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Abstract. We present the first parallel electron transport results obtained using
the newly developed 1D transport code SOL-KiT. In order to properly predict
divertor heat loads it is of key importance to develop a thorough understanding of
discrepancies between different parallel transport modelling approaches. With the
capability to self-consistently switch between a kinetic and a fluid model for the
electrons, we explore and report the differences in both equilibrium and transient
simulations. Equilibria are obtained for an input power scan with parameters
relevant to medium size tokamaks. Simulations of input power perturbations
have been performed using both electron models. Significant kinetic effects are
found during transients, especially in the behaviour of the electron sheath heat
transmission coeficient, which shows up to an almost tenfold increase. We discuss
the implications of the presented results to potential modelling decisions, as well
as possible extensions to the used model.
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1. Introduction

The Scrape-Off Layer (SOL) is the edge region of
Magnetically Confined Fusion (MCF) devices, through
which the energy and particles which escape the
fusion core travel to the plasma-facing components
of the reactor. Transport occurs along and across
the open field lines of the SOL, and understanding
it is a key issue for future reactor design[1]. Parallel
transport carries energy and particles from the hot
upstream to the divertor targets, and determines,
in combination with other physical processes (such
as atomic and molecular physics), the divertor heat
load. Fluid modeling is typically adopted when
tackling the problem of parallel transport, utilizing
the classical results of Braginskii[2], and allowing
modification of the heat flux through the use of
flux limiters[3]. However, as the parallel direction
of the SOL is characterized by large gradients in
both temperature and density (and thus collisionality),
kinetic effects can modify transport properties, and
have been proposed as potential causes of discrepancy
between fluid simulations and experimental results[4].

Previous numerical studies of kinetic effects in
the SOL have been perfomed with a wide array of
codes, including both PIC[5, 6] and finite-difference
codes[7, 8, 9, 10, 11, 12]. These studies report the
impact of kinetic effects in various aspects of parallel
transport, including the modification of the parallel
heat flux and atomic rates[9], as well as effects on the
properties of the plasma sheath. Havlickova et al.[13]
compare the results of different fluid and kinetic codes
during simulations of Edge-Localized Modes (ELMs),
and report sensitivity of target heat flux peak values
to applied flux limiters.

These existing studies mainly focused on very
(machine-)specific scenarios, and general parameter
scans are hard to find. This study is a first attempt at
such an approach, tackling the comparison between a
fluid and kinetic model of parallel electron transport,
with a focus on fundamental discrepancies. We use
the newly developed transport code SOL-KiT (Scrape-
Off Layer Kinetic Transport)[14], where electrons can
be treated as either a fluid or kinetically, while ions
are treated as a fluid. SOL-KiT also includes a basic
self-consistent treatment of atomic processes in a pure
deuterium plasma.

We start by presenting the basics of the SOL-
KiT model, before moving on to the first results.
The input power has been scanned in both fluid
and kinetic modelling, and the equilibrium results
are reported and compared to examine kinetic effects
in steady state. The parameters used are relevant
to medum size tokamaks (MSTs), where a current
research concern is the interaction of transients with
detachment. Transients are launched on the simulated

equilibria, and the resulting evolution of various
quantities, including the temperature at the target, are
presented, showing significant kinetic effects. We close
by summarising the electron transport model used,
noting its limitations and considered extensions, and
discussing the results obtained in this study.

2. The SOL-KiT model

The SOL system of interest is represented as a
straightened-out 1D SOL, with the x-axis being along
the magnetic field line. The upstream point x = 0 is
taken to be the symmetry plane, while the downstream
boundary is at the entrance of the target sheath.

We solve equations for the electrons, ions, atomic
neutrals, as well as the parallel electric field. For the
electrons we can use either fluid or kinetic equations,
both of which are self-consistently coupled to the rest
of the model, treating the same physics using the same
data, with only the level of detail varying. This allows
for clean comparisons between the models, which are
the focus of this study. The ions are a fluid, while
neutrals obey a diffusive-reactive Collisional Radiative
model.

2.1. Fluid and neutral equations

The three fluid electron equations are
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where E is the electric field in the parallel direction and
S = Sion + Srec is the ionization and recombination
particle source. ne and Te are the electron density
and temperature, respectively, while ue is the parallel
flow velocity of the electron fluid. The friction Rei =
RT + Ru is taken from Braginskii[2] with Ru =
−mene0.51(ue − ui)/τe and RT = −0.71ne∂(kTe)/∂x,
where the τe is the electron-ion collision time[2]. Ren
is the total electron-neutral friction, calculated using a
slowly drifting Maxwellian for the electrons.

