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The concept of elastic dipole tensor of a defect is generalised to enable the treatment of lattice
distortions produced by defects at elevated temperatures. Thermodynamic and statistical mechanics
treatments show the feasibility of applying the formalism to the evaluation of formation free energies
and finite-temperature elastic dipole tensors of 1

2
〈111〉 prismatic self-interstitial atom dislocation

loops. The method exhibits good numerical stability even in the high temperature limit, and relates
discrete atomic and continuum representations of displacement and stress fields of defects.

I. INTRODUCTION

In a crystalline material, defects form naturally by
thermal excitation. At a thermal equilibrium, the con-
centration of defects is determined by their formation free
energy and temperature. High concentration of defects,
far exceeding the equilibrium value, can also be produced
by mechanical deformation or by exposing the material
to a flux of energetic particles [1–4].

There is an extensive variety of types of defects. Some
of them can be readily classified and identified as a va-
cancy, a self-interstitial atom, a dislocation loop, a void,
or an extended dislocation. Defects evolve under the ef-
fect of applied stress and temperature, segregating and
agglomerating as a result of elastic interactions [5, 6],
or annihilate in reactions involving defects of opposite
type. Evolution of microstructure driven by the gener-
ation of defects and reactions between them alters me-
chanical and physical properties of materials [7].

Defects distort the surrounding crystal lattice, produc-
ing spatially varying strain and stress fields. The strain
field of a localized defect can be computed from its elastic
dipole tensor and elastic Green’s function [8–17], where
the dipole tensor is a fundamental quantity fully defining
the elastic properties of a defect in the asymptotic far-
field limit [18]. Elements of the relaxation volume tensor
and volumes of defects can also be computed using atom-
istic or ab initio methods [10–17, 19, 20].

The notion of elastic dipole tensor effectively transfers
information, derived from discrete atomic configurations,
to the continuum limit, and enables treating defects as
objects of elasticity theory. This provides a foundation
for the continuum models of microstructural evolution
and enables the evaluation of stress and strain fields on
the spatial scale many orders of magnitude larger than
that accessible to atomistic or electronic scale models [5,
6, 21].

The energy of elastic interaction between a defect and
an external strain field εextij can be written as

Eextint = −Pijεextij , (1)

whereas the energy of elastic interaction between any two
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defects separated by a distance many times their size is

Eabint = P aijP
b
kl

∂2

∂xj∂xl
Gik(r), (2)

where P aij and P bkl are the dipole tensors of defects a and
b, r is the relative position vector of the defects, and Gik
is the elastic Green’s function. Gik can be evaluated nu-
merically for an arbitrary elastically anisotropic material
[22] from its elastic constants tensor Cijkl.

The pairwise nature of elastic interactions makes equa-
tions (1) and (2) easy and convenient for implementing in
coarse-grained models, for example object kinetic Monte
Carlo (kMC) [23–25] or defect dynamics [21]. Using the
dipole tensor formalism, Sivak et al. estimated the ef-
fect of elastic interactions on the diffusion of defects in
bcc iron and vanadium [23], as well as on the diffusion of
hydrogen in bcc iron [24, 25]. Baraglia et al. [21] used
equations (1) and (2) in simulations of time evolution of
an ensemble of dislocation loops in tungsten.

A point that so far has not been extensively studied
in the context of models using elastic dipole tensor for-
malism, is the temperature effect. All the calculations
of dipole tensors of defects [14–16] were performed, and
results were applied without considering thermal effects,
despite the fact that applications always refer to obser-
vations or simulations assuming finite temperature dy-
namics [21, 23–25]. For example, it is the energy rather
than the free energy that is used in the analysis, and
all the calculations of dipole tensors were performed us-
ing molecular statics or density function theory involving
direct energy minimization via ionic relaxation [14–17].

