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Abstract. Drift-reduced MHD models are widely used to study magnetised

plasma phenomena, in particular for magnetically confined fusion applications,

as well as in solar and astrophysical research. This letter discusses the choice of

Ohm’s law in these models, the resulting dispersion relations for the dynamics

parallel to the magnetic field, and the implications for numerical simulations. We

find that if electron pressure is included in Ohm’s law, then both electromagnetic

and finite electron mass effects must also be included in order to obtain physical

dispersion relations. A simple modification to the plasma vorticity is also found

which improves handling of low density regions, of particular relevance to the

simulation of the boundary region of magnetised plasmas.

1. Introduction

Drift-reduced fluid models are widely used for the study of low-frequency (relative

to the ion cyclotron frequency) plasma phenomena, in relatively collisional regimes

where fluid models are appropriate [1], such as the edge region of present-day

tokamaks. These models have also been applied to the solar corona [2, 3] and

interplanetary turbulence [4]. A wide range of models have been derived in the

literature, see for example [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The basic

assumption they share is that at low frequencies the cyclotron motion can be averaged

over, and the plasma fluid motion perpendicular to the magnetic field described by

drifts due to magnetic and electric field inhomogeneties. The electrostatic potential
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is often determined by enforcing quasineutrality, whilst in electromagnetic models

the magnetic field perturbation is determined through Ampére and Ohm’s law.

Most models are constructed to conserve an energy, either by careful selection

of terms in an ordering expansion (e.g. [11, 16]), or by deriving the equations

from a Lagrangian (see e.g.[13, 17]). Whilst energy conservation is important for

both linear and nonlinear properties [13, 14], and usually improves the numerical

stability of a model implementation, it is not the only consideration. The dispersion

relation of the model, and the characteristics of the waves it supports, are less often

detailed. Physically the group speed of these waves determines how fast information

propagates in the system, which must not exceed the speed of light in vacuum.

In numerical implementations, the fastest waves set the CFL limit on explicit

time steps, and for implicit time stepping methods [20, 21, 22] contributes to the

difficulty of inverting the system Jacobian. Implementations of 3D drift-reduced

fluid models for plasma turbulence applications include BOUT [23, 24], BOUT++

[25], GBS [26], TOKAM-3D [27], and STORM [28]. Each of these codes use different

numerical methods, coordinate systems, and have variations in the form of equations

solved, but they all share common features of drift-reduced systems: a vorticity

equation, coupled to a parallel Ohm’s law and a density continuity equation. Here

we examine numerical issues arising from the the linear behavior of this fundamental

set of equations.

This letter aims to clarify discussion of the physical completeness and numerical

stability of reduced plasma fluid models, and in particular the effect of the choice

of Ohm’s law. Several studies employing reduced fluid models have retained both

electromagnetic and electron inertia effects (e.g. [14, 26, 29, 30]) and there have

been discussions of the resulting dispersion relation [10, 14, 21], but many studies do

not include these terms, and the impact on the dispersion relation of the various

approximations has not to our knowledge been clearly presented in one place.

Therefore in section 2 we introduce the drift-reduced equations, then examine the

behaviour of the electrostatic approximation in section 2.1 and move on to consider

electromagnetic models in section 2.2. Section 3 illustrates the practical importance

of the linear modes for timestep in example nonlinear simulations. Conclusions are

given in section 4.
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2. Drift-reduced MHD model dispersion relations

In this letter we consider a series of simplified drift-reduced plasma fluid models,

which evolve the (electron) density n, vorticity U , and take a form for Ohm’s law

parallel to the magnetic field. A full derivation of the drift-reduced equations can be

found elsewhere [16] and is beyond the scope of this paper. We focus for simplicity

on perturbations of a uniform stationary pure plasma in a uniform magnetic field,

in the cold ion limit, so we do not need to include finite Larmor radius corrections

to the drift motion of either species or ion viscosity. We give a brief outline of the

derivation, using SI units throughout except for electron temperature Te in eV, which

we follow by considering step-by-step the form of the Ohm’s law.

The electron density continuity equation is used to avoid the need to evaluate

high order ion polarisation velocity terms:

∂n

∂t
= −∇ · (nve) , (1)

where ve is the electron fluid velocity. The quasineutrality assumption is enforced

through current continuity

∇ · J = 0, (2)

and the current parallel to the magnetic field J|| = b · J is derived from the electron

momentum equation [1]

men
dve
dt

+∇pe +∇ · Πe + en (E + ve ×B) = F, (3)

where F is the friction between electrons and ions, which will appear in the

equations below as resistivity. In the drift approximation it is assumed that charged

particle motion is due to parallel flow along magnetic field-lines, and drifts in the

perpendicular direction. For simplicity we here neglect E×B drift (since it does not

lead to charge separation) and as we assume constant background magnetic field,

the diamagnetic drift is also neglected. The relevant velocity of electrons and ions

would therefore be given here by the sum of parallel flow and polarisation drift:

vi,e = bv||i,e + vpoli,e . Finally, following standard orderings, the electron polarisation

drift and viscosity Πe are neglected, as they are small in the electron mass. The ion

polarisation drift is approximately given by

vpoli '
mi

eB2

dE⊥
dt

, (4)
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which arises from the time-derivative of the E ×B flow velocity.

