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Abstract 

The 2D scrape-off-layer turbulence code (nSOLT) includes 1D Boltzmann neutral-plasma 

interactions, a model of divertor recycling (introduced here), and a fixed source of plasma 

concentrated at the core-side boundary.  1) Neutral injection in the far-SOL is accomplished by 

specifying the density of Franck-Condon distributed neutrals streaming in from the boundary.  2) 

Divertor recycling is modeled by injecting a fraction of the particle parallel flux in the SOL back 

into the edge region as a source of plasma.  3) A constant source fuels the edge plasma from the 

core-side boundary to model pellet injection.  For machine parameters (B, Rm, L//) illustrative of 

the MAST-U device, and for a deuterium plasma, turbulent equilibria are obtained that share the 

same plasma fueling rate for each of the three fueling methods, with only one of the sources on in 

each case.  In the presence of self-consistent turbulence, quasi-steady plasma and neutral 

(deuterium) profiles, fueling efficiencies, SOL transparencies, and heat flux widths are compared.  

Characteristics of the turbulent fluctuations, including skewness, cross-phases and power spectra, 

are described. The calculated fueling efficiencies, SOL transparencies and many of the turbulent 

properties are remarkably similar for all three fueling methods despite significant differences in 

the plasma profiles.   The nonlinear states of the three cases are dominated by separatrix-spanning 

vortex cells that control particle and heat losses into the SOL. 

I.  Introduction 

Fueling impacts the distribution of plasma density and temperature and consequently the 

character of turbulent fluctuations and transport in the edge and SOL regions of the tokamak.  

Results of experiments on DIII-D demonstrate that high-confinement mode (H-mode) 

accessibility and tolerable heat-flux loading at the divertor, both crucial for ITER operation, 

depend critically on the fueling scenario. [1] 

Fueling scenarios can be distinguished by the efficiency with which they add plasma to 

the core and edge regions of the tokamak.  Pellet fueling creates plasma directly in the core 

region by ionization of an injected ice pellet of the hydrogenic fuel; the new plasma spreads 

radially outward into the edge and scrape-off layer (SOL) regions.  Neutral beam injection (NBI) 

and supersonic molecular beam injection (SMBI) similarly supply sources concentrated in the 

core region.  Puff fueling, on the other hand, injects neutral gas molecules (D2) through ports in 

the machine wall which dissociate and stream across the SOL as atoms that are ionized in the 

higher-temperature environment of the near-SOL and edge regions.  An internally self-consistent 
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cousin of puff injection is divertor recycling: Plasma bombardment of material surfaces causes 

recycling of neutrals that are ionized once they reach the edge region and proceed from there to 

fuel the core. 

Numerical simulation codes used to describe neutral-plasma interactions in the tokamak 

range from the gyrokinetic PIC codes, exemplified by XGC1 [2] to the diffusive transport codes, 

exemplified by UEDGE [3] and SOLPS-ITER [4].  PIC codes model fluctuations on the scale of 

the ion gyro-radius but are relatively expensive to run, particularly when used to simulate an 

entire section of the tokamak on long time scales.  Transport codes do not evolve plasma 

turbulent fluctuations but instead use ad hoc diffusion coefficients to model plasma transport.  

Plasma fluid simulation codes are less expensive than PIC codes to run but, unlike transport 

codes, resolve turbulent fluctuations in the collisional plasma regime.   For example, the 

BOUT++ code [5] and models based on the BOUT++ framework [6] are based on the Braginskii 

fluid model equations. [7]  

Among the fluid codes, the plasma evolution may be coupled either to a fluid description 

of the neutral species evolution, appropriate in the small neutral mean-free-path limit, 

exemplified by the BOUT++ framework with trans-neut module [8], the models of Bisai et al. 

[9, 10, 11] and by the nHESSEL code of Thrysøe et al., [12, 13] or to a kinetic (Boltzmann) 

description of that evolution, as in the GBS code of Wersal and Ricci [14, 15] and in the nSOLT 

code [16] used in the present study.  nSOLT is perhaps closest to GBS but is much reduced in 

focus.  Where GBS models the entire tokamak in three dimensions, nSOLT simulates plasma 

turbulence in two dimensions in the outboard midplane region of the tokamak, including the 

edge and SOL, and uses a unique parallel transport model on the open field lines to achieve that 

reduction.  nSOLT is arguably the most reduced of the fluid-plasma, kinetic-neutrals turbulence 

simulation codes.  A brief roundup of currently active modeling is given in reference [16]. 

We present results of nSOLT simulations of plasma turbulence driven by three distinct 

fueling methods: pellet injection, divertor recycling and neutral puff injection.  Recent numerical 

studies that have specifically addressed issues of fueling include:  the work of Zhou et al. [17] 

who used the BOUT++ framework to simulate gas puffing and SMBI in the vicinity of the HL-

2A tokamak divertor; the transport model-based studies of Koechl et al., [18] and those of 

Polevoi et al. [19] that explored efficiency issues for ITER fueling by gas puffing and/or pellet 

injection; the work of Koikea et al. [20] that explored fueling by the merging of two co-axial 

plasma rings; and the NSTX-U fueling studies using UEDGE and DEGAS 2 simulations 

(diffusive plasma transport coupled to kinetic Monte-Carlo neutral species evolution) by Scotti et 

al. [21]  

To the best of our knowledge, this is the first comparative study of fueling scenarios that 

uses a reduced fluid-plasma description of turbulent evolution coupled to a kinetic description of 

the neutral atomic component. 

The remainder of the paper is organized as follows.  Section II presents the nSOLT model 

equations of evolution.  Section III describes the modelling of the three plasma sources.  Section 

IV introduces our definitions of SOL transparency and fueling efficiency.  Parallel energy flux, 
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heat flux widths and the power budget in the SOL are discussed in Sec. V.  The turbulent 

fluctuations are diagnosed in Sec. VI.  A summary and concluding remarks are given in Sec. VII.  

Appendix A gives explicit expressions for the parallel fluxes on open and closed field lines, and 

Appendix B gives details of the power budget calculation in the SOL. 

   

II.  Model equations 

a.  Overview 

The nSOLT model [16] describes the fluid plasma coupled to kinetic neutrals; it consists 

of four fluid equations of evolution for the plasma density (ne), the electron and ion temperatures 

(Te and Ti) and the ion fluid vorticity (-) that are coupled to the evolution of the neutral atoms 

by a Boltzmann equation.  The plasma equations are reduced from the more general drift-ordered 

reduced Braginskii fluid model derived by Simakov and Catto [22] by making assumptions 

appropriate to the outboard midplane (OM) region of a tokamak.  These assumptions plus 

“closure relations” [23] reduce the plasma simulation domain to two spatial dimensions (2D).    

The “bi-directional” (approximately poloidal) variable (y) is in the dimension perpendicular to 

the B-field and to the radial dimension (x).  The Boltzmann equation evolves the y-averaged 

neutral distribution function, G(x,vx,t), in the radial dimension.  Only the y-averages of plasma 

fields appear in the evolution of G, and the plasma sees neutrals that are homogeneously 

distributed in y.  Although the fundamental neutral-plasma interactions in the model remain valid 

in the short mean free path limit, this description is most appropriate for the neutrals in the long 

mean-free-path regime because in that case the neutrals average over plasma conditions in the y 

direction. 

