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Abstract 

A systematic numerical investigation of the 1n =  ( n  is the toroidal mode number) internal 

kink mode (IKM) stability is carried out, for a conventional aspect ratio tokamak plasma in the 

presence of parallel equilibrium flow or its poloidal/toroidal projections. The computational 

results, obtained utilizing the recently updated MARS-F code [Y. Q. Liu et al., Phys. Plasmas 7, 

3681 (2000)], show that a pure parallel flow provides minor influence on the internal kink 

instability as well as the mode frequency, being consistent with the intuitive understanding 

that the parallel flow mainly introduces a rotational transform along the equilibrium magnetic 

field line. The parallel flow shear somewhat destroys the (uniform) rotational transform, but 

the eventual (destabilizing) effect on the internal kink is still weak. On the other hand, a much 

stronger destabilization occurs by keeping only the poloidal or toroidal projection of the 

parallel flow. The computed mode growth rate is found to be symmetric with respect to the 

parallel flow direction, whilst the mode frequency is anti-symmetric. These symmetry 

properties are also confirmed by analytic calculations. The flow shear of the parallel flow 

component slightly weakens destabilization of the IKM by the poloidal or toroidal projection.  
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The plasma parallel viscosity is found to be strongly stabilizing to the IKM, independent of the 

parallel flow direction.  
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1. Introduction 

The internal kink mode (IKM) is an important magneto-hydynamic (MHD) instability in 

tokamaks. This is a kink mode arising in the plasma core region, where the value of the safety 

factor q  falls below unity (and at sufficiently high plasma pressure). In a toroidal plasma, the 

mode typically has the toroidal mode number of 1n =  and the dominant poloidal mode 

number of 1m = , in terms of the radial displacement caused by the instability. Not only is 

the IKM itself a special and important MHD instability, other macroscopic phenomena, such 

as fishbone [1-5] and sawtooth activities [6-9] observed in tokamak plasmas, are also 

inhenrently related to IKM. Occurrence of fishbone can lead to energetic particle losses [10]. 

Sawtooth oscillations degrade fusion energy confinement in the plasma core and have the 

potential of triggering other MHD instabilities, such as providing seed islands to the 

neoclasical tearing mode [11]. Therefore, understanding the IKM stability physics is still an 

important issue despite many years of extensive studies. A key area of research during recent 

years is the effect of plasma flow on the mode stability. 

It is well known that toroidal plasma rotation can significantly improve performance of 

the plasma by suppressing multiple MHD instabilities in tokamaks [12-17]. Analytical theory 

has shown that plasma toroidal flow, at velocities comparable to the sound speed, have a 

strong stabilizing effect on the ideal IKM [18]. On the other hand, sheared toroidal flow can 

also destabilize the mode [19]. So far, most of the studies have been focusing on the role of 

the toroidal rotation on the IKM stability in a tokamak plasma, with little attention being paid 

to the influence of a more generic equilibrium flow.   

Poloidal flow is usually slow in a tokamak plasma due to neoclassical damping. This is 

why most of the past work only assumes toroidal equilibrium rotation. On the other hand, 

relatively fast poloidal flow sometimes does occur, for example in tokamak discharges where 

the internal transport barrier forms [20-22]. In fact, fast poloidal flow, being one order of 

magnitude faster than the neoclassical prediction, was found to also play an important role 

in forming the internal transport barrier itself.  
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On the stability side, nonlinear MHD simulations found that poloidal flow destablizes the 

IKM in a low viscosity regime [23]. A similar conclusion was reached in an analytic study, based  

on the energy principle including the Coriolis and centrifugal forces [24]. This work expands 

the previous studies, based on systematic toroidal computations utilizing the MARS-F code 

[33] with the latest updates [25, 34]. As part of the results, our numerical study also confirms 

the destabilizating role played by the poloidal flow for the IKM. We note that this is 

qualitatively different from the stabilizing role found for the resistive wall mode [25]. 

This work considers the following physics effects, and their combinations, on the IKM 

instability: (i) the poloidal equilibrium flow, (ii) the parallel equilibrium flow, (iii) the plasma 

resistivity, and (iv) the plasma viscosity (more precisely the parallel viscosity). It is important to 

note that we do not assume an arbitrary poloidal flow in this study – we consider the poloidal 

projection of the parallel flow, with the latter being a consistent model satisfying the 

equilibrium mass conservation. Even though this consistent parallel flow has a toroidal 

projection (i.e. toroidal flow), we also include the toroidal flow model that is conventionally 

assumed for MHD stability analysis. The difference is that the latter has a toroidal angular 

frequency that is a function of the equilibrium magnetic flux surface (and thus will be referred 

to as the 1D toroidal flow), whilst the former (the toroidal projection of the parallel flow) is a 

2D function of both cylindrical coordinates R  and Z  (in other words varying along both 

the plasma minor radius and the poloidal angle). We emphasize that both toroidal flow 

models, and their combination as well, satisfy the equilibruim mass conservation law.  