Using the Coulomb gauge, E = −∇φ − ∂tA, but following the standard low-

β orderings the electromagnetic contribution to E⊥ is neglected, so E⊥ ' −∇⊥φ.

Since we are interested in the linear response only, with a stationary background,

the nonlinear advection term can be dropped so that

dE⊥
dt
' − ∂

∂t
∇⊥φ. (5)

Similarly we can neglect here the variation of density in the ion polarisation,

sometimes called the Boussinesq approximation (see [31] and references therein) when

the background is not formally uniform, so the divergence of the ion polarisation

current can be written as

∇ · Jpoli = ∇ ·
(
envpoli

)
' −min0

B2

∂

∂t
∇2
⊥φ, (6)

where n0 is a constant background density.

Thus we have the minimal set of reduced MHD equations which we will study

in this letter:

∂n

∂t
= ∇ ·

(
b
J||
e

)
, (7)

min0

B2

∂

∂t
∇2
⊥φ = ∇ ·

(
bJ||

)
, (8)

me

e

∂v||e
∂t

= − 1

en
∂||pe + ∂||φ+

∂A||
∂t

+ ηJ||, (9)

mi

e

∂v||i
∂t

= − ∂||φ−
∂A||
∂t
− ηJ||, (10)

J|| = −
1

µ0

∇2A||, (11)

which are essentially the same equations as used in [31, 30, 32]. Remember in the

isothermal electron limit the thermal force does not appear in the expression for

the parallel friction b · F = en0ηJ‖, where the parallel Spitzer resistivity for a pure

deuterium plasma is η = 0.51me/n0e
2τei and τei = 12π3/2m

1/2
e T

3/2
e ε20/2

1/2n0e
5/2 ln Λ

is the electron-ion collision time [33]. Note that [13], for example, gives a more

complete expression for the parallel electron velocity, which reduces to equation 9 in

the linear limit we will consider here.

The inclusion of electron inertia or pressure in Ohm’s law (equation 9)

significantly change the character of the waves in this system, as compared to ideal or
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resistive MHD, introducing the inertial (IAW) or kinetic Alfvén waves (KAW) [34],

whose wave speeds along the magnetic field have a dependence on wave-number

perpendicular to the magnetic field, k⊥. In the following sections we examine the

effect of approximations made to equation 9 on the dispersion relations, and do not

note explicitly the various ω = 0 solutions which arise. Here we are concerned with

ensuring that the resulting wave speeds do not diverge or exceed the speed of light

in vacuum c for arbitrary k⊥.

2.1. Electrostatic model

In the case of isothermal electrons with temperature Te

1

en
∂||Pe →

Te
n0

∂||n. (12)

Neglecting both the electromagnetic part of the electric field and the electron mass,

Ohm’s law (9) then reduces to

ηJ|| = −∂||φ+
Te
no
∂||n, (13)

so that in the limit of η → 0 the well known Boltzmann relationship between potential

φ and density n is recovered. If we also neglect the ion parallel flow, and so exclude

the parallel ion sound wave, the parallel current can be written as J|| = −env||e.
Linearising the set of equations 7-9, with

∂|| → ik||,
∂

∂t
→ −iω, ∇2

⊥ → −k2
⊥, (14)

the dispersion relation with finite resistivity is then given by

−iω = −k2
||
Te
ηen0

(
1

k2
⊥ρ

2
s

+ 1

)
. (15)

Here ρs = cs/Ωi =
√
Temi/eB2 is the hybrid ion or ion sound gyroradius, where

cs =
√
eTe/mi is the ion sound speed and Ωi is the ion cyclotron frequency. Typical

magnetised plasma edge turbulence, for example in tokamaks and linear devices,

have scale lengths perpendicular to the magnetic field such that k⊥ρs ∼ 0.1− 1.

Equation 15 represents a diffusion equation along the magnetic field for the

evolving quantities (n, φ, or J||) with diffusion coefficient D:

D =
Te
ηen0

(
1

k2
⊥ρ

2
s

+ 1

)
. (16)
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Smaller k⊥ modes (longer perpendicular wavelength) diffuse along the magnetic field

faster than high k⊥ modes. With the Spitzer resistivity η ' 10−4 ln ΛT
−3/2
e Ωm for

a pure deuterium plasma:

D ' 1.3× 106

(
Te

10eV

)5/2(
1018m−3

n0

)(
1

k2
⊥ρ

2
s

+ 1

)
m2/s.

