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A model is presented for space charge neutralisation of positive ion beams. The model is used for the 

particular case of the beams used for magnetic based fusion applications. The beams consist, after a gas 

neutraliser, of ions and atoms at different energies. Account is taken of the contribution of all beam 

components to ionization of the background gas. Consideration is also given to not only beam heating of the 

plasma generated by the beam, due to Coulomb collisions, but also to Coulomb heating by fast electrons 

produced in ionization by all beam particles and stripping of the neutral components. Two approximations 

are considered for the motion of the secondary ions out of the beam potential; a drift approximation and a 

freefall approximation. All the beam plasma parameters can be calculated. The model is applied to a typical 

extracted beam of deuterium ions of 120kV,60A. It is found that these beams are very highly compensated 

and that beam plasma heating by the electrons produced is generally greater than that due to the beam ions. 

 

 

I. INTRODUCTION 

A charged particle beam is subject to two internal forces 

arising from interactions between the particles. Firstly there 

is a repulsive force due to the Coulombic interaction between 

the like charges in the beam. Secondly there is an attractive 

force due to the magnetic fields arising from the moving 

charges. For a non-relativistic beam the ratio of the 

magnitudes of the magnetic to electric forces is 2 [1] where 

 = vb/c and vb is the beam velocity and c is the velocity of 

light. For applications such as producing neutral beams of 

atoms and molecules for controlled magnetic fusion on 

devices such as the Joint European Torus (JET) indicative 

precursor beams of 60A, 120kV D+ are used [2]. Such a 

beam is non-relativistic and the magnetic force can be 

ignored. The potential across the beam from the centre to the 

beam edge for a uniform distribution of ions is I/40vb 

where I is the beam current and 0 is the permittivity of free 

space. For such a beam this potential is ~158kV and if this 

repulsion is unmitigated the beam cannot travel any 

significant distance. Space charge effects could thus affect 

the transmission of the beam into the fusion device and the 

trajectories of residual ions removed from the beam in order 

to produce a neutral beam for injection into the fusion device. 

 

The mitigation of the repulsive space charge force is 

known as space charge compensation or neutralisation. The 

beam passes through a background gas and forms a plasma 

consisting of the beam ions, secondary slow ions and 

electrons causing by collisions with the gas. Ionisation and 

charge exchange give rise to the slow ions and electrons e.g. 

for a D+ beam for example 
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D+ + D2 → D+ + D2
+ + e      ionization 

          D+ + D2 → D + D2
+             charge exchange 

 

The ejected electrons may also ionize the background gas. 

The slow ions are expelled from the beam due to the positive 

potential. The electrons remain in the beam unless they have 

sufficient energy to escape. The overall beam potential is 

thus reduced and the beam can then move with much reduced 

divergence compared to the uncompensated beam case.  

 

Space charge compensation has been studied extensively 

by Gabovich and Solosochenko and co-workers; see the 

reviews [3,4] for example. Soloschenko [4] developed an 

expression for the compensated potential of the beam. The 

approach was to balance the energy required for the electrons 

to leave the beam with that derived from heating by the beam 

itself. The resulting expression for the compensated beam 

potential involved two terms. One term is dominant at low 

pressure and does not involve the motion of the secondary 

ions whereas the second terms is dominant at higher 

pressures and involves an average velocity for the secondary 

ions and also depends on the size of the beam. Winklehner 

et al. [5] measured the beam potential for Ar8+ and O6+ beams 

and found good agreement with this model if an ion 

temperature was chosen close to the value of the beam 

potential. This model does not allow for the electron 

temperature or the plasma densities to be determined.  

 

Holmes [6] was able to close the equations fully to 

determine the potential, plasma densities and temperature 

using continuity equations for the ions and electrons and the 

overall energy balance. Solving the continuity equation fully 
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to give the radial density of ions taking into account the 

creation of ions at different radial positions and assuming the 

ions were in freefall in the potential from where they were 

created to the beam edge led to parabolic dependence of the 

potential on radius at small radii. Given the freefall nature of 

the movement of the ions this model is essentially only 

applicable at low pressures or to small beams. 

 

In this paper a model of space charge compensation in 

beams such as those used for magnetic fusion applications is 

presented. A basic model is developed and applied under two 

approximations. In the freefall approximation the secondary 

ions move out of the beam solely under the potential between 

where they are created and the edge of the beam Such a 

model is applicable to small beams or low pressures in the 

beam path. In the drift approximation the secondary ions 

move with a velocity determined by their collisions with the 

background gas and thus is more applicable to large beams 

and high beamline pressures where the mean free path is 

smaller than the beam dimension. The equations are solved 

not only to give the beam potential but also the plasma 

electron temperature and densities. 

 

In all of the work described so far [3,4,6] it is assumed that 

the heating of the plasma electrons arises due to Coulomb 

collisions between these electrons and the beam ions. In this 

paper it is argued that the source of the heating is not from 

the beam ions alone but from the energy of the electrons 

ejected in forming the secondary ions. Their role in 

producing secondary electrons is also taken into account 

since it will be shown that their energy is sufficiently high. 

 

In Section II, the properties of the beams used in magnetic 

fusion applications are described briefly. In Section III the 

basic space charge neutralisation model is developed and 

then used in Section IV in the freefall and drift 

approximations. The method for solving the resultant 

equations is also outlined. The results from applying the 

model to a 120kV, 60A deuterium beam typical of that used 

on JET are discussed in Section V and some conclusions are 

drawn in Section VI. 

 

II. ION BEAMS FOR MAGNETIC 

FUSION APPLICATIONS 

Beams of fast atoms and molecules are used in magnetic 

fusion devices for heating the plasma, diagnostics and 

current drive. They must be neutral to avoid interaction with 

the magnetic field of the fusion machine used to confine the 

plasma. These beams are derived by extraction of an ion 

beam from a source, passing this beam through a gas cell or 

neutraliser to produce neutral components. The 

neutralisation is not 100% efficient and residual ions are 

swept out of the composite beam of ions and neutrals by a 

magnetic field. The neutral beam is then injected into the 

fusion device. 

 

The JET machine uses positive ion beams of primarily 

deuterium but also tritium and hydrogen [2]. Taking the 

deuterium beam as an example, D+, D2
+ and D3

+ ions are 

extracted from a magnetic multipole source. At high power 

the total extracted current is ~60A and this is accelerated in 

a triode accelerator to 120kV. The flux fractions of the D+, 

D2
+ and D3

+ ions, f1:f2:f3 are ~0.72:0.22:0.06. The neutraliser 

contains the same gas species as the ion source. The 

efficiency of the gas neutraliser for these beam parameters at 

the operating filling pressure is measured as ~42%. Taking 

into account transmission and other losses the injected 

neutral beam power from the injector is just over 2MW. JET 

has sixteen such injectors giving a total injected power 

capability of over 32MW.  

