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Abstract. The verification and calibration of a new quasi-linear transport model

with a large database of gyrokinetic turbulence simulations is presented in this paper.

In a previous paper [1], a model for the saturated spectrum of electric potential

fluctuations was developed based on the properties of the non-linear 3D spectrum.

In this paper, a modification to the overall multiplicative factor in this model is found

to be necessary to improve the fit to scans of the temperature and density gradients and

safety factor. The error in the fit of the quasi-linear fluxes of electron and ion energy

fluxes is significantly better than for previous saturation models. The spectral shift

model for the impact of equilibrium E×B velocity shear [2] and the zonal flow mixing

model for electron-scale turbulence [3] are both revised to be compatible with this

new model. The models for the loss of bounce averaging and electron collisions in the

TGLF reduced linear equations [4] are also changed to improve the linear eigenmodes.
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1. Introduction

In a previous paper [1] a new model for the saturated 3D spectrum of electric

potential fluctuations from gyrokinetic turbulence simulations was presented. This

model was built, for the first time, using the linear eigenmodes computed with the

same gyrokinetic code (CGYRO [5]) as the non-linear simulations. This eliminates the

uncertainty of the accuracy of the linear eigenmodes computed with a reduced model like

TGLF [4]. The 3D potential fluctuation spectrum was examined, including the poloidal

(ky), and radial (kx) wavenumbers, and the dependence on the poloidal angle (θ). The

Miller geometry formalism for shaped toroidal magnetic flux surfaces [6],[7] was used.

If was found that the geometric metrics of the perpendicular wave vector, normalized

to the physical ion gyroradius, provided the functions needed to fit the poloidal angle

dependence of the non-linear fluctuation intensity. These functions capture the flux

surface shape dependence well. It will be shown in this paper that this same model,

with only an overall re-calibration, fits a much larger set of gyrokinetic simulations.

The database of gyrokinetic simulations is described in Section 2. Fundamental

tests of the quasi-linear approximation are presented in Section 3. The model for the

saturation of the zonal (axisymmetric) potential fluctuations is tested in Section 4 and

found to agree very well with the CGYRO cases. The details of the new model for the

finite toroidal modes (ky > 0) are presented in Section 5. The verification and calibration

of the saturation model to the CGYRO simulation database is presented in Section 6. In

Section 7, improvements to the TGLF linear fluid equation models for electron collisions

[8] and loss of bounce averaging [4] are presented. The implementation of the new

(SAT2) saturation model in the quasi-linear TGLF transport flux calculation is verified

with the CGYRO database in Section 8. The spectral shift model [2] for equilibrium

E × B velocity shear suppression of the turbulence is recalibrated for the SAT2 model

in TGLF in Section 9. The zonal flow mixing model for electron scale turbulence [3] is

calibrated for TGLF-SAT2 in Section 10. A summary is given in Section 11 followed

by an appendix. The appendix discusses the transformation properties of quasi-linear

fluxes and the summation measure for the fluxes.

2. Gyrokinetic turbulence simulation database

In order to verify and calibrate the saturation model, a set of CGYRO turbulence

simulations, composed of 13 scans about the GA standard (GASTD) case, were

collected. The parameters of the GASTD are: a/Lne = 1.0, a/Lni = 1.0, a/LTe =

3.0, a/LTi = 3.0, ŝ = 1.0, q = 2.0, κ = 1.0, r/a = 0.5, R/a = 3.0, δ=0.0, ∆ = dR/dr =

0.0, aνee/cs = 0.1, Ti/Te = 1.0, βe = 0.0005. There are 64 cases in this database but only

52 are unique. Most scans are for a single parameter but scans 12 and 13 vary magnetic

shear and safety factor together such that ŝ = q/2. All are pure deuterium plasma with
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Table 1. CGYRO gyrokinetic turbulence simulation database

Scan Parameter Range Cases Fixed

1 κ 1.0, 2.0 1-5 νeea/cs = 0.05

2 ∆ 0.0, -0.5 6-10 νeea/cs = 0.05

3 νee 0.05, 1.0 11-17

4 a/LT 1.25, 3.5 18-23

5 a/Ln 0.0, 3.0 24-30

6 νee 0.5, 1.0 31-37 a/Ln = 3.0

7 r/a 0.25, 1.5 38-43

8 R/a 2.0, 3.0 44-46

9 Ti/Te 0.5, 1.5 47-49

10 ŝ 0.166, 1.5 50-54

11 q 1.5, 3.0 55-57

12 q 1.6, 4.0 58-61 ŝ = q/2

13 q 1.6, 3.0 62-64 ŝ = q/2, a/Ln = 3.0

equal density, density gradients and temperature gradients for electrons and ions. Note

that scan 7 is physical because the length ”a” is arbitrary and r/R ≤ 1.5/3.0. The

first two scans were used to determine the geometry dependence of the 3D saturation

model [1]. Many of the rest of the scans were part of a study published by E. Belli

[9]. The typical resolution used in these CGYRO turbulence simulations is as follows:

16 toroidal modes, 128 radial modes, 8 energy nodes, 16 pitch angle nodes, 28 poloidal

angles dky = 0.067, BOX SIZE=6. The multi-species Sugama collision model [10] was

used. Departures from the GASTD parameters held fixed for the scan are indicated in

the last column of Table 1. All of the CGYRO simulations were run long enough to

fully saturate (at least 1200 a/cs time units).

3. Fundamental tests of quasi-linear theory

The turbulent energy flux (Qa) and particle flux (Γa) through a radial flux tube for

the gyrokinetic simulation are computed for each species (subscript a) by the formulas

Qa =
∑
ky

∑
kx

3

2
〈Re[iky

aeφ̃∗kx,ky
ρsTe

ap̃a,kx,ky
ρsneTe

]〉t,θ =
∑
ky

Qaky (1)

Γa =
∑
ky

∑
kx

〈Re[iky
aeφ̃∗kx,ky
ρsTe

aña,kx,ky
ρsne

]〉t,θ =
∑
ky

Γaky (2)

Here the gyro-Bohm normalizations of the CGYRO code were used [5]: cs =
√
Te/mD,

a = minor radius at separatrix, ρs = cs/Ωs, Ωs = eBunit/(mDc), Bunit = qdψ
rdr

[7] for

poloidal magnetic flux ψ, and mD = deuterium mass. The gyro-Bohm normalization
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for energy flux in these units is neTecs(ρs/a)2. The energy flux is produced by a radial

E × B drift driven by electric potential fluctuations φ̃kx,ky that is averaged with the

fluctuations of the pressure moment of the species distribution function (p̃a,kx,ky). The

angle bracket represents a time average (t) and a flux surface average over the poloidal

angle (θ). There is also a sum over the normalized radial wavenumber (kx) which is

equivalent to a radial average over the periodic flux tube box.

