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Abstract. Recent JET Deuterium experiments with an advanced internal transport barrier

(ITB) scenario have been performed to clearly observe destabilised toroidicity-induced Alfvén

eigenmodes (TAEs) by fast ions; interestingly, these also exhibit unstable electromagnetic

(EM) perturbations in the sub-TAE frequency range. We identify such EM perturbations to

be beta-induced ion temperature gradient (BTG) eigenmodes and not beta-induced Alfvén

eigenmodes (BAE) nor beta-induced Alfvén acoustic eigenmodes (BAAE) which are often

unstable in such high-beta plasma with high power neutral beam injection (NBI). The BTG

modes are the most unstable modes due to the high thermal ion temperature gradient related

to the ITB and a high ion beta regime. BTG mode experimental characteristics match

analytical theory, i.e. location in the vicinity of a rational magnetic surface with a low

magnetic shear, mode frequency scaling with the ion drift frequency (ω∗i ), and a coupling

among Alfvén, acoustic, and drift waves. We also perform linear gyrokinetic simulations with

validated plasma profiles and equilibrium, and find a mode kinetically driven by thermal ions

with similar characteristics as the experimental BTG modes.

Keywords : Alfvén-acoustic-drift eigenmodes, Stability, Ion temperature gradient, Ion Landau

drive/damping.
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1. Introduction

JET Deuterium experiments aiming to develop an advanced scenario to observe alpha driven

toroidicity-induced Alfvén eigenmodes (TAEs) [1] in Deuterium-Tritium (DT) plasmas have

been performed with an elevated monotonic safety factor (q) profile, internal transport barrier

(ITB), high plasma beta (β) regime, high core thermal ion temperature compared to the

thermal electron one (core Ti � core 2∗Te) and high power of neutral beam injection (NBI).

Demonstrating alpha particle drive of Alfvénic instabilities in the forthcoming JET DT phase

is key for our understanding of the underlying physics and for the success of future tokamak

operation.

During those experiments we not only observed unstable TAEs - driven by ion cyclotron

resonance heating (ICRH) fast ions in the absence of DT mixture as fuel - but also

electromagnetic (EM) perturbations living in a frequency range below the TAEs which is

often associated with the beta-induced gap created by the coupling between acoustic and

Alfvén waves. Beta-induced eigenmodes are heavily studied with both experimental and

theoretical analyses since they are often considered a source of additional transport of thermal

plasma and fast ions, detrimental for current and future fusion devices. Basic physics of

such eigenmodes can be found in [2]. In this work we focus on three main candidates

for the observed EM perturbations: beta-induced Alfvén eigenmodes (BAE) [3, 4], beta-

induced Alfvén acoustic eigenmodes (BAAE) [5] and beta-induced ion temperature gradient

eigenmodes (BTG) [6]. BTG mode is an electromagnetic analogue to the well-known -

electrostatic - ion temperature gradient (ITG) instability [7, 8].

It is worth mentioning a parallel analytical theory to BTG modes by [9–11] studying ion

temperature gradient driven Alfvén eigenmodes (AITG), characterising an instability from

the coupling of kinetic ballooning modes (KBM) [12] and BAE. While this paper does not

focus on comparing the two approaches, one can say that they differ in their treatment of

the inertial layer. BTG mode analytical theory [6] considers that the ion dynamics can be

treated with the assumption of a zero long-scale parallel electric field (δEparallel) and neglect

the δEparallel connection length fluctuations due to the vector potential; on the other hand

AITG mode theory [9,10] does not make this assumption but still demonstrates its validity in

the small finite ion Larmor radius (FLR) and finite drift-orbit width (FOW) limit. In [11] the

authors go a step further by demonstrating the existence of AITG eigenmodes by including

the full ion FLR and FOW effects. Both analytical theories agree on a few conditions of

BTG/AITG mode existence such as a positive ion temperature gradient and a low magnetic

shear. An important distinction, BTG mode theory has a well-defined analytical criterion

on ion beta which needs to be higher than a critical threshold (βion > βic). AITG mode

theory demonstrates a strong dependence of the AITG mode real frequency with a factor

α (= −R0q
2 dβ
dr

, where R0 is the major radius of the tokamak), i.e. on the magnetic shear

and plasma beta which is then compared with the marginal stability boundary of ideal

magnetohydrodynamic (MHD) ballooning modes [13]. The AITG mode real frequency scales

with ω∗i and increases when α decreases. AITG modes are also predicted to be driven by the
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thermal ion temperature gradient and be enhanced when βi increases. These last two criteria

are consistent with the BTG mode theory. For the purpose of this work - to understand the

nature and characteristics of the observed EM perturbations and study if such modes can

be predicted by analytical theory and reproduced by numerical tools - we then consider the

BTG and AITG theories to agree qualitatively on the criteria of existence of beta-induced

ion temperature gradient driven eigenmodes, so we focus on BTG mode theory.

Section 2 presents the experimental evidence leading us to consider the EM perturbations

to be unstable BTG modes. In Section 3 we find a good agreement between BTG mode

analytical theory and experimental observations. The modeling effort to find such BTG

modes using linear gyrokinetic simulations with a realistic JET geometry and validated

equilibrium and plasma profiles is presented in Section 4. Finally a summary is given in

Section 5.

2. Experimental observations

2.1. JET pulse 92054

To study sub-TAE modes we choose JET pulse (JPN) 92054 since it displays clear unstable

electromagnetic perturbations below the TAE frequency range as one can see in Fig. 1a.

For this pulse and time interval the characteristic TAE frequency in the plasma frame was

fTAE ∈ [90, 102] kHz. This frequency range is calculated using on-axis values for the densities

and magnetic field in fTAE = VA/4πqR with VA = B/
√
µ0

∑
nimi the Alfvén speed where

B is the toroidal magnetic field,
∑
nimi the mass density of the plasma and µ0 the vacuum

permeability.

Another reason is that JPN 92054 has been extensively studied in [1] as part of JET

experiments to observe alpha-driven instabilities so we are confident in the equilibrium

reconstruction, experimental measurements, analysis as well as plasma profiles. In Figure

5 in [1] one can see time traces of the auxiliary power, central electron and ion temperatures,

toroidal rotation rate, electron density and neutron rate.