 

After exiting the neutraliser the composite beam has 

fourteen components arising from the interaction of the three 

extracted species with the gas in the neutraliser. The nine ion 

components are D+(Eb), D-(Eb), D2
+(Eb), D+(Eb/2), D-(Eb/2),  

D3
+(Eb), D2

+(2Eb/3), D+(Eb/3), and D-(Eb/3). The five neutral 

components are D(Eb), D2(Eb), D(Eb/2), D2(2Eb/3), and 

D(Eb/3). This paper does not deal with the space charge 

effects within the neutraliser as the fractions of the 

components are changing as the beam travels through the 

gas; the space charge compensation of the composite beam 

after the neutraliser will be modelled. Both the ionic and 

neutral components can contribute to the processes giving 

rise to space charge neutralisation e.g. all components can 

ionize the background gas creating secondary ions and 

electrons and the neutrals can be stripped to create further 

electrons. This is a lot to deal with. 

 

The situation can be simplified because for an infinitely 

thick neutraliser target, the only remaining ion components 

are D+(Eb), D+(Eb/2), and D+(Eb/3) and the remaining neutral 

components are D(Eb), D(Eb/2), and D(Eb/3) as these 

fractions have reached an equilibrium value. The kinetic 

energy of the component is shown in the brackets. These are 

the eventual products of the initial D+, D2
+ and D3

+ ions. In 

the case of the JET injector operating parameters the 42% 

neutralisation corresponds to a target thickness of ~ 5.5x1019 

m-2.  At this target thickness the three ionic components 

above comprise ~95% of the residual ion beam power and 

the neutral components are also ~95% of the neutral beam 

power. Hence it is a reasonable approximation to assume the 

beam is only made up of those six components.  

 

The equilibrium fractions for the three neutral components 

D(Eb), D(Eb/2), and D(Eb/3) are F(Eb), F(Eb/2), and F(Eb/3) 

such that the equilibrium neutral fractions of the extracted 

power are f1* F(Eb), f2* F(Eb/2), f3* F(Eb/3) respectively. The 

equilibrium fraction F only depends on various cross-

sections for the processes in the neutraliser and values are 
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found in various databases. Similarly, the fractions of the 

extracted power in the residual ions are f1*(1- F(Eb)), f2*(1-

F(Eb/2)), f3*(1-F(Eb/3)) respectively. A more concise 

notation for F(Eb), F(Eb/2), and F(Eb/3) of F1, F2 and F3 

respectively will be used in the remainder of this paper. 

 

The general model will apply to the region between the 

exit of the neutraliser and the bend magnet. Space charge 

effects in his region and indeed in the neutraliser could affect 

the beam divergence and hence the transmission into the 

machine. However, the model is general enough to consider 

the ion components alone beyond the magnet. 

 

III. THE BASIC SPACE CHARGE 

COMPENSATION MODEL 

1. Processes, cross-sections and rates 

The basic process of space charge compensation involves 

the production of slow ions and electrons by the beam 

components. The electrons are trapped in the beam potential 

and reduce its magnitude and the slow ions are expelled from 

the beam due to the resulting potential. 

 

The slow ions are produced in a number of ways. The ion 

beam will ionize the background gas. Charge exchange 

between the ion beam and the background gas will also 

produce slow ions. The cross-sections for these processes are 

i and cx respectively. Since the beam under consideration 

also contains neutral components these can also ionize the 

background gas with an associated cross-section 0i. 

 

Electrons to be used in the compensation of the beam 

potential are produced initially in the ionization of the 

background gas by the beam ions. Rudd [7] has measured 

both the energy and angular distribution of electrons 

produced in ion collisions with gases. For the case of H+ 

collisions with H2 the average energy of the ejected electrons 

integrated over all angles is plotted in Figure 1 against the 

proton energy. 

 

This average energy, Er, is fitted by the equation 

 

                        𝐸𝑟 = 0.084 (
𝐸𝑏

𝐾
)

0.4861

                     (1) 

 

where Eb is the beam acceleration energy in eV and K is the 

ion mass number. The mass dependence has been added to 

allow scaling to other species. Rudd also found that the 

differential cross-section with respect to energy i.e. the 

cross-section for ejection of electrons with a given energy 

versus the energy of the ejected electrons was almost 

exponential. Thus the ejected electrons have a wide 

distribution of energies that is exponential in form.  

 

FIG. 1.  The average energy of ejected electrons in H+ + H2 

collisions. 

 

Electrons will also be produced in the ionization of the 

background gas by the neutral components of the beam. It is 

assumed here that the average energy and the energy 

distribution are the same as those produced in ionization by 

the ion beam components. 

 

Electrons are also produced in stripping or re-ionisation of 

the neutral components on the background gas with a cross-

section 0s. In this case the electrons are initially mono-

energetic with a velocity equal to the beam component 

velocity and their energy, Es, is then  

 

                        𝐸𝑠 =
𝑚𝑒𝐸

𝐾𝑚𝑝
                             (2) 

 

where me are mp are the electron and proton masses 

respectively. E is the beam component energy. It is argued 

in the appendix that these electrons from the various 

processes form thermal distributions. These will have a 

characteristic temperature T = 2E/3. These electrons have 

high enough energies to contribute to the ionization of the 

background gas with rate <v>ie. 

 

The cross-sections and rate used are empirical fits to those 

from the IAEA Aladdin database [8] except for the cross-

section for ionization of the gas by the beam ions. Rudd [7] 

has measured cross-sections for this process and these have 

been used to be consistent with the use of the average ejected 

electron energies. It is worth noting though that Rudd’s 

cross-sections are significantly higher than the database 

values by ~50% in the proton energy range 20-100keV. The 

electron ionization rate for deuterium is assumed to be the 

same as for hydrogen. The equilibrium fractions have been 

taken from the ORNL red book [9]. All cross-sections for 

hydrogen collisions have been scaled using a constant 

velocity to other isotopes such as deuterium. So  



Space charge compensation of positive ion beams                            PHYSICAL REVIEW ACCELERATORS AND BEAMS 

 

𝑣𝑏 =  (2𝑒𝐸𝑏/𝑀𝑏)0.5 =  (2𝑒𝐸𝑏/𝐾𝑚𝑝)
0.5

= (2𝑒𝐸𝑏𝐻/𝑚𝑝)
0.5

  

 
where Mb is the beam ion mass and EbH = Eb/K is the 

equivalent proton energy.  

