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Electromagnetic instabilities and turbulence driven by the electron-temperature gradient
are considered in a local slab model of a tokamak-like plasma, with constant equilibrium
gradients (including magnetic drifts but no magnetic shear). The model describes pertur-
bations at scales both larger and smaller than the electron inertial scale de, at which flux
unfreezes, and so captures both electrostatic and EM regimes of turbulence. The well-
known electrostatic instabilities — slab and curvature-mediated ETG — are recovered,
and a new instability is found in the electromagnetic regime, called the Thermo-Alfvénic
instability (TAI). It exists in both a slab version (destabilising kinetic Alfvén waves)
and a curvature-mediated version, which is a cousin of the (electron-scale version of)
the kinetic ballooning mode (KBM). The curvature-mediated TAI turns out to be
dominant at the largest scales covered by the model (greater than de, but smaller than
the ion gyroradius), trumping curvature-mediated ETG and exciting electromagnetic
perturbations with a specific parallel wavenumber (unlike the curvature-mediated ETG,
which is two-dimensional). Its physical mechanism hinges on the fast equalisation of the
total temperature along perturbed magnetic field lines (in contrast to the KBM, which
is approximately pressure balanced). It turns out that it is then possible to construct a
turbulent cascade theory with two energy-injection scales: de, where the drivers are slab
ETG and slab TAI, and a larger scale dependent on the parallel size of the system, where
the driver is curvature-mediated TAI. The latter dominates the turbulent transport if
the temperature gradient is greater than a certain critical value, which scales inversely
with the electron beta. The resulting heat flux scales more steeply with the temperature
gradient than the heat flux due to electrostatic ETG turbulence in this regime, and thus
gives rise to stiffer transport. This can be viewed as a physical argument in favour of near-
marginal steady-state in electron-transport-controlled plasmas (e.g., the pedestal). While
the model is simplistic, the new physics that is revealed by it should be of some concern, or
at least interest, to those attempting to model the effect of electromagnetic turbulence in
tokamak-relevant configurations with high beta and large electron temperature gradients.

† Email: toby.adkins@physics.ox.ac.uk
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1. Introduction

An understanding of the heat transport properties of a magnetically confined plasma
is crucial to the design of successful tokamak experiments. Since the characteristic
correlation lengthscales associated with the turbulence are small in comparison to the
scale of the device, one can usually assume that the turbulence depends only on local
equilibrium quantities — such as density, velocity, temperature, electromagnetic fields
— and their gradients. Much of the focus of current research is on the turbulence
consisting of unstable microscale perturbations, the most important of which are driven
either by the ion-temperature gradient (ITG) (see, e.g., Waltz 1988; Cowley et al. 1991;
Kotschenreuther et al. 1995) or the electron-temperature gradient (ETG) (see, e.g.,
Dorland et al. 2000; Jenko et al. 2000). These perturbations typically live on ion and
electron scales, respectively. Strongly driven plasma turbulence — i.e., plasma turbulence
with temperature gradients far above the linear-instability thresholds — is believed to
saturate by reaching a ‘critically balanced’ state (Barnes et al. 2011), where, by analogy
with the Kolmogorov (1941) theory of hydrodynamic turbulence, free energy injected
by linear instabilities is nonlinearly transferred (cascaded) to smaller scales, at which
it is thermalised by collisions. If one can determine the turbulent state of the plasma
at saturation, then it is, in principle, possible to determine how the turbulent heat
fluxes carried by these perturbations depends on the temperature gradients. Knowing
this relationship, one can invert it to find the heating power that needs to be provided
to support a particular temperature gradient. In many cases, the heat transport found
in this context is described as “stiff” (Wolf 2003): the heat flux scales sharply with the
temperature gradient, so a large increase in heating power does very little to increase
the temperature gradient, making achieving temperature gradients far above marginal a
difficult task.

Though it has long been understood that ion-scale physics can play a significant role
in plasma transport (see references above), there is evidence to suggest that ion-scale
instabilities can be suppressed by strong E × B shear in steep-gradient regions of a
tokamak (e.g., the pedestal), particularly in spherical or low-aspect-ratio configurations
(see Roach et al. 2005, 2009; Ren et al. 2017; Guttenfelder et al. 2013, 2021, and
references therein). This has the effect of reducing the ion contribution to the turbulent
heat transport, which instead becomes dominated by the electron channel. This means
that the characterisation of electron-scale instabilities is not only worthwhile, but indeed
necessary for a complete understanding of the heat transport in such systems.

Furthermore, a comprehensive understanding of electromagnetic effects on the mi-
croinstability properties of the plasma, and the resultant turbulence, is becoming in-
creasingly important as experimental values of the plasma beta (the ratio of the thermal
and magnetic pressures) and, therefore, electromagnetic fluctuations, will be higher in
reactor-relevant tokamak scenarios; e.g., ITER is projected to have a plasma beta of
up to 2.5% (Shimomura et al. 2001; Sips 2005), while this value could exceed 15% in
a recently proposed STEP equilibrium (Patel et al. 2021). Though the investigation
of electromagnetic instabilitites and turbulence is of general importance within many
different types of plasma systems (e.g., astrophysical plasmas, laser plasmas), much of the
research in fusion has focused on two particular microinstability classes: micro-tearing
modes (MTM) — initially, in simplified models (Hazeltine et al. 1975; Drake & Lee
1977; Drake et al. 1980; Hassam 1980a,b; Zocco et al. 2015), later in tokamak geometry
(Applegate et al. 2007; Guttenfelder et al. 2012; Dickinson et al. 2013; Predebon & Sattin
2013; Moradi et al. 2013; Rafiq et al. 2016) — and kinetic ballooning modes (KBM) (Tang
et al. 1980; Snyder 1999; Snyder & Hammett 2001a,b; Pueschel et al. 2008; Pueschel &
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Jenko 2010; Waltz 2010; Wan et al. 2012, 2013; Guttenfelder et al. 2013; Ishizawa et al.
2013; Ishizawa et al. 2014; Ishizawa et al. 2019; Terry et al. 2015; Aleynikova & Zocco
2017). Both of these are intrinsically electromagnetic, requiring the ability to perturb
the magnetic field’s direction and (sometimes) magnitude. Despite significant numerical
progress in understanding the behaviour of such modes, however, there is still a certain
lack of clarity about the fundamental physical processes that are responsible for their
drive, owing, in part, to the sheer complexity of investigating these modes in the general
tokamak geometry. This suggests that progress can be made by splitting these complex
systems into a series of more easily understood constituents, and in so doing distilling
the essential physical ingredients behind electromagnetic destabilisation.
To this end, in this paper, we consider electromagnetic instabilities and turbulence

driven by the electron-temperature gradient in a local slab model of a tokamak-like
plasma, with constant equilibrium gradients, including magnetic drifts but no magnetic
shear. The inclusion of the finite gradient and curvature of the magnetic field — in
addition to the conventional slab geometry (see, e.g., Howes et al. 2006) — is motivated
by recent evidence (Abel & Hallenbert 2018; Parisi et al. 2020) that the modes mediated
by these equilibrium quantities can often be the fastest-growing ones in steep-gradient
regions of the plasma (e.g., the pedestal), and thus significant in determining its nonlinear
saturated state. The governing equations are derived in the low-beta asymptotic limit of
gyrokinetics (see, e.g., Abel et al. 2013), and describe perturbations on scales both larger
and smaller than the electron inertial scale de, at which flux unfreezes, capturing both
electrostatic and electromagnetic regimes of turbulence.
At appropriately short perpendicular wavelengths (below the de scale), we recover the

well-known, electrostatic slab electron-temperature-gradient (sETG, Liu 1971; Lee et al.
1987) and curvature-mediated ETG (cETG, Horton et al. 1988) instabilities. Turning
our attention to longer perpendicular wavelengths (above the de scale, but still smaller
than the ion gyroradius), we demonstrate the existence of the novel Thermo-Alfvénic
instability (TAI) that arises in the electromagnetic regime. We show that it exists in
both a slab version (sTAI, destabilising kinetic Alfvén waves) and a curvature-mediated
version (cTAI), the latter of which is related to the (electron-scale version of) the KBM.
In particular, we find that cTAI is the dominant instability on the largest scales covered
by the model, with a maximum growth rate that is greater than that of the cETG. This
maximum growth rate occurs at a specific, finite parallel wavenumber, unlike cETG,
which is two-dimensional. Its physical mechanism hinges on the fast equalisation of the
total temperature along perturbed magnetic field lines (in contrast to the KBM, which is
approximately pressure balanced; see, e.g., Snyder & Hammett 2001a; Kotschenreuther
et al. 2019) due to the dominance of either parallel streaming (in the collisionless limit)
or thermal conduction (in the collisional one). We also show that the sTAI is stabilised
at large parallel wavenumbers by compressional heating, and at large perpendicular
wavenumbers by the effects of finite eletron inertia (in the collisionless limit) or finite
resisitivty (in the collisional one). We then map out all of these instabilities in parallel
and perpendicular wavenumber space.
Using a critical-balance phenomenology analogous to Barnes et al. (2011), we then

construct a turbulent-cascade theory for the free energy injected by these instabilities.
Assuming the cascade to be local, the theory is shown to allow two injection scales: de,
where the drivers are sETG and sTAI, and a larger scale dependent on the parallel size of
the system (the connection length, in the case of a tokamak), where the principal driver
is cTAI. We find that the latter dominates the turbulent transport if the temperature
gradient is greater than a certain critical value, which scales inversely with the electron
beta. Using constant-flux arguments, we then derive scaling estimates for the turbulent
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electron heat flux carried by fluctuations at these injection scales, finding that the heat
flux due to electromagnetic cTAI turbulence scales more steeply with the temperature
gradient than the heat flux due to electrostatic sETG turbulence in this regime, and thus
gives rise to stiffer transport.
The rest of the paper is organised as follows. In section 2, we describe and physically

motivate our low-beta model equations, in both the collisionless and collisional limits.
Section 3 recovers the well-known electrostatic instabilities — sETG and cETG — while
section 4 is devoted to the characterisation of the TAI, including a detailed treatments
both sTAI and cTAI. Section 5 is a summary of the asymptotic behaviour of these
instabilities in wavenumber space, providing a graphical representation of the linear
results of this paper. In section 6, we construct a cascade theory for the turbulence
driven by these instabilities, and derive scaling estimates for the turbulent electron heat
fluxes as functions of the electron temperature gradient, parallel system size and the
electron beta. Finally, results are summarised and limitations, implications, and future
directions are discussed in section 7.

2. Low-beta equations

We wish to describe dynamics at electron scales (below the ion Larmor scale) of a
magnetised plasma, in the presence of electromagnetic perturbations. Our electron species
will have an equilibrium temperature gradient, and will be advected by the magnetic
drifts associated with a magnetic geometry of constant curvature. Our equations will
be derived in a low-beta asymptotic limit of gyrokinetics; this allows us to order out
compressive magnetic field perturbations while retaining Alfvénic ones. In this section,
we present a summary of these equations and the physical motivation behind them; their
detailed derivation can be found in appendix A.

2.1. Magnetic equilibrium and geometry

The magnetic geometry that we adopt is one of constant magnetic curvature, as this
allows us to capture the effect of the magnetic drifts on our plasma while retaining most
of the simplicity associated with conventional slab gyrokinetics (Howes et al. 2006, Ivanov
et al. 2020). We consider a domain positioned in the magnetic field of a current line at
a radial distance R from the central axis, and define the x̂ and ŷ directions as pointing
radially outwards and parallel to the central axis, respectively, as shown in figure 1. In
the context of the outboard midplane in tokamak geometry, these are the ‘radial’ and
‘poloidal’ coordinates, respectively, terms that we shall adopt in our later discussions. In
such a geometry, the magnetic field consists of an equilibrium part that is oriented in the
b0 = ẑ direction and varies radially, plus a time- and space-dependent fluctuating part:

B(r, t) = B0(x)b0 + δB⊥(r, t). (2.1)

In what follows, we shall express the perpendicular magnetic-field fluctuations in terms
of the parallel component of the magnetic vector potential:

δB⊥(r, t) = ∇×A = −b0 ×∇A∥. (2.2)

The component of the magnetic-field fluctuations parallel the the mean field is negligible
in the limit of low beta [see (A 20)]. The electric field is related to the magnetic vector
potential A and electrostatic potential ϕ by

E(r, t) = −1

c

∂A

∂t
−∇ϕ, (2.3)



5

x̂

ŷ
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Figure 1: Illustration of the constant-curvature geometry, showing the domain positioned at a
distance R from the current axis, with the x̂ and ŷ directions pointing radially outwards and
parallel to this axis, respectively. The equilibrium magnetic field is in the b0 direction. Both the
equilibrium temperature T0e and equilibrium magnetic field B0 vary radially, with their scale
lengths LT and LB , respectively, assumed constant across the domain.

and is assumed to have no mean part. The equilibrium (mean) magnetic field has the
scale length and radius of curvature

L−1
B = − 1

B0

dB0

dx
, R−1 = |b0 · ∇b0| , (2.4)

respectively, both of which are assumed to be constant across our domain. Note that for
a low-beta plasma, R = LB (see appendix A.1). We assume that the background gradient
of the temperature T0e associated with the equilibrium distribution of the electrons also
varies radially, with scale length

L−1
T = − 1

T0e

dT0e
dx

, (2.5)

which, similarly, is assumed to be constant over the domain. The thermal speed of the
electrons is then given by vthe =

√
2T0e/me, where me is the electron mass.

With this local equilibrium, and adopting a low-beta ordering (see appendix A.2),
we derive evolution equations for the density (δne), parallel velocity (u∥e), parallel
temperature (δT∥e) and perpendicular temperature (δT⊥e) perturbations of the electrons.
These equations are presented in the following sections. We assume everywhere that the
electron Larmor radius ρe is small, and so work in the drift-kinetic approximation for
the electrons.

2.2. Density perturbations

The perturbed electron density satisfies the continuity equation:

d

dt

δne
n0e

+∇∥u∥e +
ρevthe
2LB

∂

∂y

(
δT∥e

T0e
+
δT⊥e

T0e

)
= 0. (2.6)

This says that the density perturbation is subject to three influences: (i) advection by
the E ×B motion of the electrons,

d

dt
=

∂

∂t
+ vE · ∇⊥, vE =

ρevthe
2

b0 ×∇⊥φ, φ =
eϕ

T0e
, (2.7)
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where −e is the electron charge; (ii) compression or rarefaction due to the perturbed
parallel electron flow u∥eb along the exact magnetic field, including the perturbation of
the magnetic field direction:

∇∥ = b · ∇ =
∂

∂z
+
δB⊥

B0
· ∇⊥,

δB⊥

B0
= −ρeb0 ×∇⊥A, A =

A∥

ρeB0
; (2.8)

(iii) the magnetic drifts due to the finite curvature and gradient of the magnetic field. The
parallel and perpendicular temperature perturbations arise from the velocity dependence
of the curvature and ∇B drifts in the gyrokinetic equation [see (A 29)]. The presence of
these magnetic drifts is essential for the curvature-mediated instabilities that will be the
focus of section 3.3 and much of section 4.
The continuity equation (2.6) is (A 68) in appendix A.5, except in (2.6) we have set the

equilibrium density gradient to zero, and ignored the magnetic-drift terms proportional
to δne/n0e and φ, as they will always turn out to be smaller than the magnetic-drift
terms proportional to the temperature perturbations in what follows. This is in a bid
to make our equations as simple as possible, while retaining all of the relevant physics
(see appendix A.7 for further details). We shall ignore similar terms in our other equations
for the perturbations, for the same reason. Cautious readers may be reassured by the
fact that all of the instabilities considered in sections 3 and 4 are derived in a limit in
which this is a valid approximation.