The combined effects of plasma flow and viscosity on MHD instabilities have been 

extensively investigated in particular for the tearing mode [26-31]. For instance, it was found 

that plasma flow is destabilizating at weak perpendicular viscosity and stabilizing at strong 

perpendicular viscosity, for both tearing mode [31] and IKM [23]. In this work, we shall 

numerically study the effect of parallel flow, or its poloidal/toroidal projection, on the IKM 

stability in the presence of parallel plasma viscosity [32]. We find that the latter has a strong 

stabilizing effect on the IKM, but does not qualitatively change the destabilization nature of 

the two projections of the parallel flow.  

The paper is organised as follow. Section 2 introduces the MHD model with 

parallel/poloidal equilibrium flow, as well as the equilibrium to be used in this study. Three 

different radial profiles for the parallel flow are specified. Sections 3 and 4 report 

computational results without and with plasma parallel viscosity, respectively. Section 5 draws 

conclusion.  

 

2. Computational model with parallel flow and equilibrium model 
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2.1  MHD model with parallel/poloidal flow 

In this work, we shall utilize the recently updated version of the MARS-F code [33] including 

toroidal and poloidal flows [25, 34] to study the IKM stability. A curvilinear flux coordinate  

system ( ), ,s    is adopted in MARS-F, where 
1 2

ps =  is the radial  coordinate, with p  

being the normalized equilibrium poloidal flux,   a generic poloidal angle and   the 

geometric toroidal angle. The equilibrium magnetic field is represented as 

( )T   =   + B , 

where   is the equilibrium poloidal magnetic flux (not normalized here), and T  the 

poloidal current flux function.  

Within the single fluid approximation, a generic equilibrium flow can have both toroidal 

and poloidal components. A more convenient way is to introduce toroidal and parallel flows  

                 ( )2 1ˆ( ) ( , )R s s U s   − =  +  +
 

V B ,            (1) 

where R  is the plasma major radius and   the equilibrium plasma density. ( )s  

denotes the conventional toroidal rotation frequency which is a function of the equilibrium 

magnetic flux, referred to as 1D toroidal flow in what follows. ˆ ( )s  ，  is a generic toroidal 

rotation frequency introduced in Ref. [34], that varies in 2D poloidal plane. The role of this 

flow component in this study will be clarified later on. ( )U s  is an 1D function varing along 

the plasma minor radius and representing plasma flow parallel to the equilibrium magnetic 

field line. This 1D quantity will be referred to as the parallel flow component in this work. It is 

important to note that, with arbitrary choice of the profiles for ( )s , ˆ ( )s  ，  and ( )U s , 

the equilibrium flow defined in Eq. (1) always satisfies the mass conservation law 

( ) 0 =V .  

The parallel flow can be projected along the toroidal and poloidal directions. Effects of 

toroidal and poloidal projections of the parallel flow on the IKM instability are the main topics 

of the present study. Following Eq. (1). the final toroidal and poloidal rotation frequencies are  
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where J  is the Jacobian associated with the curvilinear coordinates ( ), ,s   . Based on the 
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above expression (2), we can define various choices of combinations that are of physical 

interests. By assuming ( ) 0s =  and ( )1

2
ˆ ( , )

T
s U s

R
  − = − , we recover the case of 

pure poloidal equilibrium flow. Choosing ( ) 0s =  and ˆ ( , ) 0s  = , we have a case with 

pure parallel flow. Considering ( ) 0U s =  and ˆ ( , ) 0s  = , we recover the conventional 

1D toroidal flow. Finally, we will also consider a case with the combination of 1D toroidal 

flow and parallel flow, by setting ˆ ( , ) 0s  = .   

 Next, we introduce the perturbed MHD equations including parallel/poloidal equilibrium 

flow 

( )1 = − ξ ,            (3) 

( ) ( )

( )

( ) ( ) ( )

2 2

,

1

ˆ ˆ( ) 2

ˆ ˆ ˆ                       

                       

th i

in p R R

k v

U U U U

    



  −

 +  = − +  +  −   +   −  
 

 −  +  
 

 −   +  +   −  
 

v j B J b Z v v ξ R

v b ξ V b b

v B v J B v B v

, (4) 

 ( )

( ) ( )
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1 2 1
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in R

U U U

 

   − − −

+  = +  

−   + + 

ξ v ξ

ξ B B ξ B

,  (5) 

      
( ) ( ) ( )2 1( )in R U    −+  =  − +   − b v B j b b B

,            (6) 

0p P P= −  − ξ ξ ,                            (7) 

= j b                                 (8) 

where   is the (generally complex) eigenvalue of the instability, to be corrected by a Doppler 

shift frequency in  with ˆ= ( ) ( , )s s   + , and n  being the toroidal mode number. 