 

In the following analysis it is assumed that the beam 

profile is parabolic for both ions and neutrals. As the ultimate 

intention is to examine the beam optics in the presence of a 

beam plasma and its associated potentials, it is useful to have 

a definition of the beam radius. The distribution of beam ion 

density is characterized by a single radial parameter, the 

beam radius, A, which is defined by the outer limit where the 

density is zero. Other profiles could be considered, for 

example a Gaussian profile but that implies that the beam 

still has a significant density at a multiple of the beam radius 

with consequent beam scraping and more complex 

mathematical expressions. In a subsequent paper, the 

dependence of the beam radius, A with the space charge 

electric field will be explored. The notation is used that nbx 

or n0x is the ion beam or neutral density of energy component 

x, with x being 1,2 or 3 representing the full, half or third 

energy component respectively. In a similar way the axial 

densities are designated nb0x or n00x. For the case of the ion 

beam components then the profile is 

 

      𝑛𝑏𝑥(𝑟) = 𝑛𝑏0𝑥(1 − 𝑟2/𝐴2)                  (3)          

 
where r is the radial dimension and A is the beam half width. 

 

 Using the fractions of the extracted ion components and the 

equilibrium fractions of the neutral beam, the axial ion 

densities can be found from 

 

𝐼𝑓1(1 − 𝐹1)

𝑒
= 2𝜋 ∫ 𝑛𝑏1(𝑟)𝑣𝑏1𝑟𝑑𝑟

𝐴

0

 

 

                       =
𝜋𝐴2

2
𝑛𝑏01𝑣𝑏                      (4) 

 

where I is the extracted current, f1 is the extracted fraction of 

full energy ions and (1-F1) is the equilibrium fraction of full 

energy ions after the neutraliser, vb1 is the velocity of the full 

energy ion component which is just designated vb. Thus the 

axial ion densities are for the three components are 

 

𝑛𝑏01 =
2𝐼𝑓1(1 − 𝐹1)

𝜋𝑒𝐴2𝑣𝑏

 

 

 

𝑛𝑏02 =
21.5 x 2𝐼𝑓2(1 − 𝐹2)

𝜋𝑒𝐴2𝑣𝑏

 

 

 

(5) 

𝑛𝑏03 =
31.5 x 2𝐼𝑓3(1 − 𝐹3)

𝜋𝑒𝐴2𝑣𝑏

 
 

 

 

In equations (5) the factor 2 comes from the profile 

definition. The factors 21.5 and 31.5 appearing arise from two 

causes. For instance, for the half energy component there is 

a factor 20.5 from the relation between vb2 and vb and a factor 

2 because the D2
+ (Eb) will end up as two D+ (Eb/2). The total 

axial beam density is then 

 

      𝑛𝑏0 = 𝑛𝑏01 + 𝑛𝑏02 + 𝑛𝑏03                       (6) 

 

 

Similarly, density equations can be written for the neutral 

components e.g. the full energy component density is 

 

𝑛01 =
2𝐼𝑓1𝐹1

𝜋𝑒𝐴2𝑣𝑏

 

 
and the total axial neutral density is  

 

          𝑛00 = 𝑛001 + 𝑛002 + 𝑛003                     (7) 

 

The total production rate, Qbi (m3s-1) on axis of slow ions 

and fast ejected (“Rudd”) electrons by the ion beam 

components can then be written down as  

 

𝑄𝑏𝑖 = 𝑁𝑣𝑏 (𝑛𝑏01𝜎𝑖(𝐸𝑏) +
𝑛𝑏02𝜎𝑖(𝐸𝑏/2)

√2
+

𝑛𝑏03𝜎𝑖(𝐸𝑏/3)

√3
) 

 

where N is the gas density. Eliminating the individual ion 

densities gives 

 

𝑄𝑏𝑖 =
2𝐼𝑁

𝜋𝑒𝐴2
(𝑓1(1 − 𝐹1)𝜎𝑖(𝐸𝑏) 

 
      +2𝑓2(1 − 𝐹2)𝜎𝑖(𝐸𝑏/2) 

 
                      +3𝑓3(1 − 𝐹3)𝜎𝑖(𝐸𝑏/3))           (8) 

 

 

An equivalent equation for the production rate of ions and 

fast Rudd electrons by the neutral species, Q0i, can then also 

be derived 
 

𝑄0𝑖 =
2𝐼𝑁

𝜋𝑒𝐴2
(𝑓1𝐹1𝜎0𝑖(𝐸𝑏) + 2𝑓2𝐹2𝜎0𝑖(𝐸𝑏/2) 

 

          +3𝑓3𝐹3𝜎0𝑖(𝐸𝑏/3))                                (9) 

 

The neutral components can also be re-ionised or stripped 

on the background gas to produce a fast beam ion and an 
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electron with energy given by equation (2). The rate, Q0s, for 

this process is then 

 

𝑄0𝑠 =
2𝐼𝑁

𝜋𝑒𝐴2
(𝑓1𝐹1𝜎0𝑠(𝐸𝑏) + 2𝑓2𝐹2𝜎0𝑠(𝐸𝑏/2) 

 

             +3𝑓3𝐹3𝜎0𝑠(𝐸𝑏/3))                             (10) 

 

By similar arguments the production rate of slow ions by 

charge exchange, Qcx, is 

 

𝑄𝑐𝑥 =
2𝐼𝑁

𝜋𝑒𝐴2
(𝑓1(1 − 𝐹1)𝜎𝑐𝑥(𝐸𝑏) 

 
      +2𝑓2(1 − 𝐹2)𝜎𝑐𝑥(𝐸𝑏/2) 

 
                       +3𝑓3(1 − 𝐹3)𝜎𝑐𝑥(𝐸𝑏/3))           (11) 

 

Taking nr0 to be the axial density of Rudd electrons from 

ionization by the ion and neutral components and stripped 

electrons the axial production rate of slow ions and also the 

production rate of slow electrons by these electrons is then 

 

                            𝑄𝑒 = 𝑁𝑛𝑟0〈𝜎𝑣〉𝑖𝑒                      (12) 

Hence the total production rate of slow ions, Qi, is the sum 

of the process rates above 

 

                        𝑄𝑖 = 𝑄𝑏𝑖 + 𝑄0𝑖 + 𝑄𝑐𝑥 + 𝑄𝑒             (13) 

 

The total fast electron production rate, Qr, is then 

 

                          𝑄𝑟 =  𝑄𝑏𝑖 + 𝑄0𝑠                             (14) 

 

As can be seen there are fewer plasma electrons formed 

than slow positive ions. The Rudd/stripped electrons escape 

easily from the beam plasma and always are treated 

separately. Due to the energies of the ion and neutral beam 

components there are three temperatures of the Rudd 

electrons from ionization by both ions and neutrals, Trx with 

x = 1,2 3 referring to the full, half and third energy ions and 

neutrals. In addition, there are three temperatures of stripped 

electrons Tsx. It is convenient to use a single weighted 

average value to replace these six values. This is justified on 

the basis of Coulomb friction between these electrons 

leading to a single temperature. The weighting is the relative 

electron production cross-sections. This weighted average 

value of the fast electron temperature can be written as 

 

 

 

 