In this work we mainly focus on 6.4s; Table 1 indicates the plasma parameters at that

time slice. q0 indicates the safety factor at the magnetic axis; one can see the q-profile at

6.4s from EFIT reconstruction [16] in Fig. 7 where q = 2 is located at
√
ψ ∼ 0.43. Note

that ion density (ni) and temperature (Ti) are quoted as ranges instead of a single value to

highlight the uncertainties in the experimental measurements which are also reproduced in

the TRANSP code [17] simulations; details on the TRANSP simulations can be found in

section 6 from [1]. Due to the large error bars in Ti measurements, in this paper we consider

two cases: (low-Ti) where Ti is chosen to be the lower range of error bars of charge exchange

recombination spectroscopy (CXRS) measurements and (high-Ti) where Ti is taken to be the

experimental value. By keeping measurement uncertainties we conserve a realistic picture

of the experiments; how such uncertainties influence our results is discussed throughout the

paper. Figure 2 shows the thermal plasma density and temperature profiles for our two
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(a) (b)

(c) (d)

Figure 1: (a) Mirnov coil (H305) spectrogram of poloidal magnetic fluctuation frequency over time.

(b) Mode analysis from a set of Mirnov coils analysing the relative phase shift of the fluctuations; the

colours denote the toroidal mode numbers n. (c) Magnetic spectrogram considering all available

magnetic Mirnov coils, zoomed in on the times of interest; the straight lines indicate the mean

frequency (fmean) used to filter and extract the amplitude information for each n. (d) Maximum

amplitude in the frequency range fmean ± 2.5kHz for each n in [2, 6]. n = 1 and n = 2 modes’

identification is difficult from the spectrogram. Note that the triangular shape signal on (a) is the

JET TAE antenna magnetic perturbation scanning in frequency to resonate with stable plasma

modes [14,15].

cases with the mean between the two cases for the temperature profiles. One can see that

the high-Ti case has a higher ion temperature gradient than the low-Ti case. Densities and

electron temperature are similar for both cases.

Another important aspect of JPN 92054 is its high-β regime [18–21] with a normalised

beta βN = βTBTa/IP ∼ 4.38[%Tm/MA] at t = 6.4s where βT is the total toroidal beta in

percent, BT the toroidal field, a is the horizontal minor radius in meters and Ip is the plasma
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Table 1: Plasma parameters for JET pulse 92054 at 6.4s. Data in the first column is from

experimental measurements, second column and beta toroidal are from TRANSP code [17] while

the third column is from EFIT reconstruction [16].

Plasma parameters at 6.4s

Ip (MA) 2.67 ne0 (1019 m−3) 5.43 B0 (T) 3.44

RNT (1016 s−1) 1.44 Te0 (keV) 5.4 q0 1.86

PNBI (MW) 25.1 ni0 (1019 m−3) 4.80-4.84 R0 (m) 3.03

PICRH (MW) 0.00 Ti0 (keV) 8.9-13.7 VA (106 m.s−1) 7.06

Beta Toroidal

βT (%) = 3.67 — βion(%) = 2.00 — βelectron(%) = 0.95 — βbeam(%) = 0.72

Figure 2: x-axis is the square root of the normalised toroidal flux (
√
ψ). TRANSP thermal plasma

profiles: densities and temperatures. (low-Ti) is for Ti chosen to be the lower range of error bars of

charge exchange recombination spectroscopy (CXRS) measurements (Ti0 ∼ 8.9keV ) and (high-Ti)

where Ti is taken to be the experimental value (Ti0 ∼ 13.0keV ). The dashed line represents the

mean between the two cases. Densities and electron temperature are similar for both cases.

current in MA§. Such a regime gives conditions for beta-induced modes to exist such as BAE,

BAAE and BTG, candidates for our modes of interest.

JPN 92054 also features a clear internal transport barrier (ITB) associated with the

q = 2 magnetic surface; both electron and ion temperature profiles exhibit high gradients,

∇Te and ∇Ti respectively (see section 3 in [1]). The onset time of the modes of interest is

near the ITB observation leading us to consider that such temperature gradients could be

§ See Table 1 for actual values
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the driving source of these EM modes; this would mean that we are observing unstable BTG

modes. The following subsections - Section 2.2 and Section 2.3 - confirm this conjecture.

2.2. Electromagnetic perturbation evidence

Figure 1a represents the magnetic perturbations of the plasma measured at the wall by

Mirnov pick-up coils. One can see modes being destabilised between 6.1 and 6.5s from

∼ 10 to ∼ 140kHz in the lab frame (within the green square). On Fig. 1b the toroidal

mode numbers (n) are obtained by making a time-windowed Fourier decomposition of the

signals of a set of toroidally separated Mirnov coils and analysing the relative phase shift

of the fluctuations; this technique allows to differentiate positive and negative n. n = 1

and n = 2 modes’ identification is difficult from the spectrogram so our study will mainly

focus on n ∈ [3, 6] modes. We cannot extract radial information from Magnetic signals,

but this information is obtainable by analysing interferometry, Soft X-Ray (SXR) and/or

reflectometry measurements on JET ‖. Unfortunately the last was not used during this JPN

92054, but interferometry and SXR acquired data which show similar perturbations in time

and frequencies as the Mirnov coils. Note that both SXR and interferometer diagnostics on

JET provide line-integrated data with rather limited radial resolution. The interferometer

on JET has four lines of sight, two of them close to the magnetic axis and the two others

at the plasma edge (see Figure 1 from [22]); only the two channels looking at the plasma

core measured density fluctuations related to the modes of interest. These two channels are

on a different side of the magnetic axis, and comparison of the modes signals from these

positions shows that the modes are neither ballooning nor anti-ballooning; modes with a

single dominant poloidal mode number m are good candidates. SXR has seventeen lines

of sights from bottom to top of the plasma; the mode location is crudely estimated to be

between R[m] ∈ [2.2, 3.8] or
√
ψ ∈ [0, 0.8], with R the major radius and ψ the normalised

toroidal flux.

To refine the estimation of the modes’ location one can compare mode frequencies in

the plasma frame with the ones measured in the lab frame by adding the Doppler shift from

the toroidal plasma rotation frequency (frot) such as flab = fplasma + nfrot. To evaluate frot
we used the TRANSP toroidal plasma rotation profile¶; the experimental uncertainties are

± 0.18kHz when calculating the sum of squared differences (SSD) divided by the number

of data points. The plasma frame frequencies can be estimated with a linear analytical

dispersion relation depending on the nature of the mode. For such EM modes in the sub-

TAE frequency range in a high-β plasma, good candidates are BTG, BAE and BAAE.

BTG mode frequency scales with the ion diamagnetic drift frequency (ω∗i ), reported by [23]

‖ On JET, the reflectometer (KG8C) has the highest radial resolution followed by SXR (KJ5) and then the

far infrared interferometer (KG1V).
¶ Only the toroidal rotation has been used to estimate the modes’ location, considering the poloidal rotation

negligible, yet adding some uncertainties to frot. At q = 2: frot|q=2 ∼ 15.38 kHz.
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as

ω∗j = −m
r

mj

ωcj

Tj
Pj

dPj
dr

= −nq
r

c

Zj e B

Tj
Pj

dPj
dr

with j = i for ions and e for electrons.