The quasi-linear approximation to the turbulent flux evaluates the non-linear flux

formula with the most unstable eigenmode at each poloidal wavenumber δφky . Typically

the most unstable eigenmode is for kx = 0. The quasi-linear weights of a linear

eigenmode are defined by

WQQL
aky

=
3

2

〈
Re[iky

aeδφ̃∗ky
ρsTe

aδp̃a,ky
ρsneTe

]
〉
t,θ〈∣∣∣aeδφ̃kyρsTe

∣∣∣2〉
t,θ

(3)

WΓQLaky =

〈
Re[iky

aeδφ̃∗ky
ρsTe

aδña,ky
ρsne

]
〉
t,θ〈∣∣∣aeδφ̃kyρsTe

∣∣∣2〉
t,θ

(4)

The quasi-linear approximation is valid if the phase angle between potential and

velocity moments of the distribution function in the non-linear turbulence preserves the

linear eigenmode phase angles contained in the quasi-linear weights. This manifests

itself as a preservation of the cross-phase between different velocity moments of the

distribution function, like electron density and electron temperature, that have been

measured in experiments [11], [12] and found to agree with non-linear and quasi-

linear calculations. The phase preservation can also be tested in gyrokinetic turbulence

simulations [13], [14], [15], [16]. In this paper the quasi-linear intensity spectrum needed

to exactly match the electron energy flux will be computed. This will then be used to

compute the ion energy and particle fluxes from their respective quasi-linear weights

multiplying this intensity spectrum. The difference between these quasi-linear fluxes

and the non-linear fluxes is a measure of the error in the quasilinear approximation

originating from the quasi-linear weight. This test will be quantitatively verified for the

54 cases in the database. Note that the small contribution due to the magnetic field

fluctuations is not included in the CGYRO fluxes.

Because the non-linear flux contribution for each ky are summed over kx and flux

surface averaged, it is not possible to directly compute the contribution to the intensity

from a single linear eigenmode. Instead, the quasi-linear intensity IQLky required to make

the quasi-linear flux exactly equal to the non-linear flux will be used. It is computed

from the electron energy flux by the formula:

IQLky =
Qeky

∆KiyWQQL
eky

(5)

The poloidal wavenumber grid interval ∆Kiy, defined in Appendix A, is needed in Eq. 5

to make the intensity independent of the ky grid. If the quasi-linear approximation is
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Figure 1. The ion energy flux (left) and particle flux (right) contributions for each ky
from the non-linear CGYRO runs (black) and computed from the quasi-linear weights

(gray) times the intensity from the electron energy flux (Eq. 5) for the GASTD case

with density gradient a/Lne
= a/Lni

= 1 (upper) and 3 (lower)

valid, it should not matter which plasma species (subscript label a = e,i), or transport

channel, is used to compute this intensity since the species dependence is accounted for

in the quasi-linear weight. This is illustrated in Fig 1 where the flux contribution to

each poloidal wavenumber ky is plotted for CGYRO (black) and the quasi-linear weight

multiplied by ∆kyI
QL
ky

(gray) for ion energy flux (left) and particle flux (right). The

electron energy flux match is exact by construction. For the GASTD case (top) the

match for ion energy flux is good but the particle flux peak is lower for the quasi-linear

flux indicating that the non-linear particle flux departs somewhat from the phase of the

quasi-linear particle flux weight for this case. For a higher density gradient (bottom)

the match is very good for both ion energy (left) and particle flux (right) in Fig. 1. Note

that the particle flux is much higher for higher density gradient (lower right) than the

lower density gradient (upper right). It is consistently found for the CGYRO database

that the quasi-linear weight for particle flux is not as well preserved for low particle flux

cases.

In order to be able to compare the error due to the quasi-linear weights with the

errors reported below for the full quasi-linear flux model, the fractional error from using

the quasi-linear intensity computed from the electron energy flux (Eq. 5) to compute the

ion energy flux and particle fluxes for the database cases is computed in the following
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Figure 2. The error in the QL weight computed from the ion energy flux (left) and

particle flux (right) for the 13 scans of the database Table 1

way:

σWQi =

√√√√∑m

(
Qi −

∑
ky

∆KiyI
QL
ky
WQQL

iky

)2∑
mQ

2
i

(6)

σWΓe =

√√√√∑m

(
Γe −

∑
ky

∆KiyI
QL
ky
WΓQLeky

)2∑
m Γ2

e

(7)

The summation index ”m” labels the members of each scan in the database (column 3

of Table 1).

In Fig. 2 are shown the errors for the ion energy flux (left) and particle flux (right)

for scans in the database. The root mean squared average error for the whole database

is 5.4% for the ion energy flux and 19.8% for the particle flux. The high density

gradient scans (6 and 13) have the lowest particle flux errors. These errors from the

quasi-linear weights set a floor for the quasi-linear flux model since the model for the

saturated intensity will have its own errors added in. The degree of error from non-linear

departures from the quasi-linear weights is quite low for energy fluxes and particle fluxes

of sufficient size.