𝑇𝑟 =
[∑ 𝑇𝑟𝑥𝑓𝑥𝑥𝑥=3

𝑥=1 (1 − 𝐹𝑥)𝜎𝑏𝑖 (
𝐸𝑏

𝑥 ) + ∑ 𝑇𝑟𝑥𝑓𝑥𝑥𝑥=3
𝑥=1 𝐹𝑥𝜎0𝑖 (

𝐸𝑏

𝑥 ) + ∑ 𝑇𝑠𝑥𝑓𝑥𝑥𝐹𝑥𝜎0𝑠 (
𝐸𝑏

𝑥 )𝑥=3
𝑥=1 ]

[∑ 𝑓𝑥𝑥𝑥=3
𝑥=1 (1 − 𝐹𝑥)𝜎𝑏𝑖 (

𝐸𝑏

𝑥
) + ∑ 𝑓𝑥𝑥𝑥=3

𝑥=1 𝐹𝑥𝜎0𝑖 (
𝐸𝑏

𝑥
) + ∑ 𝑓𝑥𝑥𝐹𝑥𝜎0𝑠 (

𝐸𝑏

𝑥
)𝑥=3

𝑥=1 ]
 

 

(15) 

 
 

Substitution of values shows that Tr is close to the 

temperature of most of the individual Rudd/stripped 

temperatures but smaller than that for the full energy 

stripped electrons. This average temperature can be used in 

the evaluation of the slow electron and slow ion production 

in equations (12) and (13). 

 

In the following sections ion beam heating of the plasma 

through Coulomb interactions will be discussed. It is 

convenient now to define the parameter, Sb given by 

 

𝑆𝑏 = 𝐾1/2 ∑
𝑛𝑏0𝑥

(𝐸𝑏/𝑥)0.5

3

𝑥=1

 

 

(16) 

2. Electron confinement 

The potential established within the beam takes the form 

 

       𝜙(𝑟) = −𝑉0(1 − exp (−𝛼𝑟2))         (17) 

 

At low values of r near the beam axis, this gives  = -V0r2 

which the required form as proved by Holmes [6]. The 

convention chosen is that V0 and  are positive numbers 

such that the potential on the beam axis is zero and -V0 at 

the outer wall. 

 

The fast electrons with temperature Tr are confined 

within this potential. Their production rate within a 

volumetric element of length L and radius equal to the 

beam radius, A, must equal their loss through the surface 

of the element due to their thermal flux. Thus 

 

𝐿 ∫ 𝑄𝑟 (1 −
𝑟2

𝐴2
) 2𝜋𝑟𝑑𝑟

𝐴

0

=
𝑛𝑟0𝑣𝑟

4
2𝜋𝐴𝐿 𝑒𝑥𝑝(ϕ/𝑇𝑟) 

 

where nr0 and vr are the axial density and the velocity of the 

fast or Rudd electrons. These electrons are deemed to 

escape when they reach the outer wall at potential -V0 and 

so 

𝑛𝑟0 =
𝐴𝑄𝑟

𝑣𝑟
𝑒𝑥𝑝(𝑉0/𝑇𝑟) 

 

(18) 
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This density scales as (NI/A) exp(V0/Tr). The confinement 

of the thermal plasma electrons can be dealt with in an 

entirely analogous way leading to an equation for their 

axial density, ne0, with temperature Te and velocity ve, 

 

𝑛𝑒0 =
𝐴𝑄𝑒

𝑣𝑒
𝑒𝑥𝑝(𝑉0/𝑇𝑒) 

 

(19) 

It is assumed that the fast electrons have the same spatial 

distribution as the beam ions. 

3. The energy balance 

The plasma electrons have been considered, in earlier 

work [3,4] to have been heated only by the beam ions 

through Coulomb interactions as discussed earlier. In this 

section, heating by the fast Rudd and stripped electrons is 

also taken into account. The heating of the plasma electrons 

by the ion beam will be considered firstly for the case of 

the full energy beam. The total energy transfer rate from 

ions to the electrons, be, is given by [10] 

 

            𝜈𝑏𝑒 = 2𝜈𝑠 − 𝜈// − 𝜈┴                      (20) 

 

where vs, v// and v⊥ are the rates for slowing, parallel and 

perpendicular energy transfer respectively. Using explicit 

expressions for these rates gives 

 

𝜈𝑏𝑒 = 𝑛𝑒0𝜆 (
2𝐾1/21.7x10−10

𝐸𝑏
3/2

−
1.8x10−13

𝐾1/2𝐸𝑏
3/2

−
𝐾1/2𝑇𝑒1.7x10−10

𝐸𝑏
5/2

) 
 
(21) 

 
 

where K is the mass number of the beam ions and  is the 

Coulomb logarithm and this has a value of approximately 

7. Note that [10] uses cgs units but equation (21) has been 

converted to SI units. Inspection of the terms in equation 

(21) shows that the second term is much smaller than the 

first. The third term is also much smaller than the first if Te 

is much less than the beam energy which is indeed the case. 

Thus 

 

𝜈𝑏𝑒 = 𝑛𝑒0𝜆 (
2𝐾1/21.7x10−10

𝐸𝑏
3/2

) 

 

(22) 

 

The actual energy transferred by a beam ion, Ei, is  

 

𝐸𝑖 = 3.4 × 10−10
𝐾1/2𝑛𝑒0𝜆

𝐸𝑏
3/2

𝑒𝐸𝑏𝜏𝑏 

 

(23) 

 

where b is the transit time of a beam ion through a volume 

of plasma. This is simply L/vb with L being the length of 

the plasma volume and vb the beam velocity. Hence 

rationalizing for each species x gives 

 

𝐸𝑖𝑥 = 3.4x10−10
𝐾1/2𝑥1/2𝑛𝑒0𝜆

𝐸𝑏
1/2

𝑒𝐿

𝑣𝑏𝑥
 

 

(24) 

 

In the case of heating of the plasma electrons by the fast 

Rudd and stripped electrons, the appropriate NRL 

equations [10] are used again. The slowing frequency, vs, 

is equal to the perpendicular frequency, v⊥, and the parallel 

frequency, v//, is lower than these by a factor ~2Tr/Te. 