With the magnetic (B) field in the z-direction, the simulation plane (x, y) includes closed 

field lines in the edge region (x<0) and open field lines in the scrape-off-layer (SOL) region 

(x>0), where x = x−xsep, and xsep locates the magnetic separatrix.  It is assumed that (1) the 

parallel gradients of even velocity moments of the distribution functions (i.e., || ne,i  , || Te,i, ||

Pe,i) vanish in both the edge and SOL regions at the OM, and that (2) parallel fluxes in the SOL 

(i.e., odd moments of the distribution functions) are odd about the simulation plane (z=0).   

Assumption (1) expresses the observation that turbulent transport across the B-field is 

concentrated in a neighborhood of the OM where the interchange instability growth rate is 

maximized and that the plasma spreads out along the B-field away from this turbulent region.  

Assumption (2) says that the plasma drains away from the OM symmetrically along open field 

lines in the SOL toward the divertor(s).   These assumptions are appropriate to the baseline 

double-null operating scenario in the MAST-U device. 

Flux-surface (y) averages of parallel gradients must vanish in the edge region by 

periodicity (for B  constant), and they are constrained to do so by explicitly writing parallel 

gradients in the edge region as fluctuations with respect to y.  In the SOL, “closure relations” 

[23] result from replacing parallel flux gradients, such as that of the current density, //j//, with 

their field-line averages taken from the OM (z=0) to z=L//.   Exploiting assumption (2) this 
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average, viz., [j//(z=L//)−j//(z=0)]/L// , is  j//(z=L//)/L// where L// = L//(x) is the parallel connection 

length to the divertor sheath, and j//(z=L//) is the parallel current at the divertor sheath entrance.  

The closure relations effectively map sheath boundary conditions into the OM. Disconnection 

from the sheath resulting from volume resistivity (conduction limited regime) is modeled 

heuristically. [23] 

Convection is by the EB velocity, vE = b  in a constant, uniform magnetic field B = 

bB directed out of the (x,y) plane.  Our model considers only electrostatic fluctuations, where  

is the electrostatic potential, and we ignore polarization drifts as negligible in comparison with 

vE, except in deriving the vorticity equation where the divergence of the polarization current is 

essential.  [22] 

The equations given below are in dimensionless (Bohm) units: time is measured in units 

of the ion gyro period (ci
-1), energies (e, Te, Ti) in units of a reference temperature (Tr ), 

velocities in units of the corresponding cold ion acoustic speed (csr  =[Tr/mi]
1/2), length in units of 

the reference ion gyro-radius (sr) based on the sound speed (sr = csrci
-1), and density is in units 

of a reference density (nr).  We adopt fundamental parameters illustrative of a deuterium plasma 

at MAST-U: B = 5745 Gauss in the OM ( ci = 2.75 x 107 rad/sec), OM machine radius R0+ a  

Rm = 132 cm, and connection length profile L||(x) as determined by field-line tracing from a 

magnetic equilibrium reconstruction. [24] These parameters result in the reference values csr  = 

69 km/sec and  sr = 2.52 mm for the simulations of this paper, where Tr = 100 eV. 

b.  plasma density 

The equation of evolution of the plasma density (n = ne = ni) is 

 E || ||n e P Dt IZn (v n) (D n) S S S⊥ ⊥ ⊥ +   =    −   + + + , (1) 

where x x y ye e⊥ =  +  .  The diffusion coefficient Dn is unphysically large in a buffer zone that 

includes the simulation boundary in the edge region, or the “core-side” boundary, in order to 

suppress fluctuations that would otherwise cascade into large cells there, and to provide a 

controlled diffusive flux of pellet-injected plasma at that boundary (by the source SP) into the 

edge region.  See Fig. 1.  Outside of the buffer zone, Dn is a physically reasonable constant, 

given below.  The parallel flux gradient, ||||e = ||(nev||e), is given explicitly in Appendix A. 

We consider three different particle sources in Eq. (1): SP represents a stationary source 

concentrated at the core-side boundary intended to model pellet injection.  SD represents a source 

of plasma from recycling at the divertor and is concentrated in the edge region.  SIZ is a source 

due to ionization of the neutral atoms puffed in from the far-SOL boundary.  The sources are 

described further in Sec. III. 

c.  plasma pressure 

The electron and ion pressure evolution equations are, respectively, 
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where the charge-exchange (CX) and ionization (IZ) rates, 0 cx
n v and 0 iz

n v , describe 

energy exchange with the neutral population and are given below in Eqs. (4c) and (4d).  n0 and 

n0E0 are the neutral particle and energy density moments of the distribution function G.  In (2a) 

Eiz is the “ionization cost” responsible for cooling the electrons in the presence of neutrals.  The 

plasma is heated by stationary sources, Ee,i
S , isolated within the buffer zone at the core-side 

boundary, but notice that the divertor recycling source SD acts to heat the plasma in the OM edge 

region as well.  The pellet source, SP, does not appear in these equations but is explicit in the 

equations for temperature evolution obtained by using Eq. (1) to eliminate tn from (2a) and 

(2b).  As for Dn, so the thermal diffusivities, e,i are unphysically large in the buffer zone to 

provide a controlled diffusive flux of energy injected at that boundary by the sources Ee,i
S  into 

the edge region.  See Fig. 1.  Outside the buffer zone, e and i are physically defensible 

constants, given in Sec. III below.  The parallel energy flux gradients ||Q||e,i are given in 

Appendix A. 

d.  vorticity and electrostatic potential 

The total ion fluid momentum density is E din n( )= = +g u v v , and the component of its 

curl, i.e., the vorticity, along b is 

 
2 2

i
n n p ρ ⊥ ⊥ ⊥ ⊥ +   +  =   −b g . (3a) 

[We define this vorticity to be − so that, in the cold-ion (Ti=0) and Boussinesq (n=0) 

approximations,  has the same sign as the charge density.]  Given n, pi =nTi and , Eq. (3a) is 

solved for the electrostatic potential () at each time step. 

The evolution of  is as follows. 

( ) 2
e i / / //

2 2 2 2
e di E i E i e E

t x y y xρ 2b κ (P P ) ρ

1 1 1
     n v v ( P ) (v P ) b n v

2 2 2
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⊥
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= −   + −  −  −  + 

   +   −   −   −  
   

 (3b) 
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where x sr m/ R=  = −κ b b e is the curvature vector,  is the coefficient of viscosity, f is the 

neutral friction force density,  

 ( )0 e 0 0 i 0 E diiz cx
v n n v n n = + − −v v v vf , (3c) 

and v0 is the neutral fluid velocity.  The radial (x) component of the neutral velocity is given by 

the vx-moment of the neutral distribution function, G, while the evolution of the bi-directional 

component (v
0y

) is given in (4b) below.  The parallel current gradient, || j||, is given in 

Appendix A. 

e.  neutral distribution function 

The evolution of the neutral species is described by the following equations. 

 0 i i ecx cx izt x xG v G v n F v n G v n G   +  = − −  (4a) 

 ( )0y 0x x 0y i Ey diy 0ycxtv v v v n v v v +  = + −  (4b) 

 

Here G = G(t,x,vx) is the 1D neutral species distribution function, and Fi = Fi(t,x,vx) is a 1D 

Maxwellian distribution function based on the y-averaged ion density and temperature, 

 

 2 1/2
i x i iiF n exp v / (2T ) / (2πT ) = −

 
.  