4. Saturation of the zonal potential fluctuations

The time dependent zonal (ky = 0) electric potential fluctuations play a strong

role in the saturation of the gyrokinetic turbulence. Study of multi-scale (electron+ion

gyroradius scales) turbulence simulations [17], [18] demonstrated that E×B flow shear

due to the zonal potential could not compete with the linear growth rate at electron

scales (ky > 1). A new paradigm for saturation through zonal flow mixing [3] was

proposed. The zonal flows mix the most unstable modes (kx = 0) with subdominant,

or stable modes, across the kx spectrum, by coupling modes with the same poloidal

wavenumber ky to modes with different radial wavenumbers kx. This mixing can

compete with the linear growth rate at all scales since the zonal flow mixing rate VZFky
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Figure 3. The RMS zonal velocity computed from the CGYRO simulations vs the

maximum of the linear growth rate divided by the poloidal wavenumber

scales with the poloidal wavenumber of the mixed mode. A simple detailed balance

between the linear growth rate and the zonal flow mixing rate provides an estimate of

the saturated amplitude of the RMS zonal flow velocity.

VZF = max[γky/ky] (8)

Here, the linear growth rate γky (normalized by cs/a) is for the most unstable mode at

each ky. The RMS zonal flow velocity can be computed directly from the non-linear

saturated spectrum

VZF = 0.5

√√√√∑
kx

k2
x

∣∣∣aeφ̃kx,0
ρsTe

∣∣∣2 (9)

The RMS zonal flow velocity VZF is independent of ky so its saturated magnitude is

set by the maximum drive in Eq. 8. This saturation rule for VZF (Eq. 8) is shown

to be well satisfied for the database in Fig. 3 The line in Fig. 3 is a fit to the data

giving a linear coefficient of 1.12. The coefficient of (0.5) in Eq. 9 would thus be a

better fit with 0.45. The saturation model below for the finite ky spectrum does not

depend on this coefficient. The same data as in Fig. 3 is plotted for all of the database

cases in Fig 4. The lowest values are for the temperature gradient scan 4. The highest

values are for scan 7 (r/a). A failure of the zonal flow saturation rule (Eq. 9), for

a particular gyrokinetic simulation, would be an indication that zonal flow mixing is

not the dominant saturation mechanism or that the simulation has not yet reached

saturation.
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Figure 4. The RMS zonal velocity computed from the CGYRO simulations vs the

maximum of the linear growth rate divided by the poloidal wavenumber

In the previous study of the 3D spectrum [1] it was observed that the RMS width

of the radial wavenumber spectrum for finite ky was limited to be larger than the width

of the zonal potential spectrum. An accurate method for fitting the radial wavenumber

spectrum with a Lorentzian model was employed to determine this width. The error in

this fit tends to be larger for the zonal potential than the rest of the spectrum because

the zonal potential spectrum sometimes narrows at low kx [1]. For the first two scans,

that were previously studied, the width of the zonal potential spectrum tracked the

poloidal wavenumber at the maximum zonal flow drive kxZF ≈ kymax/|∇r|0 where the

geometric factor is evaluated at the outboard midplane. For the wider database of this

paper, it is found that this approximate model needs to be generalized to:

kmodelxZF = 0.83
√

(R/Lp12)/(q/2))kymax/|∇r|0 (10)

Here R is the major radius at the center of the flux surface, R/Lp = −(R/P )dP/dr

where P is the total pressure, and q is the safety factor. This model is shown for all

of the cases along with the spectral width kxZF computed from the saturated zonal

potential spectrum in Fig. 5. The lowest width kxZF is for the temperature gradient

scan 4 (cases 18-23). The highest widths are for high density gradient and high collision

frequency (cases 36-37). The fit of the model is not tight but it is shown here because

it motivates the factors needed to calibrate the overall fluxes to the CGYRO database

that will be presented in the next section.
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Figure 5. The RMS width of the zonal potential spectrum and the model Eq. 10

5. The new saturation model

The model for the saturated quasi-linear intensity developed in Ref. [1] is

Imodel
ky =

〈
G2(θ)

〉
θ

( γmodel
ky

kmodel
x ky

)2

(11)

All of the θ dependence is absorbed into G(θ) that was fit to the theta dependence of

the square amplitude of the peak potential fluctuation spectrum at kx = 0 [1].

G2(θ) = d1G1(θ) for ky < kycut

=
(
d1G1(θ)kycut + b3d2G2(θ)(ky − kycut)

)
/ky for ky ≥ kycut

(12)

where b3 = 2.4 and the coefficients d1, d2 are

d1 =
( BT0

B(0)

)4

(13)

d2 = 1/Gq(0)2 (14)

here B(0)|r=0 = BT0 is the toroidal magnetic field at the flux surface center and

Gq(θ) = |∇r|Bunit/B(θ). Two geometric shape functions are:

G1 =
(B(0)

B(θ)

)4

(15)

G2 =
(Gq(0)

Gq(θ)

)4

(16)
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The cutoff is modeled by kycut = b0kymax where kymax is the value of ky where γky/ky is

maximum and the best fit parameter was determined to be b0 = 0.72.

The model (kmodel
x ) for the width of the potential radial wavenumber spectrum at

finite ky was fit to the kx width of the turbulence spectrum at the outboard midplane

θ = 0. The model is given by:

kmodel
x =

Bunit

Bnorm

kycut/|∇r|0 for ky < kycut

=
Bunit

Bnorm

(
kycut/|∇r|0 + b1(ky − kycut)Gq(0)

)
for ky ≥ kycut

(17)

Here Bnorm is the arbitrary external magnetic field normalization which is chosen to be

Bunit for CGYRO. The best fitting coefficient was determined to be b1 = 1.22. This

model differs from the previous saturation model (SAT1) [3] in that the kx width does

not continue to scale with ky below kycut but rather flattens out. This is conjectured

to be the effect of the finite width of the zonal potential spectrum. There can be

more complex structure to the kx width in the region ky ≤ kymax that is not captured

completely by this model. The dependence of the slope of kmodel
x for ky ≥ kycut on the

geometric factor Gq is also new to this SAT2 model.

The effective non-linear mixing rate γmodel
ky

in Eq. 11 is modeled by

γmodel
ky = b2γky for ky < kymax

= b2γmax for ky ≥ kymax

(18)

Here γmax is the value of the linear growth rate at kymax where the peak in γky/ky occurs.

The offset for the total energy fluxes summed over scans 1 and 2 in Ref. [1] is set to zero

for b2
2 = 7.94. This model differs from the SAT1 model [3] in that it is simply b2 times

the linear growth rate for ky ≤ kymax. The flattening of the kx width model suppresses

the intensity at low ky making the zonal flow mixing subtraction included in SAT1 for

ky ≤ kymax unnecessary.