Hence the energy transfer rate (in SI units) from the fast 

electrons to the plasma electrons is 

 

𝜈𝑟𝑒 = 7.7x10−12
𝑛𝑒0𝜆

𝑇𝑟
3/2

 
 

(25) 

 

Thus, the total energy input, Ere, to the thermal electron 

distribution per fast electron (in joules) during its 

confinement time, τr, is 

𝐸𝑟𝑒 = 7.7 × 10−12
𝑛𝑒0𝜆

𝑇𝑟
3/2

𝑒𝑇𝑟𝜏𝑟 
 

(26) 

 

The next stage is to calculate how many new beam ions 

or Rudd/stripped electrons appear in the beam volume 

𝜋𝐴2𝐿/2 per second. For the latter it is Qr and for the former 

it is  

𝜋𝐴2𝐿

2
∑ 𝑛𝑏0𝑥𝑣𝑏𝑥

3

𝑥=1

 

 
The thermal electrons leave the plasma with their energy 

eTe and assuming they are also bound by the potential V0 

the energy balance is then
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3.4x10−10
𝑛𝑒0𝜆𝐾

1
2

𝐸𝑏

1
2

∑ 𝑥
1
2𝑛𝑏0𝑥

3

𝑥=1

𝑒𝐿𝜋𝐴2

2
+ 7.7x10−12

𝑛𝑒0𝜆

𝑇𝑟

3
2

𝑒𝑇𝑟𝜏𝑟

𝑄𝑟𝜋𝐴2𝐿

2
 

 

 =
𝑛𝑒0𝑣𝑒𝑒𝑇𝑒

4
2𝜋𝐴𝐿 𝑒𝑥𝑝(−𝑉0/𝑇𝑒) 

 

or 

3.4x10−10𝜆𝐴𝐾1/2 ∑
𝑥1/2𝑛𝑏0𝑥

𝐸𝑏
1/2

3

𝑥=1

+ 7.7x10−12
𝜆

𝑇𝑟
3/2

𝑇𝑟𝜏𝑟𝑄𝑟𝐴 = 𝑣𝑒𝑇𝑒 𝑒𝑥𝑝(−𝑉0/𝑇𝑒) 

 

Each fast electron, once created transfers an energy Er to 

the thermal population so the total energy transfer depends 

on the total rate of ionization. The volumetric production 

rate is equal to the density of fast electrons divided by the 

confinement time i.e. Qr = nr0/r giving 

 

𝜆𝐴 (3.4x10−10𝐾1/2 ∑
𝑥1/2𝑛𝑏0𝑥

𝐸𝑏
1/2

3

𝑥=1

+ 7.7x10−12
𝑛𝑟0

𝑇𝑟
1/2

) = 𝑣𝑒𝑇𝑒 𝑒𝑥𝑝(−𝑉0/𝑇𝑒) 

or 

 

𝜆𝐴 (3.4x10−10𝑆𝑏 + 7.7x10−12
𝑛𝑟0

𝑇𝑟
1/2

) = 𝑣𝑒𝑇𝑒 𝑒𝑥𝑝(−𝑉0/𝑇𝑒) 
 

(27) 

 

where the parameter Sb has been used from equation (16). 

This gives the energy balance in the plasma where 

Coulombic heating of the plasma electrons by the beam 

and fast electrons is balanced by the energy lost as they 

escape from the potential. 

IV. THE DRIFT AND FREEFALL 

APPROXIMATIONS 

Consideration is now given to the two approximations of 

how the secondary slow ions move out of the beam under 

the influence of the beam potential; namely the drift and 

freefall approximations. These two methods of deriving the 

ion velocity exist in all plasma modelling with the former 

applying when the plasma dimension is larger than the ion-

neutral mean free path. For example, in plasma sheaths, 

whose width is a few Debye lengths, the ion motion is free 

fall whereas in the main body of the plasma the motion is 

normally collisional drift and so both exist at the same time. 

As the beam can operate at low and high pressures any 

model must encompass both modes of plasma ion motion. 

In the drift approximation the ions are collisional and 

freefall only exists in the presheath at the beam edge.  In 

the freefall approximation the ions move solely under the 

influence of the potential between the point where they are 

created and that towards the edge of the beam. They are in 

freefall throughout the entire beam. In the presheath for the 

drift situation, whose width is roughly the Debye length, it 

is somewhat similar as the plasma ions are considered 

collisionless and hence move by free-fall. In the free fall 

case, there is no presheath and the freefall region extends 

from the beam centre to the outer edge. The applicability 

of these approximations is discussed later. 

1. The drift approximation 

From Kaye and Laby [11] the drift velocity, vi, of 

hydrogen ions in their parent gas under the influence of an 

electric field of 1 V/m is 1.13x10-4 ms-1 for a gas density of 

N = 2.68x1025 m-3 at 273K. This drift velocity is related to 

the general mobility ki by 

 

𝑣𝑖 =
𝑘𝑖𝐸

𝑁
 

 

This gives a value for ki of 3.03x1022 m5 s-1 V-1. For 

deuterium a factor of 1/2 has to be applied. The electric 

field can be found from the potential  in equation (17) to 

give 
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𝑣𝑖 =
𝑘𝑖𝐸

𝑁
=

𝑘𝑖

𝑁
2𝑉0𝛼𝑟 𝑒𝑥𝑝(−𝛼𝑟2) 

 

(28) 

 

Then in any annular ring at radius r the local ion density is 

given by 

 

2𝜋𝑟𝑛𝑖𝑣𝑖 = 𝑄𝑖𝜋𝑟2 (1 −
𝑟2

2𝐴2
) 

 
where Qi is the total slow ion production rate given in 

equation (13). Hence the ion density, ni, is  

 

𝑛𝑖 =
𝑄𝑖

𝑟𝑁
2

(1 −
𝑟2

2𝐴2)

𝑘𝑖2𝑟𝛼𝑉0𝑒𝑥𝑝(−𝛼𝑟2)
 

 

At low values of r the axial slow ion density, ni0, is then 

 

𝑛𝑖0 =
𝑄𝑁

4𝑘𝑖𝛼𝑉0
 

 

   (29) 

 
At this stage plasma neutrality is invoked 

 

          𝑛𝑖0 =   𝑛𝑒0 + 𝑛𝑟0 − 𝑛𝑏0                 (30) 

 

If V0 and Te are known, the two electron and the beam 

densities can be determined and this gives a method of 

determining the product V0 

 

[𝛼𝑉0]𝑎 =
𝑄𝑁

4𝑘𝑖𝑛𝑖0
 

 

   (31) 

 

The subscript “a” refers to the first method of determining 

this product. 

 

A balance for the slow ions can also be established for 

the whole beam where the ion production is balanced by 

the ions leaving the beam at the ionic sound speed, cs. This 

gives 

 

𝐿 ∫ 𝑄𝑖

𝐴

0

2𝜋𝑟𝑑𝑟 = 𝐿𝑄𝑖

𝜋𝐴2

2
= 𝑛𝑖02𝜋𝐴𝐿𝑐𝑠 

 
where the ionic sound speed (or Bohm velocity) is  

 

𝑐𝑠 = 0.6 (
𝑒𝑇𝑒

𝑀𝑖
)

0.5

 

 
with Mi being the plasma ion mass. The factor of 0.6 

accounts for the density drop across the presheath. 

Substituting for ni0 gives the second method (“b”) of 

determining the product V0. 