This fast diffusion can place limits on simulation time steps, becoming more

restrictive as the electron temperature increases or the system size increases (smallest

k⊥ decreases). Note that there is no limit to the speed at which information

propagates in this model: k⊥ = 0 modes communicate instantaneously along

magnetic field lines.

If we keep finite electron mass in Ohm’s law, but still drop the electromagnetic

term then equation 9 becomes

ηJ|| = −∂||φ+
1

en
∂||Pe +

me

e

∂v||e
∂t

, (17)

giving the dispersion relation

ω2 + iωη
v2
te

µ0V 2
Aρ

2
s

= k2
||v

2
te

(
1 +

1

k2
⊥ρ

2
s

)
, (18)

where vte =
√
eTe/me is the electron thermal speed. The second term on the left

here accounts for perpendicular magnetic diffusion due to the parallel resistivity,

which results from the electron-ion collisions which have a characteristic timescale

0.51/τei = ηn0e
2/me = ηω2

pe/µ0c
2 = ηv2

te/µ0V
2
Aρ

2
s. The plasma skin depth is c/ωpe,

with c the speed of light in vacuum, ωpe =
√
n0e2/ε0me the plasma frequency,

while the Alfvén speed VA = B/
√
µ0min0 is introduced in the last form by noting

the characteristic perpendicular lengthscale of the system is the sound gyroradius.

Rather than a diffusion equation, as 15, the system dispersion relation is now a wave

equation. Writing the solution as ω = ω0 + iγ, where ω0 and γ are real,

ω0 =
k‖
k⊥

vte
ρs

√
1 + k2

⊥ρ
2
s −

η2

4

k2
⊥
k2
‖

v2
te

µ2
0V

4
Aρ

2
s

, γ = −η
2

v2
te

µ0V 2
Aρ

2
s

= −0.51

2τei
. (19)

As we are considering the fluid limit, the collision frequency must be faster than

the other timescales in the system, so these waves must damp rapidly. The same

problem is encountered however: the wave speed diverges as k⊥ → 0.
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Neglecting resistivity, in the cold plasma limit Te = 0, the dispersion relation 18,

reduces to

ω2 = Ω2
i

k2
‖

k2
⊥

mi

me

. (20)

This is the electrostatic wave which has been noted in the context of gyrokinetic

simulations to limit the timestep, see for example the early discussion by Lee [35] or

a recent case by McMillan [36].

These fast waves present a problem for global plasma simulations, where the

largest perpendicular scale is much greater than ρs: As the system size increases, the

fastest wave speed will rapidly increase, and for (semi-)implicit methods the problem

will become increasingly poorly conditioned.

2.1.1. Ion parallel momentum If the ion parallel momentum is also evolved, in the

electrostatic approximation, equation 10 gives

mi

e

∂v||i
∂t

= −∂||φ− ηJ||. (21)

and the dispersion relation becomes

ω2 + iωη
v2
te

µ0V 2
Aρ

2
sm

(
1− k‖c

2
sm

ω2

)
=

k2
‖v

2
te

k2
⊥ρ

2
sm

(
1 + k2

⊥ρ
2
sm −

k2
‖c

2
sm

ω2

)
, (22)

where for convenience we have defined the electron mass corrections c2
sm = c2

s/(1 +

me/mi) and ρsm = csm/Ωi. Neglecting the electron mass, in the limit of zero

resistivity, this reduces to simply the bracket on the right equal to zero

ω2 = k2
||c

2
s

1

(1 + k2
⊥ρ

2
s)
,

and we see that we have introduced the ion acoustic wave ω2 = k2
||c

2
s to the system,

including finite sound radius corrections when k⊥ 6= 0. This wave can be destabilised

in the presence of background plasma gradients to give the slab branch of drift waves.

Neglecting only the electron mass in 22, we see the ion sound radius couples

the diffusive mode and the ion acoustic wave at finite k⊥. When ω2 � k2
‖c

2
s

the parallel ion momentum equation can be neglected, and we recover −iωη =

−µ0k
2
‖V

2
Aρ

2
s(1 + k2

⊥ρ
2
s)/k

2
⊥ρ

2
s, that is the diffusive mode, equation 15. By comparing

the diffusive timescale to the inverse ion acoustic frequency, we see that this limit

corresponds as expected to the case of mi →∞, or k⊥ → 0 at finite k‖.
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The parallel ion momentum evolution modifies the electrostatic wave described

by 20 simply by multiplying the right hand side of that relation by (1+me/mi). The

modified frequencies of the resistive wave solution 19 are

ω0 =
k‖
k⊥

vte
ρs

√
1 + k2

⊥ρ
2
s +

me

mi

− η2

4

k2
⊥
k2
‖

v2
te

µ2
0V

4
Aρ

2
s

(
1 +

me

mi

)2

, γ = −0.51

2τei

(
1 +

me

mi

)
.

Thus the parallel ion momentum evolution has not removed the difficulty as k⊥ → 0.