2.3. Parallel velocity perturbations

The parallel momentum equation associated with the electrons is [see (A 69)]

n0eme

du∥e

dt
= −∇∥p∥e − eneE∥ − νeimeu∥e, (2.9)

The three forces appearing on the right-hand side are, from right to left: (i) the collisional
drag against the ions (which are assumed motionless), where νei is the electron-ion
collision frequency, (ii) the parallel electric field

E∥ = b ·E = −
(
1

c

∂A∥

∂t
+∇∥ϕ

)
= −

(
1

c

dA∥

dt
+
∂ϕ

∂z

)
, (2.10)

and (iii) the parallel pressure gradient, which consists of both the parallel gradient of the
parallel-pressure perturbation and the projection of the equilibrium temperature gradient
onto the perturbed magnetic field:

∇∥p∥e = ∇∥δp∥e + n0e
δBx

B0

dT0e
dx

= n0eT0e

[
∇∥

(
δne
n0e

+
δT∥e

T0e

)
− ρe
LT

∂A
∂y

]
. (2.11)

Since an electron flow uncompensated by an ion flow is a current, u∥e is related to A∥
via Ampère’s law [see (A 41)]:

−en0eu∥e = j∥ =
c

4π
b0 · (∇⊥ × δB⊥) ⇒ u∥e = vthed

2
e∇2

⊥A, (2.12)

where c is the speed of light, de = c(me/4πe
2)1/2 = ρe/

√
βe is the electron inertial scale,

and βe = 8πn0eT0e/B
2
0 . The electron inertial scale de will be an important quantity

throughout this work, as it demarcates the boundary between the electrostatic and
electromagnetic regimes in the collisionless limit (see section 2.7). In the collisional limit
[see (A 74)], the frictional term on the right-hand side of (2.9) dominates over the electron
inertial term on the left-hand side, meaning that the electron inertia can be neglected.
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2.4. Temperature perturbations

The parallel temperature T∥e = T0e + δT∥e is advected by the local E × B flow and
is locally increased (or decreased) by the compressional heating (or rarefaction cooling)
due to u∥e, as well as by the (appropriately normalised) perturbed parallel heat flux δq∥e
[see (A 70)]:

dT∥e

dt
=

dδT∥e

dt
+ vE · ∇⊥T0e = −∇∥

δq∥e

n0e
− 2T0e∇∥u∥e −

4

3
νe
(
δT∥e − δT⊥e

)
. (2.13)

The factor of 2 in the compressional-heating term (the second on the right-hand side)
is due to the fact that we only consider the parallel (1D) motion of the electrons
[perpendicular motions are formally small within our ordering: see (A 22)]. The last term
on the right-hand side is a consequence of our choice of collision operator [see (A 55) and
the subsequent discussion], and is responsible for collisional temperature isotropisation,
with νe = νee + νei, and νee = νei/Z the electron-electron collision frequency (Ze is the
ion charge).

Similarly, the perpendicular temperature T⊥e = T0e + δT⊥e evolves according to
[see (A 71)]

dT⊥e

dt
=

dδT⊥e

dt
+ vE · ∇⊥T0e = −∇∥

δq⊥e

n0e
− 2

3
νe
(
δT⊥e − δT∥e

)
, (2.14)

where δq⊥e is the perturbed perpendicular heat flux. Note the absence of perpendicular
compressional heating (perpendicular flows are incompressible).

The term expressing the seeding of both parallel and perpendicular temperature
perturbations via the advection of the equilibrium temperature profile by the E×B flow
becomes, after a straightforward manipulation, the familiar (electrostatic) linear drive
responsible for extracting (‘electrostatic’) free energy from the equilibrium temperature
gradient:

vE · ∇⊥T0e = T0e
ρevthe
2LT

∂φ

∂y
, (2.15)

where LT is defined in (2.5). In order to determine the heat fluxes δq∥e and δq⊥e, kinetic
theory is needed, and so we must append to our emerging system of equations the drift-
kinetic equation for electrons (see appendix A.5), of which (2.6), (2.9), (2.13) and (2.14)
are four lowest-order moments.

In the collisional limit [see (A 74)], the temperature isotropisation terms in (2.13) and
(2.14) are dominant, enforcing δT∥e = δT⊥e = δTe to leading order. In this limit, there-
fore, we no longer distinguish between parallel and perpendicular temperature perturba-
tions, and obtain an equation for δTe from the linear combination (1/3)(2.13)+(2/3)(2.14)
[see (A 83) and (A 90)]:

dδTe
dt

+ vE · ∇⊥T0e = −2

3
∇∥

δqe
n0e

− 2

3
T0e∇∥u∥e, (2.16)

where the (collisional) heat flux δqe = δq∥e/2 + δq⊥e can be expressed in terms of the
parallel gradient of the total temperature Te = T0e + δTe along the exact magnetic field
direction [see (A 87)]:

δqe
n0eT0e

= −3

2
κ∇∥ log Te, κ =

5v2the
18νe

, (2.17)
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where κ is the electron thermal diffusivity and

∇∥ log Te = ∇∥
δTe
T0e

+
δBx

B0

1

T0e

dT0e
dx

= ∇∥
δTe
T0e

− ρe
LT

∂A
∂y

(2.18)

is the parallel gradient of the total electron temperature, which will prove a key quantity
in what follows.

2.5. Quasineutrality

Finally, as usual, particle density is related to ϕ via quasineutrality, which is the route
whereby ions contribute to dynamics. Since, at scales smaller than their Larmor radius
∼ ρi, ions can be viewed as large motionless rings of charge, their density response is
Boltzmann:

δne
n0e

=
δni
n0i

= −Zeϕ
T0i

= −τ̄−1φ, τ̄ =
τ

Z
, (2.19)

where τ = T0i/T0e is the ratio of the ion to electron equilibrium temperatures. The more
general quasineutrality closure, for which τ̄−1 is an operator and which includes scales
comparable to the ion Larmor radius, is given in appendix A.4, but, since we shall focus
on scales smaller than this in our discussions, (2.19) is sufficient for our purposes.

2.6. Summary of equations

Assembling together all of the above, we end up with the following systems of equations,
in the collisionless limit [see (A 8) with νei, νee → 0]:

d

dt

δne
n0e

+∇∥u∥e +
ρevthe
2LB

∂

∂y

(
δT∥e

T0e
+
δT⊥e

T0e

)
= 0, (2.20)

d

dt

(
A−

u∥e

vthe

)
= −vthe

2

[
∂φ

∂z
−∇∥

(
δne
n0e

+
δT∥e

T0e

)
+

ρe
LT

∂A
∂y

]
, (2.21)

d

dt

δT∥e

T0e
+∇∥

(
δq∥e

n0eT0e
+ 2u∥e

)
+
ρevthe
2LT

∂φ

∂y
= 0, (2.22)

d

dt

δT⊥e

T0e
+∇∥

δq⊥e

n0eT0e
+
ρevthe
2LT

∂φ

∂y
= 0, (2.23)

or, in the collisional limit [see (A 74)],

d

dt

δne
n0e

+∇∥u∥e +
ρevthe
LB

∂

∂y

δTe
T0e

= 0, (2.24)

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

(
∇∥

δne
n0e

+∇∥ log Te

)
+ νei

u∥e

vthe
, (2.25)

d

dt

δTe
T0e

− κ∇2
∥ log Te +

2

3
∇∥u∥e +

ρevthe
2LT

∂φ

∂y
= 0, (2.26)

to which we append the field equations:

δne
n0e

= −τ̄−1φ,
u∥e

vthe
= d2e∇2

⊥A. (2.27)

This system is a minimal model for describing low-beta electromagnetic plasma dynamics
— whether collisionless or collisional — driven by a background electron temperature
gradient, and in the presence of magnetic drifts.
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2.7. Flux-freezing

These equations describe two broad classes of physical phenomena: electrostatic and
electromagnetic, distinguished by whether the magnetic field lines are frozen into the
electron flow or not. We shall refer to the perpendicular scale at which the transition
between these two regimes occurs as the ‘flux-freezing scale’. In the collisionless limit,
this scale is given by the balance between the electron inertia and the inductive parallel
electric field on the left-hand side of (2.21), viz.,

k⊥de ∼ 1. (2.28)

In the collisional limit, the analogous balance involves, instead of electron inertia, the
resistive term — the last on the right-hand side of (2.25). However, in this limit, we shall
always deal with perturbations for which the term in (2.25) that contains the projection
of the equilibrium temperature gradient onto the perturbed magnetic field [the second
part of ∇∥ log Te written in (2.18)] is larger than ∂A/∂t. Therefore, it is with this term
that the effect of resistivity will be usefully compared:

ω ≲ ω∗e ≡
kyρevthe
2LT

∼ k2⊥d
2
eνei, (2.29)

where ω∗e is the drift frequency associated with the electron-temperature gradient. For
modes with ky ∼ k⊥, the balance (2.29) can be written as

k⊥de ∼
ρe
de

vthe
LT νei

=
√
βe
λe
LT

≡ χ−1, (2.30)

where λe = vthe/νe is the electron mean free path. It is the scale at which k⊥deχ ∼ 1
that will effectively play the role of the flux-freezing scale in the collisional limit. Note
that χ−1 ≪ 1 [see (A 82)], meaning that the flux-freezing scale occurs at much longer
perpendicular wavelengths than in the collisionless limit.
We shall refer to scales below the flux-freezing scale (2.28) or (2.30) as electrostatic

scales (on which electrons are free to flow across field lines without perturbing them), and
to scales above the flux-freezing scale as electromagnetic scales (on which the magnetic
field is frozen into the electron flow). In appendix C, we show that the electron flow into
which the magnetic field lines are frozen on electromagnetic scales (while still remaining
below the ion Larmor scale) is given by

ueff = vE − ρevthe
2

b0 ×∇p∥e
n0eT0e

, (2.31)

where p∥e = neT∥e, ne = n0e + δne, and T∥e = T0e + δT∥e are the total parallel pressure,
density, and parallel temperature, respectively; in the collisional limit, δT∥e → δTe, as in
section 2.4. The flow (2.31) is simply the part of the electron flow velocity perpendicular
to the total magnetic field B, comprised of the usual E×B drift velocity vE [see (2.7)],
and a “diamagnetic” contribution coming from the electron (parallel) pressure gradient,
manifest in the right-hand side of (2.21) or (2.25). This is distinct from the MHD limit
(above the ion Larmor scale), in which the magnetic field is only frozen into vE due
to the dynamics being pressure balanced, a distinction that will prove important in our
considerations of electromagnetic instabilities in section 4.
In what follows, all orderings introduced should be considered subsidiary to the

orderings that define the collisionless and collisional limits [(A 8), with νee, νei → 0, and
(A 74), respectively], and the resultant reduced equations thus to be particular limits of
the collisionless [(2.20)-(2.23)] or collisional [(2.24)-(2.26)] equations.



10 T. Adkins et al.

3. Electrostatic regime: electron temperature gradient instability

Let us begin by examining the more familiar instabilities that occur at electrostatic
scales, before considering what happens at electromagnetic ones.

3.1. Collisionless slab ETG

As explained above, the electrostatic limit corresponds to perpendicular scales k⊥de ≫
1. If we strengthen this condition to [cf. (2.29)]

k2⊥d
2
e ≫ ω∗e

ω
≳ 1, (3.1)

then both A terms in (2.21) can be neglected in comparison with the electron inertia.
Furthermore, we would like to consider the slab approximation, in which the magnetic
drifts are negligible in comparison with parallel compressions. In terms of wavenumbers,
this means that we assume

k∥vthe ≫ ωde

(
LB

LT

)1/4

, ωde =
kyρevthe
2LT

, (3.2)

where ωde is the magnetic drift frequency. Though not immediately obvious, it shall turn
out that the limit (3.2) allows us to neglect the magnetic drifts in (2.20) [this follows from
comparing the sizes of the last two terms in (D 35) under the ordering (D 34)]. Then, the
perpendicular temperature perturbation (2.23) becomes decoupled from the remaining
equations, leaving us with an electrostatic three-field (δne, u∥e and δT∥e) system of the
kind traditionally used to describe temperature-gradient instabilities in a slab (Cowley
et al. 1991). The slab electron-temperature-gradient (sETG) instability (Liu 1971; Lee
et al. 1987) in its most explicit, fluid form is obtained if one further assumes [see (D 34)]

k∥vthe ≪ ω ≪ ω∗e. (3.3)

Then (2.20)-(2.22) reduce to, approximately,

d

dt
τ̄−1φ = ∇∥u∥e,

du∥e

dt
= −v

2
the

2
∇∥

δT∥e

T0e
,

d

dt

δT∥e

T0e
= −ρevthe

2LT

∂φ

∂y
. (3.4)

Linearising and Fourier-transforming, we find the familiar dispersion relation [see (D 36)]

ω3 = −
k2∥v

2
theω∗eτ̄

2
⇒ ω = sgn(ky)

(
−1,

1

2
± i

√
3

2

)(
k2∥v

2
the|ω∗e|τ̄
2

)1/3

. (3.5)

The unstable root is the collisionless sETG.
In this limit, the instability works as follows. Suppose that a small perturbation to

the parallel electron temperature is created with ky ̸= 0 and k∥ ̸= 0, bringing the
plasma from regions with higher T0e to those with lower T0e (δT∥e > 0), and vice
versa (δT∥e < 0). This temperature perturbation produces alternating hot and cold
regions along the (unperturbed) magnetic field. The resulting perturbed temperature
gradients drive electron flows from the hot regions to the cold regions [second equation
in (3.4)], giving rise to increased electron density in the cold regions [first equation in
(3.4)]. By quasineutrality, the electron density perturbation is instantly replicated in
the ion density perturbation, and that, via Boltzmann-ion response, creates an electric
field that produces a radial E × B drift that pushes hotter particles further into the
colder region, and vice versa [third equation in (3.4)], reinforcing the initial temperature
perturbation and thus completing the positive feedback loop required for the instability.
This is illustrated in figure 2.
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Figure 2: A cartoon illustrating the feedback mechanism of the (collisionless) sETG instability.
(i) An electron temperature perturbation with ky ̸= 0 and k∥ ̸= 0 (red-and-blue curves) has
alternating hold and cold regions along the (unperturbed) magnetic field (grey arrows), and
also along ŷ. (ii) The resulting perturbed temperature gradients drive parallel electron flows
u∥e (dashed arrows) from the hot regions into the cold regions, giving rise to increased electron
density in the cold regions (over- and under- densities are indicated by the dark- and light-
grey ellipses, respectively). (iii) By quasineutrality, the electron-density perturbation gives rise
to an exactly equal ion-density perturbation, and that, via Boltzmann-ion response, creates
alternating electric fields E in the perpendicular plane (vertical black arrows). This produces an
E ×B drift vE (horizontal black arrows), which pushes hotter particles further into the colder
region, and vice versa, reinforcing the initial temperature perturbation and thus completing the
positive feedback loop required for the instability. In this cartoon, for the sake of simplicity, we
have chosen not to include the phase information between the various perturbations involved;
a reader seeking such information will find it in figure 1 of Cowley et al. (1991) (the equivalent
picture for ITG).
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The ‘fluid’ limit (3.3) is physically transparent and easy to handle, primarily because
the heat flux (and thus all kinetic effects, such as Landau damping, Landau 1946) can,
in this limit, be neglected in (2.22). However, the approximation contains the seed of its
own destruction: according to (3.5), perturbations with a larger k∥ grow faster, and can
only be checked by Landau damping when [see (D 56)]

k∥vthe ∼ ω ∼ ω∗e. (3.6)

Thus, the fastest-growing collisionless sETG modes are expected to sit in this latter,
kinetic regime.