(1)

where m is the poloidal mode number (m = nq), r is the minor radius, c the speed of light, Tj
the species temperature, Zj the species charge state, e the elementary charge, B the magnetic

field on-axis, ωcj is the species gyrofrequency (ωcj = ZjeB/c mj), Pj the species pressure and

dPj/dr the species pressure radial gradient.

The frequency of BAE modes follows the frequency of geodesic acoustic modes (GAMs) [24]

which is calculated with

fGAM =
1

4π2

[
2

miR2

(
Te +

7

4
Ti

)(
1 +

1

2q2

)]
2

κ2 + 1
(2)

where κ is the plasma flux surface elongation.

The nature of BAAE mode and its frequency in the plasma frame are still discussed, and one

can find a clear review of BAAE observations and interpretations in [25]. For the purpose of

this work we focus on the BAAE described by MHD [5] which has a frequency following the

GAM frequency but shifted downwards by 1/2(q2 + 1),

fBAAE |MHD =
1

2(q2 + 1)
fGAM (3)

We also compare with recent DIII-D experimental “BAAE” [26] - now called low-frequency

modes (LFM) [25] - which scale with diamagnetic drift frequencies with a strong dependence

on electrons’ parameters hence the electron diamagnetic drift frequency (ω∗e , Eq. (1) with

j = e).

Figure 3 represents the characteristic frequencies of the beta-induced modes previously

mentioned. We choose to only use n = ±4 for diamagnetic frequencies not to overwhelm

the figure, but one should remember that modes following diamagnetic frequencies have a

toroidal mode number (n) dependence. These frequencies are calculated using mean values

of TRANSP profiles (see dashed line in Fig. 2) while error bars represent the experimental

uncertainties of thermal plasma densities and temperatures reproduced in TRANSP profiles.
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Figure 3:
√
ψ the square root of the normalised toroidal flux. Plasma frame characteristic

frequencies with ion diamagnetic frequency (f∗i ) for n = 4, BAE/GAM frequency (fBAE), BAAE

frequency (fBAAE) and electron diamagnetic frequency (f∗e ) for n = 4 and n = −4. Toroidal

plasma rotation (frot) profile from TRANSP represented with the black dashed line. Error bars

represent the experimental uncertainties on thermal densities and temperatures reproduced in

TRANSP profiles. At q = 2, ω∗i |n=4 ∼ 21.9 ± 3.1kHz ∼ 0.058 ± 0.008[VA/R0], fGAM = fBAE ∼
55.8 ± 1.9kHz ∼ 0.148 ± 0.005[VA/R0], fBAAE |MHD ∼ 5.6 ± 0.2kHz ∼ 0.015 ± 0.001[VA/R0] and

ω∗e |n=4 ∼ −12.4± 0.2kHz ∼ −0.033± 0.001[VA/R0].

To compare these frequencies with experimental measurements (Fig. 1b) we then

applied the Doppler shift correction using TRANSP toroidal plasma rotation profile, i.e.

flab = fplasma+nfrot. The frequencies in the lab frame are then compared with the frequency

range for each n obtained from the time-windowed Fourier decomposition of the signals of

a set of toroidally separated Mirnov coils. Figure 4 shows the best match with experiment

which is for BTG modes; for n ∈ [1, 6] we plot f ∗i + nfrot with the experimental frequency

ranges represented by the shaded horizontal areas, where colors match the respective single

n values. Error bars for the frequencies in the lab frame also include the uncertainties from

toroidal plasma rotation measurements. The BAE/GAM frequency is too high while the

MHD BAAE frequency is too low. The electron diamagnetic drift frequency (ω∗e) must all

have negative n which is against experimental observation of magnetic perturbations with

positive n (n ∈ [1, 6]).
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Figure 4:
√
ψ the square root of the normalised toroidal flux. Ion diamagnetic frequencies (f∗i ) for

n ∈ [1, 6] in the lab frame when Doppler shift is taken into account, i.e. f∗i + nfrot with frot the

toroidal plasma rotation from TRANSP. The shaded horizontal areas represent the experimental

frequency range measured from the time-windowed Fourier decomposition of the signals of a toroidal

set of Mirnov coils (see Fig. 1b). Note that the frequency ranges are large due to the very few number

of coils available and signals’ noise. Error bars represent the experimental uncertainties on thermal

densities and temperatures reproduced in TRANSP profiles

From this analysis, we can also estimate the BTG modes’ location to be around the

q = 2 surface (
√
ψ ∈ [0.41, 0.45]) which is consistent with the ITB’s formation when this

magnetic surface appears (see Section 2.1).

2.3. Electromagnetic perturbation dependencies

To get a better understanding of the nature of the destabilised electromagnetic modes we

compared the time evolution of the mode frequency (∈ [6.1, 6.5]s) with several plasma

parameters: ne, Te, ni, Ti, ∇Ti, NBI fast ion density (nfi) and temperature (Tfi), plasma

pressure (p) and its gradient (p′), poloidal current function (f) and its gradient (f ′) as well as

the Alfvén frequency on axis (fAlfven). For each parameter we investigated the time evolution

at the following radial locations: on-axis (q0) and at q = 2, 9/4, 10/4, 11/4, 3 rational surfaces.

Good qualitative correlations are found with 1/
√
ne, 1/

√
ni, 1/

√
Ti and 1/∇Ti at the q = 2
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surface (Fig. 5) adding more confidence on the modes’ location. 1/
√
ne dependence means an

Alfvénic nature of the destabilised modes while 1/
√
Ti is linked to ion sound scaling [27]; these

two dependencies are expected for beta-induced modes characterised by a coupling between

Alfvén and acoustic waves. We do find a stronger dependence on thermal ions’ parameters

compared to electrons’, and we also find a good qualitative correlation with 1/∇Ti meaning

that the destabilised modes could indeed be driven by the thermal ion temperature gradient,

hence being BTG modes.

Figure 5: Time traces of the destabilised modes (top left) compared with time traces of 1/
√
ni,

1/
√
Ti, fA and 1/∇Ti for several rational surfaces (q0 and q = 2, 9/4, 10/4, 11/4, 3). The EM

perturbations’ frequencies decrease by ∼ 10.1% from 6.1s to its minimum at 6.4s. Qualitative time

evolution of the modes match the ones from the ion density and temperature at the q = 2 magnetic

surface. Between the same times, 1/
√
ne, 1/

√
ni, 1/

√
Ti and 1/∇Ti at the q = 2 surface decrease

by ∼ 3.4%, ∼ 4.5%, ∼ 1.3% and ∼ 18.1% respectively.