 

[𝛼𝑉0]𝑏 =
0.6𝑁

𝑘𝑖𝐴
(

𝑒𝑇𝑒

𝑀𝑖
)

0.5

 
 

   (32) 

 
In order to solve the drift equations an initial value of V0 

is provided which allows the fast electron density nr0 to be 

calculated. Using equation (27) a value of the plasma 

electron temperature, Te, can be determined. This equation 

is transcendental but can be solved by iterative methods 

such as Newton-Raphson. With knowledge of Tr, Te and nr0 

and ne0 can be calculated using equation (19) leading to 

values of [V0]a and [V0]b from equations (31) and (32). 

These values will not generally be equal for an arbitrary 

guess for V0 and the difference between them can be used 

to update the value of V0. This process is repeated until a 

satisfactory convergence criterion has been satisfied. Note 

that V0 is being iterated to give closely equal values of 

[V0]a and [V0]b and these have the same dependence on 

the ion mobility ki, V0 is independent of ki but not . 

2. The freefall approximation 

In this approximation the ions move under the influence 

of the potential from where they are created until they 

escape the beam. Thus, the slow ion balance is  

 

2𝜋𝑟𝑛𝑖(𝑟) = 𝑄𝑖 ∫
2𝜋𝑎𝑑𝑎

(
2𝑒
𝑀𝑖

)
0.5

(𝜙(𝑎) − 𝜙(𝑟))
0.5

𝑟

0

 
 

(33) 

 

The potential (16) can be expanded as 

 

𝜙(𝑟) = −𝑉0𝛼𝑟2 +
𝑉0𝛼2𝑟4

2
 

 
The integral is only finite if the first term is quadratic [6] 

which gives 

 

𝑛𝑖(𝑟) =
𝑄

𝑟 (
2𝑒
𝑀𝑖

)
0.5 ∫

𝑎𝑑𝑎

(𝑉0𝛼𝑟2 − 𝑉0𝛼𝑎2)0.5

𝑟

0

 

 

Or limiting this expression to the axial value this becomes 

𝑛𝑖0 =
𝑄𝑖

(
2𝑒𝛼𝑉0

𝑀𝑖
)

0.5 
 

   (34) 

 
Using plasma neutrality as in the drift case, ni0 can be 

calculated and then equation (34) allows a value of V0 to 

be determined. In this case V0 and  cannot be separated. 
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Again, applying the ion balance equation 

 

2𝜋𝐴𝐿𝑛𝑖0𝑣𝑖 = 2𝜋𝐿 ∫ 𝑄𝑖 (1 −
𝑟2

𝐴2
) 𝑟𝑑𝑟

𝐴

0

 
 

 (35) 

 

where vi is now not the ion sound speed but the average 

velocity acquired by the ions and is defined as 

 

𝑣𝑖 = (
2𝑒〈𝑈𝑖〉

𝑀𝑖
)

0.5

 

 

 (36) 

 

 

with <Ui> being the average energy gained by the ions 

whilst in the beam. This energy is V0 + (r) and so the 

average value <Ui>0.5 is 

 

〈𝑈𝑖〉
0.5 =

∫ 2𝜋𝑟𝑄𝑖
(1 −

𝑟2

𝐴2)
𝐴

0
(𝑉0 + 𝜙(𝑟))0.5𝑑𝑟

∫ 2𝜋𝑟𝑄𝑖
(1 −

𝑟2

𝐴2)
𝐴

0
𝑑𝑟

 

 
Or on using the potential from equation (17) this becomes 

 

〈𝑈𝑖〉
0.5 =

2𝑉0
0.5 ∫ (1 −

𝑟2

𝐴2)
𝐴

0
𝑒𝑥𝑝 (−

𝛼𝑟2

2
) 𝑟𝑑𝑟

2 ∫ 𝑟 (1 −
𝑟2

𝐴2)
𝐴

0
𝑑𝑟

 

 
This is integrated to give 

 

〈𝑈𝑖〉
0.5 =

𝑉0
0.5 [2𝑒𝑥𝑝 (−

𝛼𝐴2

2
) +  𝛼𝐴2 − 2 ]

𝛼2𝐴4

4

 

 
Setting W = A2/2 this is 

 

〈𝑈𝑖〉
0.5 =

2𝑉0
0.5

𝑊2
× [𝑒𝑥𝑝(−𝑊) + 𝑊 − 1] 

 

   (37) 

 
Substituting for ni0, vi, and <Ui> from equations (34), (35) 

and (37) into the slow ion balance equation (34) then leads 

to 

 

(2𝑊)0.5𝑊2

8
= [𝑒𝑥𝑝(−𝑊) + 𝑊 − 1] 

 

   (38) 

 

This has the unique solution 

 

𝑊 =
𝛼𝐴2

2
= 2.27144 

 

   (39) 

or 

 

𝛼 =
4.54288

𝐴2
 

 

  (40) 

 

 

This determines  for any value of beam radius and is 

independent of gas density unlike the drift model. Since  

is known V0 can be determined from the product V0 found 

from equation (34). 

 

The solution to the freefall equations initially follows 

that for the drift equations. From an initial value of V0 the 

fast electron density nr0 can be calculated. Using equation 

(27) a value of the plasma electron temperature, Te, can be 

determined. This then allows ne0 can be calculated using 

equation (19). From plasma neutrality, the slow ion density 

ni0 is then calculated and since  is known from the chosen 

beam radius through equation (40) a new value of V0 is 

determined from equation (34). From the initial guess of 

V0 and its updated value a new estimate is made and the 

procedure is repeated until the value of V0 has converged 

to a suitable degree.  

V. RESULTS AND DISCUSSION 

1. General results 

In order to illustrate the power of the model it has been 

applied to the nominal 120kV, 60A beam referred to 

earlier. For this beam the flux fractions of the D+, D2
+ and 

D3
+ ions, f1:f2:f3 are ~0.72:0.22:0.06. In Figure 2 the 

potential, V0, and plasma electron temperature, Te, are 

plotted against the background gas pressure for a beam of 

nominal radius A = 0.1m. 

 

 

FIG. 2. (Colour online) The potential V0 and the plasma 

electron temperature Te for a nominal 120kV, 60A 

deuterium beam with radius A=0.1m as a function of the 
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background gas pressure in both the drift and freefall 

approximations. 

At low pressures the models both show potentials and 

plasma temperatures which are close to each other of 

approximately 90eV and 12eV respectively. As the 

pressure increases the potential and electron temperature 

fall. The predictions of the two models separate with the 

drift model giving a higher potential and plasma 

temperature than the freefall model. At the highest pressure 

shown of 3x1020m-3 the potential is ~40eV for the drift 

model and approximately half that for the freefall model. 

 

The axial densities of the plasma electrons (ne0/nb0), slow 

positive ions (ni0/nb0) and the fast electrons (nr0/nb0) relative 

to the beam ion density (nb0) are shown in Figure 3 for the 

two approximations. 

 

 
FIG. 3. (Colour online) The axial densities of the plasma 

electrons (ne0/nb0), slow positive ions (ni0/nb0) and the fast 

electrons (nr0/nb0) relative to the beam ion density (nb0) for 

the nominal 120kV, 60A beam with radius A=0.1m. 