Several other physical effects could limit the rate at which these electrostatic

waves propagate. For example, we have made an isothermal approximation in

relating electron pressure pe to density n, which would break down for sufficiently

fast phenomena - but we should remain in the collisional limit. We have considered

the cold ion limit for simplicity, but even in the edge plasma the ion temperature

will typically not be smaller than Te by the mass ratio [37, 38], so finite ion Larmor

radius effects should introduce further dispersion. Here however we focus on Ohm’s

law, where a partial solution to the problem of unphysically fast waves is known to

result from retaining electromagnetic effects [35]. This introduces the Alfvén wave

and is discussed in the next section.

2.2. Electromagnetic model

Now we examine the dispersion relation of the system retaining the electromagnetic

contribution to the parallel electric field. Again we begin by neglecting the finite

electron mass, but keeping here the parallel ion momentum evolution, which gives

the dispersion relation

ω2 + iωη
k2

µ0

(
1−

k2
‖c

2
s

ω2

)
= k2

||V
2
A

[
k2

k2
⊥

+ k2ρ2
s +

k2
‖c

2
s

ω2

(
ω2

k2
‖V

2
A

− k2

k2
⊥

)]
. (23)

Note that this relation does not diverge as k⊥ → 0, unlike the electrostatic relation

in equation 15. Including the electromagnetic term can therefore improve numerical

stability. However, the equation now has a problem at high k⊥: the parallel wave

speed increases with k⊥. Neglecting the resistivity and taking low β = c2
s/V

2
A so the

ion acoustic wave can be neglected, we see that this is due to the kinetic Alfvén wave

with dispersion relation

ω2 = k2
||V

2
A

(
1 + k2

⊥ρ
2
s

)
; (24)

the origin of the k2
⊥ρ

2
s term is the ∂||Pe term in Ohm’s law.
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Typical blob or turbulence simulations need to resolve smallest scales of around

δx ∼ ρs, so the highest k⊥ in the simulation has k⊥ = 2π/δx ∼ 10/ρs. Adding this

term therefore introduces a wave into the system around 10 times faster than the

Alfvén speed. For deuterium plasmas in a 1T magnetic field, this wave will exceed

the speed of light once the density falls below n0 ∼ 2.6 × 1017m−3. This can quite

easily occur in plasma edge simulations whose domain often includes a near-vacuum

region such as the far scrape-off layer (SOL) in tokamak simulations.

Going on to include finite electron mass, the dispersion relation becomes

ω2

1 +
k2c2

ω2
pe

1(
1 + me

mi

)
+iωη

k2

µ0

(
1−

k2
‖c

2
sm

ω2

)
= k2

‖V
2
A

[
k2

k2
⊥

+ k2ρ2
sm +

k2
‖c

2
sm

ω2

(
ω2

k2
‖V

2
A

− k2

k2
⊥

)]
,(25)

where we note we could rewrite the skin depth contribution as k2c2/ω2
pe = k2ρ2

sV
2
A/v

2
te.

This equation is well behaved at large perpendicular length scales k⊥ → 0, and

we recover the decoupled shear Alfvén and ion acoustic waves, as noted in [14]:(
ω2 − k2

‖V
2
Ak

2/k2
⊥

)(
ω2 − k2

‖c
2
s

)
= 0. If the common approximation to Ampère’s law

in the strongly magnetised limit µ0j‖ ≈ −∇2
⊥A‖ is used, k → k⊥ in equations 23

and 25. Equation 25 is also now well behaved when k⊥ becomes large. We can first

see this by considering the cold plasma limit, neglecting resistivity, and obtain the

electromagnetic modification of equation 20 [35]

ω2k2me

Ω2
i k

2
‖mi

+

(
1 +

me

mi

)(
ω2

k2
‖V

2
A

− k2

k2
⊥

)
= 0,

which leads to the inertial Alfvén wave dispersion relation,

ω2 = k2
‖V

2
A/

k2
⊥
k2

+
k2
⊥c

2

ω2
pe

1(
1 + me

mi

)
 . (26)

(It can be of interest to note that in the standard notation of Stix [39] this result

corresponds to the full solution Sk2
⊥c

2 + Pk2
‖c

2 − PSω2 = 0, unlike the quasi-

electrostatic mode discussed there which neglects the PS coupling term.)