The heat flux qe = qT + qu is given by qT =
−κe∂(kTe)/∂x and qu = 0.71nekTe(ue−ui), with κe =

3.2nekTeτe/me ∝ T
5/2
e being the classical Spitzer-

Härm value. The external heating in the temperature
equation is given by Q.
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For the ions (of charge Ze) we take both Zni = ne,
and assume Ti = Te (see Section 3 for more on the
effect of this approximation). This leaves just the ion
momentum equation

∂ui
∂t

= −ui
∂ui
∂x

+
Ze

mi
E +

Rie +RCX
mini

− S

ni
ui

− 1

mini

∂(nikTi)

∂x
, (4)

where Rie can be calculated using momentum
conservation in ion-electron collisions. Charge
exchange friction RCX is given by

RCX = −nimiui|ui|
∑
b

nbσCX,b, (5)

where the sum is over neutral atomic states, and
we simplify the expression by approximating the ions
as cold, and the neutrals as cold and stationary.
The constant charge exchange cross sections are
approximated by the low energy values from Janev[15]

σCX,1 = 3× 10−19m2,

σCX,2 = 24 × 10−19m2,

σCX,3 = 34 × 7× 10−20m2,

σCX,b≥4 = b4 × 6× 10−20m2.

The electric field comes from Ampère-Maxwell’s
law

∂E

∂t
= − 1

ε0
(je + Zeniui), (6)

where je is simply given directly by je = −eneue.
Finally, the atomic state distribution of the

neutrals must be tracked. This is done using a
diffusive-reactive model
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where we use moments of the electron distribution
function (Maxwellian in fluid model) to calculate the
ionization and (de)excitation rates K, as well as three-
body recombination rates α. Neutrals are taken to be
cold compared to the electrons for all rate calculations.
The required atomic data are all taken from Janev[15]
and NIST[16]. Data for spontaneous emission rates A
is included up to state b = 20; however, this truncation
should not introduce a substantial error for higher

states, as those are primarily collisionally dominated.
Finally, we include radiative recombination β as a
function of temperature[15]. In order to include
diffusion, we use the classical 1D diffusion coefficient

Db =
vtn

2[(ni + n1)σel + σCX,bni]
(8)

for the sake of which we treat neutrals as having a
thermal velocity vtn, and assume that the diffusion is
due to elastic collisions between ions and ground state
neutrals and charge-exchange collisions with the ions.
σel is the approximate elastic collisions cross-section
σel = πa20 (usually negligible compared to the charge-
exchange contribution), and n1 being the ground state
density. The neutral temperature used to calculate vtn
is a free parameter (see Section 3).

At the sheath boundary, ions reach the sound
speed (as per the Bohm criterion). In the fluid
case, ambipolar flux is assumed, and the sheath heat
transmission coefficient[17] in the transmitted sheath
heat flux

qsh = γekTeΓe, (9)

is set to γe = 5.5. Neutrals are recycled with flux
ΓREC = −RΓi, where R ≤ 1 and Γi is the ion flux to
the target.

2.2. Electron kinetic equation

Starting from the classical 1D kinetic equation for the
electrons

∂f(x,~v, t)

∂t
+vx

∂f(x,~v, t)

∂x
− e

me
E
∂f(x,~v, t)

∂vx
= C[f, ...],(10)

where the RHS contains all of the collision and source
operators, we expand the distribution function in
spherical harmonics. We follow the approaches used in
the codes KALOS[18] and OSHUN[19] and write the
expansion as

f(v, θ, ϕ) =

∞∑
l=0

l∑
m=−l

fml (v)P
|m|
l (cos θ) exp(imϕ),

(fml )∗ = f−ml , (11)

where θ is the angle between the velocity vector ~v
and the x-axis, and Pml (cos θ) are associated Legendre
polynomials. Since the model is 1D and azimuthally
symmetric, we set m = 0, and the expansion reduces to
a Legendre polynomial expansion. Moments of scalar
φ(v) and vector ~a(v) quantities are then simply

∫
φf(~v)d~v = 4π

∫ ∞
0

φf0(v)v2dv (12)∫
axf(~v)d~v =

4π

3

∫ ∞
0

||a||f1v2dv (13)
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with higher order tensors and 3D generalizations
available in the literature[20, 19]. Thus we see that
we can recover fluid quantities by taking appropriate
moments of specific harmonics (e.g. f0 for density, f1
for flux, etc.).

The equations for each Legendre harmonic fl have
the form

∂fl(x, v, t)

∂t
= Al + El + Cl, (14)

where Al and El are the advection (Vlasov) terms,
and Cl are all other operators. While the derivations
(and some of the full forms) of these operators are
beyond the scope of this paper, we give a brief overview
below, and direct the reader to the literature where
appropriate. The full details of the SOL-KiT model,
as well as code numerics and benchmarking, will be
the subject of a future publication[14]. However, for
the sake of clarity of the presented results, we briefly
discuss some numerical aspects of the code at the end
of this section.