The next section focuses on comparing our experimental results with the theoretical

conditions for BTG mode to exist and become unstable.
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3. Beta-induced ion temperature gradient driven eigenmodes

MHD and kinetic theories of BTG modes have been presented in [28] and [29] respectively;

the purpose of this section is not to reproduce these analytical theories but to compare them

with our experimental observations of JPN 92054 to confirm the correlation between the

observed unstable EM perturbations between ∼ 6.1 and 6.5s and the analytical BTG mode

conditions of existence. BTG mode theories predict that above a certain ion beta threshold

the drift effects due to the ion temperature gradient can lead to an appearance of unstable

coupled Alfvén-acoustic-drift eigenmodes, called BTG, which are localised in the vicinity of

a rational magnetic surface (q(r) = m/n). Three well-defined conditions need to be fulfilled

for BTG mode to exist. We first present these conditions for one time slice, 6.4s, and for the

high-Ti profile before focusing on other time slices, within and outside the times of interest

([6.1, 6.5]s).

The first BTG mode condition (i) is to have a positive ion temperature gradient:

∂ lnTi
∂ lnni

= ηion > 0 (4)

Figure 6 shows η for thermal ions and electrons where one can see that condition (i) is verified

for
√
ψ ∈ [0.15, 0.90].

Figure 6: TRANSP thermal species temperature gradient profiles: η = ∂ lnT/∂ lnn. For√
ψ ∈ [0.15, 0.90] BTG mode condition (i) (ηion > 0) is verified. The vertical grey line indicates the

position of the q = 2 surface.
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The second BTG condition (ii) is that ion beta (βion ∼= 8πniTi/B
2
0) overcomes an analytical

threshold value (βic) defined by

βion > βic =
9

2

q2S2L2
Ti

R2
(5)

where S is the magnetic shear, R the major radius of the tokamak and LTi is the characteristic

scale length of the thermal ion temperature inhomogeneity (LTi = Ti/∇Ti). Figure 7 shows

the ion beta (βion) versus the threshold value (βic): the condition (ii) is verified when√
ψ < 0.57.

Figure 7: TRANSP ion temperature (Ti) and inverse ion temperature gradient (1/∇Ti) profiles

with EFIT magnetic shear and q profiles are used to evaluate BTG mode condition (ii): βion >

βic = 9q2S2L2
Ti
/2R2. BTG mode could exist for

√
ψ < 0.57. The vertical grey lines indicate the

position of the q = 2 surface.

The third BTG condition (iii) means to have a low magnetic shear and is defined by

U0 < 2 with : U0 = −8πrp
′
0

S2B2
0

(q2 − 1) (6)

where p
′
0 is the pressure gradient and B0 toroidal magnetic field on-axis.
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Figure 8: BTG mode condition (iii) on low magnetic shear (U0 < 2) is verified for
√
ψ > 0.25.

Figure 8 shows U0 and U0 − 2 calculated from TRANSP profiles where one can see that the

condition (iii) is verified for
√
ψ ∈ [0.25, 1.0].

If we now consider the three BTG conditions together (i) + (ii) + (iii), BTG mode could

exist for
√
ψ ∈ [0.25, 0.57] which is consistent with Section 2.2, and this range includes the

q = 2 magnetic surface. For the low-Ti case we have
√
ψ ∈ [0.25, 0.56], almost identical to

the high-Ti case.

MHD [28] and kinetic [29] theories of BTG mode also present the characteristic frequency

range of these modes. In our case, with 1� ηion, we have ωi � ω � ω∗T i where ωi = VT i/qR0

is the ion transit frequency with VT i the ion thermal velocity (VT i =
√
Ti/mi), and ω∗T i is the

temperature-gradient ion drift frequency [11] defined by

ω∗T i =
c Ti
Zi e B

1

LTi
(7)

Figure 9 shows characteristic frequencies using n = 4 for those with toroidal mode number

n dependency, i.e. the ion diamagnetic frequency (ω∗i , Eq. (1)) and the drift frequency (ω∗)

which is defined by

ω∗ = kyV
∗ =

m

r

c Ti
Zi e B

1

LTi
=
nq

r

c Ti
Zi e B

1

LTi
(8)

In Fig. 9 we also plot the frequency of the cylindrical Alfvén continuum spectrum [28], which

represents the lower limit for a mode existing from the coupling among Alfvén, acoustic, and
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drift waves, i.e. BTG mode should have a frequency larger than such a limit:

ωBTG ≥ VAk
′

‖x
∗ (9)

with VA is the Alfvén speed, k
′

‖ = dk‖/dr, k‖ is the wave vector along the equilibrium magnetic

field and x∗ is the characteristic scale length of the coupled Alfvén and drift-acoustic waves

(x∗ = (3/2)q2ρi, with ρi the ion Larmor radius).

Figure 9: x-axis is the square root of the normalised toroidal flux (
√
ψ). BTG mode frequency

range expressed by [29]: for 0 < ηion � 1 the BTG frequency range is between VAk
′

‖x
∗ and ω∗T i

while for 1 � ηion the BTG frequency range is between ωi and ω∗T i. The latter is of interest for

JET 92054 during our times of interest. The q = 2 magnetic surface is indicated by the vertical

grey line.

BTG conditions are fullfilled at t = 6.4s; now we check if this is the case for

other time slices to study the correlation between the observed unstable EM perturbations

(t(s) ∈ [6.1, 6.5]) and analytical BTG modes. We present this analysis with yes(V)/no(X)

flags, i.e. whether the BTG conditions are met or not for different time slices. Table 2

indicates time slices within and outside the time range of interest; when a BTG condition is

met we indicate at which rational magnetic surface (q = m/n) in the corresponding cell. All

three BTG conditions are met for the same magnetic surface for t(s) ∈ [6.1, 6.6], before and

after these times this is not the case. This shows a good correlation between the observed

unstable EM perturbations and the analytical BTG modes.
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Table 2: BTG conditions over time. “X” means “yes” or that the condition is fullfilled while “5”

means it is not. Values in cells for BTG conditions are q values (= m/n). Good correlation is

observed between unstable EM perturbations (t(s) ∈ [6.1, 6.5]) and analytical BTG modes. The

equilibrium reconstruction is not accurate enough [1] for t = 6.1s and t = 6.2s with q-profiles too

high to predict the q = 2 magnetic surface, while for t = 6.6s the q-profile is too low. After t = 6.7s,

no equilibrium reconstruction is available.