The reader is referred to Ref. [1] for the procedure used to determine this model

from the 3D potential spectrum properties. The four fitting coefficients (b0, b1, b2, b3)

were adjusted to minimize the absolute RMS difference between the CGYRO and QL

energy flux contributions at each ky for the first two scans in the database. These

coefficients were not changed other than the overall renormalization given in Eq. 19. In

order to fit the wider database of this paper, it was found that the overall coefficient

needed to be modified to

b2
2 → 8.44

(q
2

12Lp
R

)
(19)

The value 8.44 is determined by forcing the offset in the sum of electron and ion energy

fluxes to be zero for the whole database. This modification may be related to the trend

for the width of the zonal potential spectrum found in Eq. 10 since kmodel
x ≈ kxZF at

low ky. Note that the GASTD case (q = 2, R/Lp = 12) is taken as a reference point.
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Figure 6. The fractional error for the 13 scans in the CGYRO database. Ion energy

flux (top), electron energy flux (middle) and particle flux (bottom)

6. Verification and calibration of the quasi-linear fluxes

The quasi-linear model fluxes are computed from the formulas:

QQL
a = ∆KiyI

model
ky WQQL

aky
(20)

ΓQLa = ∆KiyI
model
ky WΓQLaky (21)

The linear growth rate and quasi-linear weight spectrum are computed using CGYRO.

The fractional error for these quasi-linear fluxes compared to the CGYRO fluxes is
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computed for each scan by the formula:

σQQLa =

√√√√∑m

(
Qa −QQL

a

)2∑
mQ

2
a

(22)

σΓQLa
=

√√√√∑m

(
Γa − ΓQLa

)2∑
m Γ2

a

(23)

The fractional errors for all of the database are given in Fig. 6. The RMS average of

these errors is 12.0% for Qi, 11.7% for Qe and 20.8% for Γe. These are almost a factor

of 2 lower errors than previous saturation models and are not far from the uncertainty

of the gyrokinetic simulations due to finite time averaging and grid resolution. The

particle flux error due to the quasilinear weights (19.8%) is the primary contribution for

this channel. The quasi-linear weight error is about half of the total error for energy

fluxes.

In Fig. 7 are plotted the ion energy flux (top) electron energy flux (middle) and

particle flux (bottom) for CGYRO (black) and the QL model (gray) for all of the 64

cases in the database. The cases are numbered sequentially in the order they appear in

the database Table 1.

The modification of the overall fluxes with pressure gradient was needed for the

scans in temperature gradient (4) and density gradient (5). These scans could also

be fit by modifying the overall coefficient to vary with the ratio of γmax to a proxy

for the geodesic acoustic mode frequency vthi/R such that the intensity scaled like the

first power of γmax instead of the second power. However, this choice spoils the good

agreement with other scans (e.g. collisions, magnetic shear). The pressure gradient

factor essentially changes the flux surface label from ”r” to ”P” in the linear gradient

drift terms. Since the total pressure gradient is fundamental to the radial force balance

of the plasma, it defines a spacing between flux surfaces that perhaps has an impact

on the turbulence. If this is an equilibrium effect, then the total pressure including

fast ions should be used. This needs to be verified. The pressure gradient factor is

introduced to improve the fit for these 54 cases but a larger database may invalidate it.

The improvement of the fit by introducing an overall factor of the safety factor is not

surprising, given the empirical scaling law trend that energy confinement improves with

current rather than magnetic field. Its origin may be due to the zonal potential width

but the physics of this is not understood. Fortunately, the more complicated fit for the

effective mixing rate (Eq. 18) and radial wavenumber spectral width (Eq. 17) did not

require revision from the fit in Ref. [1].

7. Improvements to the TGLF linear eigensolver

The use of the linear eigenmodes from CGYRO allowed the fitting of a saturation

model to the non-linear CGYRO simulations without concern for the accuracy of the
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Figure 7. The fluxes for CGYRO (black) and the QLSAT2 model (gray) for all of the

cases. Ion energy flux (top), electron energy flux (middle) and particle flux (bottom)

linear eigenmodes. The problem with this approach is that the calculation of the linear

CGYRO eigenmodes is very slow compared to a reduced gyro-fluid model like TGLF

[4]. The CGYRO linear calculation is also an initial value run so it only finds the most

unstable mode, whereas TGLF is a matrix eigensolver that finds all of the unstable

branches of its equations. Including subdominant modes is essential for helping the flux

smoothly cross branch jumps. Initial value runs have convergence difficulty near the

linear stability threshold or when there are two modes with similar growth rates but

different frequencies. These issues make it impractical to use CGYRO (or any initial

value gyrokinetic code) as the linear eigenmode solver in a transport code.
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Figure 8. The CGYRO (black) and TGLF for the X2 (dashed) and X3 (gray) collision

models linear growth rate/ky (left) and frequency/ky (right) for the GASTD case with

a/Lne = a/Lni = 3.0

The linear eigenmodes of TGLF were found to lack accuracy for the high density

gradient cases in the database. For example, the spectrum of the growth rate (left)

and frequency (right), divided by the poloidal wavenumber ky for the GASTD case

parameters but with higher density gradients (a/Lne = a/Lni = 3.0) is shown In Fig. 8.

The black curves are the calculation using CGYRO with the Sugama multi-species

collision operator. The Dashed curves are for TGLF with the collision model of Ref. [8]

(denoted X2 here for option XNU MODEL=2). The TGLF equations have bounce

averaged trapped particles for all species. The X2 collision model is only pitch angle

scattering of electrons. The dominant term in the TGLF collision model is from the

gradient of the distribution function at the trapped-passing boundary which is modeled

by (ξ = v||/v)

νee
df̃e
dξ

∣∣∣
ξ=ξt

= cbν
(1−σb)
ee (vthek||)

σb f̃e (24)

Where ξt =
√

1−Bmin/Bmax is the trapped-passing boundary value. For the X2 model

cb = 0.114 and σb = 0.5. The linear growth rate in Fig. 8 for the X2 model (dashed)

is too large across most of the spectrum. This 21% larger peak in γky/ky translates

to about 47% larger fluxes for TGLF with the X2 model compared to CGYRO using

the saturation model of this paper. Increasing the coefficient cb of the trapped-passing

boundary collision term lowers the linear growth rate at low ky but this shifts the peak

to higher ky and does not help lower the higher ky growth rate.