2.2.1. Vlasov terms The spatial advection term
(advection in the x-direction), for a given harmonic
l is

Al = − l

2l − 1
v
∂fl−1
∂x

− l + 1

2l + 3
v
∂fl+1

∂x
, (15)

while the velocity space advection[18] is given by
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e

m
E

(
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)
, (16)
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Hl(v) =
1

vl+1

∂vl+1fl
∂v

. (18)

As can be seen from these equations, Vlasov terms
couple different harmonics through either spatial
gradients or the electric field.

2.2.2. Coulomb collision terms We consider the effect
of Coulomb collisions on the distribution function f
of particles with mass and charge m and q = ze,
respectively, colliding with particles of mass and charge
M = µm and Q = Ze, which have a distribution F .
Following the formalism of Shkarofsky et al.[20], we
start with the Rosenbluth form of the Fokker-Planck
collision operator

1

ΓzZ

δf

δt
=

4π

µ
Ff +

µ− 1

µ+ 1
∇H(F ) · ∇f

+
∇∇G(F ) : ∇∇f

2
, (19)

where ∇ = ∂/∂~v and ΓzZ = (zZe2)2 ln Λ/[4π(msε0)2].
The Rosenbluth drag and diffusion coefficients are re-
spectively H and G. We linearize the collision operator
in the anisotropic component of the distribution func-
tions (F = F0 +Fa, f = f0 + fa). After expanding the
distribution function and the Rosenbluth coefficients
in harmonics and using the integrals[20]
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where the C coefficients are available in the
literature[19]. For electron-electron collisions µ = 1,
and the collision operator for the isotropic part of the
distribution function [21, 22] is

1

Γee
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e−e

=
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where the drag and diffusion coefficients are

C(f0) = 4π

∫ v

0

f0(u)u2du, (25)

D(f0) = 4π

∫ v

0

u2
[∫ ∞

u

f0(u′)u′du′
]
du. (26)
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The electron-electron collision operator for l = 0 is
important for the proper relaxation of the electron
distribution function to a Maxwellian. For the sake of
brevity, we omit the electron-electron collision operator
for higher harmonics (see [19, 20]), and note only that
the l = 1 component redistributes momentum among
the electrons.

As Te = Ti, no l = 0 component for the electron-
ion collision operator is used. For higher harmonics and
stationary ions (F0 = niδ(v)/(4πv2)) equation (23)
reduces to the following eigenfunction form(
δfl
δt

)
e−i

= − l(l + 1)

2

Γeini
v3

fl, (27)

which is pitch-angle scattering. The eigenvalue is
negative, so this operator dampens harmonics with
high l. Thus one can truncate the expansion at some
finite l. When ions are not stationary but their velocity
is much smaller than the electron thermal velocity (the
situation we expect in the SOL), we can approximate
their distribution as a Dirac delta F (~v) = niδ(~v − ~ui),
which allows us to treat the plasma close to the divertor
target.

2.2.3. Boltzmann collision terms To model electron-
neutral collisions we use the Boltzmann collision
integral for collisions between species s and s′

C[fs, fs′ ](v) =

∫
d~v2dΩ|~v − ~v2|σ(|~v − ~v2|,Ω)×

×[fs(~v′)fs′(~v′2)− fs(~v)fs′(~v2)], (28)

where primed velocities denote values before a collision,
and σ is the appropriate differential cross-section.
Using a standard procedure for particle-conserving
(e.g. excitation) inelastic collisions[20, 23, 24], we get(
δfl
δt

)ex
b→b′

= −nbv[σTOTb→b′ (v)fl(v)

−fl(αpv)α2
p

(
σTOTb→b′ (αpv)− σ(l)

b→b′(αpv)
)

], (29)

where αp = v′/v = (1 + 2ε/mv2)1/2, and σTOT is the
integral cross section, while

σ(l)(v) =

∫
dΩ(1− Pl(cosχ))σ(χ, v),

where Pl are Legendre polynomials.
For ionization (and other collisions that do not

conserve total number of particles), we take the
simplest possible approach and add (or remove)
electrons to (from) the lowest velocity cell[7], using(
δfl
δt

)ion
b

=

(
δfl
δt

)ex
(σionb ) + nbK

ion
b

δ(v)

4πv2
δl,0, (30)

where
(
δfl
δt

)ex
(σionb ) is the particle conserving part,

and Kion
b = 4π

∫
dvv3f0(v)σTOT,ionb (v).

For inverse processes we use the principle of
detailed balance [25, 26] to obtain cross-sections. For
deexcitation (from state i to j) this is

σdeex(i, j, v′) =
gj
gi

v2

v′2
σex(j, i, v), (31)

where gi and gj are statistical weights (for hydrogen
gn = 2n2). Velocities v′ and v are related through the
excitation energy. For 3-body recombination we use
the statistical weights of a free electron gas to get

σ3b−recomb(i, v
′)

1

ne
=

gi

2g+1

(
h2

2πmekTe

)3/2

×

× v
2

v′2
σion(i, v), (32)

where h is the Planck constant, and g+1 is the ion
ground state statistical weight (for hydrogen g+1 = 1).