3.2. Collisional slab ETG

An important difference between the collisionless and collisional limits, exemplified by
the form of the collisonal heat flux (2.17), is the replacement of the parallel streaming
rate of electrons k∥vthe with the parallel conduction rate (k∥vthe)

2/νei. The collisional
analogues of (3.1), (3.2) and (3.3) are thus [see (E 12)]

k2⊥d
2
e ≫ ω∗e

νei
,

(k∥vthe)
2

νei
≫ ωde,

(k∥vthe)
2

νei
≪ ω ≪ ω∗e, (3.7)

respectively, for which (2.24), (2.25) and (2.26) reduce to, approximately,

d

dt
τ̄−1φ = ∇∥u∥e, νeiu∥e = −v

2
the

2
∇∥

δTe
T0e

,
d

dt

δTe
T0e

= −ρevthe
2LT

∂φ

∂y
. (3.8)

These equations are similar to (3.4), except the parallel temperature gradient is now bal-
anced by the electron-ion frictional force, rather than by electron inertia. The dispersion
relation is [see (E 13)]

ω2 = i
k2∥v

2
theω∗eτ̄

2νei
⇒ ω = ±1− isgn(ky)√

2

(
k2∥v

2
the|ω∗e|τ̄
2νei

)1/2

, (3.9)

where the unstable root is the collisional sETG. The physical mechanism of the instability
is analogous to that for the collisionless sETG, except the parallel electron flow is
now determined instantaneously by the parallel temperature gradient. Similarly to the
collisionless sETG, the point of maximum growth of the instability occurs when

(k∥vthe)
2

νei
∼ ω ∼ ω∗e, (3.10)

which is a balance between dissipation (through conduction, rather than Landau damp-
ing) and energy injection due to the background temperature gradient [see (E 15) and
the following discussion].

3.3. Curvature-mediated ETG

Both the collisionless and collisional sETG instabilities were derived assuming that
the parallel wavelengths were sufficiently short for the compressional terms in (2.20) and
(2.24) to be dominant in comparison to the magnetic-drift terms, while still satisfying
(3.3) and (3.7). We now consider very long parallel wavelengths for which this is no longer
true, ordering our frequencies as

k∥vthe ≪ ωde ≪ ω ≪ ω∗e,
(k∥vthe)

2

νei
≪ ωde ≪ ω ≪ ω∗e (3.11)
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in the collisionless and collisional regimes, respectively. This, in fact, amounts to setting
k∥ = 0 everywhere, i.e., we are considering purely two-dimensional modes (see appen-
dices D.2 and E.1). In both regimes, our equations reduce to

d

dt
τ̄−1φ =

ρevthe
LB

∂

∂y

δT∥e

T0e
,

d

dt

δT∥e

T0e
= −ρevthe

2LT

∂φ

∂y
,

δT∥e

T0e
=
δT⊥e

T0e
. (3.12)

The equality between the perpendicular and parallel temperature perturbations arises in
the collisionless regime because the dominant balance in both (2.22) and (2.23) is between
the time derivative and the ETG injection term, which is also true in the collisional limit
and with strengthened isotropisation from collisions. The dispersion relation is [see (D 31)
or (E 8)]

ω2 = −2ωdeω∗eτ̄ ⇒ ω = ±i (2ωdeω∗eτ̄)
1/2

, (3.13)

which is the familiar growth rate of the curvature-mediated ETG (cETG) instability
(Horton et al. 1988).
Physically, this arises due to the fact that the magnitude of the magnetic-drift velocity

for a particle is proportional to its kinetic energy, and thus temperature. The presence of
some temperature perturbation will cause an electron-density perturbation, as electrons
in the hotter regions will drift faster than those in colder regions [first equation in (3.12)].
By quasineutrality, the electron density perturbation gives rise to an exactly equal ion
density perturbation, and that, via Boltzmann-ion response, creates an electric field that
produces an E × B drift which pushes hotter particles further into the colder region,
and vice versa [second equation in (3.12)], completing the feedback loop required for the
instability, as illustrated in figure 3. This mechanism is unaffected by collisionality, hence
the cETG instability is obtained in both the collisionless and collisional limits.
Given that both the collisionless and collisional sETG instabilities have maximum

growth rates γmax ∼ ω∗e [see (3.6) and (3.10), respectively], the growth rate of the cETG
instability is always small in comparison, at least for large temperature gradients, viz.,

γmax√
2ωdeω∗e

∼
(
LB

LT

)1/2

≫ 1. (3.14)

However, the sETG instabilities only exist at perpendicular scales below the flux-freezing
scales (2.28) or (2.30), as they require electrons to be able to flow across field lines without
perturbing them. While sETG is stabilised by magnetic tension above the flux-freezing
scale, cETG is unaffected by flux freezing as it is an interchange (k∥ = 0) mode and
does not trigger perpendicular magnetic field perturbations δB⊥. This means that it will
happily survive in the electromagnetic regime.

4. Electromagnetic regime: thermo-Alfvénic instability

In the electromagnetic regime [i.e. at perpendicular scales above the flux-freezing
scales (2.28) or (2.30)], the magnetic field becomes frozen into the electron flow (2.31),
meaning that perpendicular magnetic field perturbations δB⊥ are created as electrons
move across field lines and drag the latter along. This has two important physical
consequences that make electrostatic and electromagnetic phenomena distinct: (i)
perturbed magnetic fields give rise to currents that, being electron flows, oppose electron
density perturbations [this is the sub-ion-scale version of Lorentz tension, manifest in
the second term in (2.6)], and (ii) the radial equilibrium temperature gradient now has a
component along the exact field line, viz., its projection on to the radial perturbation of
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Figure 3: A cartoon illustrating the feedback mechanism of the (2D) cETG instability. (i) A
temperature perturbation with ky ̸= 0 (red-and-blue curve) has alternating hot and cold regions
along ŷ. Due to the temperature dependence of the magnetic drifts vde, electrons in the hot
regions will drift faster than those in the cold regions (red and blue arrows), creating an electron
density perturbation (over- and under- densities are indicated by the dark- and light-grey ellipses,
respectively). (ii) By quasineutrality, the electron-density perturbation gives rise to an exactly
equal ion-density perturbation, and that, via Boltzmann-ion response, creates alternating electric
fields E in the perpendicular plane (vertical black arrows). This produces an E × B drift vE

(horizontal black arrows), which pushes hotter particles further into the colder regions, and vice
versa, completing the positive feedback loop required for the instability.

the magnetic field. As discussed above, the first effect stabilises the sETG instabilities at
the flux-freezing scale [see appendix D.4], as well as giving rise to other electromagnetic
phenomena to which we shall return shortly. It is the second effect, however, that will
turn out to be crucial in the physics of instabilities in the electromagnetic regime.

Throughout this section, we will focus on the collisional limit — equations (2.24),
(2.25) and (2.26) — as this will allow us to discuss all of the physics characteristic to
the electromagnetic regime without being hampered by the technical detail associated
with the full kinetic system. The physical similarly between the instability mechanisms
in the collisionless and collisional limits means that we can just signpost the differences
between these two limits where appropriate.

Recalling the definition of the parallel derivative (2.8), we consider the parallel gradient
of the total temperature (2.18). The first term is the familiar parallel gradient of the
temperature perturbation that is present also in the electrostatic regime, the second
is the projection of the equilibrium temperature gradient onto the perturbed magnetic
field line that arises only in the electromagnetic regime. This is the familiar magnetic-
flutter drive (Callen 1977; Manheimer & Cook 1978). Like the electrostatic linear drive
term (2.15), this term can also be responsible for extracting free energy from the
equilibrium temperature gradient.

To aid our discussion, let us derive an evolution equation for ∇∥ log Te. A useful result
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is that, for any field ψ,

∇∥
dψ

dt
− d

dt
∇∥ψ = − c

B0

{
E∥, ψ

}
= ρe

{
dA
dt

+
vthe
2

∂φ

∂z
, ψ

}
. (4.1)

The first equality follows by writing the nonlinear operators d/dt and ∇∥, which we
defined in (2.7) and (2.8), respectively, in terms of the Poisson bracket

{f, g} = b0 · (∇f ×∇g) = ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
(4.2)

as follows:

d

dt
=

∂

∂t
+
ρevthe

2
{φ, . . . } , ∇∥ =

∂

∂z
− ρe {A, . . . } , (4.3)

and noticing that the Poisson bracket satisfies the Jacobi identity:

{A, {φ,ψ}}+ {φ, {ψ,A}}+ {ψ, {A, φ}} = 0. (4.4)

Therefore, taking ∇∥ of (2.26), we find

d

dt
∇∥

δTe
T0e

+
ρevthe
2LT

∇∥
∂φ

∂y
+ ρe

{
dA
dt

+
vthe
2

∂φ

∂z
,
δTe
T0e

}
−κ∇3

∥ log Te +
2

3
∇2

∥u∥e = 0. (4.5)

Now taking ∂/∂y of (2.25) we find

∂

∂y

(
dA
dt

+
vthe
2

∂φ

∂z

)
=

d

dt

∂A
∂y

+
vthe
2

∇∥
∂φ

∂y
=
vthe
2

∂

∂y
∇∥ log pe + νei

∂

∂y

u∥e

vthe
, (4.6)

where we have recognised the first two terms on the right-hand side for what they are —
the parallel gradient of the total electron pressure:

∇∥ log pe = ∇∥
δne
n0e

+∇∥ log Te. (4.7)

Subtracting (ρe/LT )·(4.6) from (4.5), we arrive at

d

dt
∇∥ log Te + ρe

{
dA
dt

+
vthe
2

∂φ

∂z
,
δTe
T0e

}
+

2

3
∇2

∥u∥e + νei
ρe
LT

∂

∂y

u∥e

vthe

= κ∇3
∥ log Te −

ρevthe
2LT

∂

∂y
∇∥ log pe. (4.8)

Let us now consider the regime

(k⊥de)
2νei ∼ ωde ≪ ω ≪ ω∗e ∼ κk2∥. (4.9)

The ordering of the resistive rate and the magnetic drift frequency is such that we can
retain perturbations of similar frequencies to the cETG, by analogy to (3.11). However,
this time, we assume the parallel wavelength of the perturbations to be short enough,
or, equivalently, their frequency to be low enough, for thermal conduction along the field
lines to be rapid in comparison to the mode frequency. Then, in the limit (4.9), the
left-hand side of (4.8) is negligible in its entirety (being smaller than the right-hand side
by at least a factor of ω/ω∗e), while the outcome of the competition between the two
terms on the right-hand side is controlled by the ratio of the perpendicular drift-wave
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frequency to the parallel conduction rate:

ξ∗ =
ω∗e

κk2∥
. (4.10)

This divides our electromagnetic modes into two physically distinct classes: isothermal
(ξ∗ ≪ 1) and isobaric (ξ∗ ≫ 1), the former of which is the focus of the next section, and
the latter will be discussed in section 4.4.

4.1. Isothermal curvature-mediated TAI

Previous studies of electromagnetic phenomena driven by an electron-temperature
gradient have often assumed the electrons to be isothermal along the perturbed field line
(e.g., Schekochihin et al. 2009, Schekochihin et al. 2019, Abel & Cowley 2013, Zielinski
et al. 2017). In our system, this assumption is valid if the thermal-conduction time
dominates over all other timescales, viz., in addition to (4.9),

ξ∗ ≪ 1. (4.11)

In the electrostatic regime, without the ability to have perturbations of the magnetic-
field direction, adopting such a limit would simply lead to erasure of the temperature
perturbation due to Landau damping or thermal conduction [see (D 36) or (E 13) and
the following discussions], suppressing both the collisionless and collisional sETG, re-
spectively.
The isothermal limit allows the system more leeway in the electromagnetic regime.

