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Abstract 

A recently updated version of the MARS-F code [Y. Q. Liu et al. Phys. Plasmas 7, 3681 
(2000); L. Li et al. Phys. Plasmas 25, 082512 (2018); L. Xia et al. Nucl. Fusion 59, 126035 
(2019)] is utilized to numerically investigate the plasma screening effect on the applied 
resonant magnetic perturbation (RMP) field, assuming various equilibrium flow models 
including the toroidal flow, the parallel flow and their combinations, as well the poloidal and 
toroidal projections of the parallel flow. A parallel equilibrium flow with uniform radial 
profile is found to have no effect on the plasma screening of the RMP field, due to the fact 
that a uniform parallel flow merely introduces a global rotational transform along the 
equilibrium magnetic field lines. A sheared parallel flow, however, does change the plasma 
screening. The poloidal projection of parallel flow weakens the plasma screening in the 
resistive-inertial regime. The effect on the favorable average curvature regime is found, 
however, to be non-monotonic. With increasing the flow speed, the poloidal projection first 
weakens the GGJ-screening. Further increasing the flow speed results in enhanced GGJ-
screening again. This non-monotonic behavior is related to the perturbed parallel shielding 
current, which appears also off the mode rational surface at fast flow due to additional 
resonances between the RMP perturbation and the sound wave continuum. These results 
indicate that the flow induced plasma screening to the RMP field can have complicated 
characteristics, which in turn can have implications on the RMP field penetration into the 
plasma in experiments for controlling the edge localized modes.  

 

I. INTRODUCTION 

Screening of the external resonant magnetic perturbation (RMP) fields, due to plasma 
response, plays an important role in 3-D physics processes in tokamak plasmas, including the 
resonant field amplification (RFA) [1-5], the mode locking [6,7], the error field correction [8-
10] as well as control of magneto-hydrodynamic (MHD) instabilities such as the resistive wall 
mode [11-14] and the edge localized modes (ELMs) [15-21]. In particular, it has been realized 
that non-linear field penetration can offer a critical understanding of the type-I ELM 
suppression by RMP fields [22]. Plasma screening is one of the two key physics components 
involved into the resonant field penetration dynamics, with the other being the plasma flow. 

It is well known in theory that, in a resistive plasma, screening of the external RMP 
field originates from the plasma conductivity and plasma flow [23-25]. Extensive 
computational modelling efforts have been devoted to investigate the plasma response 
induced screening [26-31], in the context of RMP and with particular emphasis on the role 
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played by the toroidal plasma flow.  In the context of two-fluid formulation, the role of 
perpendicular electron flow has also been studied [32,33]. 

The mostly studied plasma screening, within the single fluid formulation, is that 
associated with the toroidal plasma rotation. Two types of screening regimes with toroidal 
flow have previously been identified [34,35] and illustrated by Fig. 1 below as a typical 
example.  Plotted here is the ratio of the n = 1 (n is the toroidal harmonic number of the 
applied perturbation field) total resonant field amplitude (including both the vacuum field and 
the plasma response) to the corresponding vacuum component, while scanning the toroidal 
plasma rotation frequency Ω". A uniform toroidal rotation is assumed here along the plasma 
minor radius. The blue curve in Fig. 1 shows both the so-called Glasser-Green-Johnson (GGJ) 
screening regime [34-36] at very slow toroidal plasma rotation and the resistive-inertial (RI) 
regime0 [23] at faster flow. The GGJ-screening regime is associated with the favorable 
average curvature effect in a toroidal magnetic geometry [37], which occurs in the presence of 
finite equilibrium pressure (more precisely finite pressure gradient) at the mode resonant 
surface. In this regime, the plasma response, in terms of the total resonant field amplitude, 
decreases with decreasing the plasma flow speed. The GGI-screening effect disappears when 
the plasma equilibrium pressure vanishes (red curve in Fig. 1). A more conventional is the 
resistive-inertial screening regime, where the plasma response is reduced at increasing flow 
speed. This screening effect occurs independent of the plasm pressure.  

 

 

FIG. 1. Illustration of the toroidal favorable curvature induced plasma screening (blue curve) at slow 
toroidal plasma rotation and with finite equilibrium pressure (𝛽$ = 1.65), and the lack of it (red curve) 
with vanishing pressure (𝛽$ = 0). The screening changes to the Resistive-Inertial regime at fast 
toroidal rotation. Assumed is an equilibrium with circular plasma cross section and with a single 
resonant surface inside the plasma for the n=1 perturbation. Plotted is the amplitude of the m/n=2/1 
total resonant radial field perturbation amplitude normalized by the corresponding vacuum field. The 
toroidal rotation frequency 𝛺" is normalized by the toroidal Alfven frequency. The Lundquist number 
is chosen at 𝑆 = 10-	. 𝛽$ here is a normalized beta value of 𝛽$ = 𝛽𝑎𝐵"/𝐼3, where 𝛽 is the ratio of the 
volume averaged plasma pressure to the magnetic pressure, 𝑎, 𝐵", 𝐼3 is the minor radius of the plasma 
boundary, the vacuum toroidal field at the magnetic axis and total plasma current, respectively. 

 

In this work, we shall consider a range of fundamental physics aspects of plasma 
screening due to other types of equilibrium flow, namely the poloidal and parallel flows. In 
particular, we shall investigate how these flows affect the aforementioned screening regimes 
within the single fluid model. The study is partly motivated by the following observations.  
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(i) Fast poloidal flow has been measured in tokamak experiments, especially in the 
plasma core region with formation of the internal transport barrier [38,39], as well as in the 
plasma edge region in many experiments [40-42]. 