2.2.4. Electron heating operator The implemented
diffusive heating operator has the form(
∂f0
∂t

)
heating

= Θ(Lh − x)D(x, t)
1

3v2
∂

∂v
v2
∂f0
∂v

, (33)

where Θ(Lh − x) designates the heating region. If we
assume a spatially uniform heating we get

D(t) =
Wh(t)

me

∫ Lh

0
ne(x, t)dx

, (34)

where Wh(t) is the heat flux entering the SOL over
length Lh. This is related to the fluid model heating
Q as Q = Wh/Lh.

2.2.5. Divertor target boundary condition with
Legendre polynomials Similarly to the fluid case, we
set flow to be ambipolar at the sheath entrance. We
then use the logical boundary condition[27], which
assumes that all electrons with vx > vc are lost,
while all others are reflected. This translates to
having a cut-off in the electron distribution function
at vx = −vc. The challenge comes in decomposing
this condition in Legendre polynomials. Fortunately,
the number of required harmonics to capture the basic
behaviour is usually not prohibitively high, with l =
1 enough for the condition to be satisfied, although
higher harmonics will improve accuracy. We omit the
derivation of the decomposition, and note that the
“cut-off” distribution harmonics can be written as a
linear combination of known harmonics

fcl(v) =
∑
l′

Pll′fl′(v), (35)
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where Pll′ is the transformation matrix containing the
details of the cut-off. With the distribution function
form known, the ambipolarity condition is

4π

3

∫ ∞
0

v3fc1dv = ni,shui,sh, (36)

where ni,sh is the density at the sheath boundary, and
ui,sh is the ion velocity at the boundary, given by the
Bohm condition ui ≥ cs = [k(Te+Ti)/mi]

1/2,where Te
is the electron temperature of the cut-off distribution,
and Ti is the ion temperature. The ambipolarity
condition gives vc, and with it the sheath potential
drop ∆Φ = mev

2
c/(2e).

2.3. Model numerics

As previously noted, the details of the numerical
methods used in SOL-KiT will be the topic of a future
paper[14]. However, we present basic elements of the
algorithm here to aid the presentation of results in the
following sections.

SOL-KiT is a fully implicit 1D code. All operators
are represented in matrix form, with nonlinear terms
iterated to a desired accuracy. When switching
between kinetic and fluid electrons, we simply
restructure the model matrix to include elements
calculated using the desired model. This does change
the dimension of the matrix, as the kinetic model
requires use of a velocity grid with number of cells Nv,
as well as accommodating a number of harmonics up to
lmax, whereas the fluid model needs only the staggered
spatial grid with Nx cells.

Staggering of the spatial grid is simply perfomed
by resolving the scalar (ne,Te,nb,f0, etc.) quantities
in cell centres, while vector quantities (E,ui,f1, etc.)
are given only on cell boundaries. For the simulations
performed here, the spatial grid is logarithmic, with
cells closer to the sheath boundary being smaller. This
allows for better resolution close to the target, where
spatial gradients are large. In all runs here Nx = 64.

The velocity grid used in the kinetic runs
presented here is geometric, and velocity is normalised
to vth,0 - the electron thermal velocity for a reference
temperature of 10 eV. This approach allows for
properly capturing low energy electrons and their
dynamics, as well as making sure the high energy tail
is resolved. We use Nv = 80, with lmax = 1 (the
diffusive approximation [28]), and take the smallest
velocity grid cell width to be dv = 0.05vth,0, while
resolving velocities up to ≈ 12vth,0.

Finally, in order to capture the collisional
dynamics during kinetic simulations of transients, we
use a timestep that resolves the collision times in the
system (see Section 4).

0 2 4 6 8 10
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25

T e
[e
V]
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2MW/m2

4.5MW/m2
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Figure 1. Equilibrium temperature profiles for a few
representative powers from scan - electrons treated as a fluid.

3. Simulation setup and equilibrium results

We set up the simulations in the following way. The
length of the domain is L = 9.94 m, with the heat
source injecting energy over Lh = 3.51 m upstream.
The total (plasma and neutral) line-averaged density
is kept at 〈ntot〉L = 1 × 1019 m−3 by utilizing 100%
recyling (R = 1). Recycling produces deuterium
atoms with temperature Tn = 3 eV (mimicking Franck-
Condon enhancement [17]), and we track a total of 30
atomic states.

The first set of simulations we describe is an
input power scan using fluid electrons. Note that
all equilibrium results presented here were obtained
by running the code until there were no significant
transients remaining (as such, the initial condition
influences only the time required to reach equilibrium).
The effective input power flux was varied from
1MW/m2 to 6MW/m2. The input power range used
allows us to consider qualitatively different regimes,
while staying in a parameter range relevant to MSTs.
Figure 1 shows temperature profiles from several of
the fluid electron runs. As expected, the temperature
profile starts flattening as input power is increased.