Given (4.11), the dominant term in (4.8) is the first term on the right-hand side, meaning
that, to leading order,

∇∥ log Te = ∇∥
δTe
T0e

− ρe
LT

∂A
∂y

= 0, (4.12)

i.e., the temperature perturbations, rather than being zero, will always adjust to cancel
the variation of the equilibrium temperature along the perturbed field line. At the next
order in ξ∗,

κ∇3
∥ log Te =

ρevthe
2LT

∂

∂y
∇∥

δne
n0e

⇒
|∇∥ log Te|
|∇∥δne/n0e|

∼ ξ∗ ≪ 1, (4.13)

meaning that we can neglect ∇∥ log Te in (2.25). The ∇∥u∥e term in (2.24) is also
negligible, as can be confirmed a posteriori. Our system (2.24)-(2.26) therefore becomes

d

dt

δne
ne

= −ρevthe
LB

∂

∂y

δTe
T0e

,
dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥
δne
ne

, ∇∥
δTe
T0e

=
ρe
LT

∂A
∂y

, (4.14)

where, by (2.19), φ = −τ̄ δne/ne. The associated dispersion relation is

ω2 = −2ωdeω∗e(1 + τ̄) ⇒ ω = ±i [2ωdeω∗e(1 + τ̄)]
1/2

, (4.15)

which looks like the familiar cETG growth rate (3.13), but enhanced by an extra order-
unity contribution. In fact, this is a physically different and (as far as we know) new1

1Zielinski et al. (2017) proposed a fluid mechanism for the destabilisation of KAW
(see section 4.3) via their interaction with the cETG mode (see section 3.3),
adopting a purely isothermal limit ξ∗ = 0 and thus neglecting any finite-heat-flux
contributions. Under the ordering (4.9), neglecting equilibrium density gradients and electron
finite-Larmor radius contributions, their dispersion relation (23) becomes, in our notation,
ω2 = −(2ωdeω∗e − ω2

KAW)(1 + τ̄). This the same as (4.18) to lowest order in ξ∗ ≪ 1. Obviously,
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instability, which we shall refer to as the curvature-mediated thermo-Alfvénic instability
(cTAI).
Physically, cTAI proceeds as follows. Suppose that a perturbation δBx = B0ρe∂yA of

the magnetic field is created, with ky ̸= 0 and k∥ ̸= 0. According to the second equation
in (4.14), such a perturbation is brought about by a radial displacement of the electron
fluid associated with the velocity (2.31), which, recalling the isothermal condition (4.12),
can be written as

ueff = vE − ρevthe
2

b0 ×∇δne
n0e

= −ρevthe
2

b0 ×∇ (1 + τ̄)
δne
n0e

. (4.16)

Due to the presence of the equilibrium temperature gradient, this magnetic-field per-
turbation will set up an apparent (parallel) variation of the equilibrium temperature
along the perturbed field line, as the field line makes excursions into hot and cold
regions. However, rapid thermal conduction along the field line instantaneously creates
a temperature perturbation that compensates for this temperature variation, in order to
enforce isothermality (4.12) [last equation in (4.14)]. This temperature perturbation will
cause a parallel density gradient, as electrons in the hotter regions will curvature-drift
faster than those in colder regions [first equation in (4.14)]. The resulting parallel pressure
gradient must be balanced by a parallel electric field [second equation in (4.14)], whose
inductive part leads to an increase in the perturbation of the magnetic field, deforming the
field line further into the hot and cold regions, and in doing so completing the feedback
loop required for the instability2. This is illustrated in figure 4.
The physical distinction between cTAI and cETG can be made obvious by the following

two observations. First, unlike cETG, cTAI relies vitally on k∥ ̸= 0 and, indeed, on k∥
being large enough for the condition (4.11) to be satisfied — even though the growth
rate (4.15) ends up being independent of k∥. In section 4.2, we shall show that this
is the peak growth rate of the instability and that it is achieved at a finite k∥, while
at k∥ = 0, the cETG growth rate (3.13) is recovered. Secondly, perturbations described
by (4.14) can be unstable without the need for them to contain any E×B flows (i.e., any
electrostatic potential φ) — this becomes obvious in the formal limit φ = −τ̄ δne/n0e → 0
as τ̄ → 0 (cold ions). In contrast, the cETG growth rate (3.13) disappears in this limit.
This is because cTAI extracts energy from the background temperature gradient not via
E × B advection of said equilibrium gradient but via thermal conduction of it along
the perturbed field lines. In order to complete the instability loop and reinforce the
magnetic perturbation δBx required for this mechanism to work, the system only needs
a perturbed density gradient. This is due to the fact that, as we discussed in section 2.6,
below the ion Larmor scale, the magnetic field lines are frozen not into the E ×B flow

it does not match the cETG growth rate (3.13) at k∥ = 0, because isothermal limit cannot be
valid as k∥ → 0. Their dispersion relation displays behaviour qualitatively similar to ours in the
isobaric limit for k∥ < k∥c (see section 4.4), in that they capture the stabilising effect of the
KAW restoring force at k∥ > 0, but miss the fact that the peak growth rate (4.15) is achieved at
a finite k∥ (see section 4.2). Their dispersion relation also does not contain the slab TAI mode
(see section 4.3) or any isobaric physics (section 4.4).
2Physically, this feedback loop is perhaps reminiscent of some MHD-like instabilities, such as
kinetic ballooning modes (KBMs; see references in section 1).This is illustrated in figure 4.
However, as is evident from the second equation in (4.14), the isothermal cTAI does not satisfy
the MHD constraint that E∥ = 0 typical of such modes. Indeed, in the isothermal regime,
the magnetic field lines are not frozen into the E × B flow, as they would be in MHD, but
instead into the electron flow velocity (4.16). We therefore consider that the isothermal cTAI
can be regarded as a separate instability, rather than a sub-species of KBM — unlike its isobaric
counterpart discussed in section 4.4.
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Figure 4: A cartoon illustrating the feedback mechanism of the (isothermal) cTAI.
(i) A perturbation δBx = B0ρe∂yA (solid black lines) to the equilibrium magnetic field (grey
arrows, darker grey corresponding to the plane of constant y containing δBx, or the relevant
perturbation in subsequent diagrams) is created with ky ̸= 0 and k∥ ̸= 0 (we show half a
wavelength of the mode along both ŷ and ẑ). Due to the presence of the equilibrium temperature
gradient, this will set up a (parallel) variation of the total temperature along the perturbed
field line, as the field line makes excursions into hot and cold regions (on the left and right,
respectively). However, rapid thermal conduction along the field line instantaneously creates a
temperature perturbation that compensates for this temperature variation (red and blue ovals,
located in the same planes of constant y as δBx). (ii) This temperature perturbation will cause
a parallel density gradient (over- and under- densities are indicated by the dark and light grey
ellipses, respectively, lying in the planes of constant y a quarter of a wavelength above those
of δBx), as electrons in hotter regions will curvature-drift faster than those in colder regions
(vde, red and blue arrows). (iii) The parallel density gradient must be balanced by a parallel
electric field (black arrows, in the same planes of constant y as the density perturbations), whose
inductive part leads to an increase in the perturbation of the magnetic field (maroon arrows),
deforming the field line further into the hot and cold regions, and in so doing completing the
feedback loop for the instability. Note that the maximal rate of change of δBx occurs where the
y-gradient of E∥ is at a maximum, as shown.
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but in the electron flow (2.31), which involves also a “diamagnetic” contribution from the
electron pressure gradient — which, in the isothermal limit, consists just of the perturbed
density gradient, as in (4.16). It is because of the presence of this distinct destabilisation
mechanism that the cTAI growth rate (4.15) is always strictly greater than the cETG one
(3.13). Thus, cTAI is not simply an “electromagnetic correction” to cETG, but rather
the main effect at scales above the flux-freezing scale (2.30) [or (2.28) in the collisionless
limit, where, as we shall see shortly, the same instability is present]. This suggests that
a purely electrostatic description of these scales is inadequate.

4.2. General TAI dispersion relation

As we have noted above, despite cTAI relying on parallel dynamics, the dispersion
relation (4.15) is itself independent of k∥. This is because we have thus far only captured
the leading-order behaviour in our analysis, and further diligence is required in order to
determine the details associated with the parallel dynamics. Let us give this problem the
diligence that it is due, and adopt the ordering (4.9) but, for now, ξ∗ ∼ 1. Neglecting
both the resistive term in (2.25) and the compressional term in (2.26) — since both are
small under (4.9) — and determining ∇∥ log Te in (2.25) from the balance of the two
terms on the right-hand side of (4.8), viz.,(

ρevthe
2LT

∂

∂y
− κ∇2

∥

)
∇∥ log Te = −ρevthe

2LT

∂

∂y
∇∥

δne
n0e

, (4.17)

we arrive at the following dispersion relation:

ω2 = −
(
2ωdeω∗e − ω2

KAW

)(
τ̄ +

1

1 + iξ∗

)
, (4.18)

where ωKAW = k∥vthek⊥de/
√
2 is the kinetic-Alfvén-wave (KAW) frequency, the physical

origin of which will be discussed in section 4.3. The cTAI growth rate is manifest in this
expression; adopting the isothermal limit (4.11) and neglecting ωKAW, we re-obtain (4.15)
to lowest order in ξ∗.
Though we have thus far focussed on the collisional limit, it turns out that much of

what we have done is directly applicable to the collisionless limit if we simply replace the
parallel conduction rate with the parallel streaming rate [see (D 51)], viz., (4.18) remains
valid but with

ξ∗ =

√
π

2

ω∗e

k∥vthe
. (4.19)

The equivalent of the ordering (4.9) in the collisionless regime is [see (D 45)]

ωde ≪ ω ≪ ω∗e ∼ k∥vthe, (4.20)

and the equations (4.14) are the same; note that in this regime, δT∥e = δT⊥e = δTe
because both the parallel and perpendicular temperature are constant along the field line
to leading order in ω/ω∗e. Furthermore, it is possible to show that (4.8) is also valid in the
collisionless limit if one replaces δTe → δT∥e, −κ∇∥ log Te → δq∥e/n0eT0e, (2/3)∇2

∥u∥e →
2∇2

∥u∥e, νeiu∥e → du∥e/dt, and the heat flux must now be determined kinetically [see

(D 63)]. The effect is still to enforce isothermality along the field lines, but by means
of parallel particle streaming, rather than collisional conduction. This means that cTAI,
while being a ‘fluid’ instability, is not an intrinsically collisional one, occuring also in the
collisionless, kinetic limit. Its physical picture in the collisionless limit is exactly the same
as in the collisional one.
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Figure 5: (a), (c) The growth-rate and (b), (d) the real frequency of the TAI (4.22) in the
isothermal limit (4.11), plotted as functions of k∥LT /

√
βe and normalised to the cETG growth

rate (3.13) (τ̄ = 1). (a) and (b) correspond to the collisionless case, while (c) and (d) to the
collisional one. The vertical dashed lines in panels (a) and (c) are for k∥ = k∥max given by (4.24).
The dashed lines in panels (b) and (d) show the isothermal KAW frequency (4.29). Both the
growth rate and the real frequency vanish at the critical parallel wavenumber k∥cLT /

√
βe = 0.32,

given by (4.21). The insets in panels (a) and (c) show details of the behaviour of the growth
rate for k∥ > k∥c; the vertical dashed line in the inset of panel (c) is the (secondary) maximum

at k∥ =
√
2k∥c discussed at the end of section 4.3. The perpendicular wavenumbers chosen

in this figure are all safely below the transition wavenumber (4.26), which is k⊥∗de = 0.71 or
k⊥∗deχ = 0.03 in the collisionless or collisional cases, respectively.

The dispersion relation (4.18) contains most of the interesting features of the TAI
physics (see, however, sections 4.3.3 and 4.4.2). The most obvious feature of (4.18) is
that both the growth rate and frequency vanish when

2ωdeω∗e = ω2
KAW ⇒

k∥cLT√
βe

=

(
LT

LB

)1/2
ky
k⊥

. (4.21)

This corresponds to the point of transition from the curvature-dominated regime (k∥ <
k∥c), on which we will focus in this section, to the KAW-dominated regime (k∥ > k∥c),
which will be the subject of section 4.3.
If we extract the real and imaginary parts of (4.18), the (real) frequency ωr = Re(ω)

and the growth rate γ = Im(ω) of the growing modes can be written as

ω2
r =

∣∣2ωdeω∗e − ω2
KAW

∣∣ τ̄ f−(ξ∗), γ2 =
∣∣2ωdeω∗e − ω2

KAW

∣∣ τ̄ f+(ξ∗), (4.22)
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where

f±(ξ∗) =
1

2τ̄

√(τ̄ + 1

1 + ξ2∗

)2

+
ξ2∗

(1 + ξ2∗)
2
± sgn

(
2ωdeω∗e − ω2

KAW

)(
τ̄ +

1

1 + ξ2∗

) .
(4.23)

The growth rate and frequency (4.22) are plotted as functions of k∥LT /
√
βe in figure 5.

For k∥ < k∥c, the growth rate has a maximum for some non-zero k∥; it is about to turn
out that this maximum corresponds to the cTAI growth rate (4.15), which was derived
in the isothermal limit, ξ∗ ≪ 1. Expanding (4.23) in small ξ∗ to leading and sub-leading
order, and seeking the maximum of the resultant expression with respect to k∥, we find
that this maximum occurs approximately at [see (G 14)]

k∥maxLT√
βe

=



[
π

64

3 + 4τ̄

(1 + τ̄)2
LT

LB

]1/4(k2yde
k⊥

)1/2

, collisionless,

[
81

50

3 + 4τ̄

(1 + τ̄)2
LT

LB

]1/6(k2yde
k⊥

χ

)1/3

, collisional,

(4.24)

indicated by the vertical dashed lines in panels (a) and (c) of figure 5; χ is defined
in (2.30). Calculating the growth rate (4.22) at k∥ = k∥max, one recovers (4.15) up to
small corrections [see (G 16)], as promised.

This solution, however, is only valid so long as it remains in the isothermal limit (4.11).
Evaluating ξ∗ at k∥ = k∥max, we find, defining α = 1, 2 in the collisionless and collisional
limits, respectively, [see (G 15)]

ξ∗
(
k∥max

)
∼
k∥max

k∥c
∼
(
k⊥
k⊥∗

)1/(1+α)

≪ 1 (4.25)

provided that k⊥ ≪ k⊥∗, where k⊥∗ is the perpendicular wavenumber at which ξ∗
(
k∥c
)
∼

1, viz.,

k⊥∗de =


4√
π

(
LT

LB

)1/2

, collisionless,

5

9

LT

LB
χ−1, collisional,

⇒ ξ∗(k∥c) =


k⊥
k⊥∗

, collisionless,

k2⊥
k⊥∗ky

, collisional.

(4.26)

Thus, the isothermal regime is valid at sufficiently long perpendicular wavelengths. At
k⊥ > k⊥∗, a different, isobaric regime takes over, which will be considered in section 4.4.

Lastly, we note that, for k∥ < k∥c, the magnitude of the real frequency is vanishingly
small when compared to the growth rate: expanding both the growth rate and the real
frequency in (4.22) for ξ∗ ≪ 1, we find

ω2
r

γ2
≈ ξ2∗

4(1 + τ̄)2
≪ 1. (4.27)

Thus, cTAI is, like cETG, an (almost) purely growing mode; this is distinct from the case
of the sETG, whose frequency and growth rate are comparable at the latter’s maximum
(see section 3).
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4.3. Isothermal KAWs and slab TAI

4.3.1. Isothermal KAWs

If k⊥ ≪ k∗⊥, i.e., ξ∗
(
k∥c
)
≪ 1, then the isothermal approximation (4.12) continues

to be satisfied at k∥ > k∥c, but the effects of the magnetic drifts become negligible for
k∥ ≫ k∥c. In this region, our system (2.24)-(2.26) becomes, approximately,

d

dt

δne
n0e

= −vthe∇∥d
2
e∇2

⊥A,
dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥
δne
n0e

, φ = −τ̄ δne
n0e

. (4.28)

These equations are also valid in the collisionless limit [there is no intrinsically collisional
physics in (4.28), as the resistive term in (2.25) is negligible under the ordering (4.9)]. We
recognise these as the equations of Electron Reduced Magnetohydrodynamics (ERMHD,
see Schekochihin et al. 2009 or Boldyrev et al. 2013), which describe the dynamics,
linear and nonlinear, of kinetic Alfvén waves (KAWs). Indeed, linearising and Fourier
transforming (4.28), we find the dispersion relation

ω2 = k2∥v
2
thek

2
⊥d

2
e

1 + τ̄

2
= ω2

KAW (1 + τ̄) . (4.29)

These are the familiar (isothermal) KAWs that arise in homogeneous systems (Howes
et al. 2006; Schekochihin et al. 2009, 2019; Zocco & Schekochihin 2011; Boldyrev et al.
2013; Passot et al. 2017). The physics of these waves is as follows. Suppose that a density
perturbation δne/n0e = −τ̄−1φ with k∥ ̸= 0 is created. This gives rise to a parallel
pressure gradient, which manifests itself as a parallel (perturbed) density gradient, as any
parallel temperature variation is instantaneously ironed out by rapid parallel streaming
or thermal conduction. This parallel pressure gradient must be balanced by the parallel
electric field [second equation in (4.28)], whose inductive part, through Ampére’s law
(2.27), leads to a parallel current. But a parallel current is a parallel electron flow,
which leads to compressional rarefaction along the field that opposes the original density
perturbation [first equation in (4.28)]. This is also the reason for the reduction of the
cTAI growth rate at k∥ > k∥max and its vanishing at k∥ = k∥c [see panels (a) and
(c) in figure 5]: the parallel compression that provides the restoring force for the KAW
perturbations increases as k∥ increases, weakening the instability mechanism of the cTAI
described in section 4.1.