 

Only the y-averages of plasma fields, denoted by overbars, appear in the evolution of G, and the 

plasma sees neutrals that are homogeneously distributed in y.  If the 3D neutral distribution 

function is denoted by g, then x y zG(x,v , t) v v  d d g=  , and we have assumed no toroidal (z) 

dependence.  In Eqs. (4), ne = ni  n; the distinction is purely to elucidate the underlying physical 

processes. 

The form of the convective derivative in (4b) involves a closure ansatz for the vxvy-

moment of g .  We indicate the result of that ansatz and the evolution of G, derived from the 

Boltzmann equation for g, here and refer the reader to reference [16] for the derivations. 

The charge exchange and ionization rates are similarly based on y-averaged electron and 

ion temperatures: 

 14 0.3 1/2 3
i i icx

v (T ) 1.1 10 T (x,t) M   m /sec  − −=  and  (4c) 

15 1/2 3
e e e eiz

v (T ) 8 10 T (x,t) exp 13.56 / T (x,t) / (1 0.01T (x,t))  m / sec −  =  − +   (4d) 

where the temperatures are expressed in eV and Mi in AMU (Mi = 2 for D).  These formulaic 

rates are fits to tabulated values of the collision rates that are used in kinetic neutral Monte Carlo 

simulations. [25] 
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f.  boundary conditions 

All plasma fields (n, Te, Ti, ) are periodic in y.  The fluctuations in these fields (e.g., 

n n n = − , where the over-bar indicates the poloidal average or “mean” value) vanish at both x-

boundaries of the domain 0  x  Lx.  The mean values of the density and temperatures are held 

to constant “floor” values at the far-SOL boundary, and their radial gradients are held to zero at 

the core-side boundary so that there is no diffusive flux of those quantities at that boundary.   

The radial gradient of the mean potential ( Eyx v = ) is taken to be zero at the core-side 

boundary (x=0), and the mean potential is set equal to the Bohm potential at the SOL boundary, 

x e x( L , ) 3T ( L , )x t x t = = = , and these boundary conditions are used to solve Eq. (3a) for the 

potential. 

At the far-SOL boundary (x = Lx), or “wall,” the boundary condition on G is given by 

 

 
2

2 1/2
x puff x D FC FCxG(x=L , v 0) n exp[ (v v ) / 2T ] / (2πT ) = − −   (5) 

 

where 
2

Dv is taken to be -0.8 km/sec, corresponding to room temperature (300 K) D2 

molecules, and TFC is the Franck-Condon (FC) temperature, taken to be 3 eV.  (This is a 

stationary fueling source; we do not consider the time-dependent recycling of neutrals and ions 

that impact the ‘main chamber’ wall.)  Neutrals free-stream out of the simulation domain at both 

boundaries; exiting neutrals at the core-side boundary, G(x=0, v<0), and at the wall, G(x-

=Lx,v>0), are evolved by convection alone.  No neutrals enter from the core: G(x=0, v>0) = 0.  G 

is held to zero at the boundary of the velocity domain which extends to () 4cs (280 km/sec) and 

contains the observed support of G in the simulations. 

g.  Numerical methods 

The overall updating of the plasma fields in nSOLT (n, Te, Ti, ) is split-step: to each 

monomial term in the evolution equations there corresponds a subroutine that solves an initial 

value problem starting from the fields updated by the previous subroutine in the calling sequence 

of the main time loop.  The algorithm used in the convection subroutine is flux-corrected 

transport (FCT) [26], chosen for its exceptional ability to resolve steep propagating fronts, e.g., 

density blobs.  The alternating-direction implicit (ADI) algorithm [27] is used to advance the 

fields by linear diffusion [i.e., terms proportional to Dn, e,i and  in Eqs. (1), (2a, b) and (3b)].  

The fields are updated explicitly by the parallel flux gradients ( || ||e || ||e || ||i || ||, Q , Q , j     )  and by 

the sources (SP, SD, SIZ, SEe, SEi).  The electrostatic potential () is found by solving Eq. (3a) by 

the relaxation method of Angus and Umansky. [28] 

The evolution of the neutral distribution function (G) is in three steps: free-streaming by 

upwind linear interpolation, CX update by a 2nd order Runge-Kutta method and an explicit 

exponential update for ionization.  (The plasma fields are taken as fixed over a single time step, 

t.)  The free-streaming update is constrained by max(|vx|) t/x < 1, where here vx is the 
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independent velocity variable of the neutral grid (x,vx).  With max(|vx|) ~ cs and x ~ s, this 

constraint amounts to t < i
-1 which imposes no greater computational burden than that 

imposed by resolving the turbulent fluctuations, where t ~ 10-2 i
-1 is typical in practice.   

 

III.  3 plasma sources, synchronized  

The plasma is fueled by one and only one of three sources that model pellet injection 

from the core-side boundary (SP), divertor recycling in the edge region (SD) and ionization of 

neutrals puffed into the simulation domain from the SOL boundary (SIZ).  See Eq. (1) and Fig. 1.  

(A weak puff is retained to provide diagnostics in the pellet and divertor-fueled cases but 

contributes negligibly to fueling.) 

1)  Pellet fueling is modeled by a stationary source, SP(x), concentrated in the buffer 

zone at the core-side boundary.  Diffusion coefficients, that are much larger in the buffer zone 

than in the edge and SOL, exclude turbulent fluctuations while transporting pellet-injected 

plasma into the edge region by means of the diffusive flux nD n . 

2)  Divertor recycling is modelled by injecting a fraction (RD) of the parallel plasma flux 

e( )  in the SOL back into the edge region.  This recycling is instantaneous in our model; 

plasma is injected into the edge as soon as it leaves the SOL.  The recycled plasma is introduced 

at the local edge temperature, under the assumption that the original divertor-emitted neutrals 

equilibrate by charge-exchange with the local plasma while in transit to the edge where they are 

ionized and then make their way to the OM.  The source is 

 

SEP

x

D ||D

x

L

y
S ( , ) R h( ) ( , )ex t x d t =   , (6) 

where the profile h(x) is a Gaussian centered in the edge and normalized to unity on the 

simulation domain, 
x

0

L

h( ) 1 dx x = .  It can be seen from Eq. (1) that, with zero diffusive and 

turbulent radial flux at the boundaries, the integral of the y-averaged plasma density is conserved 

if RD = 1: 
x

0

L

tn( , ) 0 dx x t = .  This fact is useful for adjusting the operating density in a 

turbulence simulation; the density is driven up rapidly with strong pellet injection or puffing that 

is switched off once a target density is reached.  Continuing with RD = 1 will maintain the 

density or, if the target is exceeded, temporarily switching to RD < 1 will lower the density. 

3)  Puff fueling is by means of the far-SOL boundary condition on the neutral 

distribution function given in Eq. (5), Sec. IIf.  From the wall, neutrals stream into the SOL and 

are ionized with increasing probability as they approach the edge, and the plasma that they 

encounter grows hotter and denser.  The plasma density source from ionization is [See Eq. (1)] 
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 IZ 0iz
S (x, y, t) v n n= . (7) 

In the divertor-recycling (D) and pellet-fueled (P) simulations, a small puff (109cm-3) provides a 

diagnostic of SOL transparency to neutral propagation but is a negligible fueling source in those 

cases. 