BTG conditions vs time — n = 4

Time [s] 4.5-5.8 5.9-6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7

Unstable EM modes 5 5 X X X X X 5 5

(i) 0 < ηion 11/4 10/4 10/4 9/4 8/4 8/4 8/4 8/4 8/4

(ii) βic < βion 5 5 10/4 9/4 8/4 8/4 8/4 8/4 8/4

(iii) 2 < U0 11/4 10/4 10/4 9/4 8/4 8/4 8/4 8/4 9/4

(i) + (ii) + (iii) 5 5 10/4 9/4 8/4 8/4 8/4 8/4 5

q = 2 (EFIT) 5 5 5 5 X X X X X

At t = 6.1s and t = 6.2s we have higher q values than for the t(s) ∈ [6.3, 6.6]; this is

due to the equilibrium reconstruction which is not accurate enough [1] with q-profiles too

high to predict the q = 2 magnetic surface. The unstable EM perturbations disappear

between 6.5s and 6.6s when NBI starts to decrease and the ion cyclotron resonance heating

(ICRH) system is turned on for a safe plasma termination. After t = 6.7s, no equilibrium

reconstruction is available. All these conditions add-on to the difficulty to have a high

accuracy of the equilibrium reconstruction. Here we note that the experimental observation

of unstable BTG modes could be used to constrain future equilibrium reconstructions to have

the correct rational magnetic surfaces during the times of such instabilities, e.g. the q = 2

surface probably appears between 6.1s and 6.2s instead of between 6.2s and 6.3s predicted

by EFIT code.

We have experimental evidence along with MHD and kinetic theories supporting the

existence of BTG modes in JPN 92054 at t(s) ∈ [6.1, 6.5]. These modes are localised in

the vicinity of the q = 2 magnetic surface with a frequency (ω) in the plasma frame such

as ωi � ω � ω∗T i scaling with the ion diamagnetic frequency (at t = 6.4s and q = 2,

ω∗i |n=4 ∼ 21.9 ± 3.1kHz ∼ 0.058 ± 0.008[VA/R0]). Kinetic BTG theory [29] states that the

drive source of BTG modes comes from inverse ion Landau damping, and the analytical

dispersion relation reduces to Re(ω) = ω∗i . The following section, Section 4, is focused

on performing MHD and gyrokinetic simulations using a realistic magnetic geometry and

plasma profiles from JPN 92054 at 6.4s and comparing the results with both experimental

observations and analytical theories.
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4. Modelling

In Fig. 1d one can see that at t = 6.4s the most unstable modes from experiment are n = 4

and n = 5. Simulations run for this study use a single n and several poloidal harmonics

m; we decided to focus on n = 4. All frequencies from simulations are in the plasma frame

(fTAEplasma
); lab frame frequencies (fTAElab

) are estimated by adding the plasma toroidal

rotation from the Doppler shift at the mode location (ftor |mode location). Mode frequencies are

either expressed in kHz or normalised by VA/R0, with VA[m/s] the Alfvén speed and R0[m]

the radius of the magnetic axis.

We started by looking at the magnetohydrodynamic (MHD) picture using the linear ideal

MHD code MISHKA-1 [30] (Section 4.1) since it is well-established on JET experiments for

TAE studies; MISHKA-1 finds incompressible ideal solutions which is perfectly adapted to

TAE studies, but it cannot capture beta-induced modes’ physics hence not BAE, BAAE

nor BTG modes. So in Section 4.2 we perform linear gyrokinetic simulations using the

Gyrokinetic Toroidal Code (GTC) [31], a Particle-In-Cell (PIC) code, to study such beta-

induced modes in JPN 92054. GTC has been successfully used to predict beta-induced modes

and their stability with an analytical equilibrium [32] and more recently with a realistic

experimental equilibrium and plasma profiles on DIII-D [33]. The gyrokinetic approach

allows us to treat thermal ions and electrons independently, a necessity here to study the

ion temperature gradient effect correctly. To demonstrate that we are running the GTC

code in a correct manner for JET equilibrium and profiles we first perform a sanity check by

comparing TAE predictions with both MISHKA-1 and GTC codes.

4.1. Magnetohydrodynamic simulations

4.1.1. MISHKA-1, incompressible MHD

We perform a frequency scan looking for modes near the q = 2 magnetic surface with

MISHKA-1, which solves the linearised ideal MHD equations in a JET toroidal geometry; it

includes a vacuum region up to an ideally conducting wall. The JET equilibrium for JPN

92054 at 6.4s is calculated using the HELENA code [34] producing straight field line metric

elements; the electron density profile from TRANSP is fitted with an 8th order polynomial

from which the coefficients are used to describe the density in MISHKA-1. As expected,

we found some TAEs but no modes in the sub-TAE frequency range; Figure 10 presents a

n = 4,m = (8, 9) TAE mode at ω/ω0 ∼ 0.241 (f = 91.6kHz) with a ballooning character

being mainly localised on the outboard side as one can see on the poloidal plane plot.
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Figure 10: MISHKA-1 and CSCAS codes - (left) Alfvén continuum calculated by CSCAS code [35]

of JET 92054 at 6.4s, solved for n = 4, m ∈ [6, 26], 199 radial points (
√
ψ ∈ [0.01, 1.0]). Plotted on

top of the Alfvén continuum is the real component of the electrostatic potential of the TAE mode at

ω/ω0 ∼ 0.241 ∼ 91.6 kHz. Note the horizontal axis is the square root of the normalised poloidal

flux. (right) is the real component of the electrostatic potential plotted on the poloidal plane. The

black dashed line represents the last closed flux surface (LCFS).

4.1.2. GTC, TAE matching incompressible MHD

The same equilibrium and profiles used for MISHKA-1 simulations are used as inputs

to GTC; this requires us to map the EFIT equilibrium to Boozer coordinates using a module

from the ORBIT code [36] because GTC uses a field-aligned mesh in Boozer coordinates.

Once this step is done, consistency of the equilibria is checked and validated to make sure

simulations from different codes can indeed be compared. The GTC simulations presented

in this paper are all linear electromagnetic global δf . The thermal electrons are treated as

a massless fluid without kinetic effects. We neglect collisions and reduced our simulation

domain to
√
ψ ∈ [0.20, 0.80] to avoid any nonphysical effect from the lack of precision

of TRANSP profiles at the edge or near the magnetic axis. We use 100x400x32 grids in

radial, poloidal and parallel directions, respectively. To compare the MHD incompressible

ideal solutions from MISHKA-1 (TAE mode in Fig. 10) with GTC prediction we need to

only consider a single fluid of electrons keeping only the adiabatic terms in the linearized

gyrokinetic equation. Figure 11 shows the mode found with GTC; it has a spatial structure

and frequency similar to the MISHKA-1 eigenmode giving confidence in using the GTC code

on JPN 92054 with such equilibrium and plasma profiles.