4.3.2. Isothermal slab TAI

Remarkably, however, it turns out that isothermal KAW, at k∥ > k∥c, are still unstable
in the presence of an equilibrium electron temperature gradient: expanding (4.18) or
(4.22) for ξ∗ ≪ 1 at k∥ ≫ k∥c (the latter in order to drop the ωde effects), we find

ω2
r ≈ ω2

KAW(1 + τ̄), γ2 ≈ ω2
KAW

ξ2∗
4(1 + τ̄)

. (4.30)

By analogy with sETG, we shall henceforth refer to this KAW-dominated TAI as the
‘slab’ TAI (sTAI); it was our original motivation for calling the instability “thermo-
Alfvénic”.

The precise mechanism by which the isothermal sTAI operates is somewhat subtler
than cTAI, relying on the fact that the isothermal condition (4.12) that led to (4.29) is,
in fact, only approximately satisfied. Indeed, ∇∥ log Te is determined, in the collisional
limit, at next order in ξ∗ by (4.13) which, linearising and Fourier transforming, can be
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written as (
∇∥ log Te

)
k
= −iξ∗

(
∇∥

δne
n0e

)
k

. (4.31)

This means that a small but finite parallel gradient of temperature effectively introduces
a correction to the parallel density gradient in (4.30) that is π/2 out of phase with the
contribution that enables the isothermal KAWs. This gives rise to the instability (4.30) in
both the collisional limit, and, it turns out, the collisionless one, where (4.31) also holds
but with ξ∗ given by (4.19) [see (D 74)]. Restoring finite parallel temperature gradients
in (4.28), we have

d

dt

δne
n0e

= −vthe∇∥d
2
e∇2

⊥A,
dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥
δne
n0e

+
vthe
2

∇∥ log Te, (4.32)

with dispersion relation

ω2 = ω2
KAW(1 + τ̄ − iξ∗) ⇒ ω ≈ ±ωKAW

(√
1 + τ̄ − iξ∗

2
√
1 + τ̄

+ . . .

)
, (4.33)

whose real and imaginary parts are exactly the frequency and growth rate (4.30).
If we restore the magnetic-drift terms in the density equation, we find, in the colli-

sionless limit, that the sTAI growth rate increases from zero at k∥ = k∥c to a finite,
k∥-independent limit (4.30) at k∥ ≫ k∥c, viz.,

γ → 1

4

√
π

2(1 + τ̄)
k⊥deω∗e =

√
ωdeω∗e

2(1 + τ̄)

k⊥
k⊥∗

, (4.34)

where k⊥∗ is given by (4.26) [see figure 5(a), inset]. As we shall see shortly in section 4.3.3,
this value only persists up to a certain k∥ where sTAI is stabilised by compressional
heating, which was neglected in (4.18). In the collisional limit, γ → 0 as k∥ → ∞ (also,
in fact, shown to go to γ < 0 in section 4.3.3). The growth rate has a maximum at
k∥ =

√
2k∥c, which is shown by the vertical dashed line in the inset of figure 5(c). The

growth rate at this maximum is

γ =
k2⊥d

2
ev

2
the

8
√
2(1 + τ̄)κ

√
ω∗e

ωde
=

1

2

√
ωdeω∗e

2(1 + τ̄)

k2⊥
k⊥∗ky

. (4.35)

These results are derived at the end of appendix G.1. Both the maximum growth rates
(4.34) and (4.35) are manifestly much smaller than the maximum growth rate of cTAI
(4.15) as long as k⊥ ≪ k⊥∗, i.e., as long as the isothermal approximation, in which all of
these results have been derived in the first place, is valid.
Thus, at long perpendicular wavelengths (k⊥ ≪ k⊥∗), the dominant instability is cTAI,

reaching its maximum growth rate (4.15) at the parallel wavenumber (4.24).

4.3.3. Stabilisation of isothermal slab TAI

The sTAI growth rates do not, in fact, stay positive to infinite parallel wavenumbers.
The instability is eventually quenched by the compressional-heating term in the tem-
perature equation [(2.22) or (2.26) in the collisionless and collisional limits, respectively]
that begins to compete with the TAI drive.

To show this, let us consider the collisional limit and, instead of (4.9), the ordering

(k⊥de)
2νei ≪ ω ∼ ω∗e ≪ κk2∥. (4.36)

In this limit, the system is still isothermal to leading order in ξ∗ ≪ 1, but now we must
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also retain the compressional heating term in (4.8) to determine ∇∥ log Te at next order:
instead of (4.13), we have, therefore,

κ∇3
∥ log Te =

ρevthe
2LT

∂

∂y
∇∥

δne
n0e

+
2

3
∇2

∥u∥e. (4.37)

Furthermore, it turns out that we must also retain the resisitve term in (2.25) at this
order as it will end up making a contribution of the same order as the second term
in (4.37). Thus, the second equation in (4.32) is replaced by

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥
δne
n0e

+
vthe
2

∇∥ log Te + νei
u∥e

vthe
, (4.38)

Combining (4.37) and (4.38) with the density equation, still the same as in (4.32), we
obtain the following dispersion relation

ω2 − ω2
KAW(1 + τ̄ − iξ∗) = −i

(
2

3
+ a

)
ω

κk2∥
ω2
KAW, (4.39)

where a is a numerical constant of order unity [see (E 10)]. This is the same as (4.33) apart
from the right-hand side, previously neglected. At the stability boundary, the frequency
ω must be purely real, and both the real and imaginary parts of (4.39) must vanish
individually, giving [cf. (E 29)]

ω2 = ω2
KAW(1 + τ̄), ω = − ω∗e

a+ 2/3
⇒ ∓ωKAW

√
1 + τ̄ =

ω∗e

a+ 2/3
. (4.40)

For ky ∼ k⊥, (4.40) are lines of constant k∥ in wavenumber space, limiting the isothermal
sTAI at large parallel wavenumbers:

k∥LT√
βe

= ± 1

(a+ 2/3)
√
2(1 + τ̄)

ky
k⊥

. (4.41)

This stabilisation of the isothermal sTAI was not captured in the TAI dispersion rela-
tion (4.18) because the ordering (4.9) did not formally allow frequencies comparable to
the drift wave frequency, required by (4.40).

In the collisionless limit, we also find that the sTAI is stabilised above a line of
constant k∥ [cf. (D 78)]

ωKAW ∼ ω∗e, (4.42)

due again to the competition between the compressional heating in the equation for the
parallel temperature (2.22) and the TAI drive. In appendix D.7.2, we detail a collisionless
calculation analogous to that performed above in the collisional limit, but the latter is
sufficient here for illustrating the physics underlying the stabilisation mechanism. In
both cases, the stabilisation of sTAI does not appear in figure 5 (and, later, in figure 6)
because the orderings (4.9) or (4.20) that lead to the TAI dispersion relation (4.18) do
not formally allow this stabilisation; instead, readers will find it in figures 11(c) and 14(c)
in the collisionless and collisional limits, respectively, where solutions of a more precise
dispersion relation are shown.

Though useful for delineating the precise regions of instability in the (k⊥, k∥) space,
this stabilisation of the isothermal sTAI is of secondary importance because it is cTAI
that is the dominant instability at long perpendicular wavelengths (k⊥ ≪ k⊥∗), which
was the main conclusion of section 4.3.2.
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4.4. Isobaric limit

Let us now consider what happens in the opposite limit of short perpendicular waven-
lengths, k⊥ ≫ k∗⊥, corresponding to thermal conduction (or its collisionless analogue,
parallel streaming) being weak in comparison with the ω∗e driving, viz.,

ξ∗ ≫ 1. (4.43)

Assuming this in addition to (4.9) or (4.20), we find that the dominant term in (4.8) is
the second term on the right-hand side, meaning that, to leading order,

∇∥ log pe = ∇∥ log Te +∇∥
δne
n0e

= 0. (4.44)

This is the isobaric limit, in which the total pressure is constant along the perturbed
field lines, rather than just the total temperature. That is, the temperature perturbation
has to adjust to cancel not just the variation of the equilibrium temperature along the
perturbed field line, as was the case in the isothermal limit, but now also the variation
of the perturbed density. At next order in ξ∗, from (4.8), we have

ρevthe
2LT

∂

∂y
∇∥ log pe = −κ∇3

∥
δne
n0e

⇒
|∇∥ log pe|
|∇∥δne/n0e|

∼ 1

ξ∗
≪ 1, (4.45)

so we can now neglect the entire right-hand side of (2.25), reducing the latter equation to
E∥ = 0. For k∥ ≪ k∥c, i.e. neglecting the KAW restoring force, our system (2.24)-(2.26)
therefore becomes

d

dt

δne
n0e

= −ρevthe
LB

∂

∂y

δTe
T0e

,
dA
dt

+
vthe
2

∂φ

∂z
= 0, ∇∥

δTe
T0e

=
ρe
LT

∂A
∂y

−∇∥
δne
n0e

, (4.46)

where φ = −τ̄ δne/ne. As with the isothermal cTAI, these equations remain valid in the
collisionless limit, because δT∥e = δT⊥e = δTe to leading order in ω∗e/ω.
In (4.46), the temperature perturbation is determined from the third equation, which

is simply the isobaric condition (4.44). However, given the ordering (4.9), the correction
to δTe due to the density perturbation is small, viz., δne/n0e ∼ (ωde/ω)δTe/T0e, which
follows from the first equation in (4.46). That is, to leading order, there is no differ-
ence between the isothermal and isobaric conditions when it comes to determining the
temperature perturbation. Hence, the associated dispersion relation is

ω2 = −2ωdeω∗eτ̄ ⇒ ω = ±i (2ωdeω∗eτ̄)
1/2

. (4.47)

Analysing — and plotting, in figure 6 — the dispersion relation (4.22) in the isobaric
regime, both collisional and collisionless, we find that the maximum of the growth rate
in the region k∥ < k∥c occurs at k∥ = 0, i.e., it is, in fact, the 2D cETG mode that
has the fastest growth. At finite k∥, it is weakened by the presence of the restoring force
associated with KAWs, reaching γ = 0 at k∥ = k∥c — this is evident in panels (a) and
(c) of figure 6.
The dispersion relation (4.47) is identical to the cETG dispersion relation (3.13). This

is because the second equation in (4.46) is simply E∥ = 0, implying that the magnetic
field is now frozen into the E×B flow, as are the temperature perturbations [see (2.31),
wherein the second term vanishes in the isobaric limit]. This is distinct to the case of
the isothermal cTAI introduced in section 4.1, where the magnetic field was frozen into
a different velocity field than the temperature perturbations, viz., the mean electron
flow (4.16). As a result, unlike in the isothermal case, there is no enhancement of the
cETG growth rate by the TAI mechanism in the isobaric regime: (4.47) can simply be
regarded as an extension of the familiar cETG into the electromagnetic regime. However,
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Figure 6: (a), (c) The growth-rate and (b), (d) the real frequency of the TAI (4.22) in the isobaric
limit (4.43), plotted as functions of k∥LT /

√
βe and normalised to the cETG growth rate (3.13)

(τ̄ = 1). (a) and (b) correspond to the collisionless case, while (c) and (d) the collisional one. The
vertical dashed line in (c) is for k∥max given by (4.54). The dashed and dotted lines in panels (b)
and (d) are the isothermal (4.29) and isobaric (4.49) KAW frequencies, respectively. Both the
growth rate and the real frequency vanish at the critical parallel wavenumber k∥cLT /

√
βe = 0.1,

given by (4.21). The perpendicular wavenumbers chosen in this figure are all safely above the
transition wavenumber (4.26), which is k⊥∗de = 0.23 or k⊥∗deχ = 0.003 in the collisionless or
collisional cases, respectively. The parallel wavenumber corresponding to the transition between
the isobaric and isothermal regimes at a fixed ky (viz., for ξ∗ ∼ 1) is given by k∥LB/

√
βe = 0.35

or 0.36 in the collisionless and collisional cases, respectively. We chose a very large value of
LB/LT to show the asymptotic regimes clearly.

physically, the isobaric cTAI is not an interchange mode, since it involves k∥ ̸= 0. Its
mechanism is similar to its isothermal cousin (figure 4), except the balance along the
perturbed field is of pressure rather than temperature. It may therefore be appropriate to
regard it as an electron-scale extension of MHD-like modes, such as the kinetic ballooning
mode (KBM) — indeed, the condition E∥ = 0, which is a direct consequence of pressure
balance (4.44), is often invoked as a signature of such modes (Snyder & Hammett 2001a;
Kotschenreuther et al. 2019).
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4.4.1. Isobaric slab TAI

For k∥ ≫ k∥c, and still assuming (4.43), our system (2.24)-(2.26) becomes, approxi-
mately,

d

dt

δne
n0e

= −vthe∇∥d
2
e∇2

⊥A,
dA
dt

+
vthe
2

∂φ

∂z
= 0, φ = −τ̄ δne

n0e
. (4.48)

As with the isothermal KAW, these equations are also valid in the collisionless limit.
These equations are similar to (4.28), except that the parallel electric field is now
zero because the parallel gradient of the perturbed pressure vanishes. This new system
describes the dynamics of isobaric KAWs — so called because they obey (4.44). Their
dispersion relation is

ω2 = k2∥v
2
thek

2
⊥d

2
e

τ̄

2
= ω2

KAWτ̄ . (4.49)

These isobaric KAW, which arise in strongly driven systems (large ω∗e), work in a similar
fashion to their isothermal cousins described at the beginning of section 4.3, except the
inductive part of the parallel electric field now creates a magnetic perturbation and,
therefore, a parallel current, from the electrostatic part of the parallel electric field,
rather than from a combination of the latter and the parallel pressure gradient.
Like the isothermal KAW, the isobaric KAW are unstable to sTAI: expanding (4.18)

or (4.22) for ξ∗ ≫ 1 at k∥ ≫ k∥c, we find

ω2
r = ω2

KAWτ̄ , γ2 = ω2
KAW

1

4τ̄ ξ2∗
, (4.50)

which is (4.49) once again but with a small, but finite, growth rate. In a similar fashion
to the isothermal sTAI described in section 4.3, the instability arises due to the fact that
the isobaric condition (4.44) that led to (4.48) is, in fact, only approximately satisfied.
In the collisional limit, ∇∥ log pe is determined at next order in ξ−1

∗ by (4.45), which,
linearising and Fourier transforming, can be written as(

∇∥ log pe
)
k
=

1

iξ∗

(
∇∥

δne
n0e

)
k

. (4.51)

This means that there will be a term in the second equation in (4.48) that is π/2 out
of phase with the electrostatic contribution to the parallel electric field that enables the
isobaric KAW. The result is the instability (4.50), which exists also in the collisionless
limit, but with ξ∗ given by (4.19) [see (D 74)]. Indeed, restoring finite pressure gradients
in (4.48), we have

d

dt

δne
n0e

= −vthe∇∥d
2
e∇2

⊥A,
dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥ log pe, (4.52)

leading to the dispersion relation

ω2 = ω2
KAW

(
τ̄ +

1

iξ∗

)
⇒ ω ≈ ±ωKAW

(√
τ̄ − i

2
√
τ̄ ξ∗

+ . . .

