate for JET like conditions, and explains much of the 

discrepancy with the analytical theory of ion Landau damping.  This suggests a gross under-estimate 

of ion Landau damping in some previous analytical JET work [37].  Connor et al. [9] anticipated that 

because of ellipticity and Shafranov shift, the work done by passing particles 𝑣𝐷 ⋅ 𝛿𝐸, when 

integrated over an orbit, contains small amounts of poloidal harmonics such as 𝑘∥ = 5/2𝑞𝑅 and 

𝑘∥ = 7/2𝑞𝑅 corresponding to 
𝑉𝐴

5
 , 

𝑉𝐴

7
.   They concluded that a better approximation to ion Landau 

damping is given by 

𝛾

𝜔
= −𝑞2𝛽 [𝑔 (

𝜆

3
) + [

3

4
Δ′ +

3

4

𝐸

𝑟
−

5

4
𝐸′]

2

𝑔 (
𝜆

5
) + [

7

12
𝐸′ −

3

4

𝐸

𝑟
]

2

𝑔 (
𝜆

7
)] (13) 

with Δ(𝑟) the equilibrium Shafranov shift,  𝐸/𝑟 = (𝜅 − 1)/(𝜅 + 1) the ellipticity parameter, and 

dash denotes radial gradient. However, we have not verified that ellipticity and Shafranov shift are 

the main causes for the sideband resonance in this case and no clear account is made for trapped 

particles.  The accuracy of this more detailed expression should be investigated in more detail in 

future work. 

As has been noted previously [38], both co and counter passing particles resonate with the TAE 

owing to the pair of poloidal harmonics travelling opposite poloidal directions, so the  
𝑉𝐴

5
 resonance 

can be observed on both co and counter passing branches of 𝑃𝜙 ≈ 𝑍𝑒𝜓𝑇𝐴𝐸 in Figure 11. 

 

Figure 11: HALO computed wave-particle power transfer for particles in phase space. Bright lines correspond to the 
𝑉𝐴

5
 

sideband TAE resonance condition 

An important point to consider is: if core ion Landau damping is so high on JET, why were core 

localised Alfvenic modes driven by alphas observed on TFTR [4]? A quick analytical calculation is 

presented in Figure 12 showing a comparison between assuming a vacuum magnetic field of 𝐵0 =

3.4𝑇 as in the DD JET afterglow versus the same calculation with a TFTR vacuum magnetic field value 

of 𝐵0 = 5.1𝑇. The difference is a factor of ≈ 100 at the start of the afterglow. The interpretation is 



clear; when raising the magnetic field, the Alfven eigenmodes propagate faster than the typical ion 

thermal speed, and so the resonant coupling between bulk thermal ions falls off rapidly.  

 

Figure 12: comparison of analytical approximation to ion Landau damping using different values of vacuum toroidal 
magnetic field. 

Extrapolated kinetic alpha equilibrium from 96852 to DT 
Having identified that the majority of the damping for the observed core TAEs occurs because of the 

thermal species, we extrapolate the conditions of our DD scenario to DT to predict whether these 

modes can be driven by alpha particles late in the afterglow when the core ion temperature has 

decreased. A standard extrapolation tool at JET is to perform interpretive modelling using the 

TRANSP code to obtain good agreement for predicted fusion rates and stored energy, then to re-run 

the interpretive case assuming a DT gas mixture. No thermal transport is modelled and only 

experimental profiles are used in the extrapolation. A number of similar afterglow experiments with 

small variations in fuelling and NBI timing were conducted in the absence of ICRH, the best 

performing in DD was shot 96852. This was chosen as the basis for extrapolation. 

To obtain a smooth alpha distribution function, an isotropic slowing down distribution [39] was 

assumed of the form 

𝐹(𝐸[𝑒𝑉], 𝜇[𝑒𝑉/𝑇], 𝑃𝜙[𝐽𝑠]) = 𝑛 (𝜓(𝐸, 𝜇, 𝑃𝜙))
𝑁

𝑣3 + 𝑣𝑐
3 Erfc [

𝐸 − 3.5 × 106𝑒𝑉

106 × 103√𝑇𝑖0[keV]
]

𝑣𝑐 ≡ (3√𝜋
𝑚𝑒𝑍1

4
)

1
3

√
2𝑇𝑒0

𝑚𝑒

𝑍1 =
0.5

2𝑚𝑝
+

0.5

3𝑚𝑝

𝑍𝑒𝜓(𝐸[𝑒𝑉], 𝜇[𝑒𝑉/𝑇], 𝑃𝜙[𝐽𝑠]) ≈ 𝑃𝜙 − 𝑚𝑅0√2(𝐸 − 𝜇𝐵0)/𝑚 (14)

 

where the alpha density profile prediction 𝑛(𝜓) was taken from signal NFI from TRANSP using the 

lowest order approximation to the orbit-average poloidal flux, and only the on-axis temperature was 

used to avoid the complication of a spatial dependence in the normalization factor 𝑁. 



Taking the integral of equation (14) produced a pressure which agrees with the TRANSP alpha stored 

energy signal UFASTPP and is shown in Figure 13. 