Now neglecting only the acoustic wave corrections in equation 25 for simplicity,

we find that the modified frequencies of the resistive wave solution 19 are

ω2
0 = k2

‖V
2
A

(
k2

k2⊥
+ k2

⊥ρ
2
s

)
(

1 + k2c2

ω2
pe

1(
1+me

mi

)
)
1− η2k4

4µ2
0k

2
‖V

2
A

1(
1 + k2c2

ω2
pe

1(
1+me

mi

)
)(

k2

k2⊥
+ k2

⊥ρ
2
s

)
 , (27)
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γ = − ηk2

2µ0

1(
1 + k2c2

ω2
pe

1(
1+me

mi

)
) , (28)

when the term in the square bracket is positive, for example at low k⊥. Upon

neglecting resistivity, this recovers the standard dispersion relation [34] describing

the combination of inertial (Te → 0) and kinetic Alfvén waves

ω2
0 = k2

‖V
2
A

(
k2

k2
⊥

+ k2
⊥ρ

2
s

)
/

1 +
k2c2

ω2
pe

1(
1 + me

mi

)
 ,

which reduces in the large k⊥ limit to a wave with electron thermal speed, ω2
0 → k2

||v
2
te.

Returning to equation 25 to consider the limit of finite resistivity and high k⊥, we

recover the well-behaved form as in equation 18,

ω2 + iωη
v2
te

µ0V 2
Aρ

2
s

= k2
‖v

2
Te, (29)

which has the approximate strongly damped solution at large collisionality ω ≈
−i(0.51/τei) + (k2

‖v
2
teτei/0.51).

Note that we do not need to include relativistic corrections to the electron mass

in order to limit the wave speed, except in the cases where vte or VA exceed c. The

former occurs at Te > 500keV so would not be relevant to plasma edge simulations,

but the latter occurs at n0 < 0.66 × 1017m−3 for a magnetic field of 5T, so may

become an issue when simulating the edge of large fusion devices.

2.2.1. Space charge effects and displacement current It is reasonable to suppose

that if a wave is found which exceeds the speed of light, then we should re-examine

the approximations made to Maxwell’s equations in deriving the reduced MHD

equations. In this section we therefore consider the effect of including space charges

(breakdown of quasi-neutrality), and then displacement current.

The vorticity equation arises from current continuity (equation 2) under the

quasi-neutrality assumption, that is the charge density ρ ' 0. This assumption may

break down at small scales and low densities, and charge continuity becomes

∇ · J = −∂ρ
∂t

= ε0∇2∂φ

∂t
, (30)
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where the Coulomb gauge∇·A = 0 is used here. This modifies the vorticity equation

(8) to:

∂U

∂t
= ∇ ·

(
bJ||

)
, U ' min0

B2
∇2
⊥φ+ ε0∇2φ, (31)

where the vorticity U has been defined to include the space charge term and can be

written as:

U =
1

µ0

(
1

V 2
A

∇2
⊥φ+

1

c2
∇2φ

)
. (32)

This results in the dispersion relation, neglecting finite electron mass and ion acoustic

effects:

ω2 + iωη
k2

µ0

= k2
||V

2
A

k2

k2
⊥

[
c2

c2 + V 2
A (k2/k2

⊥)
+ k2

⊥ρ
2
s

]
, (33)

Equation 33 suggests a way to limit the shear Alfvén waves to less than light speed at

low density, which will be explored further in section 4. It does not however solve the

problem at high k⊥, and waves with arbitrarily high group speed along the magnetic

field are still supported.

Since we are not evolving the perpendicular components of the vector potential

A, displacement currents in the perpendicular direction are not included here: they

would modify the perpendicular components of A, but do not lead to motion of

charges, and so would not modify charge continuity (vorticity). As we are explicitly

evolving only the parallel component of the displacement current, but not the parallel

component of the magnetic field, the ordinary light wave will not appear in the

dispersion relation. Ampére’s law keeping only A|| and including the displacement

current becomes

J|| = −
1

µ0

∇2A|| + ε0
∂

∂t
∂||φ+ ε0

∂2A||
∂t2

. (34)

Continuing to retain space charge, the vorticity equation becomes

ω
[(min0

B2
+ ε0

)
k2
⊥ + ε0k

2
||

]
φ = k||

(
k2
⊥
µ0

− ω2ε0

)
A|| + k2

||ε0ωφ. (35)

Note that the ε0k
2
|| term on the left (from space charge) cancels with the same term

on the right (from displacement current). The dispersion relation then becomes

ω2 + iωη
k2

µ0

(
1− ω2

k2c2

)
= k2

||V
2
A

k2

k2
⊥

[
c2

c2 + V 2
A (k2/k2

⊥)
+ k2

⊥ρ
2
s

(
1− ω2

k2c2

)]
, (36)
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which at large k⊥ without resistivity leads to the same wave as when displacement

current is not included (equation 33). This means that these equations can have

waves with speeds (both group and phase) along the magnetic field greater than the

speed of light, without including the electron mass. However, we see that including

the parallel displacement current is not essential to provide effective limitation of the

wave speeds in low density regions.

3. Nonlinear timestep benchmark

To demonstrate the practical importance of the various dispersion relations derived

above, we benchmark nonlinear simulations using different versions of Ohm’s law.