Results from three nSOLT simulations are presented in the remainder of this paper that 

use each of the three fueling methods, respectively.  The simulations have heating rates and 

diffusion coefficients in common: Ee,i
S (maximum) = 30 MW/m3, Dn = 0.2 m2/sec, e,i = 15 

m2/sec, and  = 30 m2/sec.  The values given here for the diffusion coefficients, Dn and e,i, are 

for the edge and SOL, i.e., outside the buffer zone, and their values are taken from a reference 

SOLPS [4] simulation of an H-mode plasma at MAST-U. [24] 

The source parameters were adjusted to bring the mean values of the respective core 

fueling rates (F) into agreement within standard deviations: 

 D IZx<0 PF (S ,S ,S )dx


=  . (8) 

First, by tuning the operating density of the divertor-recycling fueled simulation (D), as 

described above, it was possible to bring the equilibrium profiles into reasonable agreement with 

those of the reference SOLPS simulation in the SOL.  That equilibrium set the target fueling rate 

for the other two simulations, trivial to reach in the pellet-fueled case by choosing the constant 

parameters of SP to give the required integral in Eq. (8) but more challenging to reach in the 

puffed case due to the unpredictable dependence of the source on the condition of the plasma.  At 

the time origin in Fig. 2 (t = 0), the simulations have already run for 1.5 ms from ad hoc initial 

conditions and are judged to be in a quasi-steady turbulent equilibrium. 

With fueling rates synchronized, the simulation profiles are compared in equilibrium in 

Fig. 3.  The profiles from the reference SOLPS simulation are shown as dashed curves.  The 

fueling in the SOLPS simulation is dominated by divertor recycling, [24] and, as seen in Figs. 

3(a) and 3(b), the density and electron temperature profiles from case D are in better agreement 

with the corresponding SOLPS profiles in the SOL than are those of the other two simulations.  

Despite differences between the n, Te and Ti profiles, the pressure profiles in Figs. 3(d) and 3(e) 

are in good agreement, suggesting similar turbulent energy transport mechanisms at work in the 

simulations.  

The neutral density profiles from the simulations, Fig. 3(f), are expected to differ from 

the SOLPS profile because the puffed case (IZ) uses a relatively large puff density to maintain 

the plasma density near the SOLPS profile without the benefit of divertor recycling, while cases 

D and P use relatively miniscule puffs for diagnostic purposes.  Notice that the D and P neutral 

profiles are alike, suggesting similar SOL transparencies with respect to neutral penetration. 

IV.  SOL transparency and fueling efficiency 

To measure neutral penetration of the edge region, we distinguish between SOL 

transparency (ST) and the fueling efficiency (FE).  We define the former as the ratio of the 
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density of neutrals at the separatrix that are headed for the core (vx < 0) to the density of neutrals 

sent into the SOL from the wall, viz., 

 ST = 

x x

x x x x x
v  0 v  0

dv G( x 0, v ) dv G(x L , v )
 

 = =  , (9) 

and the fueling efficiency to be the ratio of neutral fluxes similarly restricted: 

 FE = 

x x

x x x x x x x
v  0 v  0

dv v G( x 0, v ) dv v G(x L , v )
 

 = =  . (10) 

The phase space portrait of the neutral particle flux is shown in Fig. 4 for the puffed case.   

The SOL transparencies and fueling efficiencies are compared for the three cases in 

Table I.  To within standard deviations, cases D and P are indistinguishable, with SOL 

transparencies ~ 25% and fueling efficiencies ~ 50%; one quarter of the injected neutrals survive 

ionization in the SOL to reach the separatrix (as neutrals) and arrive there with twice the velocity 

with which they were launched from the wall, on average.  [The ratio of FE Eq. (10) to ST Eq. 

(9) is ( ) ( )x x xFE/ST v x=0 / v x=L=  .]   

In the puffed case, the SOL transparency is 22% and the fueling efficiency is 40%.  This 

case has the largest plasma density and the smallest electron temperature in the SOL.  However, 

the transparency is only slightly reduced from that found for cases P and D  The neutral 

ionization rates in the SOL are compared in Fig. 5(a).  The lower temperature and higher electron 

density in the puffed case apparently offset each other to yield an ionization rate close to those of 

the other two cases. 

The charge-exchange rate is only weakly dependent on the ion temperature [cf. Eq. (4c)] 

and is largest in the puffed case due to the larger electron density in the SOL.  See Fig. 5(b).  

This relatively rapid exchange of energy with significantly cooler ions accounts for the reduced 

fueling efficiency, i.e., slower neutrals at the separatrix, compared to the other two cases.   

The effect of charge exchange heating of the neutrals is evident in Fig. 4, where the 

phase-space (x, vx) contours of the neutral particle flux broaden to larger velocities in the near-

SOL and edge regions.  The pronounced red feature for vx > 0 indicates CX-heated neutrals, 

made in the edge and near-SOL, free-streaming to the wall.  The energy flux at the wall due to 

these returning neutrals is 110 kW/m2 in the puffed case (npuff = 1013 cm-3) and is comparatively 

negligible in the P and D cases due to the much smaller “diagnostic” puff density (109cm-3).  

However, the ratios of the exiting energy flux (vx > 0) to the injected energy flux (vx < 0) at the 

wall are 4.3, 1.5 and 1.2 in the D, P and IZ cases, respectively, and reflect the ordering of the ion 

temperatures in the near-SOL and edge where the returning CX-heated neutrals originate [cf. 

Fig. 3(c)]. 
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fueling 

method 
F  

(8)  

ST
  

(9) 
(%) 

FE
  

(10) 
(%) 


q, e

 

(11) 
(mm) 


q, i

  

(11) 
(mm) 

P
SOL

 

(12a) 
(MW) 

P
div

 

(12b) 
(MW) 

P
loss

 

(12c) 
(MW) 

P 

pellet 

17.4  

± 0.0 
27.9  

± 2.6 
48.5  

± 3.0 
8.0  

± 0.6 
12.3  

± 0.8 
2.5  

± 0.6 

2.4  

± 0.3   
10

-4

 

D 

recycling 

18.5 

 ± 1.5 
25.3  

± 1.7 
49.4  

± 2.0  
7.7  

± 0.8 
15.2  

± 1.2  
6.6  

± 0.9 

6.6  

± 0.6 
10

-4

 

IZ 

puffed 

18.1  

± 0.9 
22.1  

± 1.9 
39.8  

± 2.4 
8.5  

± 0.3 
9.4  

± 0.4 
2.4  

± 0.3 

1.8  

± 0.2   

0.66  

± 0.03 

 

Table I.  Measured average quantities for the pellet (P), divertor (D) and puff-fueled (IZ) 

simulations.  Measurements are of the form m ± s.d, where m denotes the time-average (mean), 

and s.d. is the standard deviation about the mean.  Numbers in parentheses reference the 

equations defining the measurement.  The fueling rate (F) is given in units of 1014cm-2ms-1.   

 

V.  Parallel energy flux and power budget in the SOL 

Electron and ion parallel energy flux profiles in the SOL are shown in Fig. 6.  

(Expressions for the fluxes are given in Appendix A.)  The corresponding Loarte heat flux 

widths [29], 

 q || ||

x > 0

Q / Q ( x 0)dx


=  = , (11) 

are given in Table I.  Larger widths are preferable for spreading the heat loading over a larger 

area of the divertor and so prolonging its lifetime.  The simulated heat flux widths are similar to 

those typically measured in MAST. [30] 

The plasma power crossing the separatrix from the edge (PSOL) is [cf. Eqs. (2)] 

 
SOL m Ex Exe e x e xi i i

x 0

3 3
P 2πR dy v nT n T v nT n T

2 2
 

 =

 
= −  + −  

 
 , (12a) 

i.e., the radial energy flux at the separatrix integrated over the last closed flux surface. 