With GTC we also study the TAE stability to see if it matches the experimental

observations: no unstable TAE was observed during this pulse. We now need to take

into account the thermal ion population which is treated gyrokinetically, and the thermal

electron population is still simulated as a massless fluid but with kinetic effects from trapped

electrons only [37]. The thermal ion population is described by an initial Maxwellian

distribution. To respect quasi-neutrality, the ion density is identical to the electron one
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when we perform simulations without fast ions. The particle number per cell is 200. We

obtain a non-perturbative calculation of thermal damping of γ/ωTAE ∼ −2.95%, which

includes continuum, radiative and ion Landau damping mechanisms. We also performed a

GTC simulation with NBI fast ions treated similar to the thermal ions: marginal difference

in the total damping rate of the TAE was found. These predictions of a damped TAE are

then consistent with experimental observations. Note that such a stable TAE is meant to

be probed by the JET TAE antenna [14, 15], but unfortunately the TAE antenna scanned

too high in frequency to resonate with this mode (see the antenna signal on Fig. 1a) with an

antenna frequency at 155kHz (at t = 6.4s) compared to the simulated TAE mode frequency

in the lab frame of fTAElab
= fTAEplasma

+ nftor |mode location ∼ 92 + 4 ∗ 11 ∼ 136kHz.

Figure 11: GTC - Real component of the electrostatic potential of the n = 4 TAE mode at

ω/ω0 ∼ 0.248 plotted over the square root of the normalised toroidal flux (left) and poloidal plane

(right). (left) The vertical red dashed line at
√
ψ ∼ 0.58 indicates the position of the TAE gap

from the coupling between the m = 8 and m = 9 poloidal harmonics. The mode spatial structure

and frequency are similar to the MISHKA-1 eigenmode (Fig. 10).

4.2. Beta-induced modes in JPN 92054

Before presenting GTC simulations for modes with frequencies below the TAE frequency we

first use the ALCON code [38] to solve the ideal MHD Alfvén continuum, i.e., Eq. (10) in [39]

using a poloidal-spectral method described in Appendix A in [38]. Finite compressibility of

the plasma is taken into account to predict MHD beta-induced gaps, the continuum is shown

in Fig. 12. One can see several open gaps (TAE and BAAE gaps+) and the BAE accumulation

point [9] which aligns well with the top of the beta-induced gap in the Alfvén continuum [40]

or at the bottom of the TAE gaps. We also indicate the MHD BAAE frequency from Eq. (3)

which is located near the bottom of the BAAE gaps predicted by the ALCON code. Note that

+ Higher frequency gaps (EAE, NAE, ... [2]) are not showed here to avoid overwhelming Fig. 12.
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such MHD continuum does not include ion drift effects so we do not expect to see a gap from

drift and Alfvén/sound branches’ coupling corresponding to a BTG mode. For consistency

we also indicate the thermal ion and electron diamagnetic frequencies. The experimental

estimation of the plasma frame frequency range of the observed EM perturbations is indicated

by the shaded horizontal grey area, which includes the thermal ion diamagnetic frequency

but excludes the MHD BAE and BAAE frequencies.

Having similar mode locations for BTG and BAE/BAAE modes makes the identification

of modes from global linear gyrokinetic simulations challenging. In Section 4.2.1 and

Section 4.2.2 we present our effort to clearly identify predicted modes with the GTC code to

be BTG mode and not MHD BAE or BAAE mode.

Figure 12: ALCON code [38] - Alfvén and sound continua of JET 92054 at 6.4s, solved for n = 4,

m ∈ [−20, 50], 2000 radial points (
√
ψ ∈ [0.01, 1.0]). The thick colored lines are the Alfvén branches

while the thin grey ones are the sound branches. The bold dashed line shows the q profile, thin ones

mark rational surfaces q = 8/4 = 2, q = 9/4 and q = 10/4. At q = 2, we indicate the characteristic

plasma frame frequency for MHD BAE (full black square) and BAAE (empty black square) along

with the thermal ion (black cross) and electron (full black circle) diamagnetic frequencies. The

orange horizontal dotted line at ω/ω0 ∼ 0.25 in the (m = 8,m = 9) TAE gap indicates the TAE

predicted by the GTC code (Fig. 11). Note that the difference between ω/ω0 with Fig. 10 is due to

the different definition of the effective pressure between ALCON and CSCAS codes.

To study β effects we perform full non-perturbative calculations with the GTC code. We

input thermal ion temperature and density profiles (Fig. 2) extracted from TRANSP code

simulations. The thermal ion population is described by an initial Maxwellian distribution
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while the thermal electrons are treated as a massless fluid without kinetic effects∗.

4.2.1. GTC, beta-induced modes in an uniform thermal plasma

Our first step is to use a synthetic antenna in GTC to scan in frequency the linear

gyrokinetic response of the uniform thermal plasma]; using a uniform plasma does not allow

us to see any thermal plasma inhomogeneity effects, such as temperature gradient effects,

but rather probe resonance conditions between plasma modes and an external perturbation.

We use the densities and temperatures at the q = 2 position to set the uniform densities

and temperatures’ values. The antenna is set at a fixed frequency (fantenna) and by running

multiple simulations we can perform a frequency scan probing the different modes at various

frequencies. Such GTC simulations impose an antenna field or excitation in the plasma

at a certain radial location over a set radial range. The GTC synthetic antenna can be a

perturbation of the electrostatic potential (δφant) or the parallel vector potential (δA‖,ant).

The latter has been used throughout this work since we are looking at electromagnetic modes.

The GTC synthetic antenna has been modeled with Eq. (10) where A(ψ) is a Gaussian

envelope peaking at the location of the mode of interest (at the q = 2 magnetic surface in

our simulations), ψ is the poloidal magnetic flux, θ is the poloidal angle and ζ is the toroidal

angle.

A‖,ant = A(ψ) cos(mθ − nζ) cos(ωt) (10)

For each simulation, we then (a) calculate the power spectrum using a Fourier transform

of the time evolution of the plasma electrostatic potential filtered for (n = 4, m = 8), and (b)

extract from the power spectrum the maximum power around the input antenna frequency

index. We take the maximum between powers at fantenna± 0.5kHz and − fantenna± 0.5kHz;

positive frequency means the mode moves in the electron diamagnetic direction while negative

frequency corresponds to a mode moving in the ion diamagnetic direction. Looping for each

simulation we get the linear gyrokinetic response of the thermal plasma over frequency in

Fig. 13, i.e. how effectively the plasma resonates with the synthetic antenna perturbation

at fantenna. A peak in such a frequency scan indicates a higher resonance condition. This

method can also be used to quantify the damping rate of modes by fitting a peak with a

cavity resonance function [33] or similarly appropriate resonance transfer function (TF) such

as a weakly-damped harmonic oscillator TF.