(ii) Poloidal and parallel plasma flows have been found to affect MHD instabilities such 
as the resistive wall mode [43,44]. An interesting finding from Ref. 44 is that parallel plasma 
flow merely introduces a rotational transform along the equilibrium magnetic field lines, 
without providing a direct stabilization to the mode. On the other hand, parallel flow can 
affect the mode stability via the poloidally or toroidally projected component. It is therefore 
interesting to understand how the parallel (and poloidal) flow affects the plasma screening.  

(iii) The reduced MHD model (such as that implemented into the JOREK code [45]0) 
normally only includes the parallel component of the velocity. 

(iv) In a recent study [46], it was found that the large RMP field induced magnetic field 
line ergodization in an ITER plasma produces appreciable plasma flow along the magnetic 
field lines.  

We point out that the plasma density profile plays a special role when the parallel 
equilibrium flow is introduced, since the equilibrium mass conservation condition implies that 
the parallel flow is coupled to the plasma density. In most of our study, we shall assume a 
uniform density profile. But a comparative study will also be made where we assume a 
sheared density profile. We also mention that in most cases, we consider the additional 
screening effect, introduced by the parallel or poloidal flow, on top of that produced by an 
existing toroidal flow. Plasma screening due to a pure parallel/poloidal flow is treated as the 
limiting case when the toroidal flow vanishes. A reason for taking this approach will be 
elaborated later on. 

We emphasize that this study aims at investigating the fundamental and often subtle 
physics associated with flow screening. The practical aspects, e.g. how large a role the 
poloidal or parallel flow can play in the in realistic experiments, is not the focus of the present 
work.  For this reason, we shall consider a simple (but toroidal) plasma equilibrium. We shall 
also treat the parallel/poloidal flow speed as a free parameter and scan the amplitude.  

Section 2 briefly describes the equilibrium and the plasma flow models that we adopt in 
this study. Section 3 reports the screening effect by the poloidal flow (on top of a uniform 
toroidal flow). Section 4 reports a similar systematic study but assuming parallel flow. The 
role of the (non-uniform) plasma density profile is discussed in Section 5. Section 6 
summarizes the work.  

 

II. EQUILIBRIUM AND PLASAMA FLOW MODELS 

In this work, the plasma response to the external RMP field is computed by the upgraded 
MARS-F code, which implemented the parallel equilibrium flow into the perturbed single 
fluid MHD equations [44]. The new implementation, combined with an earlier update of 
incorporating poloidally varying toroidal flow into MARS-F [36], enables separate 
consideration of the screening effect of the poloidal equilibrium flow, as will be explained in 
this section. The full computational model of the upgraded MARS-F code is described in 
Appendix A.  
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As mentioned before, we assume a simple equilibrium with aspect ratio of 10 and a 
circular poloidal cross section. The radial profiles of the equilibrium safety factor q and 
pressure are shown in Fig. 2. The equilibrium density profile, not shown here, is assumed 
uniform if not indicated otherwise. Note that the safety factor is chosen such that only one 
rational surface (q = 2) is present inside the plasma for the n = 1 perturbation. We mention 
that the same equilibrium has been adopted in previous work [34-36]. The plasma response 
shown in Fig. 1 is also based on this equilibrium.  

 

     

FIG. 2. The radial profiles of (a) the safety factor, and (b) the plasma pressure, for a Wesson-like 
equilibrium with parabolic current density profile. Note that plotted in (b) is the pressure profile 
normalized to unit at the magnetic axis. The pressure amplitude is tuned to obtain different bN values. 
The vertical dashed lines indicate the location of the q = 2 rational surface.  

 

In the following study, we shall consider various combinations of the equilibrium flow 
components, based on a generic implementation as described in Appendix A. More 
specifically, we shall compare the screening effect due to 5 equilibrium flow models listed 
below. The first (𝐕𝟏) is a pure toroidal flow  

𝐕𝟏 𝑠 	= 	𝛺 s 𝐞𝛟	                                                            (1) 

with 𝛺 s  being the angular frequency of the toroidal rotation and 𝐞𝛟 	= 	𝑅<∇𝜙  the 
contravariant basis vector along the geometric toroidal angle 𝜙. The illustrative results shown 
in Fig. 1 is obtained with this flow model, where 𝛺 s 	= 	𝛺" is uniform along the plasma 
minor radius s.  

The next flow model is a pure poloidal flow 𝐕𝟐, which is the poloidal projection of the 
mass-conserving parallel equilibrium flow  

𝐕𝟐 𝑠 	= 	 𝑈 𝑠 𝜓B 𝜌𝒥 𝐞𝛘	                                                    (2) 

where 𝐞𝛘 	= 	𝒥∇𝜙×∇𝑠  is the contravariant basis vector along the poloidal angle 𝜒 . 𝑈 𝑠  
specifies the parallel flow velocity which varies only along the plasma minor radius. 𝜓B 	=
	𝜕𝜓/𝜕𝑠	is the radial derivative of the equilibrium poloidal flux function along the plasma 
minor radius s, 𝜌  the plasma equilibrium density, and 𝒥  the jacobian associated with the 
curve-linear toroidal coordinate system (𝑠, 𝜒, 𝜙). A more generic flow model 𝐕𝟑	is obtained by 
combining 𝐕𝟏	and	𝐕𝟐 
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𝐕𝟑 𝑠 	= 	 𝑈 𝑠 𝜓B 𝜌𝒥 𝐞𝛘 + 𝛺 s 𝐞𝛟	                                           (3) 

Next, a pure parallel equilibrium plasma flow (𝐕𝟒), that conserves the plasma mass, i.e. ∇ ∙
(𝜌𝐕𝟒) 	= 	0, can be written as 

𝐕𝟒 𝑠 	= 	 𝑈 𝑠 𝜌 𝐁	 = 	 𝑈 𝑠 𝜓B 𝜌𝒥 𝐞𝛘 + 𝐹𝑈 𝑠 𝜌𝑅< 𝑠, 𝜒 𝐞𝛟                  (4) 

where F is the equilibrium poloidal current flux function and R the major radius. Finally, the 
most generic equilibrium flow model 𝐕𝟓 is obtained by combining the parallel flow 𝐕𝟒 with 
the pure toroidal flow 𝐕𝟏 