Figure 2 shows the density profile behaviour
for these runs. As the power increases, the
density peak grows and moves closer to the divertor
target. However, after the neutrals have been forced
sufficiently close to the boundary, the plasma density
profile starts flattening. The ground state neutral
density is shown in Figure 3, where we see the neutrals
being depleted with increasing power.

Temperature profiles for runs with kinetic elec-
trons are presented in Figure 4. We can see that the
temperature profiles are steeper, with higher temper-
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Figure 2. Density profiles for runs from Figure 1 - the density
peak grows and moves towards the target, until the profile begins
flattening.
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Figure 3. Ground state neutral density profiles for runs
from Figure 1 - as input power grows the neutral population
diminishes.

atures at the upstream and lower downstream, com-
pared to the fluid electron case. The isotropic dif-
fusive heating operator produces a small imprint in
the temperature profile, evident from the change in
slope around x = 3.5 m (however, the effective heating
power is the same as in the fluid runs). A minor uptick
(change in gradient sign) in the electron temperature
at the target is present for higher power runs. While
not visible in Figure 4 due to being localised close to
the target, the effects of the uptick are visible in other
quantities (see below, Figure 5). We expect this to

0 2 4 6 8 10
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15
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T e
[e
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2MW/m2

4.5MW/m2

6MW/m2

1MW/m2 - fluid electrons

Figure 4. Equilibrium temperature profiles when electrons
are treated kinetically; the profile is steeper, with upstream
temperatures greater than in the fluid case, as can be seen from
the included fluid equilibrium (purple dash-dotted line).
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Figure 5. Ratio of calculated conductive heat flux to
the classical local value. Upstream heat flux is suppressed,
while lower input power runs show flux enhancement near
the boundary. Negative values of the ratio are due to the
temperature uptick - most likely a consequence of the Ti = Te

approximation.

be the consequence of taking Ti = Te, as the lower
collisionality should decouple electron and ion temper-
atures, leading to different pressure and electric field
profiles, and this is not captured in our model.

The increased steepness of temperature profiles
in simulations with kinetic electrons can be readily
explained by looking at the ratio of the calculated
conductive heat flux q to the classical Spitzer-Härm
value based on the local temperature profile qSH . This
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is shown in Figure 5, where we see that the heat flux
upstream is suppressed (we also see again the imprint
of the heating operator). Near the target the heat
flux is enhanced for the lower heating powers, and the
slight temperature uptick at the boundary causes the
ratio to go negative, since the calculated Spitzer-Harm
heat flux changes sign. These results are qualitatively
similar to those obtained by Batishchev et al. [7]
using a code where all species were treated kinetically,
with the discrepencies seemingly due primarily to the
use of an isotropic heating operator and the Ti = Te
approximation.

Density profile behaviour during kinetic runs is
qualitatively similar to that during simulations with
fluid electrons, and we omit plots for the sake of
brevity.

In order to further illustrate the differences
between the kinetic and fluid model, we write here
a simple Two-Point Model (2PM) [17] result for
the temperature where an input heating flux qin is
distributed along a heating length Lh

Tu =

[
T

7/2
d +

7

2

qin(L− Lh/2)

κe

]2/7
. (37)

We plot T
7/2
u − T

7/2
d as a function of input power

in Figure 6 for both the obtained fluid and kinetic
equilibria, as well as the above 2PM. The fluid results
appear to agree well with the 2PM, although the
densities (similar to those in Figure 2) do not obey the
predictions of the model. This is due to the presence of
sources and sinks, and the resulting change in pressure
balance. The kinetic simulations show a systematic
increase of the calculated difference, which points to
a reduction in the effective conductivity κe,eff < κe
in the above model. This is the consequence of flux
suppression. However, note that the details of the flux
suppression or enhancement depend on the input power
and location within the system. As such, there appears
to be no simple way (e.g. flux limiters) to capture the
entirety of the kinetic effects.

Figure 7 shows the l = 0 harmonic in the last
cell before the boundary for the 1MW/m2 input power
kinetic background. Comparing it to a Maxwellian
distribution of equivalent density and temperature
reveals a “hot” tail of electrons, which modify the
transport properties as seen above.