The fluid quantities ξ , v , j , b , 1 , p represent the plasma displacement, perturbed 

velocity, perturbed current density, perturbed magnetic field, perturbed density and 

perturbed pressure, respectively. The equilibrium magnetic field and current density are 

denoted by Β  and J , respectively. P  is the total equilibrium pressure,   the 

unperturbed mass density.   is the plasma resistivity and is inversely proportional to the 

Lundquist number S .  0 =5/3 is the adiabatic coefficient. R̂  and Ẑ  are the unit 

vectors along the major radius and the vertical direction, respectively, on the poloidal plane. 
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ˆ B =b B B B  is the unit vector along the equilibrium magnetic field, ( )k n m q R= −  

the parallel wave number, with m  being the poloidal harmonic number and q  the safety 

factor, 
, 2th i i iv T M=  the thermal ion velocity, with iT  and iM  being the thermal ion 

temperature and mass, respectively.   denotes the strength of the parallel viscosity, which 

we will numerically vary in this study. The term associated with   from Eq. (4) represents a 

parallel sound wave damping model. Physically, this term acts as a viscosity term that damps 

the perturbed parallel velocity of the plasma.  

The above equations (3)-(8) are solved as an eigenvalue problem, in order to determine 

the stability of the IKM in the presence of generic equilibrium flow, for an equilibrium 

described below. 

 

2.2 Equilibrium model 

We consider a toroidal equilibrium with conventional aspect ratio of 0 3R a = . The plasma 

boundary is assumed to have a circular cross section. The plasma equilibrium density is 

assumed to be constant across the minor radius. The radial profile of the surface averaged 

equilibrium toroidal current density is shown in Fig. 1(a). The equilibrium plasma pressure is 

specified in Fig. 1(b). The current density is normalized by 0 0 0B R  and the plasma 

pressure by 2

0 0B  . The equilibrium is self-consistently computed using the fixed boundary 

equilibrium solver CHEASE [34]. The resulting safety factor is reported in Fig. 1(c), which has 

the on-axis value of 0 0.88q =  and the radial location of the 1q =  surface at 

1 2 =0.501ps = .  

 

 

Figure 1. Radial profiles of the equilibrium quantities for (a) the flux surface averaged toroidal current density 

J  normalized by 0 0 0B R , (b) the plasma pressure P  normalized by 2

0 0B  , and (c) the safety 

factor q  with the on-axis value of 
0 0.88q = . Here, p  is the normalized equilibrium poloidal flux. 
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Since the key purpose of this study is to understand the parallel/poloidal flow effect on 

the internal kink stability, we introduce three parallel flow profiles for ( )U s , shown in Fig. 2. 

In addition to the uniform and parabolic profiles, we also consider a special profile which is 

constant in the plasma core and edge regions but has a strong negative flow shear near the  

1q =  surface. The radial profile for the 1D toroidal rotation frequency ( )s  is always 

uniform in the present study. The toroidal rotation frequency is normalized by the on-axis 

Alfven frequency 
0 0 0 0A B R  = . The parallel flow component ( )U s  is normalized 

by 0 0A AU R B= . Note that in this work, the plasma flow is limited well within the subsonic 

range. Further on, the poloidal flow is assumed about one order of magnitude slower than 

the toroidal flow. That is a reasonable assumption taking into consideration the neoclassical 

poloidal flow damping. 

 

 

Figure 2. Three choices of the radial profile for the parallel flow component: uniform (dash-dotted line), 

parabolic (solid line), and step-wise constant with a local negative shear near the 1q =  surface (dashed 

line). The vertical dotted line indicates the location of the 1q =  rational surface. The parallel flow 

component is normalized by 
0 0A AU R B= via the on-axis toroidal Alfven frequency 

0 0 0 0A B R  = . 

 

3. Computational results for ideal internal kink  

In what follows, we investigate stability of the 1n =  ideal internal kink mode, without 

considering finite plasma resistivity and viscosity, assuming the equilibrium and plasma flow 



 8  

models described in Section 2. We shall vary the amplitude 0  of the normalized (by the 

on-axis toroidal Alfven frequency) 1D toroidal rotation frequency ( )s  (assumed to be 

uniform along s) in the range from 0 to 0.05. The on-axis value of the parallel flow component 

( )U s , 0U , will be varied within the range of -0.005 to 0.005, while maintaining the same 

radial profile shape for ( )U s . Note that the same parameter 0U  will be scanned, even if 

only one projection (poloidal or toroidal) of the parallel flow is assumed in the stability 

computations. We start by considering a uniform parallel flow. 

 

3.1. Effects of uniform parallel flow and its two projections  

The MARS-F modeling finds that the the uniform parallel flow generally has a very weak effect 

on the ideal IKM instability as shown in Fig. 3(a), where we scan both 0  and 0U . A 

moderate stabilization of the mode is mainly provided by the subsonic toroidal flow. At a 

fixed 1D toroidal flow, the counter-current parallel flow ( 0U <0) is slightly destabilizing whilst 

the co-current parallel flow ( 0U >0) is slightly stabilizing. Stabilization by the co-current 

parallel flow enhances with increasing toroidal flow 0 . The generally weak effect of parallel 

flow on the IKM stability is similar to that found for other MHD modes such as the resistive 

wall mode [25]. An intuitive physics understanding, which is also valid for other MHD modes, 

is that a radially uniform parallel flow can be essentially viewed as a change of framework 

along the magnetic field lines. The plasma motion along the magnetic field lines therefore 

can hardly affect the mode stability.    