We use STORM [28, 40], which is typical of BOUT++ drift-reduced fluid models,

and choose as a test case a simulation of an isolated scrape-off layer (SOL) filament,

in simplified slab geometry, based on the cold-ion case in [41]. Isolated filament

simulations have a moderate computational cost but include important features

of edge/SOL turbulence simulations, being highly non-linear and including sheath

boundary conditions. More details of the model and simulation setup are given

in Appendix A.

We compare electrostatic and electromagnetic models both neglecting and

including electron inertia. The evolution of the filaments simulated with these four

different models are essentially identical, due to the very low β ≈ 2.6×10−4 in the L-

mode SOL conditions of our test case, as shown for example by the radial position of

the centre of mass in figure 1. The slight difference visible between electrostatic and

electromagnetic models originates in a small transient at the start of the simulations

as the parallel current develops from the initial value of zero, which happens almost

instantly in the electrostatic simulations, but at the speed of the Alfvén wave in the

electromagnetic simulations.

BOUT++ simulations usually use the CVODE implicit time solver from the

SUNDIALS suite [42], as the simulations shown in this section do, so do not have

a strict Courant-Friedrichs-Lewy (CFL) constraint [43] on the timestep, as would

be the case if an explicit scheme were used. However, CVODE adapts the timestep

used to satisfy relative and absolute tolerance criteria while aiming to minimise the

number of iterations, so the resulting timestep is related to the frequency of the

fastest mode in the system, as we will now describe.

We compare the mode frequencies from the dispersion relations presented with
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Figure 1. Radial position of the filament centre of mass for electrostatic, zero

electron mass (blue solid); electrostatic, finite electron mass (orange dashed);

electromagnetic, zero electron mass (green dotted); and electromagnetic, finite

electron mass (red dash-dotted) cases.

Model 1/|ωanalytic| timestep iterations/step wall-clock time

ES, zero-me 0.00991 ns [eq. (15)] 0.828 ns 8.76 30.4 hrs

ES, finite-me 2.47 ns [eq. (19)] 0.899 ns 3.64 11.5 hrs

EM zero-me 3.18 ns [eq. (24)] 7.31 ns 6.41 3.21 hrs

EM, finite-me 25.8 ns [eq. (27)] 9.25 ns 4.35 2.36 hrs

Table 1. Timesteps, iteration count and wall-clock time for different electrostatic

(ES) and electromagnetic (EM) models.

the internal timestep, number of iterations per timestep and wall-clock time from

the simulations, given in table 1. The analytical mode frequencies are evaluated

using the background parameters at the midplane of the simulations. The maximum

parallel wavenumber present in the simulations k‖,max = 2π/2∆‖ is the shortest

wavelength that can be represented without aliasing on a grid with parallel spacing

∆‖. Similarly the maximum perpendicular wavenumber k⊥,max = 2π/2∆⊥ is set by

the perpendicular grid spacing ∆⊥, while the minimum perpendicular wavenumber

is set by the box size k⊥,min = 2π/L⊥. The maximum damping rate for the resistive,
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Figure 2. (a) Internal timestep (thick lines) and magnitude of the inverse linear

mode frequency (thin, horizontal lines) and (b) number of RHS evaluations per

internal timestep for electrostatic, zero electron mass (blue solid, using (15));

electrostatic, finite electron mass (orange dashed, using (19)); electromagnetic,

zero electron mass (green dotted, using (24)); and electromagnetic, finite electron

mass (red dash-dotted, using (27)) cases.

diffusive mode (15) in the electrostatic, zero electron inertia model and the maximum

frequency (19) for the electrostatic, finite electron inertia model are evaluated with

k⊥,min. For the electromagnetic, finite electron inertia model (27) also uses k⊥,min, as

for the parameters of this test the Alfvén speed is higher than the electron thermal

speed and we also evaluate it with k ≈ k⊥ for consistency with the implemented

model. The maximum frequency for the kinetic Alfvén wave (24) is evaluated with

k⊥,max. We see that the average timesteps taken by CVODE in the simulations are

ordered as the inverse mode frequencies, table 1, and the timestep and number of

iterations per step are fairly consistent in all phases of the simulation, figure 2. The

timesteps for both electrostatic and electromagnetic models with finite electron mass

are slightly smaller than the inverse mode frequencies (by a factor between 2 and 3),

as would be expected when the simulations are resolving these waves.

The timestep for the strongly damped electrostatic, zero electron mass model is

100 times longer than the inverse of the damping rate (15), showing that the implicit

time-solver algorithm used by CVODE is able to step over this mode. The timestep is

nearly as long as in the electrostatic, finite electron mass case, although significantly

more iterations per timestep are required, leading to a wall-clock time that is three

times longer.
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The timestep in the electromagnetic, zero electron mass case is slightly longer

than the inverse of the maximum mode frequency. Note that this is the maximum k⊥
mode, which will be most affected by numerical dissipation since its wavelength is at

the grid scale, and also by collisional dissipation present in the STORM model that

was not included in the analytic dispersion relation, so the mode may be expected to

have a significant damping rate. It seems that this damping is enough for CVODE

to step over the frequency of this mode, at the cost of a higher number of iterations

per step than required for the electromagnetic, finite electron inertia model.