In this study, we extend the notion of elastic dipole
tensor to finite temperatures. We derive it from both the
thermodynamics (macroscopic) and statistical mechan-
ics (microscopic) perspectives using the free energy as
the central notion of the theory of elasticity [26]. We
find that the derivation leads to the same consistent re-
sult provided that the Cauchy stress is taken as being
equivalent to the ensemble average of virial stress. We
discuss the numerical procedure for calculating the for-
mation free energy and elastic dipole tensor of defects,
considering 1

2 〈111〉 self-interstitial atom (SIA) loops in
tungsten as examples.
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II. THEORY

At a finite temperature, the quantity that is used for
evaluating thermodynamic properties of a material is its
free energy as opposed to energy. The free energy of an
elastically strained crystalline solid equals [26]

F =
1

2

∫
σij(r)εij(r)dV, (3)

where σij and εij are the internal stress and strain, re-
spectively. If the elastic stress and strain fields in the
above equation are generated by the presence of a defect,
the integral above gives its elastic free self-energy.

A small variation of the elastic field gives rise to a small
variation in the free energy

F + δF =
1

2

∫
σij(r)εij(r)dV +

∫
σij(r)δεij(r)dV

=
1

2

∫
σij(r)εij(r)dV +

∫
εij(r)δσij(r)dV,(4)

where the equivalence of the two expressions in (4) stems
from the quadratic form of (3) and the fact that σij(r) =
Cijklεkl(r).

If the variation of strain is spatially homogeneous
δεij(r) = δεij , we write

F(δεij) = F(δεij = 0) +
∂F
∂εij

∣∣∣
δεij=0

δεij , (5)

and hence

F(δεij) = F(δεij = 0) +

∫
σij(r)dV δεij . (6)

Differentiating the above equation with respect to
strain, we find the dipole tensor of the defect, expressed
as a volume integral of its stress field [10, 11, 18]

Pij =
∂F
∂εij

=

∫
σij(r)dV. (7)

The stress field here refers to its finite temperature value
[26]. Similarly, by differentiating the free energy with
respect to a spatially homogeneous stress, we find the
relaxation volume tensor of the defect [13, 27] expressed
as a volume integral of its strain field

Ωij =
∂F
∂σij

=

∫
εij(r)dV. (8)

The two quantities (7) and (8) are related by the equation
Pij = CijklΩkl.

The free energy of interaction between a defect and
a spatially homogeneous or slowly varying external field
can now be readily derived from (4) using the fact that in
equilibrium the variation of the stress field of the defect
equals the applied external stress field taken with the
opposite sign [18, 26, 28]

Fextint = −Ωijσ
ext
ij = −Pijεextij . (9)

In statistical mechanics, the free energy is related to
the the partition function of the system as

F = −kBT lnZ. (10)

The partition function is

Z =

∫
exp(−βH)dΩ, (11)

where β = (kBT )−1 and dΩ is an element of phase space
volume. Taking a functional derivative of the free energy
with respect to the internal strain gives

δF
δεij

=
1

Z

∫
exp(−βH)

δH
δεij

dΩ =

〈
δH
δεij

〉
, (12)

where brackets 〈...〉 refer to an ensemble average.
For an atomic system subjected to a small spatially

homogeneous external strain, the atomic position vectors
transform in response to strain as

r→ (I + εext)r. (13)

Similarly, the momenta of atoms transform as

p→ (I + εext)−1p. (14)

The above scaling of momentum is consistent with the
definition of the momentum operator p̂ = −ih̄∂/∂r in
quantum mechanics [29] or in the Lagrangian classical
mechanics [30], where the momentum is defined as a
derivative of the Lagrangian function with respect to the
corresponding velocity pi = ∂L/∂q̇i. This results in(

δrnα
δεextij

)
εext
ij

=0

= rnjδαi, (15)

(
δpnα
δεextij

)
εext
ij

=0

= −pnjδαi. (16)

Consider a generic atomic scale Hamiltonian of the form

H =
∑
n

p2
n

2m
+ U({r}). (17)

where U is the potential energy, the value of which is
uniquely defined from an atomic configuration {r}. The
functional derivative of the Hamiltonian with respect to
an external strain is

δH
δεextij

=
∑
n,α

pnα
m

(
δpnα
δεextij

)
+
∑
n,α

∂U

∂rnα

(
δrnα
δεextij

)
(18)

= −
∑
n

pnipnj
m

−
∑
n

Fnirnj (19)