The computed IKM mode frequency largely follows the 1D toroidal rotation drequency. 

Plotted in Fig. 3(b) is the mode frequency Doppler shifted by the toroidal rotation frequency, 

showing that the mode is nearly static in the plasma frame. The parallel flow has minor effect 

on the IKM mode frequency. There are two reasons for this. One is that the parallel flow is 

assumed slow compared to that of the 1D toroidal flow. The other, more interesting reason, 

is an almost exact cancellation for the parallel flow induced mode frequency, betweeen the 

toroidal and poloidal projections, as will be demonstrated below.   
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Figure 3. The MARS-F computed (a) growth rate, and (b) mode frequency Doppler-shifted by the on-axis 

toroidal rotation frequency, of the 1n =  ideal internal kink mode. Assumed is a combination of equilibrium 

parallel flow and 1D toroidal flow. Scanned are both the on-axis parallel flow amplitude 
0U  and the on-

axis toroidal rotation frequency 
0 . The parallel flow component is assumed uniform along the plasma 

minor radius. 

 

 Next, we consider effects of poloidal or toroidal projection of the parallel flow on the 

IKM, in combination with the 1D toroidal flow. The results are summarized in Fig. 4. The key 

observation is that either the poloidal or toroidal projection of the parallel flow destabilizes 

the IKM [Fig. 4(a,c)]. Moreover, this destabilization is independent of the direction of the 

parallel flow. This is different from the parallel flow results shown in Fig. 3(a), where the 

counter-current flow is destablizing whilst the co-current flow is stabilizing. This symmetry in 

the enhancement of the IKM instability, with respect to the parallel flow direction, can be 

analytically understood for either the poloidal projection [24] or the toroidal projection 

(Appendix). The symmetry is slightly destroyed by fast 1D toroidal rotation. On the other hand, 

the stabilizing effect, provided by the 1D toroidal flow, is much weaker than the destabilizing 

effect due to either projection of the parallel flow. This is despite the fact that the 1D toroidal 

flow is one order of magnitude faster than the two projections of the parallel flow.  

The Doppler-shifted (due to 1D toroidal rotation) mode frequency is much larger with 

either projection of the parallel flow [Fig. 4(b,d)], compared to that with the parallel flow [Fig. 

3(b)]. Note also that (i) the Doppler shifted mode frequency is anti-symmetric with respect to 

the sign of 0U , with either poloidal [Fig. 4(b)] or toroidal [Fig. 4(d)] projection; and (ii) the 

Doppler shifted mode frequency has opposite sign but nearly the same amplitude, between 

poloidal and toroidal projections. When both projections are included, i.e., with the parallel 

flow, cancellation occurs for the mode frequencies shown in Fig. 4(b) and (d), resulting in 

nearly vanishing frequency as shown in Fig. 3(b).  
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Figure 4. The MARS-F computed (a,c) growth rate, and (b,d) mode frequency Doppler-shifted by the on-

axis toroidal rotation frequency, of the 1n =  ideal internal kink mode. Scanned are both the on-axis 

parallel flow amplitude 0U  and the on-axis toroidal rotation frequency 0 . Assumed in (a-b) is the 

combination of the poloidal projection of the equilibrium parallel flow and the 1D toroidal flow. Assumed in 

(c-d) is the combination of the toroidal projection of the equilibrium parallel flow and the 1D toroidal flow. 

The parallel flow component is uniform along the plasma minor radius. 

 

 The MARS-F computed 1n =  ideal IKM eigenmode structure is almost identical 

between the two cases, with inclusion of either the poloidal [Fig. 5(a)] or toroidal [Fig. 5(b)] 

projection of the parallel flow. These radial profiles of poloidal Fourier harmonics of the 

plasma radial displacement show typical IKM eigenmode structure in a toroidal plasma: (i) the 

1m =  harmonic is dominant over other harmonics; (ii) the 1m =  radial displacement 

remains nearly constant inside the 1q =  surface and quickly vanishes outside the same 

surface. The fact that the computed mode eigenfunction is not much modified by the 

(subsonic) toroidal and poloidal flows supports assumptions made in analytic calculations 

based on the IKM energy principle.  
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Figure 5. The eigenmode structure of the 1n =  ideal internal kink mode, plotted in terms of the poloidal 

Fourier harmonics of the plasma radial displacement and computed assuming (a) the poloidal projection, 

and (b) the toroidal projection, of the parallel flow with 0 =0.003U . The parallel flow component is uniform 

along the plasma minor radius. Assumed is also finite 1D toroidal flow with 
0 =0.01 . The vertical dashed 

lines indicate the radial location of the 1q =  surface. Shown are only three dominant Fourier harmonics 

although the toroidal computations includes seventeen harmonics.  