The TGLF equations have a model for the loss of bounce averaging of the Landau

resonance by trapped particles [4]. The model attempts to estimate how far into the

trapped region of velocity space the particles can experience Landau damping and hence

should be part of the circulating particle fluid. Assuming that the Landau resonance

condition determines the frequency gives the relation

ω = k||v|| = k||Rqdθ/dt (25)

Integrating this equation in time gives ω∆t = k||Rq∆θ. A trapped particle keeps

the same sign of its velocity while traveling between bounce angles θB. A minimum
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requirement for a trapped particle to be able to average the Landau resonance is that it

can change the sign of its velocity before the parallel electric field of the wave changes

sign. Hence it must travel more than half an orbit (2 θB) in half a wave period (ω∆t = π).

This gives the condition for a trapped particle to be able to Landau average

∆θ =
π

Rqk||
> 2θB (26)

This gives a condition for the maximum bounce angle for trapped particles that can

average the Landau resonance θLA [4]

θLA = MIN
( π

2Rqk||
, π
)

(27)

The effective boundary for trapped particles that can bounce average the Landau

resonance is thus ξLA =
√

1−Bmin/B(θLA). In practice this condition is used in

TGLF to reduce the trapped fraction using an estimate of the parallel wavenumber

k||. The eigenvalue solution procedure for TGLF adjust the parallel wavenumber with

just a Gaussian wavefunction with the first 2 Hermite polynomials to find the maximum

linear growth rate. The wavefunction is then refined with more Hermite polynomials

(typically 4). For high magnetic shear, the parallel wavenumber found is larger and the

effective trapped particle boundary is reduced. This tracks the linear growth rate for

trapped electron modes well [4]. The TGLF problem of too high a linear growth rate

at high density gradient is conjectured to be due to the higher density gradient drift

frequency (kya/Lne) causing a loss of bounce averaging. In order to include this effect,

the above model is modified in the following way

θaLA = MIN
( π

2Rqkeff
a||
, π
)

(28)

keff
a|| = |k|||+ 3.0

Bmin

Bmax

∣∣∣ aky
vthaLna

∣∣∣ (29)

The coefficient 3.0 in Eq. 29 was determined by fitting to the CGYRO linear growth rate

spectrum at higher density gradient. The new model for the loss of Landau averaging

(Eq. 29) is species dependent, since the diamagnetic drift frequency kya/lna , and the

thermal velocity vtha =
√

(Ta/ma), are species dependent. The trapped ions lose bounce

averaging at a lower ky than the electrons in this model, which makes a difference at the

lowest ky range. The trapped-passing boundary collision model (Eq. 24) was adjusted to

cb = 0.315, σb = 0.34 in order to match the decay of the CGYRO growth rate spectrum

with collisions. This change in the electron collisions and the model for the loss of bounce

averaging is the X3 model (option XNU MODEL=3). The gray curves in Fig. 8 show

the improvement in the TGLF fit for the X3 model. It was found that this model was

good up to about νeea/cs = 1.0. Above this value for the electron collision frequency,

the low ky modes are over-stabilized. A new eigensolver for TGLF that does not employ

the bounce averaging approximation is under development. This will eliminate the need

for these ad-hoc adjustments to bounce averaging.
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Figure 9. The error between the TGLF fluxes and CGYRO for each scan. Ion energy

flux (top), electron energy flux (middle) and particle flux (bottom)

8. TGLF implementation of the QL model

With the X3 collision model, and the new SAT2 saturation model presented in

this paper, TGLF provides a good quasi-linear model of the CGYRO non-linear fluxes

in the database. The error between the TGLF fluxes and CGYRO for the scans are

shown in Fig. 9. The RMS average error over all of the scans is: Qi 15.6%, Qe 14.2%

,and Γe 35.6%. This is not quite as good as found using the CGYRO eigenvalues

but is significantly better than previous saturation models. The number of Hermite

polynomials for the ballooning mode wavefunction in TGLF was increased from 4 to
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Figure 10. The fluxes for CGYRO (black) and the TGLF model (gray) for all of the

cases. Ion energy flux (top), electron energy flux (middle) and particle flux (bottom)

6 for the four cases with q ≥ 3 (cases 57, 60, 61, 64). This reduced the overshoot of

the growth rates for these cases. This inaccuracy of the TGLF eigenmodes with the

standard 4 Hermite basis functions may be why previous saturation models that were

fit using TGLF eigenmodes did not appear to require an overall multiplication by the

safety factor as was found for the present model. In Fig. 10 is shown the ion energy (top),

electron energy (middle) and particle (bottom) fluxes for all of the cases. Compared to

the QL fluxes computed with GYRO eigenmodes in Fig. 7 the TGLF particle flux is

reduced, especially for the scan 7 (cases 38-43) that scans the local radius r/a and hence

scans the trapped fraction. This suggest a deficit in the trapped electron contribution
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to the particle flux for TGLF.