)
, (4.53)

whose real and imaginary parts are exactly the frequency and growth rate (4.50).
As k∥ is increased, the isobaric limit (4.43) must eventually break down and be replaced

by the isothermal limit (4.11). This means that there will be a transition between isobaric
and isothermal KAW, and the associated limits of sTAI, occuring, clearly, at ξ∗ ∼ 1. In
the collisionless limit, the growth rate once again asymptotes to a constant value as
k∥ → ∞ (ξ∗ → 0) — this is just the isothermal limit (4.34) except now, since k⊥ ≫ k⊥∗,
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this growth rate is large in comparison with the cETG growth rate achieved at k∥ = 0 [see
figure 6(a), noting the normalisation]. Note that γ ∼ ωKAW near the transition ξ∗ ∼ 1
(i.e., at k∥ ∼ ω∗e/vthe), but γ ≪ ωKAW as k∥ → ∞. In the collisional limit, there is peak
growth at ξ∗ ∼ 1, or

k∥max ∼
√
ω∗e

κ
∼ 1

vthe

√
ω∗eνe. (4.54)

Determining the precise prefactor, which depends only on τ̄ and is, thus, order unity,
is only possible numerically, but is, at any rate, inessential. The growth rate at this
wavenumber is

γ ∼ ωKAW ∼ k⊥de
√
ω∗eνe. (4.55)

Again, this growth rate is large in comparison with the cETG peak growth rate at k∥ = 0:

γ√
2ωdeω∗e

∼ k⊥de

√
νe
ωde

∼
(
k⊥
k⊥∗

)1/2

≫ 1. (4.56)

Figure 6 illustrates all of this behaviour. We remind the reader that at large k∥ (i.e.,
in the deep isothermal regime), the instability is quenched by compressional heating in
both collisional and collisionless limits (see section 4.3.3).
Thus, the isobaric (k⊥ ≫ k⊥∗) regime of the TAI is quite different from the isothermal

one: the dominant instability is again electromagnetic, rather than electrostatic, but
it is the slab TAI — an instability of KAWs reaching peak growth at the parallel
wavenumber (4.54) where the relevant parallel timescale — either the parallel-streaming
or thermal-conduction rate in the collisionless or collisional regimes, respectively — is
comparable to ω∗e. It must be appreciated, of course, that this behaviour only occurs in
a relatively narrow interval of perpendicular wavelengths satisfying k⊥∗ ≪ k⊥ ≪ d−1

e (or
≪ d−1

e χ−1 in the collisional regime). For k⊥de ≳ 1 (or χ−1 in the collisional regime), it
is replaced by the electrostatic instabilities described in section 3.

4.4.2. Stabilisation of isobaric slab TAI

As was the case with the isothermal sTAI, the isobaric sTAI is also stabilised within
a certain region of wavenumber space, this time due to the effects of finite resitivity,
or finite electron inertia, in the parallel momentum equation — (2.21) or (2.25) in the
collisionless and collisional limits, respectively.
To work out this stabilisation, we once again consider the collisional limit and, instead

of (4.9), the ordering

(k⊥de)
2νei ∼ ω ∼ κk2∥ ≪ ω∗e. (4.57)

A direct consequence of this ordering is that one has to retain the resisitive term in the
leading-order parallel momentum equation, viz., the second equation in (4.52), coming
from (2.25), is replaced with

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥ log pe + νei
u∥e

vthe
. (4.58)

This means that, instead of the system being isobaric to leading order in ξ∗ ≫ 1, the
parallel pressure gradient now balances the electron-ion frictional force:

∇∥ log pe +
2νeiu∥e

v2the
= 0. (4.59)
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This is obvious from (4.8) in the limit (4.57). To next order, we must now retain both
the time derivative of ∇∥ log Te and the compressional heating term in (4.8):

ρevthe
2LT

∂

∂y

(
∇∥ log pe +

2νeiu∥e

v2the

)
=

(
d

dt
− κ∇2

∥

)(
∇∥

δne
n0e

+
2νeiu∥e

v2the

)
− 2

3
∇2

∥u∥e.

(4.60)

Combining (4.58), (4.60) and the density equation from (4.52), we find the dispersion
relation

ω2 − ω2
KAW

(
τ̄ +

1

iξ∗

)
= − 1

iξ∗

(k⊥de)
2νei

κk2∥
ω2 − 1

ξ∗

(
5

3
+ a

)
ω

κk2∥
ω2
KAW, (4.61)

where a the same numerical constant as in (4.39) [see (E 10)]. This is the same as (4.53),
apart from the right-hand side, previously neglected. The second term on the right-hand
side simply leads to a small, in ξ∗ ≪ 1, modification of the (real) frequency, and so can
be neglected.
As usual, at the stability boundary, the frequency ω must be purely real, and both the

real and imaginary parts of (4.61) must vanish individually, giving [cf. (E 31)]

ω2 = ω2
KAWτ̄ ,

(k⊥de)
2νei

κk2∥
ω2 = ω2

KAW ⇒ (k⊥de)
2νei

κk2∥
=

1

τ̄
. (4.62)

This is a line k∥ ∝ k⊥ in wavenumber space; moving from small to large parallel
wavenumbers, there is a sliver of stability around this line, above which (viz., towards
higher k∥) the isobaric sTAI grows again to its peak at ξ∗ ∼ 1: see figures 14(a) and 15(a)
in appendix E, where the stability boundary is worked out exactly. As with the case of
the isothermal sTAI, this stabilisation was not captured by the general TAI dispersion
relation (4.18) because the ordering (4.9) did not formally allow frequencies comparable
to both the heat-conduction and the resistive-dissipation rates, required by (4.62).
In the collisionless limit, we find that the isobaric sTAI is stabilised at the flux-freezing

scale (2.28) [cf. (D 84)]

k⊥de ∼ 1. (4.63)

This is not via a mechanism analogous to the collisional case, as there are no resistive
effects in the collisionless limit, but is instead due to the effect of finite electron inertia
appearing in the parallel-momentum equation (2.21) (see appendix D.7.3).
The stabilisation of the isobaric sTAI is somewhat more relevant than the stabilisation

of the isothermal sTAI (section 4.3.3), owing to the fact that the isobaric sTAI is the
dominant instability for k⊥∗ ≪ k⊥ ≪ d−1

e (or ≪ d−1
e χ−1 in the collisional regime).

However, we shall discover in section 6.3.1 that the isobaric sTAI contributes only
an order-unity amount to the turbulent energy injection — rather than introducing
significant qualitative differences — and so the (linear) stabilisation thereof appears to
be of little consequence in the nonlinear context.

5. Summary of linear instabilities

In sections 3 and 4, we introduced the linear instabilities supported by our low-beta
system of equations in the electrostatic and electromagnetic regimes, respectively. In both
the collisionless and collisional limits, we found that there were four main instabilities:
slab ETG [sETG, (3.5) or (3.9)], curvature-mediated ETG [cETG, (3.13)], slab TAI
[sTAI, (4.34) or (4.55)] and curvature-mediated TAI [cTAI, (4.47)]. Before moving on
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Figure 7: Collisionless modes in the (k⊥, k∥) plane, where the axes are plotted on logarithmic
scales. The dotted lines are the asymptotic boundaries between the various modes, with the
shaded regions indicating stability. The stable region and the stability boundary are derived
and plotted in a more quantitative way in appendix D.6 (see figure 12a). At electrostatic
scales (i.e., those below the flux-freezing scale, k⊥de > 1), the curvature-mediated ETG [cETG,
(3.13)] transitions into the slab ETG [sETG, (3.5)] along the boundary (5.1), while the sETG
is damped by parallel streaming above (5.2). ‘Fluid’ stabilisation of the sETG occurs along
(5.3). At electromagnetic scales (i.e., those above the flux-freezing scale, k⊥de < 1), slab TAI
[sTAI, (4.50)] is stabilised along k⊥de ∼ 1, meaning that the region enclosed by the lines
k⊥de ∼ 1, k∥ = k∥c, and (5.3) contains only exponentially small growth rates, and can thus

effectively be considered stable [note that k∥cLT /
√
βe = (LB/LT )

1/2, see (4.21)]. The cETG
transitions into the curvature-mediated TAI [cTAI, (4.15)] along k⊥ = k⊥∗, with k⊥∗ defined in
(4.26). cTAI is separated from sTAI by the horizontal line k∥ = k∥c, while sTAI is stabilised by
compressional heating at the horizontal line given by (5.4), transitioning into purely oscilliatory
(isothermal) KAWs (4.29). Electron finite-Larmor-radius (FLR) effects eventually provide an
ultraviolet cutoff at large perpendicular wavenumbers k⊥de, though this is outside the range
of validity of our drift-kinetic approximation. The solid black line indicates the location of the
maximum growth rate at each fixed k⊥, while the solid dots are the (possible) locations of the
energy-containing scale(s) (see section 6). The dotted vertical lines indicate the location in k⊥
of figures 5 and 6, which show the isothermal and isobaric regimes, respectively.

to our discussions of the turbulence supported by these modes, it will be useful to take
stock of what we have learned by surveying the locations of each of these instabilities
in wavenumber space. Throughout the discussions that follow, we will assume ky ∼ k⊥,
and so consider (k⊥, k∥) to be the relevant wavenumber-space coordinates. We shall also
assume τ̄ ∼ 1, implying that both species have roughly comparable temperatures and,
more crucially, that τ̄ has no dependence on perpendicular wavenumbers (as it could do,
for example, on scales comparable to the ion Larmor radius; see appendix A.4).

5.1. Collisionless limit

Let us first focus on the collisionless limit. At electrostatic scales k⊥ ≳ d−1
e [i.e., below

the flux-freezing scale (2.28)], we have both the sETG and cETG instabilities. The transi-
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tion between these two instabilities occurs when their growth rates are comparable, viz.,

(k2∥v
2
theω∗e)

1/3 ∼ (ωdeω∗e)
1/2 ⇒

k∥LT√
βe

∼
(
LT

LB

)3/4

kyde. (5.1)

The sETG instability begins to be quenched by Landau damping when its growth rate
becomes comparable to the parallel streaming rate:

(k2∥v
2
theω∗e)

1/3 ∼ k∥vthe ⇒
k∥LT√
βe

∼ kyde. (5.2)

Note that this is the same line as that corresponding to the maximum of the sETG growth
rate, viz., k∥vthe ∼ ω∗e. However, it must be stressed that this is only true asymptotically,
as is evident from figures 11(a) and 12(a). Furthermore, careful analysis of collisionless
dispersion relation reveals that the sETG instability is also effectively stabilised — with
only exponentially small growth rates remaining — around the flux-freezing scale [see
(D 43) and the surrounding discussion]. This ‘fluid’ stabilisation occurs when its growth
rate becomes comparable to the KAW frequency:

(k2∥v
2
theω∗e)

1/3 ∼ ωKAW ⇒
k∥LT√
βe

∼ (k⊥de)
−2. (5.3)

For k⊥∗ ≲ k⊥ ≲ d−1
e , the dominant instability is the isobaric sTAI, which is separated

from the cETG instability by k∥ = k∥c. The cETG instability in this perpendicular-
wavenumber range, and for k∥ ≲ k∥c, can also be thought about as either the isobaric
version of cTAI or the electron version of KBM (see section 4.4). The isobaric sTAI
instability at k∥ ≳ k∥c is stabilised around the flux-freezing scale k⊥de ∼ 1 [see
(4.63)]. The area bounded by the lines k⊥de ∼ 1, k∥ = k∥c and (5.3) thus contains
only exponentially small growth rates that would be quenched by the effects of finite
dissipation in any real physical system.
For k⊥ ≲ k⊥∗, the cETG (or isobaric cTAI) instability is superseded by the isothermal

cTAI, which is now the dominant instability, and is separated from sTAI along the
horizontal line k∥ = k∥c.
The sTAI growth rate is cut off at large parallel wavenumbers due to the effect of

parallel compression [see (4.42)], viz., when

ωKAW ∼ ω∗e ⇒
k∥LT√
βe

∼ 1. (5.4)

This is all illustrated in figure 7, where the solid line shows the location of the peak
growth rate at each ky — following, at k⊥ ≲ k⊥∗, the peak growth of the isothermal
cTAI (4.24), and at k⊥ ⩾ k⊥∗, the boundary ξ∗ ∼ 1 between the isothermal and
isobaric regimes. The increase of the growth rate with ky is unchecked in the drift-
kinetic approximation that we have adopted, and requires the damping effects associated
with the finite Larmor radius (FLR) of the electrons to be taken into account; this will
introduce some ultraviolet cutoff in perpendicular wavenumbers. At the largest scales, we
must eventually encounter ion dynamics, but the effects that this may have are outside
the scope of this paper. All of these modes are, of course, limited by the finite parallel
system size L∥, meaning that the smallest accessible parallel wavenumber is k∥ ∼ L−1

∥ .