Finally, we present results for the particle and
energy fluxes into the target sheath. Figure 8 shows the
variation of the particle flux into the sheath with input
power. At 4.5MW/m2 we observe the start of a flux
rollover in the kinetic electron simulations. The fluid
case is different, as rollover happens around 3MW/m2.
A slight increase in particle flux for higher powers is
observed in the fluid case, and this can be explained

1 2 3 4 5 6
Input po er [MW/m2]

20000

40000

60000

80000

100000

ΔT
7/
2 [
eV

7/
2 ]

Kinetic
Fluid
T oΔPoint Model

Figure 6. T
7/2
u − T

7/2
d

as a function of input power for the
obtained equilibria. The Two-Point Model result is given as the
dashed line, and appears to agree well with the fluid simulation
results. Kinetic simulations show a systematically increased gap,
further illustrating the effect of flux suppression.
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102
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Figure 7. The l = 0 harmonic near the target sheath for
the kinetic 1MW/m2 input power run. The dashed line shows
a Maxwellian with equivalent density and temperature. Fast
electrons start appearing in the distribution from ≈ 15eV .

by the increase of plasma density due to increased
ionization (while the total line averaged density is kept
constant). We interpret the particle rollover as the
onset of detachment, and restrict equilibria to input
powers below 4.5MW/m2 (i.e. detached at least in the
kinetic case) in the following section.

We plot the value of the sheath heat transmission
coefficient (see 9) as a function of input power in kinetic
runs in Figure 9. Note that for the fluid runs it is
set to γe = 5.5. Around 3.5MW/m2 the coefficient
experiences a rollover-like effect. This behaviour can
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Figure 8. The particle flux into the target sheath as a function
of input power. We observe rollover starting at 4.5MW/m2,
indicating onset of detachment below this input power.
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Figure 9. The electron sheath heat transmission coefficient
as a function of input power when electrons treated kinetically.
Rollover-like behaviour observed around 3.5MW/m2.

be explained as follows. In the low input power limit
we expect collisions to dominate and the regime to
be well described with a fluid model, thus setting γe
to its classical value. The high input power limit
should produce a flat temperature profile, and with no
gradients we again expect to return to the local value
of ≈ 5.5. Thus if there is any change in γe we expect
rollover-like behaviour at an intermediate input power.
An explanation of why the heat transmission coefficient
increases could be the same as for flux enhancement,
i.e. the presence of hot electrons in the tail of an
otherwise cold electron distribution.

Table 1. Possible combinations of equilibria and perturbations
based on equilibrium and perturbation physics used.

Fluid perturbation Kinetic perturbation
Kinetic equilibrium NA kinetic on kinetic
Fluid equilibrium fluid on fluid kinetic on fluid

4. Transient simulations

Transient simulations were performed by starting from
the above equilibria, and increasing the input power
flux to 45MW/m2 for ≈ 10µs. After this the input
power was returned to its original value for a further
≈ 10µs, allowing the perturbation to relax. We use
only equilibria with input powers up to 4.5MW/m2,
as we (somewhat conservatively) treat the plasma as
attached for powers higher than this. In order to
resolve collisions properly, we set the timestep in these
simulations to ≈ 3 ns. Since SOL-KiT allows moving
from fluid to kinetic simulations, it is possible to
launch a kinetic perturbation on a fluid background.
This would significantly reduce run time, as fluid
equilibria converge much faster. We explore this
below, considering the three possible combinations of
equilibria and perturbation physics, as presented in
Table 1.

Figure 10 shows the evolution of the perturbation
on the 1MW/m2 input power background for the var-
ious combinations in Table 1. The two kinetic mod-
els (kinetic perturbation on kinetic/fluid background)
agree qualitatively, while the fluid model greatly over-
estimates heat flow, and consequently the temperature
at the target.

The evolution of temperature at the target sheath
boundary for several background input powers is shown
in Figure 11, for the fluid and fully kinetic case,
respectively. As can be seen, the peak temperatures at
the target in the kinetic case are up to almost two times
lower than in the fluid case. However, the temperature
decays faster in the fluid than in the kinetic model,
which is most likely due to the suppressed upstream
flux relaxing more slowly.

It is useful to observe the evolution of the q/qSH
ratio during the perturbation. We focus on two
locations, one in the middle of the domain, and one
close to the target. These results are shown in Figures
12 and 13. The midpoint ratio evolution indicates
an initial bout of flux enhancement (compared to
the equilibrium), after which the heat flux is heavily
suppressed. We note here that the lowest power
equilibrium has the strongest kinetic response to the
perturbation, which is also visible in Figure 13, where
it experiences much greater enhancement compared to
other equilibria. We expect this to be due to lower
power equilibria having a much larger energy contrast
between the local cold and the much hotter electrons
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Figure 10. Temperature profile evolution for perturbation
launched on the 1MW/m2 background. The fluid model
greatly overestimates the target temperature, while the two
kinetic simulations have a similar qualitative behaviour, with a
significantly higher upstream temperature than the fluid model
during the perturbation.
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Figure 11. Evolution of the temperature perturbation
at the target for the highest and lowest input powers
considered. Presented are both a fluid perturbation and a kinetic
perturbation on kinetic background.
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Figure 12. Ratio of calculated conductive heat flux to the local
value during the kinetic perturbation run. Shown are several
different background input powers at x = 5 m. After an initial
period of enhancement, the flux is heavily suppressed.

coming from upstream (see Figure 14 below).
The evolution of the l = 0 harmonic in the

last cell before the boundary is presented in Figure
14, corresponding to the solid line in the first
four subfigures of Figure 10, with the perturbation
being launched on the 1MW/m2 input power kinetic
background. As expected, the perturbation manifests
itself as a growing tail of energetic electrons.