 

3.2. Effects of parallel flow with parabolic radial profile and its two projections  

Similar to subsection 3.1, we compute the IKM eigenvalue while scanning both 0U  and 0  

in 2D parameter space, but this time assuming a parabolic parallel flow profile as shown in 

Fig. 2 (red curve). Figure 6(a) shows that the parallel flow effect on the ideal IKM is still weak. 

But different from the case with uniform parallel flow [Fig. 3(a)], the co-current parallel flow 

now slightly destabilizes the mode whilst the counter-current flow offers stabilization. This 

shows that the (global) shear of the parallel flow also changes the IKM instability, although 

the effect is generally weak. Negative flow shear of the co-current parallel flow is slightly 

destabilizing to the ideal IKM. The Doppler-shifted mode frequency is again very small [Fig. 

6(b)], indicating certain cancellation which indeed occurs as shown in Fig. 7.   

 Figure 7 reports the effects of poloidal [Fig. 7(a-b)] and toroidal [Fig. 7(c-d)] projections 

of the parabolic parallel flow on the IKM. The results are similar to that shown in Fig. 4 

assuming uniform parallel flow profile, i.e., (i) either projection of the parallel flow  

destabilizes the IKM independent of the sign of 0U ; (ii) the Doppler-shifted mode frequency 

is anti-symmetic with respect to the sign of 0U  and is opposite between the poloidal and 

toroidal projections, which the latter providing cancellation for the mode frequency when the 

parallel flow is included [Fig. 6(b)].  
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Figure 6. The MARS-F computed (a) growth rate, and (b) mode frequency Doppler-shifted by the on-axis 

toroidal rotation frequency, of the 1n =  ideal internal kin mode. Assumed is a combination of the 

equilibrium parallel flow and 1D toroidal flow. Scanned are both the on-axis parallel flow amplitude 
0U  

and the on-axis toroidal rotation frequency 
0 . The parallel flow component is parabolic along the plasma 

minor radius.  

 

 

 

Figure 7. The MARS-F computed (a,c) growth rate, and (b,d) mode frequency Doppler-shifted by the on-

axis toroidal rotation frequency, of the 1n =  ideal internal kink mode. Scanned are both the on-axis 

parallel flow amplitude 0U  and the on-axis toroidal rotation frequency 0 . Assumed in (a-b) is the 
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combination of the poloidal projection of the equilibrium parallel flow and the 1D toroidal flow. Assumed in 

(c-d) is the combination of the toroidal projection of the equilibrium parallel flow and the 1D toroidal flow. 

The parallel flow component is parabolic along the plasma minor radius. 

 

3.3. Effects of parallel flow with local flow shear and its two projections  

Assuming a parallel flow with a locally large shear near the 1q =  surface (dashed blue curve 

in Fig. 2), MARS-F computations find qualitatively similar results for the ideal IKM stability, to 

that reported in subsections 3.1-2. But there are also differences as reported in Figs. 8-9. In 

particular, locally larger flow shear near the 1q =  surface of the co-current parallel flow 

provides stronger destabilization to the mode [Fig. 8(a)]. This destabilization mechanism is 

likely similar to that due to the (local) toroidal flow shear [19]. The Doppler-shifted mode 

frequency [Fig. 8(b)] is still small but larger than that with uniform or parabolic parallel flow, 

indicating less cancellation between the two projections of the parallel flow.  

 Indeed, assuming either projection of the parallel flow with local shear, the symmetry 

with respect to the sign of 0U  is less conserved, for both the computed mode growth rate 

[Fig. 9(a,c)] and mode frequency [Fig. 9(b,d)]. The asymmetry in the mode growth rate is 

largely due to the fact that the relative (stabilizing) role of the 1D toroidal flow now becomes 

larger. The asymmetry in the Doppler-shifted mode frequency implies less cancellation for 

the mode frequency induced by the poloidal and toroidal projections.  

 

 

Figure 8. The MARS-F computed (a) growth rate, and (b) mode frequency Doppler-shifted by the on-axis 

toroidal rotation frequency, of the 1n =  ideal internal kink mode. Assumed is a combination of the 

equilibrium parallel flow and 1D toroidal flow. Scanned are both the on-axis parallel flow amplitude 0U  

and the on-axis toroidal rotation frequency 0 . The parallel flow component is a step-wise constant with 
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a local negative shear near the 1q =  surface. 

 

 

Figure 9. The MARS-F computed (a,c) growth rate, and (b,d) mode frequency Doppler-shifted by the on-

axis toroidal rotation frequency, of the 1n =  ideal internal kink mode. Scanned are both the on-axis 

parallel flow amplitude 0U  and the on-axis toroidal rotation frequency 0 . Assumed in (a-b) is the 

combination of the poloidal projection of the equilibrium parallel flow and the 1D toroidal flow. Assumed in 

(c-d) is the combination of the toroidal projection of the equilibrium parallel flow and the 1D toroidal flow. 