 

Figure 13: TRANSP derived alpha pressure during the high performance phase of 96852 

DT predictions 
Linear alpha drive calculations for the beginning of the afterglow were performed using the assumed 

slowing down form of the TRANSP alpha distribution function for the extrapolation of 96852. The 

result of the HALO calculation assuming the same eigenmodes as found for 92416 is presented in 

Figure 14. It is immediately obvious that no core modes, neither inboard nor outboard, are 

significantly driven by the alpha particles. It is likely that the broadness of the assumed alpha 

distribution is not supplying sufficient radial gradient to drive the core TAEs. Radial drive occurs 

when the fast ion diamagnetic frequency 𝑛𝜔∗ at resonance exceeds the mode frequency 𝜔 where 

𝜔∗ ≡ (
𝜕𝐹

𝜕𝑃𝜙
)

𝐸,𝜇

/ (
𝜕𝐹

𝜕𝐸
)

𝜇,𝑃𝜙

(15) 

as expressed by equation (6).  The larger orbit widths and Larmour radii of alpha particles would also 

favour broader modes found at lower toroidal mode number and radial position than those driven 

by ICRH. Even before considering damping mechanisms, we can predict that core localised TAEs will 

not be driven by alpha particles in the JET ITB afterglow.  The strongest driven TAE, for the 𝑛 = 4,5,6 

modes considered, is located at 𝑅 = 3.55𝑚 just outside the usual location of the ITB (Figure 14). The 

maximum drive obtain was 
𝛾𝐿

𝜔
= 0.7% which is approximately an order of magnitude weaker than 

the drive predicted for ICRH. Although nonlinear results are not presented here, one can expect a 

factor of 100 lower saturation amplitude for a factor 10 lower linear drive.  

 



 

 

Figure 14:HALO alpha drive calculations for the eigenmodes from 92416 using the alpha pressure predicted for 96852 

(above) and strongest alpha driven n=4 mode 
𝜔2

𝜔𝐴
2 = 0.08 (below) 

These values of alpha drive can be compared with the ion Landau damping at the end of the 

afterglow.  HALO was run using two thermal species D and T at 46.5s, again assuming the same 

eigenmodes and equilibrium. At this stage of the afterglow, the core ion temperature had dropped 

to a value of 𝑇𝑖 = 6 𝑘𝑒𝑉, compared with 𝑇𝑖 = 12𝑘𝑒𝑉 at 46.1s. The results presented in Figure 15 

show that modes found outside the core that experience stronger alpha drive also exhibit weaker 

Landau damping, as the local thermal ion density and temperature are also smaller closer to the 

edge. The strongest net linear growth rate, including only contributions from alpha drive and ion 

Landau damping, gives a mode even further out, peaking at R=3.7m.  As expected, core localised 

modes observed in DD are those subject to the strongest ion Landau damping, owing to the peaked 

ion temperature and density in these ITB scenarios. The level of suppression of core localised modes 

means that the drive is an order-of-magnitude lower than the damping even at this later time during 

the afterglow. 



 

 

Figure 15: Ion Landau damping at 45.6s for shot 92416 assuming a bulk 50:50 DT plasma (above) and n=5  eigenmode 
𝜔2

𝜔𝐴
2 =

0.09  with strongest net drive i.e.:  alpha drive from 96852 minus ion Landau damping from 92416 (below) 

Conclusion 
Detailed calculations of TAE stability during the JET ITB afterglow were performed using the best 

available data on the thermal and kinetic equilibrium. EFIT reconstructions using TRANSP fast 

pressure and measured thermal profiles together with low order representation for the flux 

functions gave good agreement with measured q-profiles in these scenarios. Subsequent 

incompressible MHD calculations on this equilibrium predicted both the frequency and position of 

modes observed. Perturbative calculations of ICRH drive and NBI damping were conducted using 

manual fits to Monte-Carlo data, leading to a likely overprediction of ICRH drive by a factor 1.2-1.3 

given that mode destabilization occurred later than predicted.  The modes predicted to experience 

the strongest drive are those observed in experiment, and modes predicted to be driven the least 

are not observed at all. 

Calculations with HALO, CASTOR-K and GTC all confirm that the Maxwellian bulk plasma is 

responsible for strong damping of core modes and the main cause of the modes being suppressed 

during the high-performance phase of DD experiments, rather than the NBI ions. The damping was 

calculated to be of the order of 
𝛾

𝜔
= 8% at its peak. This strong damping in JET-like conditions is due 

to the 𝑉𝐴/5 sideband resonance often neglected in analytical results.  Damping of this magnitude 

completely rules out alpha driven core localised TAEs during the entire afterglow (at least for n=4,5,6 

considered in this work). However, given the broadness of the alpha distribution predicted by 



TRANSP, TAEs which can be found closer to the edge experience significant alpha drive whilst being 

subject to lower ion Landau damping and may therefore be modestly unstable. 

We anticipate that a likely follow-up study to this work will compute all known linear drive and 

damping contributions for every mode identified in linear and nonlinear regimes, as has been 

performed previously for ITER (e.g.: [31,32,40]). In this work, we have instead focused on the validity 

of reduced models to capture the essential measurable features in order to improve the credibility 

of such comprehensive predictions. Certainly, this work should be revisited when alpha particles are 

present and uncertainties in inputs to stability calculations are reduced. We should demand greater 

fidelity in our predictive capability in order to be of assistance to those making design decisions for 

future reactors. We should also explore large-scale uncertainty quantification techniques, 

propagating all the errors in the equilibrium distributions, leading to actionable predictions and 

more clarity on theory shortcomings. 

The finding that ion Landau damping is a dominant factor in the stability of core TAEs echoes similar 

conclusions from the ITER work, and should be considered good news for fast ion confinement in 

burning plasma, even if it poses a significant challenge to overcome for driving TAEs with alphas in 

JET DT. 
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