We now turn to the evolution of the sheath
properties, namely the sheath heat transmission
coefficient and the sheath potential drop. Presented in
Figures 15 and 16 is the heat transmission coefficient
during the perturbation for several input powers, with
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Figure 13. Ratio of calculated conductive heat flux to the local
value during the kinetic perturbation run. Shown are several
different background input powers at x = 9.84 m. Close to
the target, heat flux enhancement dominates during most of
the perturbation. Dashed horizontal line shows q/qSH = 1 for
reference.
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Figure 14. Evolution of the l = 0 harmonic near the
boundary during the perturbation on the 1MW/m2 input power
background (kinetic on kinetic background). This corresponds
to the solid line in the first four subfigures of Figure 10.
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Figure 15. The sheath heat transmission coefficient during
perturbations launched on several different initial input power
backgrounds - kinetic perturbation on fluid background.

the kinetic perturbation launched on the fluid and
kinetic backgrounds, respectively. Firstly, we observe
that the sheath heat transmission coefficient can vary
significantly during the perturbation, up to almost a
factor of 10 for the strongest variation. Furthermore,
the same sensitivity of lower initial power runs to
kinetic effects observed in Figures 12 and 13 is seen here
as well, with the 1MW/m2 background experiencing
the largest variation in the value of γe. Finally, we
note the differences between Figures 15 and 16, the first
being the underestimation of γe when the perturbation
is launched on a fluid background. This “error” grows
as we reduce the initial input power, even though the
qualitative behaviour is captured. Secondly, as can be
seen from the first ≈ 2µs of the simulation, the fluid
background experiences transients unrelated to the
perturbation, but caused by switching to the kinetic
model. While the background is relaxing in this way,
the inherent transients become superimposed onto the
incoming perturbation, making detailed interpretation
of results difficult.

Similarly to the sheath heat transmission coefi-
cient, the potential drop (normalized to kTe/e) experi-
ences variation during the perturbation. This is shown
in Figures 17 and 18, for kinetic perturbations launched
on fluid and kinetic backgrounds, respectively. We see
that the potential varies up to around a factor of 2
(compared to the classical result of ≈ 3.0), and that
the lowest initial power runs are again the most suscep-
tible to the variation. While the peak value difference
between simulations performed with fluid and kinetic
backgrounds is less than that of the sheath heat trans-
mission coefficient, there is still a considerable amount
of discrepancy at the start of the simulations, most
likely caused by the same relaxation transients men-
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Figure 16. The sheath heat transmission coefficient during
perturbations launched on several different initial input power
backgrounds - kinetic perturbation on kinetic background.
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Figure 17. The sheath potential drop during perturbations
launched on several different initial input power backgrounds -
kinetic perturbation on fluid background.

tioned. Finally, we note that the jagged lines in Fig-
ures 15-18 are a finite velocity grid effect, due to the
calculation of the cut-off velocity for the logical sheath
boundary condition (see 36), which involves interpola-
tion on the velocity grid.

5. Discussion

We begin the discussion of the presented results by
going over the main limitations of the present study
inherent to the model used, as well as limitations
of scope. The first major assumption is that of
dimensionality, as we use a 1D model. However, for
the study of kinetic effects in the SOL, especially as
they relate to equivalent fluid scenarios, we expect
this study to be able to capture the fundamental
differences.
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Figure 18. The sheath potential drop during perturbations
launched on several different initial input power backgrounds -
kinetic perturbation on kinetic background.

Two limitations we plan to tackle in a future
version of the SOL-KiT code are the Ti = Te
approximation, as well as the limited neutral physics
(currently only diffusive-reactive atoms included, with
elastic electron-neutral collisions ignored). These two
primarily limit the parameter space accessible to us,
and the fundamental aspects of the results presented
in this study should not be greatly affected by them,
especially since the study is based on comparing two
models which use the same approximations. However,
future work is being planned to investigate this
rigorously.

Use of harmonics only up to l = 1 is
another simplification in the current study. While
this approximation captures most of the physics,
simulations using it will naturally underresolve kinetic
effects, as the allowed anisotropy of the distribution
function is limited. Furthermore, we expect the
greatest impact of including higher l terms to be at
the boundary, where a better angular resolution in
velocity space allows for higher accuracy in the sheath
boundary condition. Exploring higher harmonic effects
will be the topic of a future study, as SOL-KiT has all of
the necessary features, with the only constraint being
the computational time required to obtain kinetic
equilibria with a high level of anisotropy. Preliminary
results with higher harmonics confirm that they tend
to be localized near the boundary.