PSOL must equal the power lost along field lines to the divertor plate (Pdiv) plus the power lost to 

ionization and charge exchange in the SOL (Ploss), viz., PSOL = Pdiv + Ploss,   

where 

 ( )div m ||e ||i

x  0

θP 2πR b Q Qdx
 

= + , (12b) 
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and 

 

m 0

0

loss

0 0

iziz
x 0

iiz cx cx

P 2πR [ v n nE

3
( v + v )n n E v n n T ].

2

dxdy 

  

 

=

− +


 (12c) 

 

where b = Bp/|B| = 0.545 for the MAST -U OM.    

In practice, the y-integrals in Eqs. (12a) and (12c) are replaced with 
θ y

L f  where f 

stands for either integrand, and L is an effective domain length chosen by demanding that PSOL 

= Pdiv when the turbulence is in steady state and there is no loss due to ionization in Eqs. (2).  See 

Appendix B for details.  This device allows the computation of volume integrated quantities 

from the 2D simulation. 

The time-averaged total powers (PSOL) are given in Table I.  The fraction of PSOL in the 

electron channel is 0.42, 0.40 and 0.51 for D, IZ and N, respectively, and the remainder is in the 

ion channel.  Only in the puffed case is Ploss significant and important for power conservation, 

amounting to 25% of the power entering the SOL.  Although the recipe for L, Eq. (B3), ignores 

Ploss, it nevertheless gives good power conservation in the puffed case. 

Case D has significantly more input power than the other two cases, and it is the case 

characterized by the strongest turbulence, as discussed next.   

 

VI.  Characteristics of the fluctuations 

Contour plots of the electrostatic potential and fractional density fluctuation and are 

shown in Figs. 7 at the end of the puffed simulation.  In all cases, the potential fluctuations 

consist of separatrix-spanning cells, centered in the edge region, about which the plasma tends to 

rotate clockwise.  These “vorticity cells” are most persistent in the puffed case.  Blobs are 

emitted intermittently from the regions between the cells, in a neighborhood of the separatrix, 

and propagate into the SOL.  We have occasionally seen blobs get emitted from the top of a cell 

only to be sucked back into the edge at the bottom.  Similar separatrix-spanning convective cells 

were also observed in previous simulations of the NSTX device using the SOLT code (where 

neutral physics was not modeled). [31] Radial profiles of the time-averaged fluctuation 

amplitudes are shown in Figs. 8.  The cases are ordered by fluctuation amplitude according to D 

> P > IZ in the far-edge and near-SOL (-2 cm < x < 2 cm).   

Profiles and histories of the radial turbulent particle flux are shown in Figs. 9.  The 

similar magnitude of the particle fluxes crossing the separatrix for the three fueling scenarios is 

expected since the source rates in the closed surface region have been chosen to be 

approximately equal.  Fluctuations of the flux at the separatrix are ~50% of the mean value, and 

they have a periodic component, particularly apparent in the puffed and pellet-injected cases, at 
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roughly 10 kHz.  The power spectra of the potential and density fluctuations at the separatrix are 

maximized at  ~ 10 kHz, and this frequency is consistent with the rotation rate that may be 

inferred from the snap shot of  in Fig. 7(a), as discussed below. 

The skewness of the density fluctuations, 

 
3/2

3 2

y y t

n nskewness  =  (13) 

is plotted in Fig. 10(a).  Where it passes through zero, changing from negative to positive, the 

character of the fluctuations changes from hole to blob, suggesting a blob birth-zone in the near-

SOL (0 < x < 2 cm) for all cases.  The canonical blob propagation picture, [32] in which the 

grad-B and curvature drifts polarize the blob poloidally [cf. the term ~  in Eq. (3b)] and the 

resulting EyxB drift propels the blob radially outward, is only weakly supported by cross-phase 

measurements, 

 ( )
1/2 1/2

2 2

y y yy y
t

- E n E ncross phase    = , (14) 

plotted in Fig. 10(b), where perfect blob polarization corresponds to a value of unity.  The 

circulation associated with the vortex cells in Fig. 7(a) likely obscures relatively occasional blob 

emission in the cross-phase diagnostic.  Both cross-phase and skewness are consistent with the 

picture of blobs piling up in the far-SOL [Fig. 7(b), x > 2 cm]: connection to the divertor sheath 

improves with decreasing L||(x) moving away from the separatrix, and blob rotation (i.e. ‘spin’ 

from Te sheath-induced monopole blob potential profiles) replaces radial translation.  [32] 

If there is an underlying linear instability driving the turbulence in these simulations, it 

must be the curvature-interchange (C-I), drift wave, Kelvin-Helmholtz (K-H) or sheath 

instability that can be active in the nSOLT model.  However, only the C-I and K-H instabilities 

are candidates to underly the turbulent transport in the edge and near-SOL.  The C-I instability 

growth rate is 
1/2

mhd x e i
(P P ) / n  = −  +   , where the radicand is positive, and  = sr/Rm.  

The K-H instability growth rate is a fraction of the magnitude of the flow shearing rate, 

x Eyv   .  Profiles of the two rates are compared in Fig. 11 for the three cases, and it is seen 

that || and mhd are comparable in the birth zone (0 < x < 2 cm) except in a neighborhood of the 

separatrix where || is markedly larger.   

In studies of the K-H instability driven by a jump-discontinuous velocity profile [33], it 

was found that the growth rate of the K-H instability was a fraction of the shearing rate, 

KH ~ 0.2 | |  .  If a similar reduction were appropriate for the present simulations, then the 

interchange instability would dominate the K-H instability in the birth zone, based on the time-

averaged profiles.  The fact that mhd ~ || suggests, however, that the sheared flow is moderating 

the interchange instability in the birth zone. [34]  Features of the energy and power spectra are 

consistent with a turbulent equilibrium driven by the interchange instability, as we discuss next. 
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Energy (ky) spectra of the fluctuations at the separatrix are shown in Fig. 12.  The energy 

spectra of the potential fluctuations () are maximized at poloidal mode number my = kyLy/(2) 

= 4 in all cases, corresponding to the vortex cells seen in Fig. 7(a).  Energy spectra of the density 

fluctuations (n) are maximized at mode number my = (4, 5, 4) in case (D, IZ, P) corresponding 

to ky ~ 0.5 cm-1.  Thus, 1/ky ~ 2 cm which is similar to the radial scale lengths of the profiles in 

Fig. 3, as expected from linear interchange instability considerations, i.e. kyLn ~ 1 at maximum 

growth.  All energy spectra fall off exponentially at high-ky.  The cases are ordered by potential 

fluctuation energy according to D > P > IZ, and the ordering is reversed, i.e., IZ > P > D, for the 

density fluctuations.  This reversal is not overly surprising since the particle fluxes crossing the 

separatrix, which scale like the product vxn ~ n, must be equal to the core fueling rate 

common to all cases.  If the n spectra are divided by their corresponding mean-field energies 

then the ordering observed at the separatrix in Fig. 8(b) is recovered: P ~ D > IZ, as it should be 

since from continuity, we expect  ~ n/n. 