The electromagnetic, finite electron inertia model as implemented in STORM

requires an additional inversion to solve Ampère’s law for the parallel velocities and

A‖ [41], which is not required in the electromagnetic, zero electron inertia model

where Ohm’s law evolves A‖ directly. Such inversions are typically a significant part

of the run-time of BOUT++ simulations, here taking 13% of the run time for the

electromagnetic, zero electron inertia model, and 36% for the electromagnetic, finite

electron inertia model. Despite this, the wall-clock time for the electromagnetic,

finite electron inertia model is shorter than the zero electron inertia model by a

factor of 0.74, due to the longer timestep and lower number of iterations per step.

4. Conclusion

We have presented a linear analysis of electrostatic and electromagnetic waves

supported by a minimal drift-reduced fluid model. Though simplified, equations 7-

9 contain the key features of a wide class of models which are used in the

plasma community. This analysis sheds light on the observation that once parallel

electron pressure gradients are included in Ohm’s law, electrostatic simulations often

encounter difficulties.

We recognise the origin of this as dispersion relations which diverge at small k⊥.

If finite electron mass is not included then this appears as parallel diffusion which

becomes faster as 1/k2
⊥, whilst if finite electron mass is included then a parallel wave

is found whose speed increases like 1/k⊥. Use of an electromagnetic Ohm’s law

without electron mass removes the difficulty at small k⊥, but leads to unphysical

behavior due to kinetic Alfvén waves at large k⊥, resulting in wave speeds which

increase with k⊥ without limit.

A system using an electromagnetic Ohm’s law with finite electron mass is

found to be well behaved, with parallel wave speeds between the Alfvén speed at
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low k⊥ and the electron thermal speed at high k⊥ as shown in [14]. Retaining

electromagnetic terms is therefore important for limiting the speed of waves in the

system, and we have demonstrated that this can reduce the computational cost of

nonlinear simulations by allowing longer timesteps to be taken, even in the very

low beta conditions of the L-mode SOL. Elsewhere, it has been found numerically

that electromagnetic effects can modify the propagation and stability of plasma

blobs [30] and turbulence [14] by slowing parallel wave propagation. It has also been

previously noted [13] that the electrostatic approximation can lead to inconsistencies

and incorrect results even at low β.

Plasma edge simulations can include low density regions, resulting in the Alfvén

velocity exceeding the speed of light. Adding ε0 to the perpendicular Laplacian term

in the vorticity limits VA to be slower than the speed of light, and can be easily

added to existing code. This gives the modified equations:

∂n

∂t
= ∇ ·

(
b
J||
e

)
, (37)

∇ ·
(
min

B2

d∇⊥φ
dt

+ ε0
∂

∂t
∇⊥φ

)
= ∇ ·

(
bJ||

)
, (38)

me

e

∂v||e
∂t
− ∂A||

∂t
= − 1

en
∂||Pe + ∂||φ+ ηJ||, (39)

J|| = −
1

µ0

∇2
⊥A||, (40)

which have the dispersion relation:

ω2

(
1 + ρ2

sk
2
⊥
V 2
A

V 2
te

)
+ iω

k2
⊥η

µ0

= k2
||V

2
A

[
c2

c2 + V 2
A

+ k2
⊥ρ

2
s

]
. (41)

This is now well behaved at high and low k⊥, and in low density regions. Adding the

ε0∇⊥φ term to the vorticity will have the effect of including the perpendicular electric

field energy ε0E
2
⊥ into the conserved energy of the system, but does not introduce

a new transfer channel. This will have the effect of bounding the total energy in

perpendicular electric fields, and so may improve numerical stability. In addition we

find that the parallel part of ε0∇2 does not need to be included in equation 38, and

does not provide a way to introduce parallel coupling into the vorticity equation.

This is because it cancels with the displacement current in the divergence of parallel

current as discussed in section 2.2.1.
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Appendix A. Filament simulations

In this appendix we briefly describe the STORM model and simulation setup used

for the nonlinear seeded filament simulations discussed in section 3. For more details

see the cold ion model in [41], and the setup for the simulation shown in figure 1a

there, which is identical to the electromagnetic, finite electron mass case here.