The parallel flow component is a step-wise constant with a local negative shear near the 1q =  surface. 

 

3.4. Effects of flow shear 

Figure 10 compares the MARS-F computed 1n =  ideal IKM eigenvalue, assuming three 

different radial profiles for the parallel flow component ( )U s  as shown in Fig. 2. The 1D 

toroidal flow is excuded ( 0 =0). We thus show the effects of a pure parallel flow [Fig. 10(a-

b)], or its poloidal [Fig. 10(c-d)] or toroidal [Fig. 10(e-f)] projection, on the mode stability. The 

overall observation is the perfect symmetry of the mode growth, and anti-symmetry of the 

mode frequency, with respect to the sign of 0U . As mentioned before, this perfect symmetry 
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(anti-symmetry) can be analytically demonstrated for a cylindrical plasma (Ref. [24] and 

Appendix). But MARS-F results show that this holds also for toroidal plasmas.   

In terms of quantitative comparison, we find that a pure parallel flow, with or without 

shear, provides very weak (destabilizing) effect to the IKM, as compared to that by the poloidal 

or toroidal projection of the parallel flow. A uniform parallel flow provides almost no change 

to the IKM eigenvalue [Fig. 10(a-b)], supporting our hypothesis that a uniform parallel flow 

merely yields a shift of reference frame along magnetic field lines. The flow shear of the pure 

parallel flow enhances the mode destabilization (as well as the mode frequency).  

On the other hand, the flow shear in the parallel component ( )U s  reduces the mode 

destabilization, when only the poloidal [Fig. 10(c)] or toroidal [Fig. 10(e)] projection is included 

into the stability calculations. This somewhat counter-intuitive result is probably related to the 

fact that the flow shear in the parallel component does not necessarily reflect the flow shear 

in its projection along the poloidal or toroidal angle. Finally, we note that the mode 

frequencies induced by either projection are about one order of magnitude larger than that 

due to the pure parallel flow, and are opposite in sign between the poloidal [Fig. 10(d)] and 

toroidal [Fig. 10(f)] projections.  

.  
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Figure 10. The MARS-F computed (a, c, e) growth rate, and (b, d, f) mode frequency, of the 1n =  ideal 

internal kink mode versus the on-axis parallel flow component 
0U , assuming three sets of parallel flow 

profiles shown in Fig. 2. Compared are also cases with (a,b) parallel flow, (c,d) only poloidal projection of the 

parallel flow, and (e,f) only toroidal projection of the parallel flow. The 1D equilibrium toroidal flow is excluded.  

 

4. Internal kink stability with non-ideal effects 

We consider two non-ideal effects in the present study: (i) the plasma resistivity and (ii) the 

plasma parallel viscosity. As discussed before, the parallel viscosity is modeled via a parallel 

sound wave damping term. We will focus on the combined effects of these non-ideal physics 

and a pure parallel flow (or its projections) on the IKM stability. The 1D toroidal flow will be 

ignored, since its combination with non-ideal effects have previously been studied, e.g., in 

Ref. [19].  

We start by considering the aforementioned non-ideal effects on the 1n =  IKM 

instability in the absence of any equilibrium flow. Figure 11 reports the computed mode 

growth rate with varying viscosity coefficient  , assuming different values of Lundquist 

number S . Note that the case of S infinity=  corresponds to an ideal plasma (with 

vanishing plasma resistivity).  The typical value of   for large viscosity is of order unity 

within the MARS-F normalization. We find a strong stabilization of the IKM with parallel 

viscosity, in both ideal and resistive plasmas. The plasma resistivity, on the other hand, 

destabilizes the mode as is well known [4]. The eventual IKM instability is thus a result of the 

two competing effects from the plasma resistivity and parallel viscosity.  
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Figure 11. The MARS-F computed growth rate of the 1n =  internal kink mode versus the parallel viscous 

damping coefficient  , with varying Lundquist number S. All equilibrium flow components are excluded.  

 

Figure 12 reports the MARS-F computed non-ideal IKM eigenvalues in the presence of 

pure parallel flow. Assumed are three radial profiles for the parallel flow component ( )U s  

as shown in Fig. 2. We fix the plasma resistivity (with 610S = ) and choose three 

representative values for the plasma viscosity: 0.1 =  (small viscosity), 1 =  (large 

viscosity), and 10 =  (unrealistically large viscosity). The plasma parallel flow, as well as the 

flow shear, has negligible effect on the growth rate of the non-ideal IKM. The parallel flow 

effect on the mode frequency is somewhat stronger but is still moderate. These results 

resemble that of the ideal IKM reported in section 3.   