= −
∑
n

pnipnj
m

+
1

2

∑
nm

Fnmi(rmj − rnj) (20)

=
∑
n

Ωnσ
vir
nij (21)



3

where Fni = −∂U/∂rni is the i-th Cartesian component
of the force acting on atom n, and Fnmi is the i-th com-
ponent of force acting on atom n due to its interaction
with atom m. The virial stress on atom n is defined as
[31, 32],

σvirnij =
1

Ωn

(
−pnipnj

m
+

1

2

∑
m

Fnmi(rmj − rnj)

)
(22)

where Ωn is the volume of atom n, defined for example
using the Voronoi partitioning of the lattice. The sign
convention for the virial stress is that P = − 1

3Tr(σ̄vir),
where P is the external hydrostatic pressure. In equilib-
rium, the virial stress has the sign opposite to the sign of
the internal stress. Therefore, we write

δH
δεij

= − δH
δεextij

= −
∑
n

Ωnσ
vir
nij =

∑
n

Ωnσnij , (23)

where σnij is the internal stress. Finally, we arrive at (cf.
equation (7))

δF
δεij

=

〈
δH
δεij

〉
=

〈∑
n

Ωnσnij

〉
≈
〈∫

σijdV

〉
= V 〈σ̄ij〉

(24)
where σ̄ij is the macrostress, which is the same as average
macroscopic stress. The last equality holds following the
same argument as that given in Ref. [13], where a defect
in a finite size simulation cell is treated using the periodic
boundary conditions. The elastic dipole tensor, derived
using a microscopic argument, can now be written as

Pij =

〈∫
σijdV

〉
. (25)

This expression has the form similar to that derived
from the energy argument at 0K [10–17], however now
the formula also includes taking the ensemble average.
Furthermore, we find that the expression for the elastic
dipole tensor in the macroscopic thermodynamics (7) is
equivalent to that derived from the microscopic statisti-
cal mechanics, provided that the Cauchy stress is taken
as equivalent to the ensemble average value of the virial
stress.

III. UMBRELLA SAMPLING

The non-stationary nature of a defect presents a diffi-
culty in the context of evaluation of its thermodynamic
properties, since a defect migrates and evolves due to
the effect of thermal fluctuations. We circumvent this
problem using a biased sampling technique known as the
umbrella sampling [33]. It is a re-weighting technique for
evaluating a thermodynamic quantity of a target state by
sampling a reference state. We briefly outline the method
here, and then apply it specifically to the case of a defect
at a finite temperature. We note that the method only

applies in the classical limit, and it does not treat the
low temperature case where quantum-mechanical effects
dominate the properties and dynamics of defects [34, 35].

We consider two classical Hamiltonians H0 and H1,
and their difference:

δHum = H1 −H0. (26)

The ensemble average of an observable O with respect to
Hamiltonian H0 at temperature T is

〈O〉0 =

∫
O exp(−βH0)dΩ∫
exp(−βH0)dΩ

. (27)

Substituting (26) into (27), we find

〈O〉0 =
〈O exp(βδHum)〉1
〈exp(βδHum)〉1

. (28)

This formula replaces a calculation of an average of an
observable O over an ensemble defined by Hamiltonian
H0 by calculations of averages of O exp(βδHum) and
exp(βδHum) over an ensemble defined by another Hamil-
tonian H1.

We apply the above formula to the calculation of elastic
dipole tensor of a defect. The functional derivative of the
free energy of a system defined by Hamitonian H0 is

δF0

δεij
=

1

Z0

∫
exp(−βH0)

δH0

δεij
dΩ. (29)

Using (26)-(28), we transform this equation into

δF0

δεij
=

〈
δH0

δεij
exp(βδHum)

〉
1

〈exp(βδHum)〉1
. (30)

The right-hand side of this equation is consistent with
Eq. (28), showing that the derivative of the free energy
and hence the dipole tensor of a defect can be evaluated
using the umbrella sampling approach.