Appendix A.1. Models

The STORM model was originally electrostatic, with finite electron mass [28]. An

electromagnetic, finite electron mass variant was described in [44]. Our test case

is based on the cold ion reference case from [41], which introduced hot ion effects

to the electromagnetic, finite electron mass model. For this benchmark we have

implemented zero electron mass versions of both electrostatic and electromagnetic

models. For all variants the STORM code solves a continuity equation

∂n

∂t
= −∇ ·

(
bnve‖

)
− 1

B
b×∇φ · ∇n

+∇×
(

b

B

)
· ∇pe − n∇×

(
b

B

)
· ∇φ+ Sn

+∇ · (D⊥∇⊥n) , (A.1)

where Sn is the density source; an electron temperature equation

∂Te
∂t

= − ve‖∂‖Te −
1

B
b×∇φ · ∇Te −

2

3n
∇ ·
(
bqe‖

)
+

2Te
3n
∇×

(
b

B

)
·
(
∇pe − n∇φ+

5

2
n∇Te

)
− 2Te

3
∇ ·
(
bve‖

)
+

2

3

(
vi‖ − ve‖

)(
ηJ‖ −

0.71

e
∂‖T

)
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+
2SE
3n

+
v2
e‖Sn

3emen
− TeSn

n
+

2

3n
∇ · (κe⊥∇⊥Te) , (A.2)

where the parallel electron thermal conduction is qe‖ = −3.16enTτei∂‖T/me −
0.71nT

(
vi‖ − ve‖

)
and SE is the energy source; and a vorticity equation

∂Ω

∂t
= −∇ ·

(
1

B
b×∇φ · ∇ω

)
−∇ ·

(
∂‖
(
vi‖ω

))
+∇ ·

(
bJ‖

)
+ e∇×

(
b

B

)
· ∇pe +∇ · (µΩ∇⊥Ω) , (A.3)

where for this non-linear model we use a generalised vorticity without Boussinesq

approximation Ω = ∇ · ω, ω = en∇⊥φ/ΩiB. The perpendicular dissipation

parameters D⊥, κ⊥ and µΩ take small, classical values as described in [41] and do not

have a significant influence on the results, being retained mainly to ensure numerical

stability.

The differences between variants are in the parallel momentum equations. We

use the parameters α and µ, where

α =

{
0 for electrostatic cases,

1 for electromagnetic cases,

µ =

{
0 for zero electron mass,

1 for finite electron mass,

to express the ion parallel momentum equation as

∂

∂t

(
vi‖ + µα

e

mi

A‖

)
= − vi‖∂‖vi‖ −

1

B
b×∇φ · ∇vi‖

− e

mi

∂‖φ−
eη

mi

J‖ +
0.71

mi

∂‖T −
vi‖Sn
n

(A.4)

and Ohm’s law as

µ
∂

∂t

(
ve‖ − α

e

me

A‖

)
= − µ

(
ve‖∂‖ve‖ +

1

B
b×∇φ · ∇ve‖ −

ve‖Sn
n

)
− e

men
∂‖pe +

e

me

∂‖φ+
eη

me

J‖ −
0.71

me

∂‖T.

(A.5)
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Appendix A.2. Isolated filament simulation setup

The simulations are performed in slab geometry with a constant magnetic field of B =

0.5 T. The effect of non-uniform magnetic field is retained only through the curvature

terms∇×(b/B)·∇ = 2 (BRc)
−1∇z with radius of curvature Rc = 1.5 m. The spatial

grid has 240×64×128 points in the radial, parallel and binormal directions x, y and

z. The grid size is Lx × L‖ × Lz = 93.75ρs0 × 11000ρs0 × 50ρs0, where ρs0 = ρs(T =

20 eV) = 1.29 mm, giving a perpendicular grid spacing of 0.391ρs0 and a parallel grid

spacing of 172ρs0. The parallel boundaries use Bohm sheath boundary conditions:

vi‖,sh = ±
√
eTsh/ (mi +me), ve‖,sh = ±

√
mieTsh/2πme (mi +me) exp(−φsh/Tsh)

and qe‖,sh = (2− 0.5 ln(2πme/mi))nshTshve‖,sh− 5pe,shve‖,sh/2−menshv
3
e‖,sh/2e. The

perpendicular boundaries are far enough from the filament to have little effect:

Neumann boundary conditions are used in the radial direction for all variables except

φ, which is set equal to its background value; periodic boundary conditions are used

in the binormal direction.

A steady background plasma is created by balancing the sinks at the sheaths

with sources Sn = Sn0

[
exp
(
20
(
y/L‖ − 1/2

))
+ exp

(
−20

(
y/L‖ + 1/2

))]
and SE =

SE0 exp
(
−10 |y| /L‖

)
, whose prefactors are adjusted so that the density and

temperature at the mid-point of the simulation domain are 8× 1018 m−3 and 20 eV.

The filament simulations are run by adding a density perturbation on top of the

background

∆n = A
1

2

[
1− tanh

(
(
y−L‖/4

L‖/8

)] 1

2

[
1− tanh

(
−y−L‖/4

L‖/8

)]
exp
(
−x2+z2

δ2⊥

)
,

(A.6)

with amplitude A = 1.6×1019 m−3 and perpendicular width δ⊥ = 5ρs0, and allowing

the simulation to evolve for 1000 Ω−1
i = 41.5µs.
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