5.2. Collisional limit

The picture is qualitatively similar in the collisional limit, except the transition between
the electrostatic and electromagnetic regimes is modified, as discussed in section 2.6. At
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Figure 8: Collisional modes in the (k⊥, k∥) plane, where the axes are plotted on logarithmic
scales. The dotted lines are the asymptotic boundaries between the various modes, with the
shaded regions indicating stability. The stable region and the stability boundary are derived
and plotted in a more quantitative way in appendix E.4 (see figure 15a). At electrostatic scales
(i.e., those below the flux-freezing scale, k⊥deχ > 1), the curvature-mediated ETG [cETG,
(3.13)] transitions into the (collisional) slab ETG [sETG, (3.9)] along the boundary (5.5). sETG
is damped by parallel heat conduction above (5.6). At electromagnetic scales (i.e., those above
the flux-freezing scale, k⊥deχ < 1), the slab TAI [sTAI, (4.50)] is stabilised by the effects of
finite resisitivty along (5.7), while cETG transitions into the curvature-mediated TAI [cTAI,
(4.15)] at k⊥ = k⊥∗, with k⊥∗ defined in (4.26). cTAI is separated from sTAI by the horizontal

line k∥ = k∥c [note that k∥cLT /
√
βe = (LB/LT )

1/2, see (4.21)]., while the sTAI is stabilised by
compressional heating at the horizontal line given by (5.8), transitioning into purely oscilliatory
(isothermal) KAWs (4.29). Perpendicular electron viscosity will eventually provide an ultraviolet
cutoff for these modes at large perpendicular wavenumbers k⊥de, though this is outside the
range of validity of our drift-kinetic approximation. The solid black line indicates the location
of maximum growth at each fixed k⊥, while the solid dots are (possible) locations of the energy
containing scale(s) (see section 6). The dotted vertical lines indicate the location in k⊥ of figures
5 and 6, which show the isothermal and isobaric regimes, respectively.

electrostatic scales k⊥ ≳ d−1
e χ−1 [i.e., those below the flux-freezing scale (2.30)], we

once again have both the (collisional) sETG and cETG instabilites, whose growth rates
become comparable when(

k2∥v
2
theω∗e

νei

)1/2

∼ (ωdeω∗e)
1/2 ⇒

k∥LT√
βe

∼
(
LT

LB

)1/2

(kydeχ)
1/2. (5.5)

The sETG instability is now quenched by thermal conduction at(
k2∥v

2
theω∗e

νei

)1/2

∼ κk2∥ ⇒
k∥LT√
βe

∼ (kydeχ)
1/2. (5.6)

Note that this is the same line as that corresponding to the maximum of the collisional-
sETG growth rate, viz., (k∥vthe)

2/νei ∼ ω∗e. As in the collisionless case, this is, of course,
only true asymptotically: see figures 14(a) and 15(a).
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For k⊥∗ ≲ k⊥ ≲ d−1
e χ−1, the dominant instability is once again the isobaric sTAI,

separated from cETG by k∥ = k∥c. As in the collisionless limit, the cETG instability
in this perpendicular-wavenumber range, and for k∥ ≲ k∥c, can also be thought of as
either the isobaric version of cTAI or the electron version of KBM (see section 4.4). The
isobaric sTAI instability is stabilised due to the effects of finite resistivity along the line
[see (4.62)]

κk2∥ ∼ (k⊥de)
2νei ⇒

k∥LT√
βe

∼ k⊥deχ. (5.7)

For k⊥ ≲ k⊥∗, the cETG (or isobaric cTAI) instability is superseded by the isothermal
cTAI, which is once again the dominant instability, and is separated from the isothermal
sTAI by k∥ = k∥c. As in the collisionless case, the isothermal sTAI is cut off at large
parallel wavenumbers due to the effects of parallel compression [see (4.40)], viz.,

ωKAW ∼ ω∗e ⇒
k∥LT√
βe

∼ 1. (5.8)

This is all illustrated in figure 8, where the solid line again shows the location of the
fastest growth for each ky. As in the collisionless case, modes are stabilised at large
perpendicular numbers, this time by perpendicular electron viscosity, and limited by
the parallel system size for small parallel wavenumbers. However, they are now also
limited at large parallel wavenumbers by the mean free path λe, at which the collisional
approximation breaks down. This means that the maximum parallel wavenumber allowed
in this collisional limit is k∥ ∼ λ−1

e .
All of the boundaries between modes derived in this section are, of course, only

asymototic illustrations, and do not quantitatively reproduce, for example, the exact
stability boundaries in wavenumber space (which are derived in appendices D.6 and
E.4). However, given that the arguments of the following section rely on scaling estimates,
rather than quantitative relationships between parameters, the illustrations of the layout
of wavenumber space provided by figures 7 and 8 will be sufficient for our purposes.

6. Electromagnetic turbulence and transport

6.1. Free energy

Magnetised plasma systems containing small perturbations around a Maxwellian equi-
librium nonlinearly conserve free energy, which is a quadratic norm of the magnetic
perturbations and the perturbations of the distribution functions of both ions and elec-
trons away from the Maxwellian. In the system that we are considering, the (normalised)
free energy takes the form

W

n0eT0e
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∫
d3r

V

(
φτ̄−1φ

2
+ |de∇⊥A|2 + 1
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+ . . .
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.

(6.1)
The “. . . ” stand for the squares of further moments of the perturbed distribution function
(such as the parallel and perpendicular heat fluxes δq∥e, δq⊥e, etc.). The derivation
of (6.1) can be found in appendix B.1. In the collisional limit, these further moments of
the perturbed distribution function are negligible, and (6.1) becomes [see (B 8)]
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. (6.2)
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The free energy is a nonlinear invariant, i.e., it is conserved by nonlinear interactions
(Abel et al. 2013), but can be injected into the system by equilibrium gradients, and is
dissipated by collisions; even when these are small, they are always eventually accessed
via phase-mixing of the distribution function towards small velocity scales and nonlinear
interactions towards small spatial scales.

In view of this, the time-evolution of the free energy (6.1) can be written as [see (B 22)]

1

n0eT0e

dW

dt
= ε−D, (6.3)

where D stands for the collisional dissipation [see (B 11) and (B 18)], and ε is the injection
rate due, in our system, to the electron-temperature gradient [see (B 14) and (B 19)]:

ε =
1

LT

∫
d3r

V


(
1

2

δT∥e

T0e
+
δT⊥e

T0e

)
vEx +

1
2δq∥e + δq⊥e

n0eT0e

δBx

B0
, collisionless,

3

2

δTe
T0e

vEx +
δqe

n0eT0e

δBx

B0
, collisional,

(6.4)

where

vEx = −ρevthe
2

∂φ

∂y
,

δBx

B0
= ρe

∂A
∂y

,
δqe

n0eT0e
= −3

2
κ∇∥ log Te. (6.5)

The expression multiplying 1/LT is the “turbulent” heat flux due to the energy transport
by the E ×B flows and to the heat fluxes along the perturbed field lines. The first term
in (6.4) is the energy injection by ETG (section 3), the second by TAI (section 4).
Evidently, the latter is only present in the electromagnetic regime, when perturbations
of the magnetic-field direction are allowed.

Free energy is normally the quantity whose cascade from large (injection) to small (dis-
sipation) scales determines the properties of a plasma’s turbulent state (see Schekochihin
et al. 2008, 2009, and references therein). Temperature-gradient-driven turbulence is no
exception (Barnes et al. 2011), and so we devote the remainder of this section to working
out at what scales and to what saturated amplitudes the ETG-TAI injection (6.4) will
drive turbulent fluctuations.

6.2. Electrostatic turbulence

6.2.1. Collisionless slab ETG turbulence

Following Barnes et al. (2011), we shall conjecture that our fully developed electrostatic
turbulence always organises itself into a state wherein there is a local cascade of the free
energy (6.1) that carries the injected power ε from the outer scale, through some putative
“inerital range”, to the dissipation scale. The outer scale is something that we will have
to determine, while the dissipation scale will be near k⊥ρe ∼ 1, and so outside the range
of validity of our drift-kinetic approximation.

The perpendicular nonlinearity in our equations is the advection of fluctuations by the
fluctuating E×B flows. Therefore, we take the nonlinear turnover time associated with
such a cascade to be the nonlinear E ×B advection rate:

t−1
nl ∼ k⊥vE ∼ ρevthek

2
⊥φ̄ ∼ Ωe(k⊥ρe)

2φ̄. (6.6)

Here and in what follows, φ̄ refers to the characteristic amplitude of the electrostatic
potential at the scale k−1

⊥ , rather than to the Fourier transform of the field. More formally,
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we shall take φ̄ to be defined by

φ̄2 =

∫ ∞

k⊥

dk′⊥ E
φ
⊥(k

′
⊥), Eφ

⊥(k⊥) ≡ 2πk⊥

∫ ∞

−∞
dk∥

〈
|φk|2

〉
, (6.7)

where Eφ
⊥(k⊥) is the 1D perpendicular energy spectrum, φk the spatial Fourier transform

of the potential, and the angle brackets denote an ensemble average. Perturbations of
other quantities, such as the velocity, parallel temperature, magnetic field, etc., will
similarly be taken to refer to their characteristic amplitude at a given perpendicular
scale.
Assuming that any possible anisotropy in the perpendicular plane can be neglected3,

a Kolmogorov-style constant-flux argument leads to the scaling of the amplitudes in the
inertial range:

τ̄−1φ̄2

tnl
∼ ε = const ⇒ φ̄ ∼

(
ε

Ωe

)1/3

(k⊥ρe)
−2/3

. (6.8)

The scaling (6.8) translates into the following 1D spectrum:

Eφ
⊥(k⊥) ∼

φ̄2

k⊥
∝ k

−7/3
⊥ , (6.9)

the same as was obtained, using a similar argument, and confirmed numerically, by Barnes
et al. (2011) for electrostatic, gyrokinetic ITG turbulence. In making this argument,
we have assumed that the free-energy density at a given scale k−1

⊥ can be adequately
represented by the first term in the integrand of (6.1), i.e., that all the other fields whose
squares contribute to the free energy are either small or comparable to φ, but never
dominant in comparison with it. Whether this is true will depend on the nature of the
turbulent fluctuations supported by the system in any given part of the (k⊥, k∥) space
through which the cascade might be taking free energy on its journey towards dissipation.
Let us specialise to the region of the wavenumber space (marked “sETG” in figure 7)
where the fluctuations are collisionless, electrostatic drift waves described by (3.4). From
the first two equations of (3.4),4

τ̄−1φ̄ ∼
k∥vthe

ω

ū∥e

vthe
∼
(
k∥vthe

ω

)2 δT̄∥e

T0e
, (6.10)

where evidently we ought to estimate ω ∼ t−1
nl . Then, all three fluctuating fields do indeed

have the same size and the same scaling if we posit

t−1
nl ∼ k∥vthe. (6.11)

This is a statement of critical balance, whereby the characteristic time associated with
propagation along the field lines is assumed comparable to the nonlinear advection
rate t−1

nl at each perpendicular scale k−1
⊥ — Barnes et al. (2011) justified this by the

standard causality argument borrowed from MHD turbulence (Goldreich & Sridhar

3The existence of such a state is not always guaranteed: e.g., Colyer et al. (2017) found that
the saturated state of electrostatic ETG turbulence existed in a zonally-dominated state, which
evidently violates this assumption. In fact, the zonal state is much closer to being 2D isotropic
than a streamer-dominated state; Barnes et al. (2011) explicitly invoked zonal flows to enforce
isotropy.
4The linear part of the third equation in (3.4) tells us that δT̄∥e/T0e ∼ (ω∗e/ω)φ̄ but, as we
are about to discover, this is only true at the outer scale, while in the inertial range, the ETG
injection term is subdominant.
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1995, 1997; Boldyrev 2005; Nazarenko & Schekochihin 2011): two points along the field
line can only remain correlated with one another if information can propagate between
them faster than they are decorrelated by the nonlinearity. We have taken the rate of
information propagation along the field lines to be k∥vthe; a somewhat involved reasoning
is needed to explain why this should work even though k∥vthe is the rate of phase mixing
(which, in the linear theory, is expected to give rise to Landau damping) rather than
of wave propagation, and why Landau damping is ineffective in the nonlinear state (see
Schekochihin et al. 2016, Adkins & Schekochihin 2018).
Combining (6.6), (6.8) and (6.11), we find

k∥vthe ∼ t−1
nl ∼ Ωe

(
ε

Ωe

)1/3

(k⊥ρe)
4/3. (6.12)

By comparison, for the most unstable sETG modes, (3.6) gives us

k∥vthe ∼ ω∗e ∼ kyρe
vthe
LT

. (6.13)

These modes grow at a rate ω∗e ∝ ky. This means that the nonlinear interactions must
overwhelm the linear instability in the inertial range.5 The outer scale, i.e., the scale that
limits the inertial range on the infrared side and at which the free energy is effectively
injected, is then the scale at which the nonlinear cascade rate and the rate of maximum
growth of the instability are comparable: balancing (6.12) and (6.13), we get

Ωe(k
o
⊥ρe)

2φ̄o ∼ ko∥vthe ∼ ωo
∗e ⇒ φ̄o ∼ (ko⊥LT )

−1, koyρe ∼ ko∥LT , (6.14)

where the superscript “o” refers to quantities at the outer scale.
Now, in order to determine ko⊥, we need a further constraint. Barnes et al. (2011) found

it by conjecturing that ko∥ in (6.14) would be set by the parallel system size L∥ (the

connection length ∼ πqLB , in the case of tokamaks). This was the only reasonable choice
because there was no lower cutoff in k⊥ of the (electrostatic) ITG-unstable modes. This
is not, however, the case in our model of the sETG instability, which is stabilised at the
flux-freezing scale (2.28), i.e., at k⊥de ∼ 1. It appears to be a general rule, confirmed by
numerical simulations (Parra & Barnes 2012), that the outer scale is, in fact, determined
by the smallest possible kyρe or the smallest possible k∥LT , whichever is larger. Putting

this within the visual context of figure 7, the outer scale is set either by ko∥ ∼ L−1
∥ or by

ko⊥ ∼ d−1
e , whichever is encountered first when moving along the solid black line from

the ultraviolet cutoff towards larger scales. The former possibility, ko∥ ∼ L−1
∥ , is realised

when L∥ ≪ LT /
√
βe, and the latter, ko⊥ ∼ d−1

e , otherwise. Thus,

ko⊥de ∼
ko∥LT
√
βe

∼


LT

L∥
√
βe
,

LB

LT
≪ LB

L∥
√
βe
,

1.
LB

LT
≳

LB

L∥
√
βe
.