We performed two frequency scans: (1) with the low-Ti profile and (2) with the high-Ti
profile (see Fig. 2 for the profiles). Figure 13 shows the results from scan (1) which has a

higher resolution with 17 simulations compared to 13 in the scan (2); one can see a single

peak near the MHD BAAE frequency with frequencies indicating that the mode is moving

in the electron diamagnetic direction. This resonance is identified as a BAAE mode weakly

∗ Some simulations have been run with electron kinetic effects included but only a marginal difference was

found.
] Uniform particle marker for density and temperature and assuming equilibrium-fluctuation scale separation.
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damped by ion Landau damping. This is consistent with Ti � Te and a recent BAAE mode

study with GTC [41]. The frequency of the predicted BAAE mode is too low compared to

our experimental EM perturbations. With scan (2) we also find a similar BAAE resonance.

On both scans, higher frequencies do not show any other clear resonance, neither near the

BAE/GAM frequency (fGAM) nor near the ion diamagnetic frequency (ω∗i ) for BTG mode.

This is expected since BTG mode is driven by the thermal ion temperature gradient so we

need to consider thermal plasma inhomogeneity in our gyrokinetic simulations to capture

diamagnetic effects.

Figure 13: (left) GTC antenna frequency scan; each cross corresponds to a single simulation. The

different simulations are identical except for the antenna perturbation frequency. The peak in

frequency indicates the dominant resonance which corresponds to a weakly damped BAAE mode

with a frequency near the MHD BAAE frequency. (right) Alfvén-acoustic continuum (same as

Fig. 12) zoomed in the sub-TAE frequency range. One can see a BAAE gap with the MHD BAAE

frequency (fBAAE , empty black square) at the bottom while the frequency of the predicted BAAE

mode is indicated by the dotted horizontal orange line. The shaded horizontal grey area shows

the experimental estimation of the plasma frame frequency of the observed EM perturbations: the

predicted BAAE mode frequency is too low. At q = 2, we also add the characteristic plasma frame

frequency for MHD BAE (full black square) along with the thermal ion (black cross) and electron

(full black circle) diamagnetic frequencies; there is no clear resonance for BTG nor BAE modes.

4.2.2. GTC, beta-induced modes in a non-uniform thermal plasma

We now perform simulations with non-uniform markers for density and temperature

which allow gradients to be accounted for by marker weight; with such method we find a

physical mode kinetically driven by the thermal plasma, without fast ions, at ω/ω0 ∼ 0.11.

Figure 14 shows the characteristics of this n = 4 mode with a dominant m = 8 (= nq = 4∗2)

poloidal harmonic with (a) the time evolution of the real and imaginary components of the

mode’s electrostatic potential - noted φ - and its amplitude ‖φ‖ =
√
Re(φ)2 + Im(φ)2). (b) is

the radial mode structure while (c) is the mode structure in the poloidal plane. From (a) one
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can see an exponential growth of the mode amplitude, we calculate the mode growth rate

(γ/ω ∼ 23.8%) by fitting the linear growth of log(‖φ‖).

Figure 14: x-axis for (a) is the simulation time multiplied by mode (n = 4, m = 8) frequency;

blue and orange lines are respectively Real and Imaginary components of the electrostatic potential

(φ) while green is the amplitude (
√
Re(φ)2 + Im(φ)2) which grows exponentially (γ/ω = 23.8%).

(c) is the radial mode structure of the kinetically driven mode with m = 8 the dominant poloidal

harmonic. (d) is the mode structure in the poloidal plane.

This kinetically driven mode matches well the experimental observations and theoretical

predictions of BTG mode, i.e. is localised at the q = 2 magnetic surface, has a single

poloidal harmonic, is driven by thermal ions and is moving in the ion diamagnetic direction.

Its frequency, ∼ 41.5kHz ∼ 0.011[VA/R0], is between the ion diamagnetic frequency and

the BAE frequency. It’s however higher than expected from the experimental estimation

by ∼ 15kHz (Section 2.2); such discrepancy is associated with the large quality factor of

γ ∼ 10kHz and uncertainties on the thermal ion temperature profile and its gradient. Below

we explore the nature of this kinetically driven mode to clearly distinguish between BTG

and BAE modes.

We perform a toroidal mode number scan (n ∈ [1, 6]); BAE modes should have similar

frequencies in the plasma frame (or simulated frequency) while BTG modes would have

different frequencies shifted by ω∗i . The poloidal mode numbers were changed to model

modes around the q = 2 surface similar to the n = 4 reference case: we used m =

nq + [−1, 0,+1,+2,+3]. Figure 15 presents the (n,m = 2n) mode frequency (kHz) and

growth rate (%) for each simulation. Not shown here to avoid overfilling the paper, the mode

structures are very similar with a dominant single m = nq poloidal harmonic as one can

see on Fig. 14. We have a significant frequency dependency on the toroidal mode number:
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∆f ∼ 5kHz for n to n± 1, i.e. ∆f/f > 10%. This ∆f corresponds to the ion diamagnetic

frequency without n contribution from Eq. (9). These new results match what we expect

from a drift-type mode, hence from a BTG mode.

Figure 15: For n ∈ [3, 6] and (n,m = 2n): frequency (square) and growth rate (cross) of the mode

for each toroidal mode number.

Now to confirm the effect of the thermal ion population on the drive of our reference mode,

we perform a Ti scan while keeping the total plasma beta constant, i.e. if Ti is multiplied

by a coefficient A% then Te is multiplied by (1− (A%− 1)Ti/Te) since we use ne = ni to

respect quasi-neutrality. Figure 16 shows a clear effect of Ti on the stability of the mode; we

can estimate a threshold from which the mode becomes unstable: ∼ 0.72 ∗ Ti. We also see

little effect of the Ti scan on the mode frequency indicating that the mode is affected by both

thermal ions and electrons. This is confirmed by a second Ti scan for which we only vary

Ti while keeping Te constant: the threshold is ∼ 0.83 ∗ Ti and the mode frequency slightly

decreases.
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Figure 16: For (n = 4, m = 2n = 8) mode frequency (square) and growth rate (cross) for

several thermal plasma temperatures; when Ti is multiplied by a coefficient A%, Te is multiplied by

(1− (A%− 1)Ti/Te). Clear effect from Ti on the stability of the reference mode. For simulations

with driven mode (Ti - 0.72 ∗ Ti), the mode frequency is stable.