Power () spectra, averaged over eight poloidal “probe” locations at the separatrix, are 

shown in Fig. 13.  A break in the slope of the density spectra, or “knee,” is apparent in the 

neighborhood 10 kHz < /2 < 30 kHz, where the spectra transition from discrete spikes to the 

relatively smooth power-law fall-off (~-p) indicative of a cascade.  The interchange growth 

rates in the birth zone, 16 kHz < mhd /2 < 32 kHz, cf. Fig. 11, lie within this knee, supporting 

the observation that the interchange instability is driving the turbulence.  This injection range of 

frequencies is also consistent with the time scale of the perpendicular transport inferred from the 

blob dispersion relation for order unity fluctuations, viz., 

 
mhd

Exv
n ~ n , with n ~ n

L


  

⊥

,  

and it is consistent, as it must be, with the parallel loss rate, cs/L||, in the SOL: (25, 11.8, 16.7) 

kz for (D, IZ, P) at x = 1 cm.  

 The injection frequencies are also factor-of-two consistent with the oscillations apparent 

in Fig. 9(b) and with rotation rates inferred from the snap shots of the potential fluctuations in 

Fig. 7(a).  For example, in the upper cell for the puffed case (IZ), the potential decreases by 10 

eV in 2 cm.  In local polar coordinates, and in physical units, 

 θ

c
v 0.875 km/sec

B r


= =


.   

So, with  = v/r = 0.875 km/sec/(2 cm), we find that /2 = 6.96 kHz, compared to 7.2 kHz for 

the peak in the potential power spectrum. 

Except for the  spectra in the D and P cases, the spectra fall off like power laws (~-p) 

at high-.  Power spectra in the far-SOL (not shown) are similar to those shown in Fig. 13.  

Power-law spectra are predicted for Poisson-distributed waiting times between successive blob 

arrivals, [35] but our blob sample size is insufficient in the far-SOL to explore this prediction, 
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and the invariance of spectra with radial location suggests that there may be a different 

explanation for the power-law fall-off observed here. 

 

VII.  Summary and concluding remarks 

We have simulated plasma turbulence in the outboard midplane region of the tokamak 

with the nSOLT reduced model turbulence code for three distinct fueling methods: pellet 

injection (P), divertor recycling (D) and neutral puff injection (IZ).  Aside from those which 

define the fueling sources, all parameters were held fixed across the three simulations and were 

chosen to be illustrative of conditions anticipated in the MAST-U device.  By adjusting the 

parameters of the fueling sources in the plasma density evolution equation, the fueling rates in 

each simulation were tuned to agree, and the three cases were compared in a quasi-steady 

turbulent equilibrium.  The target fueling rate was chosen so that the nSOLT density and electron 

temperature profiles in the SOL agreed reasonably well with those observed in a SOLPS 

transport simulation of an H-mode at MAST. [24] 

Diagnostics applied to the simulations include SOL transparency to puffed neutrals and 

neutral fueling efficiency, parallel heat flux width (q) in the SOL, and diagnostics of the 

turbulent fluctuations including skewness, cross-phase, and power spectra.  Several diagnostic 

measures are summarized in Table I. 

A common turbulent transport mechanism appears to be at work in all cases.  The 

equilibrium turbulent fluctuations consist of wobbling, separatrix-spanning vorticity cells, 

centered in the edge, about which the plasma circulates, intermittently ejecting blobs into the 

SOL.  The electron pressure profiles are in good agreement in the SOL, as are time-averaged 

particle fluxes at the separatrix.  Pellet fueling and divertor recycling present the same SOL to 

neutral penetration and fueling efficiency, as measured by a weak, “diagnostic” neutral puff.  

Pellet fueling and puffing produce the same parallel heat flux profiles and send the same power 

across the separatrix (but not the same power, Pdiv, to the divertor).  The density fluctuation 

power spectra agree at high frequencies in all cases.  Despite these similarities, there are 

important difference between the cases. 

The puffed case has the largest plasma density, and the smallest plasma temperatures due 

to ionization and charge-exchange cooling.  It has the smallest electron parallel heat flux in the 

SOL, spread over the largest electron heat flux width.  It has the smallest ion heat flux width, 

with parallel heat flux comparable to that observed for pellet injection.  It has the smallest power 

crossing the separatrix, PSOL, though comparable to that observed for pellet injection (2.5 MW).  

However, due to IZ and CX losses in the SOL, it sends the least power to the divertor (1.8 MW). 

The puffed case is also the least turbulent case:  It has the smallest turbulent fluctuation 

amplitudes (potential and density) in the edge and near-SOL, and it has the smallest flow 

shearing rates and interchange instability growth rates in the edge and SOL.  In other words, 

neutral puff fueling elicits a relatively muffled turbulent response from the plasma dynamics and, 

either through the consequently reduced Reynolds-stress production of sheared mean flow and/or 
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neutral-friction drag on the mean flow, opposes the formation of high-shear layers that are 

observed in the other two cases.  This interpretation is consistent with the conjectured role of 

neutrals in impeding the L-H transition in NSTX, inferred from the improved access to that 

transition when lithium was used to reduce neutral recycling. [36]  

Divertor-recycling produces the smallest plasma density, the largest plasma temperatures, 

the largest parallel heat fluxes and the largest ion heat flux width in the SOL.  This is the case 

that sends the greatest heat flux to the divertor. 

Divertor-recycling produces the strongest turbulence: It has the largest potential 

fluctuation () amplitudes everywhere and the largest normalized density fluctuations in the 

near-SOL and far-edge.  It has the largest shearing rates and interchange growth rates in the edge 

and SOL.  Despite this, the system necessarily organizes itself so that the turbulent particle flux 

crossing the separatrix is essentially equal to that in the puffed and divertor-recycled cases, 

balancing the common source rates.   

Although the space and time average plasma profiles are significantly different in all 

three cases, our main conclusion is that the resulting calculated fueling efficiencies, SOL 

transparencies and many of the turbulent properties such as skewness and cross-phase profiles, 

energy and power spectra and characteristic frequencies are remarkably similar.  The fueling 

method, whether it be deep in the core, on the closed flux surfaces near the separatrix or in the 

SOL, seems not to have a great impact on these quantities when the turbulence and profiles are 

allowed to reach a quasi-steady state that is self-consistent with the fueling.  This answers the 

main question motivating our paper. 

A secondary result, of more general interest, is the relationship between linear growth 

rates, turbulent time scales and the parallel loss rate in the SOL.  When (i) fluctuation amplitudes 

approach order unity, (ii) there is no spatial scale separation between “equilibrium” profiles and 

the fluctuations, and (iii) profiles evolve to a self-consistent quasi-steady state with the 

turbulence, several characteristic time scales in the problem merge.  Considering the density 

field, the SOL density width (neglecting SOL particle sources) is set by equating the 

perpendicular and parallel transport terms: perpendicular transport from the separatrix balances 

parallel losses.  Thus, we expect 1/|| = cs/L|| to balance 1/⊥ ~ (k⊥vE) ~  where the final 

estimate follows from the continuity equation for fluctuations, while the turbulent time scale for 

transport ⊥ is estimated from 1/⊥ ~ ⊥/L⊥ ~ (n/n)v/L⊥ ~ v/L⊥.  These estimates, applying 

when the instability mechanism is dominated by convection (e.g. the interchange mechanism) are 

consistent with the observed similarity of the vortex cell rotation period, the parallel loss time, 

the fluctuation spectral peaks, and the interchange growth time. 