𝐕𝟓 𝑠 	= 	 𝑈 𝑠 𝜌 𝐁 + 𝛺 s 𝐞𝛟	                                                (5) 

We point out that, by construction, all the above five flow models satisfy the 
equilibrium mass conservation condition. For the poloidal flow in particular, this is achieved 
because we do not choose an arbitrary form but specifically the poloidal projection of the 
parallel flow.  On the other hand, keeping the pure poloidal flow 𝐕𝟐 alone creates certain 
degeneracy in the plasma response model, thus resulting in numerical challenges with MARS-
F computations. This peculiar degeneracy is analyzed in Appendix B.(I). We find that the best 
way of numerically recovering the plasma screening due to a pure poloidal flow is to add a 
small amount of toroidal flow (i.e. 𝐕𝟑), then letting the latter approaches zero. At small values 
of toroidal flow, careful tuning of the radial mesh (which is highly packed near the mode 
rational surface) is often required, in order to obtain numerically converged results.  

Finally, we mention that, in this work, the toroidal rotation frequency 𝛺 s  is always 
normalized by the toroidal Alfven frequency. The parallel velocity component 𝑈 𝑠  has a unit 
of neither linear nor angular velocity. 𝑈 𝑠  is in fact normalized by a factor 𝑣V𝜌"/𝐵" in this 
work, with 𝑣V being the toroidal Alfven speed, 𝜌" the on-axis plasma mass density and 𝐵" the 
on-axis vacuum toroidal field.   

 

III. SCREENING OF RMP FIELDS DUE TO POLOIDAL PLASMA FLOW 

In this section, we consider the plasma flow model 𝐕𝟑 as defined by Eq. (3). Both the toroidal 
and parallel velocity components are assumed uniform, i.e. 𝛺 s 	= 	𝛺" and 𝑈 s 	= 	𝑈". As 
explained before, the screening effect due to the pure poloidal flow 𝐕𝟐  is obtained as the 
limiting case of vanishing Ω". The numerical results are summarized in Fig. 3, where we scan 
Ω" while fixing 𝑈" at different values. At 𝑈" 	= 	0, we recover the toroidal flow screening 
results with flow model of 𝐕𝟏, as reported in Fig. 1. 
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FIG. 3. Screening of the n = 1 resonant magnetic field due to poloidal plasma flow. Assumed is the 
flow model 𝐕𝟑 . The effect of pure poloidal flow 𝐕𝟐  is obtained at the limit of vanishing toroidal 
rotation frequency 𝛺". Plotted is the amplitude of the m/n = 2/1 total resonant radial field perturbation 
amplitude normalized by the corresponding vacuum field. The Lundquist number is chosen at 𝑆	 =
	10-	. The plasma equilibrium pressure is  𝛽$ 	= 	1.65. 

 

Several interesting points can be made based on Fig. 3. First, the presence of finite 
poloidal flow somewhat reduces the GGJ-screening at slow toroidal flow. The reduction is 
non-monotonic though, as will be more clearly demonstrated later on. Second, poloidal flow 
also affects the plasma screening in the RI-regime, i.e. at faster toroidal flow. Finally, the 
presence of poloidal flow generates an intermediate region in Ω", where a sharp reduction of 
the resonant field amplitude (i.e. strong screening) is observed.  We note that these sharp 
peaks are not numerical artifacts, since they are robustly obtained by tuning numerical 
parameters such as the radial mesh packing. In what follows, we shall closely examine each 
of these three screening regimes. 

 

A.  Effect of poloidal flow on GGJ-screening regime  

Here, we scan the parallel flow velocity 𝑈" while fixing 𝛺" at 10-6. This choice of a small 
value for the toroidal rotation frequency ensures that we are in the GGJ-screening regime. We 
emphasize that, although the parallel flow velocity 𝑈" is scanned, only the poloidal projection 
of the latter is included here, since we are assuming the flow model 𝐕𝟑. 

Figure 4 summarizes the computational results. It is interesting to note that, in the GGJ-
regime, the screening effect due to poloidal flow is not monotonic: the screening effect is first 
weakened by the slow poloidal flow, then enhanced with further increasing 𝑈"  [Fig. 4(a)].  In 
other words, the phenomenology of the resonant field screening by poloidal flow is similar to 
that by toroidal flow. This non-monotonic change of the screening behavior is closely related 
to the perturbed parallel current generated inside the plasma, near the q = 2 resonant surface 
as shown in Fig. 4(b-c). In both the small (2×10XY) and large (2×10XZ) limits of  𝑈", a large 
parallel current at the q = 2 surface provides the screening effect. In the fast poloidal flow 
case with 𝑈" 	= 	2×10XZ [Fig. 4(c)], two additional peaks appear in the perturbed parallel 
current, located roughly symmetrically off the q = 2 rational surface. These two peaks are due 
to the resonances between the perturbation field and the continuum sound waves.  
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FIG. 4. Screening effect due to poloidal flow in the GGJ-regime. Assumed is the plasma flow model 
𝐕𝟑 with a small (and fixed) toroidal rotation frequency 𝛺" 	= 	 10X[. Plotted in (a) is the amplitude of 
the m/n = 2/1 total resonant radial field perturbation amplitude normalized by the corresponding 
vacuum field, while scanning 𝑈". Plotted in (b, c) and (d) are the real (solid) and imaginary (dashed) 
parts of the m/n = 2/1 perturbed plasma parallel current near the q = 2 rational surface, at fixed 𝑈" 	=
	2×10XY, 𝑈" 	= 	5×10XY and 𝑈" 	= 	2×10XZ, respectively. The Lundquist number is chosen at 𝑆	 =
	10-	. The plasma equilibrium pressure is  𝛽$ 	= 	1.65.  