 

The plasma electron and ion densities rise with 

increasing background gas pressure. In the freefall 

approximation the ion density is lower than the plasma 

electron density at lower gas densities although they 

become equal at the higher gas densities. In the drift 

approximation the plasma electron and ion densities are 

almost equal at all gas densities.  The fast electron density 

in the drift model increases slowly as the pressure increases 

since there is relatively little production of these electrons 

before their density increases more rapidly as the pressure 

increases. The density of these electrons is a balance 

between their production rate and the rate at which they 

escape from the beam due to their energy, the potential 

trying to retain them and the electron temperature. In the 

freefall model the fast electron density falls slightly as the 

pressure starts to increase. This is due to the ions being able 

to escape more easily and to maintain plasma neutrality the 

electron density reduces. 

In Figure 4 the ratio of the contributions of the beam and 

fast electron heating of the plasma is plotted for the two 

models. Over the whole range of the gas densities the 

electron heating of the plasma dominates that due to the 

beam itself. At low pressures both models give the beam to 

fast electron heating ratio as ~ 0.7. At higher densities the 

freefall model indicates that these two contributions 

become almost almost equal but in both models this ratio 

falls with increasing density. At the highest gas density the 

beam heating contribution becomes relatively small for 

both the drift and freefall models. This dominant electron 

heating of the beam plasma electrons was not considered 

by earlier workers [3,4,5]. 

 
FIG. 4. The ratio of the beam and fast electron heating 

contributions to the plasma electrons for the nominal 

120kV, 60A beam with radius A=0.1m for the two models. 

 

The dependence of the potential and electron 

temperature on beam radius is shown in Figure 5 for a 

background gas density of 3x1017m-3. Both the potential 

and the electron temperature decrease as the beam radius 

increases as the electrons remain within the beam due to its 

increased size. At this low gas density, the two models are 

in good agreement in accordance with Figure 2. 

 

 
FIG. 5. (Colour online) The dependence of the potential 

V0 and the electron temperature Te on beam radius for the 

nominal 120kV, 60A beam with a background gas density 

of 3x1017m-3 for the two models. 

 

As discussed earlier the ionization cross-sections from 

Rudd [7] have been used in the implementation of the 
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model. These cross-sections are somewhat higher than 

those from the Aladdin database [8]. Using these latter 

cross-sections has only a small effect of a few percent on 

the potential V0 and temperature Te and the relative 

densities. The heating ratio is increased by up to ~ 10% at 

intermediate gas densities. Use of these cross-sections does 

not change the conclusions reached. 

4. The potential and radial field 

A plot of the radial potential is shown for the drift model 

in Figure 6 at different gas densities and a beam radius A = 

0.1m. The potential is plotted against the radial distance r. 

At low gas densities there is very little potential drop 

between the axis and the beam radius although this does 

increase with gas density. Most of the potential drop is 

beyond the beam edge. 

 

 
 

FIG. 6. (Colour online) The radial potential dependence 

within the beam for a 120kV, 60A beam at different 

background gas densities for the drift model with a beam 

radius A = 0.1m. 

 

Although the drift and freefall models give similar 

results of V0 and Te at low gas densities the potential 

distributions are very different as shown in Figure 7 for a 

gas density of 1017 m-3 and a beam radius of 0.1m. In the 

case of the freefall model the value of the parameter  

which defines the potential extent (equation (17)) is 

constant at all gas densities and from equation (40) it has 

in this case a value of ~454 indicating that the potential 

drop is mostly within the beam as illustrated by Figure 7. 

 

 

 
 

FIG. 7. The radial potential dependences within the beam 

for a 120kV, 60A beam at a background gas density of 1017 

m-3 with a beam radius A = 0.1m for both the drift and 

freefall models. 

 

Although the total potentials are the similar at low 

pressure between freefall and drift, the fact that most of the 

potential drop occurs in an outer sheath beyond the beam 

edge for the drift case means that the electric field inside 

the beam which ultimately controls the beam divergence is 

much larger in the freefall case. In the freefall 

approximation the average electric field across the beam is, 

from Figure 7, ~700V/m whereas it is almost zero for the 

drift approximation.  

 

Direct measurement of the beam space potential is very 

difficult because of the beam power and the lack of any 

developed diagnostic to do this. Such a diagnostic could be 

a retarding ion analyser [5,14] placed outside the beam 

which looks at the energy of plasma ions emitted by the 

beam. Although it is not yet possible to measure the beam 

space potential in such a way for these beams, an inferred 

method is possible which is to look at the consequences of 

this potential such as on the beam optics In the Neutral 

Beam Test Bed [12] the composite beam drifts for a 

distance of ~10m in a vacuum chamber a low pressure. Any 

effect on the beam profile due to space charge effects might 

become apparent over this distance. Using the drift and 

freefall models the effect of the profile can be calculated 

and compared to measurements which may allow 

differentiation between the applicability of the models. 

This will be the subject of a future paper. 

 

5. The applicability of the drift and freefall 

approximations 

The question naturally arises as to the region of 

applicability of both approximations. The transition 

between the two approximations is taken to occur when the 

value of 1/NsA ~ 1 where s is the scattering cross-section 

for slow ions leaving the beam. The theoretical value of the 

ion mobility is given by 
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𝑘𝑖 =
𝑒

𝜎𝑠𝑀𝑖𝑐𝑇
 

 

 (41) 

 

where cT is the thermal ion velocity. For deuterium ki = 

2.1x1022 m5 s-1 V-1 and cT = 1250 ms-1 giving a scattering 

cross-section of s = 9x10-19 m-2. Thus using this the 

transition between the approximations might be expected 

to occur at a product of gas density and radius of NA ~ 

1.1x1018 m-2. In the case of the example with A = 0.1m the 

transition between the two models will be at a gas density 

of ~ 1.1x1019 m-3 (0.046Pa or 4.5x10-4 mbar). From Figure 

2 the two approximations begin to diverge at a gas density 

of ~ 5x1017m-3 which is somewhat lower than this simple 

estimate.  

 

Although the drift approximation is more likely to apply 

at higher gas densities and given the situation shown in 

Figure 7 where both approximations give similar V0 and Te 

but different potentials it would require measurement of the 

beam potential and plasma properties to distinguish 

between the two approximations. 

 

For the JET neutral beam injectors, the gas target in the 

neutraliser is approximately 5x1019 m-2 which for the 2m 

long neutraliser gives an estimate of the average gas 

density of 2.5x1019 m-3. The model described here is only 

applicable downstream of the neutraliser when the species 

fractions are assumed to have reached their equilibrium 

fractions. Outside the neutraliser, the gas density is 

expected to fall very rapidly due to the very high pumping 

speed of approximately 106 l/s. Typically the pressure in 

the injector vacuum system is less than 10-5 mbar (10-3 Pa 

or 2.4x1017 m-3). This value of gas density is just within the 

region where both approximations give very similar results 

at least in terms of V0 and Te but as pointed out above there 

are important differences in the models. 