The free energy corresponding to Hamiltonian H0 can
be written as

F0 = −kBT lnZ0 (31)

= −kBT ln

∫
exp(−βH0)dΩ (32)

= −kBT ln

∫
exp(βδHum) exp(−βH1)dΩ (33)

= −kBT ln〈exp(βδHum)〉1 + F1. (34)

Hence, the free energy F0 can be evaluated using sam-
pling over the ensemble defined by Hamiltonian H1 if F1

is known.
In practice, assuming that the system of interest in-

volves N atoms, we choose Hamiltonian H1 as a sum of
N three-dimensional harmonic oscillators

H1 = HHO =
∑
n

(
p2
n

2m
+

1

2
mω2x2

n + C

)
, (35)
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FIG. 1. Equilibrium lattice constants, calculated using the
Mason-NguyenManh-Becquart (MNB) [39] tungsten inter-
atomic potential over a range of elevated temperatures. Ex-
perimental curve is given by a fitted formula taken from Ref.
[40], where the measurements span the range from 25 to
900◦C.

where xn = rn − Rn is the coordinate of an oscillator,
defined near an equilibrium atomic position Rn, ω is its
frequency and m its mass, and C is a constant. The
free energy of this system of oscillators can be evaluated
analytically as [36]

F1 = FHO = −3NkBT ln

(
kBT

h̄ω

)
+NC, (36)

where the Planck constant is included for dimensional
convenience. In what follows, we assume that ω equals
the Debye frequency of tungsten, h̄ω = kBTD, where
TD = 400K. Constant C is adjusted on-the-fly during
the thermalization of a system, but remains fixed during
sampling in order to minimize δHum and achieve higher
accuracy of the final result. The initial atomic configu-
ration containing a defect {Rn} is determined through
energy minimization via atomic relaxation performed us-
ing the conjugate gradient method. The actual sampling
is performed using molecular dynamic simulations, inte-
grating the corresponding Langevin equations of motion
[37].

IV. SIMULATIONS

Simulations exploring the finite temperature proper-
ties of defects were performed for 1

2 〈111〉 SIA loops of
different size in tungsten. We computed the formation
free energies and elastic dipole tensors of loops at finite
temperatures. All the simulations were performed using
the SPILADY code [38] modified to include the analysis
carried out in this study.

The initial analysis was performed using simulation
cells containing 30 × 30 × 30 BCC unit cells and 54,000

FIG. 2. Elastic constants C11, C12, and C44 evaluated from
the free energy computed using the MNB potential for tung-
sten. Experimental data are taken from Ref. [41], where the
measurements span the temperature range up to 1800◦C.

atoms. We used the Mason-Nguyen-Manh-Becquart
(MNB) [39] interatomic potential for tungsten. Simula-
tion cells were thermalised to temperatures in the range
from from 0.1K to 1500K. The volume of the cell was
controlled by a barostat keeping the pressure fluctuating
around 0 GPa. Following full thermalisation, the average
of cell dimensions were monitored over 2 ns to compute
the equilibrium lattice constants. The results are shown
in Fig. 1.

Using the equilibrium lattice constants computed for
various temperatures, we explored the simulation cells
with fixed shape, size and volume containing 30×30×30
unit cells. We evaluated the free energy of a perfect
lattice using simulations involving 200,000 time steps.
Then, we created six deformed boxes with uniaxial
strains of±0.1% in x-direction, bi-axial strains of±0.05%
in both x and y-directions, or a shear strains of ±0.1%
in the xy-direction. By calculating the free energies and
comparing them with the perfect lattice values, and using
the expression for the elastic free energy,

F = F0 +
V

2
Cijklεijεkl, (37)

we determined the elastic constants C11, C12 and C44 in
Voigt notations. The resulting values of elastic constants
are shown in Fig. 2. The experimentally measured elastic
constants of tungsten, plotted using the fitted functions
parameterized by Lowrie et al. [41] are also shown for
comparison. The range of experimental data extends to
1800◦C.