On the contrary, the effect of the poloidal and toroidal projections of the parallel flow is 

much stronger on the non-ideal IKM. This is reported in Fig. 13-15, assuming three radial 

profiles, respectively, for the parallel flow. Similar to the case for the ideal IKM, both poloidal 

and toroidal projections of the parallel flow destabilize the non-ideal IKM. Note that the 

symmetry (anti-symmetry) of the mode growth rate (mode frequency) with respect to the 

sign of 0U  is also largely conserved. On the other hand, the overall strong stabilization still 

comes from the parallel viscosity, at large values of the viscosity coefficient.  
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Figure 12. The MARS-F computed (a) growth rate, and (b) mode frequency, of the 1n =  resistive internal  

kink mode versus the on-axis parallel flow component 
0U , with different parallel viscous damping 

coefficients: 0.1 =  (solid line), 1 =  (dashed line) and 10 =  (dotted line), assuming three sets of 

parallel flow profiles as shown in Fig. 2: uniform profile (circles), parabolic profile (squares), step-wise constant 

with local negative shear (stars). The Lundquist number is 610S = . The 1D equilibrium toroidal flow is 

excluded. 

 

 

Figure 13. The MARS-F computed (a) growth rate, and (b) mode frequency, of the 1n =  resistive internal 

kink mode versus the on-axis parallel flow component 0U , assuming poloidal projection (circles, also 

labeled as “P”) and toroidal projection (triangles, also labeled as “T”) of the parallel flow with different parallel 

viscous damping coefficients: 0.1 =  (solid line), 1 =  (dashed line) and 10 =  (dotted line). The 

parallel flow profile is uniform. The Lundquist number is 610S = . The 1D equilibrium toroidal flow is 

excluded. 
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Figure 14. The MARS-F computed (a) growth rate, and (b) mode frequency, of the 1n =  resistive internal 

kink mode versus the on-axis parallel flow component 
0U , assuming poloidal projection (circles) and 

toroidal projection (triangles) of the parallel flow with different parallel viscous damping coefficients: 

0.1 =  (solid line), 1 =  (dashed line) and 10 =  (dotted line). The parallel flow profile is parabolic. 

The Lundquist number is 610S = . The 1D equilibrium toroidal flow is excluded. 

 

 

Figure 15. The MARS-F computed (a) growth rate, and (b) mode frequency, of the 1n =  resistive internal 

kink mode versus the on-axis parallel flow component 0U , assuming poloidal projection (circles) and 

toroidal projection (triangles) of the parallel flow with different parallel viscous damping coefficients: 

0.1 =  (solid line), 1 =  (dashed line) and 10 =  (dotted line). The parallel flow is a step-wise 

constant with a local negative shear flow. The Lundquist number is 610S = . The 1D equilibrium toroidal 

flow is excluded. 

 

5. Conclusion and discussion 

We have numerically carried out a systematic investigation of the 1n =  internal kink 

instability in a conventional aspect ratio tokamak plasma, in the presence of parallel 

equilibrium flow or its poloidal/toroidal projetions. The effects of flow shear of the parallel 

flow component, as well as the plasma resistivity and viscosity, has also been investigated.  
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  The MARS-F modeling shows that a pure parallel flow provides minor influence on the 

internal kink instability as well as the mode frequency. This is consistent with the intuitive 

understanding that the parallel flow mainly introduces a rotational transform along the 

equilibrium magnetic field line, without directly affecting the mode stability in particular when 

the flow is uniform. The parallel flow shear somewhat destroys the (uniform) rotational 

transform, but the eventual (destabilizing) effect on the internal kink is still weak. Similar 

findings have been reported for the resisitve wall mode [25]. 

 On the other hand, a much stronger destabilization always occurs by keeping only the 

poloidal or toroidal projection of the parallel flow. Note that this destabilization effect is 

appreciable even when the parallel flow speed is one order of magnitude smaller than that 

of the 1D toroidal flow. We also find that the computed mode growth rate is symmetric with 

respect to the parallel flow direction, whilst the mode frequency is anti-symmetric. This 

symmetry property is also confrimed by analytic calculations for the internal kink, as reported 

in Ref. [24] for the poloidal flow and in Appendix here for the toroidal flow. Comparing the 

computed mode frequency between the poloidal and toroidal projections, the sign is also 

reversed, resulting in an cancellation effect between two projections. This is another way of 

interpreting the weak effect of the parallel flow on the mode stability and mode frequency.  

 The flow shear of the parallel flow component slightly weakens destabilization of the IKM 

by the poloidal or toroidal projection. We emphasize that the flow shear of the parallel 

component does not fully reflect that of the poloidal/toroidal component. The latter is not 

straightforward to interpret since these flows are two-dimensional on the poloidal plane.  

 The plasma resistivity is found to be destabilizing to the IKM, agreeing with the previous 

results [4]. The plasma parallel viscosity, on the other hand, is found to be stabilizing to the 

IKM, independent of the parallel flow direction. This stabilization effect, with strong viscous 

damping, is effective in overcoming the destabilization effect introduced by the 

poloida/toroidal projection of the parallel flow.  