 

B. Effect of poloidal flow on RI-screening regime  

Next, we scan 𝑈"  at fixed toroidal rotation frequency of 𝛺" 	= 	10X\ , again assuming the 
plasma flow model 𝐕𝟑. The results, reported in Fig. 5, show that increasing poloidal flow 
speed monotonically weakens plasma screening in the RI-regime [Fig. 5(a)]. This can agin be 
understood by comparing the perturbed parallel current for two cases with slow (𝑈" 	=
	2×10XY) and fast (𝑈" 	= 	2×10XZ) poloidal flow, shown in Fig. 5(b) and (c), respectively. In 
both cases, the fundamental screening is provided by the perturbed current near the q = 2 
surface. However, additional current perturbations occur off the q = 2 rational surface with 
faster poloidal flow [Fig. 5(c)], due to continuum sound wave resonances. These additional 
parallel current peaks tend to partially compensate the fundamental screening provided by the 
current sheet near the q = 2 surface, leading to the overall weakened screening of the resonant 
field perturbation.  

We point out that those sharp perturbed current peaks from Fig. 5(c) are numerically 
well resolved by MARS-F. This is illustrated by the enlarged version reported in Fig. 6, where 
each current peak is shown in a separate plot. Note the similarity of the fundamental shielding 
current pattern near the q = 2 surface, between Fig. 6(b) and Fig. 5(b). Note also the 
difference in symmetry, in terms of the radial distribution of the perturbed current, between 
the fundamental shielding current (Fig. 6(b)) and those produced by sound wave resonances 
(Fig. 6(a, c, d)). Such a difference has previously been noticed in the context of toroidal flow 
induced plasma screening.0   
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FIG. 5. Screening effect due to poloidal flow in the RI-regime. Assumed is the plasma flow model 𝐕𝟑 
with a fixed toroidal rotation frequency of 𝛺" 	= 	 10X\. Plotted in (a) is the amplitude of the m/n = 2/1 
total resonant radial field perturbation amplitude normalized by the corresponding vacuum field, while 
scanning 𝑈". Plotted in (b) and (c) are the real (solid) and imaginary (dashed) parts of the m/n = 2/1 
perturbed plasma parallel current near the q = 2 rational surface, at fixed 𝑈" 	= 	2×10XY and 𝑈" 	=
	2×10XZ , respectively. The Lundquist number is chosen at 𝑆	 = 	 10-	 . The plasma equilibrium 
pressure is  𝛽$ 	= 	1.65. 

    

    

FIG. 6. Detailed distribution of the real (solid) and imaginary (dashed) parts of the m/n = 2/1 perturbed 
parallel current at four peaking location shown in Fig. 5(c).  Assumed is the plasma flow model 𝐕𝟑 
with Ω" 	= 	 10X\ and  U" 	= 	2×10XZ. The Lundquist number is chosen at 𝑆	 = 	 10-	. The plasma 
equilibrium pressure is  𝛽$ 	= 	1.65. 

 

C. Effect of poloidal flow on intermediate regime between GGJ- and RI-screening 

Figure 3 shows that poloidal flow plays a different role in the intermediate region between the 
GGJ- and the RI-screening regimes. In particular, sharp peaks appear indicating strong 
screening with certain combinations of the poloidal and toroidal flows. In what follows, we 
try to understand the physics nature of these peaks, by looking closely into one example near 
𝛺" 	= 	10XZ.  

Figure 7(a) plots the computed resonant field screening factor while scanning 𝑈" (with 
the flow model V3). We note a strongly non-monotonic behavior of the screening factor 
versus the poloidal flow speed at finite plasma pressure 𝛽$ 	= 	1.65 (curve in blue). For 
comparison, a smooth monotonic decay of the screening factor is computed for the case of 
vanishing equilibrium pressure 𝛽$ 	= 	0 (curve in red). The non-monotonic behavior of the 
finite-pressure case, in particular the sharp enhancement of the plasma screening at 𝑈" >
10XZ, is again associated with the continuum wave resonances due to poloidal plasma flow. 
These continuum wave resonances introduce multiple resonant surfaces off the q = 2 rational 
surface [Appendix B.(II-III)]. An extreme example is shown in Fig. 7(b) at poloidal flow of 
𝑈" 	= 	9×10XZ. The multiple peaks in the computed perturbed parallel current density, which 
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are all numerically well resolved as shown in Fig. 7(d-h), are due to resonances between the 
applied resonant perturbation and the shear Alfven and sound waves in the plasma. In 
particular, the Alfven continuum resonance creates a symmetric parallel current distribution 
around the q = 2 surface [Fig. 7(e)], whilst the sound wave continuum resonances create four 
peaked asymmetric current distribution further away from the q = 2 surface [Fig. 7(d, f, g, h)].  

The radial location of the aforementioned resonant surfaces varies with the poloidal 
flow speed, measured here by 𝑈". Indeed, Fig. 7(c) shows a gradual splitting of these resonant 
surface (away from the q = 2 surface) as we increase 𝑈" . Note that additional resonant 
surfaces also appear at certain finite 𝑈" (e.g. 𝑈" ∼ 6×10XZ). This is due to the existence of 
multiple roots of the sound wave resonant conditions as derived in Appendix B.   

 

FIG. 7. Screening effect due to poloidal flow in the intermediate region between the GGJ- and the RI-
regimes. Assumed is the plasma flow model 𝐕𝟑  with a fixed toroidal rotation frequency of 𝛺" 	=
	10XZ: (a) the amplitude of the m/n = 2/1 total resonant radial field perturbation amplitude normalized 
by the corresponding vacuum field, while scanning 𝑈", (b) the real part of the m/n = 2/1 perturbed 
plasma parallel current at 𝑈" 	= 	9×10XZ , (c) the radial location (in terms of q-values) of multiple 
resonant surfaces with increasing 𝑈" , (d-h) zoom-in version of the radial profile of the perturbed 
parallel current shown in (b) but near each resonant surface. The Lundquist number is chosen at 𝑆	 =
	10-	. The plasma equilibrium pressure is  𝛽$ 	= 	1.65 in (b-h) as well as for the blue curve in (a), and 
𝛽$ 	= 	0 for the red curve in (a).  