9. Calibration of the spectral shift model for ExB velocity shear

The spectral shift model for the effect of equilibrium E×B velocity shear (γE×B =

(q/r)d(dφ/dψ)/dr) [7] on gyrokinetic turbulence [2] captures the shift in the peak of the

2D flux surface averaged potential spectrum away from kx = 0 to a finite value kx0. The

direction and size of this shift is determined by the E ×B velocity shear. This spectral

shift produces an ion stress contribution to momentum transport by breaking the parity

of the eigenmode [19]. However, this shift in the eigenmode does not reduce the linear

growth rate enough to account for the reduction in the fluxes. The peak of the potential

spectrum is reduced by two effects. One is the change in the radial correlation length

that was previously identified as a suppression mechanism [20], [21]. This is manifest

in the spectral shift model as a change in the width of the radial wavenumber spectrum

and a tilt in the radial orientation of the turbulent eddies [19]. This effect alone is too

weak to account for the reduction in fluxes with E ×B velocity shear in the turbulence

simulations [22]. The second effect is a temporal reduction in the effective mixing rate

γeff
ky

. Both of these reductions in the peak of the potential were shown [2] to be directly

related to the shift kx0 in the spectrum by the formula :

Φ(kx, ky) =
Φ0(0, ky)(

1 +
(

kx0
kmodel
x

)2

+
(

(kx−kx0)
kmodel
x

)2)(
1 + (αx

kx0
kmodel
x

)σx
) (30)

Here Φ is the flux surface and time averaged gyro-Bohm normalized potential fluctuation

amplitude and Φ0(0, ky) is the peak of the potential in the absence of equilibrium E×B
velocity shear. The left hand factor in the denominator in Eq. 30 accounts for the

broadening of the radial wavenumber spectral width by the spectral shift kx0

knet
x =

√∑
kx

(kx − kx0)2Φ2∑
kx

Φ2
= kmodel

x

√
1 +

( kx0

kmodel
x

)2

(31)

The radial wavenumber spectral width in the absence of equilibrium E × B velocity

shear is given by the model kmodel
x in Eq. 17. The additional temporal reduction in the

peak amplitude is given by the right hand factor in the denominator of Eq. 30.

In the original spectral shift model, the formula for the spectral shift kx0 that was

determined to fit GYRO simulations has a non-linear dependence on the E×B velocity

shear that also depends on the flux surface shape [19]. Fitting to CGYRO simulations

with different flux surface shape was carried out and a linear relation was found to be

sufficient. This difference is thought to be due to the fact that CGYRO is spectral in kx
so it has higher accuracy for the gyro-averaging operator (Bessel functions) than GYRO

which uses a radial grid. It is possible to use a full Fourier transform to obtain spectral

accuracy in GYRO but this was not done in the original simulations used to calibrate

the spectral shift model due to the computational expense.
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Figure 11. Spectrum of the radial wavenumber shift kx0, computed from CGYRO

simulations Eq. 33 (black), and the model Eq. 32 (gray), for a range of values of the

equilibrium ExB velocity shear γE×B , for the GASTD case.
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Figure 13. Scan in the equilibrium ExB velocity shear for the GASTD case. The

fluxes for CGYRO (black) and the TGLF model (gray). Ion energy flux (top left),

electron energy flux (top right), particle flux (bottom left) and Ion toridal stress

(bottom right)

.

Implementing the spectral shift model in TGLF requires two passes. The first pass

computes the linear eigenvalue spectra without E × B velocity shear. The second pass

uses these bare linear growth rates to compute the spectral shift kmodel
x0 (Eq. 32) . This

spectral shift is then used to recompute the linear shifted ballooning eigenmodes to

obtain the quasi-linear weights. The shifted ballooning modes produce a small change

in the energy and particle weights but produce all of the phase shift required for the ion

stress. In the original spectral shift model, the bare linear growth rate at each ky was

used in the formula for the spectral shift at each ky. This implementation is still used

for the older saturation models (SAT RULE= 0 or 1).

For the new saturation model of this paper (SAT RULE = 2) the bare growth rates

are used to compute the bare values of kymax and γmax. The spectral shift spectrum is

then computed from the formula:

kmodel
x0 = 0.32ky

(kymax
ky

)0.7(γE×B
γmax

)
(32)

This is a reasonable fit to the spectral shift kx0 computed directly from the CGYRO
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Figure 14. Scan in the equilibrium ExB velocity shear for Elongation (KAPPA) 1.5.

The fluxes for CGYRO (black) and the TGLF model (gray) for the GASTD case. Ion

energy flux (top left), electron energy flux (top right), particle flux (bottom left) and

Ion toridal stress (bottom right)

spectra

kx0 =

∑
kx
|φ̃ky ,kx|2kx∑

kx
|φ̃ky ,kx|2

(33)

as shown in Fig. 11 for the GASTD case.

The model Eq. 32 is able to fit the spectral shift for a scan in elongation and

Shafranov shift without explicit geometry factors. This is a simplification compared to

the original model that used the linear bare growth rate to normalize the ExB velocity

shear and required a geometric correction.

Next, the bare linear growth rate without E×B shear is modified by the temporal

reduction factor

γnet
ky =

γky(
1 + (αx

kx0
kmodel
x

)σx
) (34)

This is then used to recompute the maximum of γnet
ky
/ky to find the net γmax and kymax

that is used in the saturation model (Eq. 30). The net spectral width (Eq. 31) is also

used in place of the bare spectral width in the saturation formula.

The zonal potential spectrum does not shift but remains symmetric about kx = 0
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Figure 15. Scan in the equilibrium ExB velocity shear for Shafranov shift (SHIFT)

-0.2. The fluxes for CGYRO (black) and the TGLF model (gray) for the GASTD case.

Ion energy flux (top left), electron energy flux (top right), particle flux (bottom left)

and Ion toridal stress (bottom right)

as it must due to the reality condition on the Fourier amplitudes. The RMS average

zonal velocity (Eq. 9) is observed to be reduced by the equilibrium E×B velocity shear.

The zonal flow saturation rule remains approximately true if the net growth rate is used

as shown in Fig. 12 for a set of 30 cases. The temporal reduction factor was computed

using the value of the spectral shift spectrum kx0 (Eq. 33) computed from the non-

linear spectrum and the model Eq.17 for the width of the spectrum. This gives about

the right level of reduction in zonal flow velocity even though the coefficients αx = 1.55

and σx = 2 were fit to the fluxes not the zonal velocity. This demonstrates that the

saturated zonal mixing rate remains in balance with the net effective linear drive as the

turbulence is suppressed by the equilibrium E ×B velocity shear.