We have presented in this study both equilibrium
and transient simulations of parallel electron transport
in the SOL, treating the electrons as either a fluid or
kinetically. The equilibrium results (for the parameters
in this study), while showing the presence of kinetic
effects, do not appear to be dominated by them. We
report the rollover of the plasma flux into the target
sheath, which is interpreted as the onset of detachment.
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The input power at which this occurs is different for the
fluid and kinetic models, with the rollover happening
at a lower input power when electrons are treated
as a fluid. Rollover at a lower power in the fluid
case can be explained by the fact that temperatures
near the target are greater compared to the kinetic
model, leading to a higher degree of ionization. The
equilibrum kinetic effects, which occur as heat flux
enhancement and suppression, depend heavily on the
spatial location and the input power. This makes
it difficult to prescribe one (or even a set) of flux
limiters that could capture the physics, especially the
flux enhancement. Another equilibrium kinetic effect
that has been explored here is the modification of the
electron sheath heat transmission coefficient, where we
find up to ≈ 20% variation with respect to the assumed
classical fluid value of γe = 5.5.

While a clear dominance of kinetic effects was
not found for the equilibrium simulations, runs with
transients provide a different picture. Firstly, the
target temperature during the perturbation predicted
by the fluid model is considerably higher than when
electrons are treated kinetically (Figure 11). One
could imagine imposing a flux limiter in the fluid case
to mimic this, but we present results showing vastly
different evolution of the conductive electron heat flux
(with respect to its classical value) for both different
spatial points in the system, as well as different initial
input powers (see Figures 12 and 13). With a mix
of heat flux suppression and enhancement, as well as
their time-dependant nature, it is highly unlikely that
a simple modification to the flux could reproduce the
full range of behaviours simulated here. However, it
might be worthwhile to explore more complicated fluid
models for capturing kinetic effects (see, for example,
Brodrick et al.[29]), and compare them to the results
obtained in this study. We also present the variation
of the sheath heat transmission coefficient, as well as
the sheath potential drop, during the perturbation.
Both show significant modification compared to their
classical values, indicating a likely need to include time-
dependant models for the sheath behaviour during
transients simulated using fluid codes.

It is worth repeating that all of the presented
perturbation simulations were performed in the
same way, increasing the input power to the same
value (45MW/m2) for the same amount of time
(approximately 10µs). However, the intensity of
kinetic effects varied strongly as a function of initial
conditions, namely the initial input power of the used
equilibrum profiles. This suggests, as one might
expect, that the degree of kinetic modification to
the physics depends on the ratio of the initial input
power to that of perturbation. Further investigation is
required to explore this facet of the simulations, with

a special focus on the way energy is injected into the
system.

Finally, we explored the approach of launching
kinetic perturbations on fluid equilibria. While there
are discrepancies due to the fluid equilibrium relaxing
(see for example Figures 15 and 16), the perturbation
behaviour is well captured using this approximate
method. As the equilibria are reached on fluid
timescales, the fact that the kinetic model requires
a much shorter timestep increases simulation times.
In some cases an increase of more than 30 times
was required to reach equilibrium (computational
requirements to be presented in dedicated code
paper[14]). Since the computational time saved when
using a fluid equilibrium as the base for kinetic
transient studies is considerable, having the option
of performing quick simulations to explore qualitative
aspects of the perturbation behaviour is encouraging.

The parameter ranges of the presented results
are mostly relevant to MSTs, specifically to the
interaction of transients with detachment in such
machines. In larger machines, we expect that
for similar collisionalities to those treated here the
kinetic effects would manifest in a qualitatively similar
manner. This would require a corresponding scaling
up of the input power and density in order to
compensate for an increase in connection length. As
our simulations require resolving the collision times,
denser plasmas would be much more computationally
expensive.

6. Conclusion

We presented the first study of parallel electron
transport using the newly developed fully implicit
code SOL-KiT. Both equilibria and transients were
simulated, using the capability of the code to self-
consistently simulate electrons as a fluid or kinetically.
The parameters used in these simulations are mostly
relevant to medium sized tokamaks.

Significant kinetic effects were found during
transients, especially in the transport properties of
the target sheath, where it was found that the
electron sheath heat transmission coefficient could
reach almost 10 times its classical value. We
compare simulations using different initial conditions
as well as different models for the electrons (fluid
or kinetic), and find both heat flux suppression
and enhancement in both equilibrium and transient
simulations. The fluid model is found to systematically
overestimate the temperature at the target due to
a lack of heat flux suppression. A considerable
amount of sensitivity to initial conditions was observed
in transient simulations, with different backgrounds
experiencing greatly varying levels of kinetic effects.
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We show that an accurate prediction of the
evolution of heat flux during transients in the SOL
requires a kinetic approach to modeling electrons,
as the variable transport quantities during transients
would be extremely difficult to simulate using flux
limiters.
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