 

IV. SCREENING OF RMP FIELDS DUE TO PARALLEL PLASMA FLOW 
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In what follows, we investigate the effect of parallel equilibrium flow on the plasma screening 
of the resonant field component, by applying the flow model 𝐕𝟓.  The pure parallel flow 𝐕𝟒 is 
recovered as a limiting case of 𝐕𝟓 at vanishing 𝛺. The key results are summarized in Fig. 8. 
Figure 8(a) shows that the parallel flow does not induce additional screening compared to that 
due to the toroidal flow 𝐕𝟏. This is further confirmed by Fig. 8(b), where we vary the ratio of 
𝑈"/𝛺" at different (fixed) values of the toroidal rotation frequency 𝛺". The plasma screening 
factor remains constant (within numerical accuracy) while scanning the parallel flow speed.  

An insight into the above result is obtained from Ref. 44, where it has been proposed 
that the parallel equilibrium flow essentially introduces a transformation of the reference 
frame along the (equilibrium) magnetic field lines, without modifying the fundamental 
underlining physics. As a consequence, the parallel flow was found to have no effect on the 
resistive wall mode stability in Ref. [XiaNF19]. In this work, we also establish that the 
parallel flow does not affect the plasma screening. On the other hand, we have shown in Sec. 
III that the poloidal projection of the parallel flow does affect the plasma screening (in 
particular via introduction of multiple peaks in the shielding current off the q = 2 surface, due 
to continuum wave resonances). This implies that the screening effect, introduced by the 
poloidal and toroidal projections of the parallel flow, cancels each other.  

    

FIG. 8. Screening effect due to the parallel plasma flow in both the GGJ- and the RI-regimes. 
Assumed is the plasma flow model 𝐕𝟓  with (a) varying toroidal rotation frequency Ω"  at different 
values of parallel speed 𝑈", and (b) varying the ratio 𝑈"/Ω"	at different values of Ω". Plotted is the 
amplitude of the m/n = 2/1 total resonant radial field perturbation amplitude normalized by the 
corresponding vacuum field. The Lundquist number is chosen at 𝑆	 = 	 10-	. The plasma equilibrium 
pressure is  𝛽$ 	= 	1.65.  

Note that, since we have so far assumed uniform radial profiles for both the parallel 
flow component 𝑈(𝑠) and the plasma density 𝜌(𝑠), the aforementioned transformation of the 
reference frame along the magnetic field lines, due to the parallel flow, is global. It remains a 
question of whether the similar conclusion still holds, if the transformation is local, in other 
words, if the parallel flow component 𝑈(𝑠) or the plasma density 𝜌(𝑠) has a finite shearing 
rate from one flux surface to the other. Part of the purpose of the next section is to answer this 
question, by assuming sheared plasma density profile.  

  

V. SCREENING OF RMP FIELDS WITH SHEARED PLASMA DENSITY PROFILE 

Since the parallel flow model 𝐕𝟒 always involves the combination of 𝑈 𝑠 𝜌 (𝑠) [cf. Eq. (4)], 
we shall assume sheared plasma density profiles while keeping the parallel flow component 
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constant, 𝑈 𝑠 	= 	𝑈".  A family of density profiles are defined based on the safety factor q-
profile, with different choices of the shaping factor 𝛼 

𝜌 𝑠 	= 	 𝑞 𝑠 𝑞(𝑠	 = 	0) c                                                      (6) 

Note that the above density profile is normalized to unity at the magnetic axis, as in the 
MARS-F formulation. There is no particular physics reason for using the safety factor profile 
to define the density profile, beside the fact that, with 𝛼 < 0, Eq. (6) yields monotonically 
decaying density along the plasma minor radius, which is normally the case in tokamak 
plasmas.  Figure 9 plots three density profiles, with 𝛼	 = 	−1,−2,−3, respectively, which we 
shall use in the following study.  We shall investigate the influence of the profile shear with 
both flow models 𝐕𝟑 and 𝐕𝟓.  

 

FIG. 9. Radial profiles of the plasma equilibrium density with varying shear, controlled by the shaping 
parameter 𝛼 as defined in Eq. (6). Here the plasma density has been normalized by the density at the 
magnetic axis.  

 

A. Plasma screening with flow model 𝐕𝟑 and sheared density profile  

In this sub-section, we focus on the density shear effect on the GGJ- and RI-screening 
regimes, in the presence of poloidal projection of the parallel flow. Figure 10 shows that the 
plasma screening generally depends on the density profile shear, and equivalently on the shear 
of the parallel flow velocity. In the GGJ-regime [Fig. 10(a)], increasing the density profile 
shear shifts the peak (corresponding to the least screening) of the plasma response field 
amplitude towards the smaller value of  𝑈". The plasma screening is, however, not much 
affected by the density shear in the two limiting cases of small and large 𝑈".   