Finally, our work emphasizes the importance, already broadly recognized in the 

community, of turbulence simulations that not only include self-consistent sources and profile 

evolution, but also are able to compute out to sufficiently long time-scales that a quasi-steady 

turbulent state is actually achieved.  To this end, reduced models such as the present one may, 

with presently available computational resources, offer some significant advantages in the quest 

for reliable simulations of fusion-relevant edge and SOL plasmas. 
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Appendix A   Parallel transport 

The plasma parallel current density (j//), particle flux () and heat fluxes (Qe// and Qi//) 

are based on models of electrostatic drift wave physics in the core region and of divertor sheath 

physics (via “closure” relations) in the SOL.  These are dynamical quantities that evolve with the 

turbulent plasma fields.  The forms of these fluxes have been modified since they were last given 

in reference [23] and differ somewhat from those used in [16].  Here we give the forms used in 

the simulations reported in this paper.  The parallel flux gradients appearing in the model 

equations, viz., ||e||
  [Eq. (1)], ||e

Q
||

 [Eq. (2a)], ||i
Q

||
 [Eq. (2b)] and ||||

j [Eq. (3b)] have 

different forms on open and closed field lines, and we discuss them separately in sections A.1 

and A.2 respectively below.  The expressions are summarized in section A.3.  Expressions are 

given in Bohm units, unless specified otherwise. 

A.1 Open field lines 

On the open field lines in the SOL (x > xsep), the total current at the sheath entrance is 

given by a Padé interpolation [23] of limiting forms of the particle fluxes based on those given in 

[37].   

 ( )
1

1
1 1

||iSL ||eSL ||eCL ||eFLPadéj
−

−
− − =  −  −  − 

  
, (A1) 

where the sheath-limited (SL), conduction-limited (CL) and (thermal) flux-limited (FL) fluxes 

are  

 B
||eSL s

e

nc exp
T

  −
 =  

 
, (A2) 

 B
||eCL

5/2e
e

eei0 ||

1
1.96 T

T L ( )x

 



  −
 = −  

 
, (A3) 

 ||eFL

1/2
e60 nT = , (A4) 

 s||iSL
nc = . (A5) 

The ion current on the open field lines is ||iSL
 (A5).  So, with the total current given by (A1), the 

electron parallel flux is 
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 ||e ||e snc Padéj j = − = − . (A6) 

In the sheath-limited fluxes, Eqs. (A2 and A5), the sound speed is 
1/2

s e i
 c (T T )= + and 

the Bohm potential B e3T = .  A more accurate expression for B  is given by  

 TeB

1/2
e s

ve
ln

T (2π) c

  
=  

 
. (A7) 

This expression reduces to ei
3.18 0.5ln(1 T / T )− +  for deuterium, which we approximate in our 

simulations by “3.” 

In Eq. (A3) we have written the conduction-limited electron parallel current (j||eCL = − 

eCL) as j||eCL = ||E|| , where || is the Spitzer parallel conductivity, and approximated the electric 

field by E|| = −(B−)/L||, where  L|| = L||(x) is the parallel connection length to the divertor 

sheath.  (The electron-ion collision frequency, ei0, and electron cyclotron frequency, e, are 

constants evaluated using the reference parameters in the simulations.) 

The parallel flux gradients appearing in the model equations, Eqs. (1), (2) and (3b), are 

taken to be the averages of those gradients along the magnetic field line passing through (x,y) in 

the simulation plane.  For example, the field-line average of  ||e , viz., 

[e(z=L//)− e(z=0)]/L||, is  e(z=L||)/L|| because we assume that the odd moments vanish in the 

simulation plane where the source of parallel flux (i.e., the turbulence) is concentrated.  This 

effectively maps sheath boundary conditions into the plane, achieving “closure” and enabling a 

2D model.   e(z=L||) is the parallel flux at the divertor sheath entrance given in (A6).  In the 

simulations, L||(x) = a + b Log[(x-xsep)/sr], where a and b were determined from a fit to the 

connection lengths measured by field-line tracing in a magnetic reconstruction equilibrium.  [24] 

Defining sh to be the reciprocal of the connection length,  

 sh(x) = 2sr/L||(x), (Bohm units) (A8) 

we have 

 ( )sh sep||e ||e
( ) 1 n / n ,  floor||
x x x  =  −   (A9) 

and 

 ( )sh sep||i ||iSL
( ) 1 n / n ,  floor||
x x x  =  −  . (A10) 

With reference to the vorticity dynamics, Eq. (3b),  

 sh sep||
( ) ,  

|| Padé
j x j x x =  , (A11) 
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with jPadé given by (A1).  [The parameter nfloor is an ad hoc lower bound on the density imposed 

throughout the model for the sake of numerical expediency in the solution of the vorticity 

equation (3a).] In the present simulations nfloor/nr = 0.01. 

The electron conductive parallel heat flux on the open field lines, q||e, is a Padé 

interpolation of limiting forms and is given by 

 ( )
1

1 1 1

|| ||SL ||CL ||FLeq q q q
−

− − −= + + , (A12) 

where 

 B
||SL E e s

e

c nT c exp
T

q
  −

=  
 

, (A13) 

 ||CL

7/2 e
e

ei0 ||

1
3.2 T

L ( )
q

x


=  (A14) 

and 

 
||FL

3/2
e60nTq = . (A15) 

In (A13), cE is the sheath energy enhancement factor [37] which we take to be 2.5. 

The total electron parallel heat flux gradient, cf., Eq. (2a), is the sum of the conductive 

(||q||e) and convective pieces, [22] 

 ( ) sepe e e|| ||e || ||e || ||e || e, 

5
Q T 0.71 T 1 p / p , 

2
Padé floorq j x x

 
 =  +   −  −  

 
, (A16) 

with ||  → sh(x).  The ion parallel heat flux gradient is purely convective [22] in our model: 

 ( ) sep|||| ||i i || i i, i

5
Q T 1 p / p , 

2
floor x x =   −  . (A17) 

The ion conductive heat flux, ( i i i i i i
||i ||i || i i i,th

i i || i i,th || ||

nT T nT T
q T ~ ~ nT v

m L m v L L

 
= −  =


, where vi,th 

is the ion thermal speed and i = vi,th/i  is the ion mean free path) is deemed to be ignorable in 

comparison to the conductive flux, ~ nTics, to the extent that i << L||, which we assume. Note 

that the ions are the species which always flows into the sheath in contrast to the electrons which 

are the sheath-reflected species. This results in the different forms for the ion and electron heat 

fluxes. 

 [The parameters pe,floor and pi,floor are consistent with the floors imposed on the density and 

temperatures in the model for the sake of i) numerical expediency in the solution of the vorticity 

equation (3a) and ii) tractability of the Boltzmann exponentials in (A2) and (A13).] 
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A.2 Closed field lines 

On the closed field lines in the edge (x  xsep), the model we take for the electron parallel 

particle flux is motivated by the electron drift wave model of Hasegawa and Wakatani. [38]  The 

parallel current gradient is 

 ( )3/2

dw sepe e|| ||e
( )T T ln(n) ,  

|| ||
j x x x   = −  = −  . (A18) 

The overbar denotes the y-average of Te in (A18) and () denotes a fluctuation.  Thus, the flux-

surface (y) average of the parallel gradient vanishes, as it must since <B||Q> = <(BQ)> = 

0 for any quantity Q, and in our model ||B is neglected.  The coefficient is proportional to the 

Braginskii electrical conductivity in the edge 

 
2

dw sep dw sep2

||,

e sr

ei

1.96
( ) tanh[( ) / w ], 

L turb

x x x x x






= −  , (A19) 

and zero in the SOL.  We take dw(x) to decay to zero in the far-edge, reflecting the strong 

increase in collisionality, with decreasing Te, near the separatrix.  [The coefficient in (A19) is 

made of constant, reference parameters.]  We take wdw = 1 cm and the parallel scale length of the 

turbulence L||,turb = 4Rm, as a reasonable approximation.   