 We remark that the present study is solely based on the fluid description of the IKM. 

Kinetic effects from plasma (thermal and energetic) particles are neglected. These effects have 

been shown to play significant roles in the IKM stability in the presence of 1D toroidal flow, 

according to non-perturbatibe MHD-kinetic hybrid computations [19]. The role of the kinetic 

effect, in combination with the plasma parellel flow or its poloidal/toroidal projection, remains 

a future research topic.    
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Appendix: Analytic calculation of effect of toroidal flow on internal 

kink mode stability 

The deviation below closely follows that from Ref. [24], where the poloidal equilibrium flow 

was assumed for a cylindrical plasma. The effect of the equilibrium flow on the IKM stability 

is determined by the inertial terms from the perturbed momentum balance equation. In what 

follows, we will therefore focus on examining the MHD energy perturbation associated with 

the plasma inertia 
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where d rdrd = , ( )( )1 0 0 *i   = − − − , 2 0 = − , i  = + .   

and   denote the growth rate and real frequency of the internal kink mode, respectively. 

  is mass density of the plasma and 0  the angular frequency of toroidal flow at the 

peaked value position.   is the perturbed plasma displacement, with *  being the 

complex conjugate. Plasma toroidal flow also enters in the effective acceleration force  
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where the perturbed plasma velocity and density can be written as 

( )0 2v i m i    = − −  = −  and   = −  , respectively, according to the two-fluid 

MHD model in the inertial layer given in Refs. [35] and [36]. We thus have 
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where r  and   are the radial and poloidal components of the plasma displacement, 

respectively. 0R  is the effective major radius and V  the toroidal equilibrium flow velocity. 

Note that components along the toroidal angle are neglected in the above Eq. (A.3), because 

their scalar products with *  vanish. The term *

Cg    from Eq. (A.1) can be further reduced 
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to 
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where the two-dimensional plasma equilibrium density ( ),r  can be expressed via an 

one-dimensional quantity ( )r as ( ) ( ) ( ) ( )2 2 2

0, exp 2r r r R R P    =  −
   

according to Refs. [18] and [37]. R  is the plasma major radius here, and P  the  

equilibrium pressure. Substituting Eq. (A.4) into Eq. (A.1) and performing volume integration 

over the second inertial term, we have 

*

2

2 2 4 22 2
2 2 2 20 02

2 2 20

4 2 4 2
2 20 0

2 2

2 20 0

1

2

[ ( ) 4 ]
2

  ( 2 ) ( ) ( )
2

s

s s

c

r

r r r r

r r

r r
r

d g

R Rr d r
rdr

dr kT kT

R Rd d
rdr r rdr r

kT dr kT dr

 

  
    

  

  
    

 

− 

  
= − − − + + 

 
− +  − + 





 

, (A.5) 

where k  is Boltzmann constant and sr  the position of the 1q =  surface.  

Next, we assume analytic radial profiles for the plasma density ( )r , the plasma 

toroidal rotation ( )r , and the plasma temperature ( )T r  as  

( ) 0 ( )r f r = , 0 ( )g r =  , 0 ( )T T u r= ,      (A.6a) 

with 
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where a  is the plasma minor radius. 0  and 0T  are the on-axis plasma density and 

temperature respectively. r  is the peaked position of toroidal rotation profiles. 
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The plasma radial displacement r  and its radial gradient rd

dr


 can be approximated by 

the following step-like function [24] 
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where 
0 13 s AR iq V  = . Carrying out analytic integration along the plasma minor radius 

in Eq. (A.5), we arrive at 
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The first inertial term satisfies  
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Substituting Eqs. (A.8) and (A.9) into Eq. (A.1), the perturbed inertial term is calculated as  
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which is further normalized to  
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with the normalized factor of 
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  value is small and all terms associated with   from Eq. (A.11) can be neglected. 

Consequently, Eq. (A.11) helps us to establish a dispersion relation for the IKM stability 

including the effects of toroidal flow  
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An approximate analytical solution of Eq. (A.12) is obtained as  
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showing that the mode growth rate is symmetric with respect to the toroidal flow direction, 

while the mode frequency is anti-symmetric (without taking into account the diamagnetic 

flow correction). This analytic solution thus qualitatively verifies the symmetry properties for 

the MARS-F computed IKM eigenvalues as reported in Fig. 10(e-f).  

We also note that Eqs. (A.12) and (A.13) have similar form to that reported in Ref. 24 with 

poloidal equilibrium flow. In fact, the mathematical form of the eigenvalue solutions can be 

made identical between two types of flows, by switching the reference direction of the toroidal 

flow (i.e. switching the sign of the above g-factor) and by re-defining the C1 and C2 factors in 

Ref. 24. This explains why the effects of toroidal and poloidal flows on the internal kink mode 

are similar, as found in MARS-F computations reported in this work.  
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