On the other hand, the presence of (larger) density profile shear monotonically reduces 
the plasma screening in the RI-regime, provided by the poloidal projection of the parallel flow 
[Fig. 10(b)]. Although not shown here, we observe similar resonances with plasma continuum 
waves due to poloidal flow, to that reported in Sec. III with uniform density profile. 
Furthermore, the resonant splitting, i.e. the location of multiple peaks of the perturbed parallel 
current along the plasma minor radius, depends on the density profile shear as expected. 
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FIG. 10. Influence of the plasma density profile shearing on the plasma screening due to poloidal flow, 
in (a) the GGJ- and (b) the RI-screening regimes, respectively. The density profile is controlled by the 
shaping parameter 𝛼 and shown in Fig. 9, with 𝛼	 = 	0 corresponding to a uniform profile. Assumed is 
the plasma flow model 𝐕𝟑 with (a) 𝛺" 	= 	 10X[ and (b) 𝛺" 	= 	 10X\.  Plotted is the amplitude of the 
m/n = 2/1 total resonant radial field perturbation amplitude normalized by the corresponding vacuum 
field. The Lundquist number is chosen at 𝑆	 = 	 10-	. The plasma equilibrium pressure is  𝛽$ 	= 	1.65. 

 

B. Plasma screening with flow model 𝐕𝟓 and sheared density profile  

Figure 8 shows that a radially uniform parallel flow does not affect the plasma screening due 
to a global transformation of the reference frame along magnetic field lines. The 
transformation becomes local with a sheared parallel flow, or equivalently with a sheared 
plasma density profile.  Figure 11 shows that the latter does affect the plasma screening. Here, 
we fix 𝑈" 	= 	5×10XY and scan the toroidal rotation frequency, assuming the plasma flow 
model 𝐯𝟓. The computed screening factor with different density profiles (Fig. 9) are compared 
in Fig. 11(a), showing significant modifications to the result with uniform density profile 
(𝛼	 = 	0) for both the GGJ- and RE-regimes. The effect is somewhat stronger for the GGJ-
regime. Furthermore, increasing the density profile shear enhances the GGJ-screening (𝛺" 	=
	10X[) [Fig. 11(b)] but weakens the RI-screening (𝛺" 	= 	10X\) [Fig. 11(c)]. This holds for 
various choices of the parallel flow speed and is not sensitive to the latter, indicating that the 
effect mainly comes from the shear of 𝑈 𝑠 𝜌 (𝑠), not the amplitude.  

 

     

Fig. 11 Influence of the plasma density profile shearing on screening due to parallel flow. The density 
profile is controlled by the shaping parameter 𝛼 , with 𝛼	 = 	0 corresponding to a uniform profile. 
Assumed is the plasma flow model 𝐕𝟓. Plotted is the amplitude of the m/n = 2/1 total resonant radial 
field perturbation amplitude normalized by the corresponding vacuum field, while (a) varying toroidal 
rotation frequency 𝛺", (b) varying the shaping parameter 𝛼 at different values of the parallel speed 𝑈" 
and fixed the toroidal rotation frequency in the GGJ-regime 𝛺" 	= 	 10X[, and (c) fixed the toroidal 
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rotation frequency in the RI-regime 𝛺" 	= 	 10X\.	The Lundquist number is chosen at 𝑆	 = 	 10-	. The 
plasma equilibrium pressure is  𝛽$ 	= 	1.65.   

 

VI. CONCLUSION AND DISCUSSION 

Utilizing a recently updated MARS-F code, we investigate the plasma screening effect on the 
applied resonant magnetic perturbation field assuming various equilibrium flow models, 
including the toroidal flow, the parallel flow and their combinations, as well the poloidal and 
toroidal projections of the parallel flow. The 2/1 tearing mode response is used as an example 
to illustrate different screening regimes.  

 We find that a parallel equilibrium flow, with uniform radial profile for 𝑈 𝑠 𝜌 (𝑠), 
does not affect the plasma screening of the RMP field. This is because such a uniform flow 
merely introduces a global rotational transform along the equilibrium magnetic field lines. On 
the other hand, any factor that violates this global nature will lead to (parallel) flow 
modification of the plasma screening. One possibility is to keep a uniform 𝑈 𝑠 	= 	𝑐𝑜𝑛𝑠𝑡 
while introducing finite shear to the plasma density profile 𝜌(𝑠) . With a monotonically 
decreasing density profile which is a typical case in tokamak plasmas, we find that the parallel 
equilibrium flow enhances the GGJ-screening but weakens the RI-screening. The screening 
factor is found to be roughly linearly scales with the density profile shaping factor 𝛼. 

 The poloidal projection of parallel flow also weakens the RI-screening. The effect on 
the GGJ-screening, however, is non-monotonic. With increasing the flow speed, the poloidal 
projection first weakens the GGJ-screening. Further increasing the flow speed results in 
enhanced GGJ-screening again. We explain this non-monotonic behavior in terms of the 
radial structure of the perturbed parallel current, which provides shielding to the resonant 
radial field perturbation. At faster poloidal equilibrium flow, new shielding currents appear 
off the mode rational surface, due to additional resonances between the RMP perturbation and 
the sound wave continuum.  

 These results indicate that the flow induced plasma screening to the RMP field can 
have complicated characteristics, which in turn can have implications on the RMP field 
penetration into the plasma during the ELM control experiments. The eventual screening 
factor depends on the plasma toroidal flow regimes (e.g. GGJ- versus RI-regimes) and the 
combination of different flow components. On the other hand, we emphasize that the results 
are obtained within the single-fluid model. It is known that the flow regime changes with 
inclusion of the two-fluid effect. Investigation of parallel flow, and its poloidal or toroidal 
projection, on the plasma screening within the two-fluid theory requires represents an 
important future work.   