To complement the analysis of our reference case, we also performed the following

simulations:

• Mode polarisation ††:
– Electric field polarisation: we analyse the ratio between the parallel electric field

and its electrostatic component (E‖/E‖,ES) defined by

E‖ = −b0 · ∇δφ−
1

c

∂δA‖
∂t

E‖,ES = −b0 · ∇δφ
(11)

where b0 represents the equilibrium magnetic field direction, δφ is the electrostatic

potential and δA‖ is the parallel vector potential. E‖ = 0 for an Alfvénic wave,

and E‖ = E‖,ES for an ion acoustic wave and drift wave. For our reference mode

(Fig. 17) we get E‖/E‖,ES ∼ 0.1 using volume-average of square of E‖ and E‖,ES
indicating a dominant Alfvénic character which is consistent with BTG theory [6].

††Details of the calculation can be found in [33]
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Figure 17: Reference mode’s (Fig. 14) normalised

radial profile of parallel electric field E‖ and its

electrostatic part E‖,ES .

– Magnetic perturbation polarisation: we analyse the ratio between the parallel and

the perpendicular magnetic perturbations (δB‖/δB⊥). δB‖/δB⊥ = 0 for a shear

Alfvénic wave, and δB‖/δB⊥ is finite for sound and drift waves. For our reference

mode (Fig. 18) we get δB‖/δB⊥ ∼ 0.45 using volume-average of square of δB‖
and δB⊥ confirming the nature of the mode being a coupling between Alfvén and

acoustic/drift waves.

Figure 18: Reference mode’s (Fig. 14) normalised radial

profiles of flux surface-averaged perpendicular (δB⊥) and

parallel (δB‖) perturbed magnetic field Brms.

• Wave-particle energy exchange ††: we analyse the direct energy exchange between the
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thermal plasma and the wave/mode. We use the power of work done on the thermal

ion particles by the wave/mode to calculate the time rate of change of the wave/mode

energy density (δW ) [32, 33]:

dδW

dt
= 〈−Zv⊥ · E⊥ − Zν‖E‖〉 (12)

where Z is the particle charge, v⊥ is the guiding center Grad-B (v∇B) and curvature

(vR) drifts, E⊥ = −∇⊥δφ is the perpendicular electric field and ν‖ is the guiding center

parallel velocity. The brackets denote a flux-surface averaging along with a gyrocenter

velocity space integral weighted by the perturbed distribution function. Note that both

the perpendicular and parallel energy transfers include the non-resonant (fluid) as well

as the resonant (kinetic) energy exchanges. The interchange drive represents only the

fluid parts of the energy exchange rate. In Fig. 19 one can see that the perpendicular

energy exchange is the source of the drive of the wave/mode while the interchange drive

is low, which indicates a dominant perpendicular energy transfer from the thermal ions

to the wave/mode coming mostly from the resonant (kinetic) energy exchange. This

analysis confirms that the reference mode is kinetically driven by thermal ions.

Figure 19: Reference mode’s (Fig. 14) time rate of change of

the wave/mode energy density. Normalised radial profiles of

the parallel and perpendicular energy exchange rates as well

as the interchange (non-resonant) part. The perpendicular

energy transfer is the source of the drive of the wave/mode.

• Incompressible MHD simulation: reference mode was not found, so it confirms that

our reference mode is not an interchange-type mode which is consistent with the wave-

particle energy exchange analysis.
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• Including kinetic effects from trapped electrons using a fluid-kinetic hybrid electron

model has an insignificant effect on the reference mode characteristics confirming the

strong dependence of the reference mode on the thermal ion population.

• Electrostatic simulation: reference mode was not found which indicates that our

reference mode is not an electrostatic mode; this is consistent with the electromagnetic

nature of the BTG modes.

• Without δB‖ we see similar characteristics of the reference mode but with a significant

reduction of its growth rate indicating an important effect from δB‖ often neglected in

gyrokinetic simulations.

Many features in our reference case obtained with GTC is therefore consistent with

experimental observations and analytical theories of beta-induced ion temperature gradient

driven eigenmodes, i.e. a strong thermal ion dependence especially with the significant

thermal ion temperature gradient; a propagation in the ion diamagnetic direction; a

localisation near a rational magnetic surface (q = 2) with a low magnetic shear; a coupling

among Alfvén, acoustic and drift waves with a dominant Alfvén polarisation; a single

dominant poloidal harmonic and a frequency scaling with the ion diamagnetic frequency. The

simulated mode frequency is however over-estimated by ∼ 15kHz compare to the frequency

estimated from the experiment †. A few factors can contribute to such uncertainty: the large

quality factor of the simulated mode (γ ∼ 10kHz), the uncertainties on the thermal ion

temperature measurements/profiles as stressed by Fig. 2 and its (very) high ion-temperature

gradient as one can see with Eq. (7) in Fig. 9, and the GTC local Maxwellian distribution

function.

† fGTC ∼ 41.5kHz ∼ 0.110[VA/R0] compared to the expected EM modes estimated to be around

ω∗i |n=4 ∼ 21.9± 3.1kHz ∼ 0.059[VA/R0] from the experiment.
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5. Summary

JET pulse #92054, a hot ion JET plasma with elevated monotonic q profile and clear ITB,

exhibits unstable electromagnetic perturbations with frequencies below the TAE frequency

which have been identified as beta-induced ion temperature gradient (BTG) eigenmodes.

Experimental investigations show that the BTG modes have a strong dependence on the

thermal ions, particularly on the thermal ion temperature gradient, are localised near the

q = 2 magnetic surface related to the ITB and scale with the ion drift frequency (ω∗i ). These

experimental characteristics are in good agreement with BTG mode analytical theories [6,29].

Such theories also predict three well-defined conditions for BTG mode to exist which are

fullfilled by the JPN 92054 plasma; i.e. positive relative ion temperature gradient, ion beta

higher than a critical value, a low magnetic shear and BTG mode analytical dispersion

relation reducing to Re(ω) = ω∗i . Ref. [29] predicts that a BTG mode is a coupling among

Alfvén, acoustic and drift waves as well as that it is driven by inverse ion Landau damping

due to the high ion temperature gradient. Many of these BTG mode experimental and

theoretical features are consistent with gyrokinetic simulations using the code GTC [31] with

a realistic magnetic geometry and plasma profiles: we find a mode kinetically driven by

thermal ions localised near the q = 2 magnetic surface with an Alfvén-acoustic polarisation

and a frequency scaling with the ion drift frequency (ω∗i ).

BTG modes are also observed in recent JET plasmas during energetic particle scenario

experiments aiming to study alpha driven AEs, performed in JET 2019/2020 Deuterium

campaigns. Reflectometer diagnostic data is available for some of these pulses and confirms

the mode location being near the q = 2 magnetic surface. We also observe a correlation

between the BTG modes stability and the neutron rate roll-over, but this study is beyond

the scope of this work; it will be discussed in future publications.
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