A novel method for including equilibrium ExB velocity shear in a periodic flux tube

was used for these simulations [23]. The equilibrium E × B velocity is introduced as

a sawtooth waveform over the radial periodic box. The magnitude of the flow shear is

the same everywhere but the sign flips at the peaks of the sawtooth pattern. This sign

flip has no effect on the energy and particle fluxes but reverses the sign of the toroidal

stress. The toroidal stress is computed in the central zone of the flux tube where the

ExB velocity shear has one sign. The shift in the radial wavenumber spectrum is also
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computed in this same zone. A good agreement between the kx spectral code CGYRO

using this method and GYRO using a radial grid was shown in Ref. [23] for the GASTD

case with adiabatic electrons. The CGYRO results in Fig. 13 are in good agreement

with the GYRO results of Ref. [2] for the GASTD case with kinetic electrons but the

reduction in the energy fluxes is greater at higher shear for GYRO than CGYRO.

Using the model for the spectral shift (Eq. 32) a good fit to the energy and particle

fluxes is obtained for parameters αx = 1.55, σx = 2. Note that this is significantly

different than the fit to GYRO simulations [2] with αx = 1.15, σx = 4. This new

CGYRO fit is only used for the new saturation model (SAT RULE = 2) in TGLF.

The shift in the ballooning mode radial wavenumber, that produces the stress,

was found to require a multiplier Gx = −sign(BT )0.7/|∇r|20 times kmodel
x0 in order to

better track the Shafranov shift dependence of the toroidal stress. Note that TGLF

and CGYRO have opposite conventions for the direction of the toroidal angle. The

CGYRO (black) and TGLF (gray) ion energy flux (top left), electron energy flux (top

right), particle flux (bottom left) and ion toroidal stress (bottom right) scans in the

equilibrium E × B velocity shear are shown for the GASTD case in Fig. 13, and cases

with elongation κ = 1.5 in Fig. 14 or with Shafranov shift ∆ = −0.2 in Fig. 15.

10. Calibration of the multi-scale model for electron scale energy transport

The final step in the calibration of TGLF with the new saturation model is to

extend the model to electron scales. The multi-scale simulations of a C-MOD L-mode

plasma by Howard [17] with the GYRO code were used to formulate the first multi-scale

saturation model [3] (SAT RULE = 1). The ion-scale sector of this model is replaced

by the new model of this paper. The electron scale modes were found to be suppressed

by the zonal flow mixing limiting the effective non-linear mixing rate to the ion scale

γmax for ky ≥ kymax as in Eq. 18. However, if the electron scale peak of γky/ky is larger

than the ion scale peak, the electron scale contribution to the potential can increase

yielding a larger contribution to the electron energy flux for ky ≥ 1. This effect is

visible in Fig. 16 where the GYRO (black) and TGLF-SAT2 (gray) electron energy

flux (squares), ion energy flux (circles) and the contribution to the electron energy flux

from electron scales (ky ≥ 1) (triangles) are shown for a scans in the ion temperature

gradient (left) and electron temperature gradient (right) about an L-mode discharge

on the C-MOD tokamak [17]. The increase in the electron scale energy flux as the ion

temperature gradient is lowered (left panel) is due to the zonal flow mixing rate (VZFky)

lowering below the linear growth rate at electron scales. This effect is built into the

saturation model for ky ≥ kymax by changing the formula Eq. 18 to:

γeff
ky = b2(γmax +MAX[γky − αZFkyVZF , 0.0]) (35)

The TGLF fluxes with the new saturation model use this formula with αZF = 1.1.

The electron-scale saturation model includes a Lorentz distribution weighted average
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Figure 16. Scan in the equilibrium ion (Left) and electron (right) temperature

gradients for multi-scale GYRO simulations of a C-MOD L-mode [17]. The energy

fluxes for GYRO (black) and the TGLF model (gray). Ion energy flux (circle), electron

energy flux (square) and electron-scale electron energy flux (triangles)

over ky of γeff
ky

[3]. This represents the effect of the mixing between modes with different

ky. In the original model, a change in the scaling of the width of the radial wavenumber

spectrum for ky ≥ 1.0 was included. The new model accounts for this anisotropy of

the spectral width through the geometric factors in Eq. 12 and Eq. 17. The original

multi-scale GYRO runs output flux surface averaged potential fluctuation spectra so the

poloidal angle dependence is unknown. New multi-scale simulations are needed to verify

that the poloidal angle dependence of the new model is correct at electron scales. The

agreement of the TGLF fluxes with GYRO in Fig. 16 is very good. These simulations

include an impurity ion, shaped flux surfaces and a low amount of equilibrium E × B
velocity shear [17],[18].

11. Summary

A new, more accurate, quasi-linear saturation model (SAT2) has been verified and

calibrated to a database of CGYRO turbulence simulations in this paper. The model

began with exploring the 3D structure of the saturated potential fluctuation spectrum

in a previous paper [1]. The SAT2 model was constructed using the linear growth rate

and quasi-linear weights from the spectrum of the most unstable modes computed with

the same code as the non-linear turbulence simulations. The saturation model is fit to

the poloidal wavenumber spectrum of the intensity required to make the quasi-linear

approximation to the electron energy flux exact (QL intensity). It was demonstrated

that the quasi-linear weights accurately predict the ratio of the ion energy and particle

fluxes to the electron energy flux. This quantitative test showed that quasi-linear weights

contribute 5.4% of the error in the quasi-linear ion energy fluxes averaged over the whole

database of 13 CGYRO scans. The quasi-linear weights contribute 19.8% error to the

particle flux due to lower quasi-linear fluxes at low density gradient than from the

turbulence. The SAT2 model for the quasi-linear intensity introduces additional error
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to the quasi-linear fluxes. The fractional error in the quasi-linear fluxes for the 13 scans

is 12.0% for ion energy, 11.7% for electron energy, and 20.8% for particle flux. These

errors are lower than previous saturation models fit to gyrokinetic simulations [24], [3].

The zonal flow mixing rule (Eq. 8), for the saturation of the zonal potential

fluctuations, was shown to be quite accurate for the whole database. It was even found to

work when there is equilibrium E×B velocity shear if the linear growthrate spectrum is

modified by the spectral shift (Eq. 34). This is a central part of the SAT2 model (Eq. 11)

spectral shape and peak intensity. The width of the radial wavenumber spectrum, that

is conjectured to be determined by the zonal potential mediated coupling of different

radial wavenumbers for the same poloidal wavenumber, is the other central element

of the SAT2 model. It was found in this larger database that the width of the zonal

potential spectrum (Eq. 10) is more variable than previously observed. This deserves

further study to understand the physical mechanisms at work. The observed broadening

of the radial wavenumber spectral width at low ky causes a reduction in the intensity

of the turbulence. Including this effect in the SAT2 model allowed for a simplification

of the model compared to its predecessor [3] while giving a better fit to the quasi-linear

intensity at low poloidal wavenumber.