 

4. The degree of space charge compensation 

In designing neutral beam injection systems it is 

generally assumed that there are no space charge forces 

involved. This makes it relatively straightforward to 

calculate the trajectories of the beam ions for instance as 

they move to residual ion dumps since the ions move 

independently of each other. If substantial potentials exist 

with the beam then space charge forces would need to be 

taken into account. In order to understand if this is the case 

the potentials can be compared with those of an 

uncompensated beam to give the degree of space charge 

compensation. The potential due to the beam when it is 

uncompensated can be calculated using Gauss’s Law. 

 
𝑄

𝜀0

=  
𝑒

𝜀0

∫ 𝑛 𝑑𝑉 =  ∫ 𝑬. 𝑑𝒔 
 

 (42) 

 

where Q is the total charge within some volume V, n is the 

charge density, E is the electric field and ds is an element 

of the surface enclosing the volume. Applying this to a 

cylindrical beam of length L gives an equation for the 

radial electric field component Er  

 
𝑄

𝜀0

=  
2𝜋𝑒𝐿

𝜀0

∫ 𝑟′ 𝑛𝑏(𝑟′) 𝑑𝑟′
𝑟

0

=  2𝜋𝑟𝐸𝑟𝐿 
 

  (43) 

 

The beam density profile is given from equations (3), (5) 

and (6). Evaluation of the integral gives the radial electric 

field 

 

𝐸𝑟 =
𝑒𝑛𝑏0

𝜀0

(
1

2
𝑟 −

𝑟3

4𝐴2
)         𝑟 ≤ 𝐴 

 

𝐸𝑟 =
𝑒𝑛𝑏0

4𝜀0𝑟
𝐴2                             𝑟 > 𝐴 

 

   

(44) 

 

 

To obtain the potential distribution this equation can be 

integrated again using the condition that V(r=0) = 0 to give 

 

𝑉(𝑟) =  −
𝑒𝑛𝑏0

4𝜀0

(𝑟2 −
𝑟4

4𝐴2
)              𝑟 ≤ 𝐴 

 

𝑉(𝑟) =  −
𝑒𝑛𝑏0𝐴2

4𝜀0

(
3

4
− 𝑙𝑛 (

𝐴

𝑟
))       𝑟 > 𝐴 

 

   

 

 (45) 

 

The degree of space charge compensation, , is defined 

as  

 

𝜂 =  1 −  
Δ𝜙𝑐

Δ𝜙𝑢

 
   

  (46) 

  

where c and u are the compensated and 

uncompensated potential differences across the beam. 

Using the data from Figure 7, c is 0.32V for the drift 

approximation and 77.5V for the freefall approximation. 

From equation (44) the uncompensated potential difference 

across the beam, u, is 158kV. This indicates that in both 

approximations the beam is very highly compensated 

indeed. 

 

This beam consisting of a mixture of ions and atoms 

travels a distance of up to 2m between the exit of the 

neutraliser and bend magnet where the ions are swept out 

of the beam unto beam dumps. At this stage the ions are 

separated and there is no longer a single beam. Up until that 

point space charge forces seem unlikely to have a 

noticeable effect on the beam transport. The magnet could 

affect the space charge neutralisation as both the fast 

electrons and plasma electrons are trapped by the magnetic 
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field however there is no evidence of the separated ion 

species stalling under the influence of their own space 

charge. Before being installed on JET, the injectors are 

tested and characterized on the Neutral Beam Test Bed 

[12]. The composite beam travels a distance of 10m on this 

facility. Although there are no obvious signs of space 

charge effects since the injector works on JET as expected 

a more detailed survey is to be carried out.  

 

VI. CONCLUSIONS 

A model has been developed describing the process of 

space charge neutralisation in a beam consisting of a 

mixture of ion and atoms with different energies as used in 

the heating beams for fusion applications. The model is 

powerful in that it allows the beam potential and the plasma 

density and temperature to be calculated in both a drift and 

free fall approximation. When applied to a typical beam of 

120kV, 60A the model shows that the beam is very highly 

compensated and so space charge forces play little or no 

role in the beam transport at least until the bend magnet is 

reached. There are outstanding questions such as which 

approximation is valid at low pressures and this will be 

studied in a subsequent paper. 

 

The model can be easily adapted for use in a single 

species ion beam by choosing the beam parameters 

appropriately. It could also be modified to describe the 

space charge compensation in negative ion based beams 

such as those to be use in higher energy neutral beam 

injection for fusion applications. 

 

ACKNOWLEDGEMENTS 

This work has been carried out within the framework of 

the Contract for the Operation of the JET Facilities and has 

received funding from the European Union’s Horizon 2020 

research and innovation programme. The views and 

opinions expressed herein do not necessarily reflect those 

of the European Commission. 

APPENDIX 

 

Thermalization of the fast electrons 

 

In section 3.1, it was argued that the fast electrons should 

have an energy of 2/3 of the Rudd energy given in equation 

1. This also applies to the stripped electrons. In this 

appendix this argument is examined. In order for these 

electrons to thermalize, they must undergo significant 

scattering before escape from the beam. There are two 

possible scattering events, scattering by gas collisions 

and/or via coulomb collisions. The total scattering cross-

section via gas collisions, σs, is given in the database of 

Smith and Glasser [13] and has a value for electron 

collisions with H2 of 1.4×10-19 m2 for a Rudd energy of 

about 15 eV. These electrons will have a quasi-thermal 

distribution if the collision time is shorter than their 

confinement time in the beam. The collision frequency 

derived from coulomb scattering via the plasma ions and 

beam ions is smaller by a factor of about 20, even at low 

pressures and so will be ignored. 

 

The gas collision frequency is Nσsvr while the 

confinement time, 𝜏𝑟 , can be obtained from the expression: 

 

𝐿 ∫ 𝑄𝑟 (1 −
𝑟2

𝐴2
) 2𝜋𝑟𝑑𝑟

𝐴

0

≅
𝜋𝐿𝐴2𝑛𝑟0

2𝜏𝑟

 

 

This LHS of this expression was used in deriving equation 

(18) above. This leads to: 

𝜏𝑟 =
𝑛𝑟0

𝑄𝑟

 

 

Thermalization will occur if the product of the gas collision 

frequency and confinement time is at least unity. So: 

 
𝑛𝑟0

𝑄𝑟

× 𝑁𝜎𝑠𝑣𝑟 > 1 

 

As Qr is proportional to Nnb0, this ratio is independent of 

gas density. At low pressures, the ratio above is a little 

above unity indicating that a moderate amount of 

thermalization occurs. However, as nr0 becomes larger than 

nbo at higher pressures as seen in Figure 3 this ratio will 

become significantly greater than unity.  
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