Associated with the GGJ-screening are also other physics effects, that we ignored in 
this study. For instance, additional thermal transport [47] or the presence of large magnetic 
islands [48] was found to effectively eliminate the GGJ-screening. It is therefore interesting to 
understand how these additional physics effects can change the plasma screening in the 
presence of parallel flow or its projections. A recent work [49] finds that the any physics 
effect that alters the parallel sound wave dynamics will also affect the GGJ-regime. Since the 
parallel flow also participates into the resonance with parallel sound waves, as identified in 
this study, we expect certain synergistic effects between parallel flow and many other physics 
(e.g. the parallel viscosity induced wave damping) in determining the plasma screening in the 
GGJ-regime.   
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Appendix A: Computational model in MARS-F with parallel equilibrium flow 

Below we show the full set of single fluid, linearized resistive MHD equations for plasma 
response modeling in generic toroidal geometry, including both equilibrium toroidal and 
parallel flows, i.e. the flow model V5 described by Eq. (5) 

𝜌l 	= 	−∇ ∙ 𝜌𝛏 ,                                                             (A1) 

𝑖𝜔pq3 + 𝑖𝑛𝛺 𝛏	 = 	𝐯 + 𝛏 ∙ ∇𝛺 𝑅<∇𝜙 − 𝜌Xl𝑈∇× 𝛏×𝐁 + 𝜌X<𝑈𝜌l𝐁 + 𝛏 ∙ ∇𝑈 𝜌Xl𝐁,   (A2) 

𝜌 𝑖𝜔pq3 + 𝑖𝑛𝛺 𝐯	 = 	−∇𝑝 + 𝐣×𝐁 + 𝐉×𝐛 + 𝜌 2𝛺𝐙×𝐯 − 𝐯 ∙ ∇𝛺 𝑅<∇𝜙                   

                                   −𝑈∇ 𝐯 ∙ 𝐁 + 𝑈𝐯×𝐉 + 𝑈𝐁× 𝛁×𝐯 − 𝐁[𝜌∇(𝜌Xl𝑈) ∙ 𝐯]	,                 (A3) 

𝑖𝜔pq3 + 𝑖𝑛𝛺 𝐛	 = 	∇× 𝐯×𝐁 + 𝐛 ∙ ∇𝛺 𝑅<∇𝜙 − ∇× 𝜂𝐣 − ∇× 𝜌Xl𝑈𝐛×𝐁 ,     (A4) 

𝑝	 = 	−𝛏 ∙ ∇𝑃 − Γ𝑃∇ ∙ 𝛏,                                                    (A5) 

𝐣	 = 	∇×𝐛,                                                                (A6) 

where the variables 𝜌l, 𝛏, 𝐯, b, j and 𝑝 denote the plasma perturbed density, displacement, 
velocity, magnetic field, current and pressure, respectively. All the perturbed quantities 
depend on the toroidal angle 𝜙 in the analytic form of exp 𝑖𝑛𝜙 , where 𝑛 is the toroidal mode 
number. The equilibrium plasma density, magnetic field, current and pressure are denoted by 
𝜌 , 𝐁 , 𝐉  and 𝑃 , respectively. 𝛺  and 𝑈  denote the toroidal and parallel components of the 
equilibrium flow. 𝜔pq3 is the frequency of the applied external RMP field, with 𝜔pq3 	= 	0 
for a static RMP field produced by the dc coil current as assumed in this work. The RMP coil 
current density 𝐣��� is treated as a source term, and included into the model via Ampere’s law 
𝐣��� 	= 	∇×𝐛. The other quantities shown in above equations are the ratio of specific heats 
Γ	 = 	5/3, the unit vector of the vertical direction 𝐙 and the plasma resistivity 𝜂. As evident 
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from the above equations, the presence of a finite equilibrium parallel flow introduces several 
additional terms to the perturbed momentum balance equation (A3) and the induction 
equation (A4).  

  

Appendix B: Some analytic considerations in presence of equilibrium flow 

In what follows, we examine a numerical problem associated with purely parallel equilibrium 
flow, when computing the plasma response to a dc external RMP field. The resonant 
phenomena with continuum sound waves, as observed in MARS-F modeling, will also be 
discussed.  

In a generic toroidal geometry with the equilibrium magnetic flux surface based 
coordinate system (𝑠, 𝜒, 𝜙) as defined in MARS-F, the plasma displacement and the perturbed 
fluid velocity can be represented as 𝛏	 = 	 𝜉l𝐚l + 𝜉<𝐚< + 𝜉\𝐚\and 𝐯	 = 	𝑣l𝐚l + 𝑣<𝐚< + 𝑣\𝐚\, 
respectively. The basis vectors are defined as 𝐚l 	= 	

𝐁
�
×𝐞𝐬 × 𝐁

�
, 𝐚< 	= 	𝒥 𝐁×∇�

��
, and 𝐚\ 	= 	𝐁. 

Here, B is the equilibrium magnetic field, 𝐞𝐬 	= 	𝒥∇𝜒×∇𝜙 is the covariant basis vector along 
the radial coordinate s, and 𝒥	 = 	 ∇𝑠 ⋅ ∇𝜒×∇𝜙 Xl	= 	𝐚l ∙ 𝐚<×𝐚\ is the Jacobian associated 
with the curvilinear coordinates. We consider the parallel sound wave propagation physics 
associated with MHD equations (A1)-(A6), projected along the aforementioned basis vectors  

𝑖𝜔pq3 + 𝑖𝑛𝛺 𝜉l 	= 	𝑣l − �
�

��

𝒥
���

��
+ �

p�
���

��
                                    (B1) 

𝜌 𝑖𝜔pq3 + 𝑖𝑛𝛺 𝒥𝐵<𝑣\ 	= 	−𝜓B ��
��
− 𝒥�

p�
��
��
− 𝑈 𝜓B � ����

��
+ 𝒥�

p�
� ����

��
            (B2) 

𝑖𝜔pq3 + 𝑖𝑛𝛺 𝒥𝑝	 = 	−Γ𝑃 �
��

𝜓B𝑣\ + �
��

𝒥�
p�
𝑣\ − 𝒥𝜌Xl𝑈𝐁 ∙ ∇𝑝            (B3) 

Note that only terms responsible for the parallel sound wave propagation are retained in the 
above Eqs. (B2)-(B3). In a PEST-like straight-field-line coordinate system (which proper 
choice of the poloidal angle 𝜒 ), we have the global safety factor calculated as 𝑞	 =
	𝐽𝐹/(𝜓B𝑅<). With Fourier representations along both the poloidal and toroidal angles, we 
have  �

��
→ 𝑖𝑚 and �

��
→ −𝑖𝑛. Taking into account the above relations, and ignoring certain 

toroidal coupling effect, Eqs. (B1-B3) can be written as  

𝑖𝜔pq3 + 𝑖𝑛𝛺 𝜉l 	= 	𝑣l − �
�𝒥
𝜓B 𝑚 − 𝑛𝑞 𝜉l                                    (B4) 

𝜌 𝑖𝜔pq3 + 𝑖𝑛𝛺 𝒥𝐵<𝑣\ 	= 	−𝑖𝜓B 𝑚 − 𝑛𝑞 𝑃 + 𝑈𝐵<𝑣\                          (B5) 

𝑖𝜔pq3 + 𝑖𝑛𝛺 𝒥𝑝	 = 	−Γ𝑃𝑖𝜓B 𝑚 − 𝑛𝑞 𝑣\ − 𝒥𝜌Xl𝑈𝐁 ∙ ∇𝑝                       (B6) 

 

(I). A singularity issue associated with parallel flow with vanishing toroidal flow 

This corresponds to the equilibrium flow model  𝐕𝟒  defined by Eq. (4). With vanishing 
toroidal equilibrium flow (𝛺	 = 	0) and considering a dc RMP field (𝜔pq3 	= 	0), Eq. (B4) 
relates the radial plasma displacement to the perturbed radial velocity  
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𝒥𝑣l 	= 	− �
�
𝜓B 𝑚 − 𝑛𝑞 𝜉l                                                   (B7) 

Evidently, Eq. (B7) introduces a new singularity into the MHD equations, as compared to the 
case with vanishing equilibrium parallel flow. This singularity is resolved either by enforcing 
a vanishing perturbed radial velocity at mode rational surfaces, or by introducing a small but 
finite equilibrium toroidal flow 𝛺  (or equivalently by considering an ac RMP field). We 
emphasize that in the special case of 𝛺	 = 	𝑈	 = 	𝜔pq3 	= 	0, Eq. (B4) has degeneracy. The 
plasma radial displacement is un-determined in this case.    

The fundamental reason for the appearance of the singularity issue in Eq. (B7) is our 
simplified model assumption for the plasma density 𝜌	 = 	𝜌 𝑠 . In a proper equilibrium with 
generic plasma flow, the plasma density should be 2-D function of 𝑠, 𝜒 , which in turn 
introduces toroidal coupling into Eq. (8) which then resolves the singularity issue at mode 
rational surfaces. In our study, we choose to have a small but finite toroidal equilibrium flow 
(i.e. flow models 𝐕𝟑 and	𝐕𝟓) to avoid this issue.  

 

(II). Continuum resonance with sound waves: pure toroidal flow  

We now focus on the parallel sound wave resonances described by Eqs. (B5)-(B6). We first 
consider the case with vanishing equilibrium parallel flow, U = 0. Equations (B5)-(B6) are 
simplified to 

𝜌 𝑖𝜔pq3 + 𝑖𝑛𝛺 𝒥𝐵<𝑣\ 	= 	−𝑖𝜓B 𝑚 − 𝑛𝑞 𝑝                                     (B8) 

𝑖𝜔pq3 + 𝑖𝑛𝛺 𝒥𝑝	 = 	−Γ𝑃𝑖𝜓B 𝑚 − 𝑛𝑞 𝑣\                                  (B9) 

Combine the above two equations, we have 

 𝑖𝜔pq3 + 𝑖𝑛𝛺 <𝑣\ 	= 	− 𝑉� 𝑚 − 𝑛𝑞 ��

𝒥�

<
𝑣\,                               (B10) 

where 𝑉� 	= 	 Γ𝑃 𝜌. Again assuming a dc RMP, we have 

𝑛<𝛺< 	= 	𝜔�<                                                             (B11) 

where 𝜔� ≃ 𝑘∥𝑉� is the sound wave frequency and 𝑘∥ ≡
 X¡¢
¢p

. Equation (B11) thus illustrates 
the well-known resonance condition between the perturbed field and the sound wave 
continuum, which is typically satisfied near (but off) the mode rational surfaces. Next, we 
derive a similar resonance condition but in the presence of parallel equilibrium flow. 

 

(III). Continuum resonance with sound waves: parallel flow  

With the generic plasma flow model 𝐕𝟓, Eqs. (B5)-(B6) can be re-written as 

𝜌 𝑖𝜔pq3 + 𝑖𝑛𝛺 𝐵𝑣\ 	= 	−𝑖𝑘∥ 𝑃 + 𝑈𝐵<𝑣\                                         (B12) 

𝑖𝜔pq3 + 𝑖𝑛𝛺 𝑝	 = 	−𝑖𝑘∥𝐵 Γ𝑃𝑣\ + 𝜌Xl𝑈𝑃                                       (B13) 

Assuming 𝜔pq3 	= 	0 and denoting 𝜌Xl𝑈𝐵 ≡ 𝑈∥ and 𝐵𝑣\ ≡ 𝑣\, we have 
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𝑛𝛺 + 𝑈∥𝑘∥ 𝑣\ 	= 	−𝑘∥𝜌Xl𝑃                                                    (B14) 

𝑛𝛺 + 𝑘∥𝑈∥ 𝑝	 = 	−𝑘∥Γ𝑃𝑣\                                                     (B15) 

Combining Eqs. (B14)-(B15) yields the continuum sound wave resonance condition in the 
presence of parallel equilibrium flow  

𝑛𝛺 + 𝑘∥𝑈∥ < 	= 	𝜔�<                                                                 (B17) 

This kind of resonance is responsible for the appearance of multiple resonant surfaces as 
shown in Figs. 5 and 7. 
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