On the closed field lines, the electron parallel heat flux gradient, cf., Eq. (2a), is purely 

convective, [22] 

 || sepe e|| ||e ||Q 3.21T , x x =    , (A20) 

and we take the ion heat flux to be zero.  Because ||e||
  has zero y-average on the closed field 

lines, cf. Eq. (A18), the parallel gradient (A20) does not survive averaging over a flux surface; 

there is no net plasma heating by drift waves on the closed flux surfaces in our model. 

A.3 Summary 
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 (A21) 
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Appendix B   Power balance 

Power balance [viz., PSOL = Pdiv + Ploss, in Eqs. (12)] is not ensured unless the ambiguity 

introduced by our ad hoc choice of the extent of the bi-normal (y) domain size, Ly, is rectified.  If 

all of the turbulence were concentrated in a sub-domain smaller than Ly then this would not be an 

issue.  However, the model uses periodic boundary conditions in y, and equilibria are statistically 

homogeneous in y.  In reality, the turbulent flux is concentrated in a poloidal band () about the 

outboard midplane.  So, we introduce an effective domain length, L = a and replace the y-

integrals in Eqs. (12a) and (12c) with 
θ y

L f  where f stands for either integrand, and “a” is the 

semi-minor radius of the machine.  With this substitution, Eq. (12a) becomes 

 
SOL m θ x 0

P 2πR L Q⊥  =
=  (B1) 

where Q⊥ is the radial flux in the integrand of Eq. (12a). 

To determine L we exploit power balance in equilibrium and in the absence of 

dissipation and losses, viz., Q Q⊥ ⊥ = − , which, after integrating over the SOL, y-averaging 

and applying the recipe 1/ L ( )x → ,  becomes 

 
x > 0

x 0
Q Q / L ( )dx x⊥


 =

=  . (B2) 

( Q⊥ vanishes at the far-SOL boundary.)  Using (B2) in (B1) and requiring PSOL = Pdiv yields 

 θ θ || || || θ ||

x>0 x>0
x

L = b dxQ  / [ dxQ / L (x)] b L (x)
 

  . (B3) 

In practice, we distinguish between electrons and ions and replace e,iQ  by their time-averages in 

equilibrium so that Le,i are time-independent.  For the three simulations we find Le,i  ( ) cm 

and e,i  Le,i / a   rad for MAST-U (a = 48.6 cm).  Since L > Ly = 50 cm, the simulation is 

properly contained within the effective turbulence domain, as befits a slice of reality. 
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Figure Captions 

Fig. 1.  The spatial distributions of the plasma sources modelled in the three simulations are 

plotted as functions of distance from the separatrix (x).  Each has been renormalized to have a 

maximum value of one.  SP denotes the pellet source; SD denotes the diverter-recycling source, 

and SIZ is the source from ionization of “puffed” neutrals injected at the far-SOL boundary.  The 

shapes of SP and SD are stationary; the time-average of SIZ for the puffed case is shown. 

Fig. 2.  Fueling rates, Eq. (8), for the three simulations.  The simulations were run from ad hoc 

initial conditions for 1.5 ms, to allow transients to relax, prior to the start of the analysis of the 

equilibrium states which begins at t = 0 and continues for an additional 1.4 ms.  Note the zero 

offset on the vertical scale. 

Fig. 3.  Equilibrium profiles from the simulations.  Angular brackets denote a y- and t-average.  

Profiles from a SOLPS simulation of an H-mode, for conditions illustrative of MAST-U, are 

shown dashed for reference.  The pronounced “ear” in the SOLPS density profile results from a 

trench in the SOLPS Dn profile used to simulate the H-mode.  The nSOLT simulations are 

presumed to be in L-mode. 

Fig. 4.  Phase space (x, v) contour plot of the neutral particle flux density, Gvxvx, in the puffed 

case.  The blue feature indicates injected neutrals moving away from the wall and into the edge 

and near-SOL where they are heated by charge-exchange and lost to ionization.  The red feature 

indicates CX-heated neutrals moving toward the wall from the edge and near-SOL. 

Fig. 5.  Ionization (a) and charge exchange (b) rate profiles in the SOL. 

Fig.6.  Electron (a) and ion (b) parallel heat flux profiles, Eqs. (A23) and (A24), in the SOL (x 

> 0).  Angular brackets denote the y- and t-average.  The corresponding heat flux widths (q) are 

given in Table I.  

Fig. 7.  Contour plots of (a) the electrostatic potential () and (b) the fractional density 

fluctuation (
y

n/n, n n  ), for the puffed (IZ) case.  Notice the separatrix-spanning vortex cells 

in (a) and the blobs in the SOL in (b).  Plasma flows around the cells in the clockwise direction.  

Blobs are ejected from the canals between the cells. 

Fig.8.  Profiles of (a) electrostatic potential fluctuations and (b) plasma density fluctuations, 

divided by the mean density, for the simulations.  Angular brackets denote a y- and t-average. 

Fig. 9.  Profiles (a) and histories (b) of the particle turbulent flux (nvx).  In (b), a strong 

periodic component (~10 kHz), particularly evident in the puffed case, corresponds to rotation 

about the vortex cells in Fig. 7(a).  The angular brackets denote a y- and t-average in (a). 

Fig. 10. Profiles of (a) the skewness of density fluctuations, Eq. (13), and of (b) the cross-phase 

between density fluctuations and poloidal electric field fluctuations, Eq. (14).  The blob birth 

zone is found where the skewness passes through zero on 0 < x < 2 cm.  The cross-phase 

decreases in the birth zone as blob translation changes to rotation with decreasing parallel 

connection length and increasing connection to the divertor sheath. 
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Fig. 11.  Profiles of flow shearing rate, x Eyv   , and of the interchange growth rate,  

1/2

sr m x emhd i
2( / R ) (P P ) / n  = −  +  (dashed), superimposed for the simulations.  The over-bar 

denotes the y-average, and the angular brackets denote the time-average.  The flow shearing may 

control the interchange instability, i.e., || ~ mhd, in the birth zone, and the large shearing rate 

near the separatrix may act as a transport barrier. 

Fig. 12.  Potential (a) and plasma density (b) energy (ky) spectra at the separatrix.  Maxima in the 

potential spectra are found at kyLy/(2) = 4 in all cases, corresponding to the vortex cells seen in 

Fig. 7(a).  The fluctuations are given in dimensionless (Bohm) units. 

Fig. 13.  Power () spectra averaged over eight poloidal “probe” locations at the separatrix.  A 

“knee” forms in the density power spectra (b) where interchange growth rates (mhd), which 

characterize perpendicular transport rates, parallel loss rates (cs/L||) and cell rotation rates 

coincide.  The resolution is /2 = 724/sec. 
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