Hexagonal or nearly circular 1
2 〈111〉 self-interstitial

atom (SIA) dislocation loops containing 7, 19, 37 and 61
atoms were created in the initially perfect 30×30×30 sim-
ulation cells. Atomic positions were determined by en-
ergy minimization through atomic relaxation performed
using the conjugate gradient method, while constraining
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FIG. 3. Formation free energies of 1
2
〈111〉 SIA loops contain-

ing 7, 19, 37 and 61 atoms.

the shape and volume of the simulation cell. We evalu-
ated the free energies of loops using the umbrella sam-
pling and 200,000 time steps. The formation free energy
was computed using the equation

Fform = Fdef − Ndef

Nperf
Fperf , (38)

where Fdef and Fperf are the free energies of configu-
rations containing a defect and that of a perfect crystal,
and Ndef and Nperf are the corresponding numbers of
atoms in the corresponding simulation cells. From Fig. 3
we see that all the formation free energies decrease mono-
tonically with temperature. The data also suggest that
the rate of variation of the free energy as a function of
temperature is greater for the larger loops.

There are other methods for computing the free en-
ergy, for example the local harmonic approximation [42],
where the free energy is evaluated from the vibration fre-
quencies determined by diagonalizing the dynamic ma-
trix. This effectively maps a system of interacting atoms
onto a system of independent harmonic oscillators with
the same number of degrees of freedom. The umbrella
sampling offers an alternative way of evaluating the free
energy, which appears efficient and suitable for a variety
of applications [37].

A calculation of a finite-temperature elastic dipole ten-
sor involves an element of subtlety. Larger simulation
cells containing 50× 50× 50 unit cells are used, and the
time integration involves 500,000 steps. The use of larger
cell size offers an advantage by moderating fluctuations
of the sum of atomic stresses. Furthermore, instead of
using H1 = HHO, we choose

H1 = (1− λ)Hl + λHHO (39)

where Hl is the generic lattice Hamiltonian (17) and
λ = 1 × 10−7 is a small constant factor. The elastic
dipole tensor of a loop is calculated using equation (30).

The reason for adopting the above numerical procedure
is to aim to choose a small value of δHum. If δHum is
large, the exponential factor in (17) is also large, leading
to large numerical errors. Besides, choosing a Hamilto-
nian H1 that is close to H0 implies that the phase space
explored by the simulations is close to that of the orig-
inal Hamiltonian, helping better quality sampling. The
introduction of HHO serves as the means for pinning the
defect configuration. Fig. 4 shows how the elements of
elastic dipole tensors of 1

2 〈111〉 SIA loops vary as func-
tions of temperature for various loop sizes.

There is an analytical expression for Pij derived in the
linear elasticity approximation [8, 13, 28, 43, 44]:

Pij = CijklbkAl, (40)

where bk and Al are the Cartesian components of the
Burgers vector b and the loop vector area A. The loop
vector area satisfies the condition [13] V = NΩ0 = b ·A,
where N is the number of atoms forming the dislocation
loop.

Using Eq. (40) we can evaluate the elastic dipole ten-
sor of a loop from the finite temperature values of elas-
tic constants and lattice constants derived from experi-
ment [40, 41] and numerical simulations performed in this
study. Fig . 5 shows the values of the matrix elements
of the dipole tensor computed in this way. We see that
the values are fairly similar to those derived from direct
numerical calculations illustrated in Fig. 4. We note that
linear elasticity ignores the dislocation core effects, which
are more significant in the limit where a dislocation loop
is small. According to the calculated and predicted val-
ues of Pij of loops, we see that it is reasonable to use Eq.
(40) derived from the continuum linear elasticity model,
where the elastic constants are treated as temperature-
dependent quantities.

V. CONCLUSION

We extended the concept of elastic dipole tensor to the
treatment of elastic field of a defect at a finite temper-
ature. The elastic dipole tensor is given by the volume
integral of the stress field of a defect, like in the 0K case,
however now the calculation requires taking the ensem-
ble average of the integral. Examples of 1

2 〈111〉 SIA loops
illustrate the feasibility of carrying out calculations of for-
mation free energies and elastic dipole tensors of defects
at a finite temperature. We also find that the linear elas-
ticity formulae for the dipole tensor of loops agree well
with direct numerical simulations, enabling application
of finite temperature analysis to continuum level simula-
tions.
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