The saturation model is an independent component of a quasi-linear approximation

to transport fluxes that can be used with any reduced model for gyrokinetic linear

stability to compute quasi-linear fluxes. In this paper, the SAT2 model was implemented

in the TGLF quasi-linear model after improvements to the linear eigenmode accuracy

were made. The average fractional error for the 13 scans is 15.6% for ion energy, 14.2%

for electron energy, and 35.6% for particle fluxes for TGLF with the SAT2 model and

the improved linear eigenmodes.

The spectral shift model for the impact of equilibrium E × B velocity shear on

transport [2] was recalibrated for the SAT2 model. Additional CGYRO scans of the

E ×B velocity shear for seven starting cases with different geometry were used for this

calibration (30 cases, 23 not in Table 1). It was found that the original model could

be simplified to a linear relation between the shift in the radial wavenumber spectrum

(eddy tilt) and the E × B velocity shear. This linear model Eq. 32 fits the CGYRO

spectrum of the radial wavenumber shift more accurately than the original non-linear

model.

The model for the suppression of electron scale turbulence by zonal flow mixing [3]

was also recalibrated to the original multi-scale GYRO simulations [17]. The anisotropy

between the radial and poloidal wavenumbers due to geometric effects in the SAT2

model was found to be sufficient to enhance the electron scale fluxes without the need

for modification. The coefficient αZF = 1.1 of the zonal flow mixing term (Eq. 35) was

hardly changed from unity.

With the recalibration of TGLF, the SAT2 model is now a public option in

the TGLF quasi-linear code (SAT RULE=2). This option automatically includes the

geometry modifications and the changes to the electron collision and bounce averaging

model.
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Appendix A. Transformation properties of the quasi-linear fluxes

The transformation properties of quasi-linear models have a subtlety that has not

previously been discussed in the literature. The gyrokinetic codes typically evolve

the Fourier transform of the fields and distribution function. This necessitates the

introduction of the interval ∆Kiy in the quasi-linear model for the intensity (Eq. 5).

It will be shown in this appendix that this factor needs to be defined in a particular

way in order for the quasi-linear fluxes to transform in the same way as the non-linear

gyrokinetic fluxes for any arbitrary system of normalizations.

For simplicity, consider only the Fourier transform of the angle α defined such that

B · ∇α = 0 [5] and (∇α · ∇r)θ=0 = 0:

φ̃(α) =
Nα∑

n=−Nα

φ̃ne
−inα (A.1)

φ̃n =

∫ 2π

0

dα

2π
φ̃einα (A.2)

The gyro-kinetic equation does not have an explicit dependence on the mode number

”n”. The perpendicular wavenumber normalized to the full magnetic field strength in

the gyro-average operator (Bessel function) is the physical normalized wavenumber of

the turbulence. For a pure ion plasma, with adiabatic electrons, the physical units are

the ion temperature, mass and charge, and the magnetic field strength: Ti,mi, Zi, B.

From these are derived the ion thermal velocity vthi =
√

2Ti/mi, the ion gyro-frequency,

Ωi = ZieB/(mic), and the ion gyro-radius ρi = vthi/Ωi. The normalized poloidal
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wavenumber that is the argument of the Bessel functions at the outboard midplane

for kx = 0 is given by

Kiy = nρi|∇α|θ=0 =
(nρiB
RBp

)
θ=0

(A.3)

The square amplitude of the Fourier coefficients of the potential fluctuations scales with

the interval between ion poloidal wavenumbers (∆Kiy). This property follows from

Parseval’s theorem ∫ 2π

0

dα

2π
|φ̃|2 =

Nα∑
n=−Nα

|φ̃n|2 (A.4)

A change in the number of mode numbers Nα for a fixed range of poloidal wavenumber

Kiymax = Kiy

∣∣∣
n=Nα

requires the Fourier square amplitude to scale like 1/Nα to maintain

the same sum. This scaling is made explicit by defining an intensity function I by the

formula:

|φ̃n|2 = ∆KiyI(Kiy) (A.5)

In the continuum limit we have∫ 2π

0

dα

2π
|φ̃|2 =

Nα∑
n=−Nα

∆KiyI(Kiy) ≈
∫ Kiymax

−Kiymax
dKiyI(Kiy) (A.6)

The intensity function I(Kiy) is a function of the ion poloidal wavenumber and so are

the linear eigenvalues and quasilinear weights. The ion units are the physical system of

units set by the gyro-averaging. Transforming to a new poloidal wavenumber k0y for an

arbitrary system of units: T0,m0, Z0, B0 with ρ0 = c
√
m0T0/(Z0eB0) and

k0y =
nqρ0B0

rBunit

(A.7)

gives the transformation

Kiy = αi
k0y

|∇r|0
= βik0y (A.8)

where

αi =

√
2miTiZ2

0

m0T0Z2
i

(A.9)

In these new units Parseval’s Theorem becomes∫ 2π

0

dα

2π
|φ̃|2 =

∫ k0ymax

−k0ymax
βidk0yI(βik0y) (A.10)

This shows that the correct interval to use in the definition of the quasi-linear intensity

Eq. 5 is

∆Kiy =
αi
|∇r|0

∆k0y (A.11)

for any system of units. The CGYRO system of units is given by : T0 = Te,m0 =

mi, Z0 = Zi, B0 = Bunit. Thus for the CGYRO units αi =
√

2Ti/Te. This factor is
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confirmed to be correct by the agreement of the quasilinear fluxes with CGYRO for the

scan in Ti/Te (scan 9).

It can be shown that the product Imodelky WQky scales in the expected gyro-Bohm

way for the energy flux in changing from one system of units to another. The summation

measure Eq. A.11 does not alter the overall scaling of the fluxes since it is the same for

any system of units.
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