(6.15)

5 Here is another way to see this. Imagine that the sETG instability dominates energy injection
at each scale and that the energy thus injected is removed to the next smaller scale by the
nonlinearity, at a rate t−1

nl . Such a scheme would be consistent if the energy flux injected at each
scale by the instability were larger than the flux arriving to this scale from larger scales. Let
us see if this is possible. Balancing the nonlinear energy-removal rate (6.12) with the injection
rate ω∗e, we learn that φ̄ ∼ (k⊥LT )

−1 (corresponding to a 1D spectrum ∝ k−3
⊥ ). The injected

energy flux is then ε ∼ ω∗eφ̄
2 ∼ Ωe(ρe/LT )

3(k⊥ρe)
−1. So it declines at smaller scales, and is

easily overwhelmed by the nonlinear transfer from larger scales.
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We have inserted the normalisation of the temperature gradient to LB for future conve-
nience.
Let us now estimate the energy flux that is injected by sETG at the outer scale (6.15):

considering the first term in the expression for the energy flux (6.4) (the second, involving
finite perturbations to the magnetic field, is negligible in the electrostatic regime) and
ignoring any possibility of a non-order-unity contribution from phase factors, we have

ε ∼ ωo
∗eφ̄

o
δT̄ o

∥e

T0e
∼ vtheρ

2
e

L3
T

√
βe

(ko⊥de)
−1, (6.16)

where we have used δT̄ o
∥e/T0e ∼ φ̄o and (6.14). This quantity is directly related to the

turbulent heat flux: combining (6.16) with (6.15), we get

QsETG ∼ n0eT0eεLT ∼ QgB


(
L∥

LB

)(
LB

LT

)3

,
LB

LT
≪ LB

L∥
√
βe
,

1√
βe

(
LB

LT

)2

,
LB

LT
≳

LB

L∥
√
βe
,

(6.17)

where the “gyro-Bohm” flux is QgB = n0eT0evthe (ρe/LB)
2
. Note that the LB/LT scaling

in (6.17) is only valid for sufficiently large LB/LT as our analysis ignores any finite critical
temperature gradients associated with the sETG instability (see appendix F). The first
expression in (6.17) is the same scaling as that obtained by Barnes et al. (2011), but
this time for electrostatic turbulence driven by an electron temperature gradient. In the
formal limit of βe → 0, this is the only possible outcome because the second inequality
in (6.17) can never be satisfied. At finite βe, however, in the sense in which it is allowed
by our ordering and for sufficiently large temperature gradients, we obtain a different,
less steep scaling of the turbulent heat flux, given by the second expression in (6.17).
Whether the scaling (6.17) is relevant in our system depends on the dominant energy

injection therein being from the electrostatic sETG drive at k⊥de ≳ 1. That is, in fact,
far from guaranteed if L∥ > LT /

√
βe, i.e., if sufficiently small k∥ are allowed for the

electromagnetic instabilities to matter — and so for the outer scale to be located at even
larger scales along the thick black line in figure 7. Another reason why we must consider
the electromagnetic part of the wavenumber space is to do with the cETG instability. At
k⊥de ≳ 1, its growth rate is always small in comparison with the with sETG [for the large
LB/LT that we are considering here, see (3.14)], but it is a 2D mode, so it is not stabilised
at k⊥de ∼ 1 (it does not bend magnetic fields) and there is no reason to assume that
it cannot provide the dominant energy inection at some large scale k⊥de ≪ 1. There, it
competes with TAI (section 4), so we shall have to examine the TAI turbulence alongside
the cETG one.
These topics are, of course, the raison d’être of this work and we shall tackle them in

section 6.3, but first we wish, for the sake of completeness, to work out the collisional
version of sETG turbulence — an impatient reader can skip this.

6.2.2. Collisional slab ETG turbulence

For collisional sETG turbulence, the argument proceeds similarly to section 6.2.1.
Instead of (6.10), we now have, in view of (3.8),

τ̄−1φ̄ ∼
k∥vthe

ω

ū∥e

vthe
∼

(k∥vthe)
2

ωνei

δT̄e
T0e

∼ δT̄e
T0e

, (6.18)

where we assume that all frequencies, including the nonlinear rate (6.6), are now compa-
rable to the rate of parallel thermal conduction [instead of the parallel streaming rate;
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see (3.10)]:

t−1
nl ∼ ω ∼

(k∥vthe)
2

νei
. (6.19)

This condition now replaces (6.11) as the ‘critical-balance’ conjecture, whereby the
parallel scale of the perturbations is determined in terms of their perpendicular scale.
Note that, since now ū∥e/vthe ≪ φ̄, it is still reasonable to estimate the free-energy
density by ∼ τ̄−1φ̄2.

At the outer scale, using (3.10) and (6.19), we find, analogously to (6.14),

Ωe(k
o
⊥ρe)

2φ̄o ∼
(ko∥vthe)

2

νei
∼ ω∗e ⇒ φ̄o ∼ (ko⊥LT )

−1, koyρe ∼ (ko∥)
2LTλe. (6.20)

Note that the relationship between the parallel and perpendicular outer scales can be
recast as

ko∥LT
√
βe

∼
(
koydeχ

)1/2
, χ ≡ LT

λe
√
βe

(6.21)

where χ is defined as in (2.30).

By analogous logic to the collisionless sETG case, the outer scale can be set either by
the parallel system size or by the flux-freezing scale (2.30), k⊥deχ ∼ 1, depending on
which is encountered first by the thick black line in figure 8 when descending towards
larger scales. The result is

ko⊥deχ ∼


(

LT

L∥
√
βe

)2

,
LB

LT
≪ LB

L∥
√
βe
,

1,
LB

LT
≳

LB

L∥
√
βe
.

(6.22)

In view of (6.20), the energy flux is again given by (6.16), which, with the substitution
of (6.22), becomes

ε ∼ vtheρ
2
e

L3
T

√
βe
χ


(
L∥

√
βe

LT

)2

,
LB

LT
≪ LB

L∥
√
βe
,

1,
LB

LT
≳

LB

L∥
√
βe
.

(6.23)

Therefore, finally, the turbulent heat flux is

QsETG
ν ∼ QgB


(
L∥

LB

)2(
LB

λe

)(
LB

LT

)3

,
LB

LT
≪ LB

L∥
√
βe
,

1

βe

(
LB

λe

)(
LB

LT

)
,

LB

LT
≳

LB

L∥
√
βe
.

(6.24)

These are the collisional analogues of the scalings (6.17), and are both proportional
to the electron collision frequency (∝ λ−1

e ). Such a scaling of turbulent heat flux with
collisionality was identified by Colyer et al. (2017) from their simulations of electrostatic
ETG turbulence, though their argument relied on consideration of the dynamics of zonal
flows within their electron-scale system, and so the comparison is superficial.
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6.3. Electromagnetic turbulence

6.3.1. KAW-dominated, slab TAI turbulence

On the large-scale side of the flux-freezing scales (2.28) and (2.30), for k⊥∗ ≲ k⊥ ≲ d−1
e

(or d−1
e χ−1 in the collisional limit), the dominant instability is the isobaric sTAI (see

section 4.4), an instability of kinetic Alfvén waves. KAW turbulence has been studied
quite extensively, both numerically (Cho & Lazarian 2004, 2009; Howes et al. 2011;
Boldyrev & Perez 2012; Meyrand & Galtier 2013; Told et al. 2015; Grošelj et al. 2018;
Grošelj et al. 2019; Franci et al. 2018) and observationally (Alexandrova et al. 2009;
Sahraoui et al. 2010; Chen et al. 2013), in the context of the “kinetic-range” free-
energy cascade in the solar wind (Schekochihin et al. 2009; Boldyrev et al. 2013; Passot
et al. 2017). The theory of this cascade proceeds along the same lines as the theory of
any critically balanced cascade in a wave-supporting anisotropic medium (Nazarenko &

Schekochihin 2011) and leads again to a k
−7/3
⊥ energy spectrum (Cho & Lazarian 2004;

Schekochihin et al. 2009) or, with some modifications, to a k
−8/3
⊥ one (Boldyrev & Perez

2012; Meyrand & Galtier 2013), which appears to be closer to what is observed.

Ignoring the latter nuance, it is easy to see that the re-emergence of the k
−7/3
⊥ spectrum

is unsurprising, as the arguments of section 6.2 that led to (6.8) and (6.9) are unchanged
for KAWs. What is changed, however, is the linear propagation rate that must be used
in the critical-balance conjecture: the parallel scale k−1

∥ of a perturbation is now the

distance that an (isobaric) KAW can travel in one nonlinear time, so, from (4.49), we
have, instead of (6.11) or (6.19),

ωKAW ∼ k∥vthek⊥de ∼ t−1
nl , (6.25)

where tnl is still given by (6.6).
This is the standard argument of KAW-turbulence theory (see references above), which,

however, was developed for situations in which energy arrived to sub-Lamor scales from
larger scales (i.e., from k⊥ρi < 1) and cascaded down to smaller scales — as indeed
it typically does in space-physical and astrophysical contexts. In contrast, here we are
dealing with an energy source in the form of an ETG-driven instability, the isobaric sTAI,
which operates most vigorously at the smallest electromagnetic scales. Indeed, as we saw
at the end of section 4.4.1, for a given k⊥de, the sTAI growth rate peaks at ξ∗ ∼ 1, and
is of the order of the KAW frequency ωKAW at that scale. This gives

γ ∼ ωKAW ∼


ω∗ek⊥de ∼

vthe

LT

√
βe

(k⊥ρe)
2, collisionless,

√
ω∗eνek⊥de ∼

vthe√
LTλeβe

(k⊥ρe)
3/2

, collisional,
(6.26)

where we used k∥ ∼ ω∗e/vthe and k∥ ∼ (ω∗e/κ)
1/2 ∼ (ω∗eνe)

1/2/vthe for the collisionless
and collisional estimates, respectively. Comparing (6.26) with (6.12), we see that, in both
cases, the instability growth rate increases faster with k⊥ than the nonlinear cascade rate

t−1
nl ∝ k

4/3
⊥ . It is intuitively obvious that these two rates reach parity at the flux-freezing

scale, k⊥de ∼ 1 or k⊥deχ ∼ 1, in the collisionless and collisional limits, respectively. This
can be formally confirmed by a calculation analogous to the one in section 6.2. Thus, the
dominant injection occurs at the small-scale end of the putative ‘inertial range’. In the
absence of any inverse cascade, there is nothing to push the energy towards larger scales.
This means that the balances (6.8), (6.12) and (6.25) are not, in fact, realised for KAW
turbulence driven by the isobaric sTAI.
In order to predict the power injected by sTAI, and the associated contribution to
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the turbulent heat flux, we resurrect the argument that, for sETG, we tossed aside in
footnote 5. We conjecture that the sTAI instability dominates the energy injection at
each scale, and the energy thus injected is removed to the next smaller scale by the
nonlinearity, at a rate t−1

nl ; we shall confirm a posteriori that this is a consistent scheme.
The resulting balance gives us, using (6.6) and (6.26),

t−1
nl ∼ Ωe(k⊥ρe)

2φ̄ ∼ γ ⇒ φ̄ ∼


de
LT

, collisionless,

de√
LTλe

(k⊥ρe)
−1/2, collisional,

(6.27)

and δB̄⊥/B0 ∼ k⊥ρeĀ ∼ (ρe/de)φ̄ [where we have used k⊥deĀ ∼ φ̄, which follows from
the first equation in (4.49) with ω ∼ ωKAW]. The corresponding energy spectra (6.7) are
∝ k−1

⊥ and ∝ k−2
⊥ in the collisionless and collisional regimes, respectively. The injected

power is

γφ̄2 ∼ vtheρ
2
e

L3
T

√
βe


(k⊥de)

2, collisionless,

(k⊥de)
1/2χ3/2, collisional,

(6.28)

where χ is defined in (2.30) or (6.21). This means that, at each scale, the energy that
arrives from larger scales can be ignored in comparison with the energy injected locally
by sTAI — unlike for the sETG cascade, this scale-by-scale injection scheme is consistent
for “sTAI turbulence”.
It is clear from (6.28) that the injected power is dominated by the flux-freezing

scale (2.28) or (2.30), where it reaches parity with the power injected by sETG, (6.16) or
(6.23), and where also the sTAI approximation breaks down and sETG takes over. Thus,
the turbulent heat flux due to the sTAI turbulence is given by the same expression as
that for the sETG turbulence at sufficiently large temperature gradients — the second
expression in (6.17) and (6.24). The only effect of sTAI is to equip the sETG turbulence
spectrum (6.9) with an electromagnetic tail at long wavelengths — scaling as k−1

⊥ and
k−2
⊥ in the collisionless and collisional cases, respectively — but without changing by

more than an order-unity amount its ability to transport energy6.

6.3.2. Curvature-mediated-TAI turbulence

At k⊥ ≲ k⊥∗, the isothermal cTAI replaces the isobaric sTAI as the dominant
instability. Since the nonlinear cascading is still done by the E ×B flows, the nonlinear
time is still given by (6.6). However, how to work out the ‘inertial-range’ scalings for
this cascade is not obvious: since the real frequency is vanishingly small in comparison
to the growth rate at the cTAI maximum [see (4.27)], there is no obvious analogue of
the ‘critical balance’ conjectures (6.11) or (6.25); indeed, it is not even a given that the
cascade will be local in wavenumber space. We shall not be deterred by this uncertainty,
as we can, in fact, still calculate the injected free-energy flux (6.4) by considering solely

6This conclusion is based on the (asymptotic) assumption that both sTAI and sETG inject

energy around the same outer scale ko
∥LT /

√
βe ∼ 1, ko

⊥de ∼ 1 (or ∼ χ−1 in the collisional limit).
However, a more quantitative analysis of the stability properties of the collisionless and collisional
systems shows that sTAI is stabilised slightly towards the large-scale side of this assumed outer
scale, while sETG is stabilised slightly towards the small-scale side of it (see section 4.4.2 and
appendices D.6 and E.4). Thus, in principle, it is possible to assess the comparative roles of these
two instabilities in a quantitative way (e.g., numerically). Whether such an analysis is interesting
qualitatively depends on whether the two modes behave very differently in a nonlinear setting.
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the fluctuations at the injection scale; we shall then propose a way of determining what
that scale is, and hence calculate the turbulent heat flux.
First, let us assume that the dominant free-energy injection will occur at the wavenum-

bers (4.24), where the cTAI growth rate is largest, and given by (4.15):

γ ∼
koyρevthe√
LBLT

. (6.29)

Unlike for the electrostatic modes, the second, “electromagnetic” term in (6.4) — in-
volving energy transport due to heat flux along perturbed field lines — must contribute
to the energy injection by cTAI. Let us estimate its size at the outer scale. The third
equation in (4.14) gives us

δB̄o
x

B0
∼ koyρeĀ ∼ ko∥LT

δT̄ o
e

T0e
. (6.30)

Recalling (2.17), we estimate the size of the perturbed heat flux in the collisional limit
from (4.31):

δq̄oe
n0eT0e

∼ κ∇∥ log T̄
o
e ∼ κξo∗k

o
∥
δ̄noe
n0e

∼ ωo
∗e
ko∥

φ̄o. (6.31)

Analogously, in the collisionless limit, we find that [see (D 71) and what follows it]

δq̄o∥e

n0eT0e
∼ δq̄o⊥e

n0eT0e
∼ ξo∗

δ̄noe
n0e

∼ ωo
∗e
ko∥

φ̄o. (6.32)

Thus, in both limits, the electromagnetic contribution to the free-energy injection can
be written, at the outer scale, as

ε ∼ 1

LT

δq̄oe
n0eT0e

δB̄o
x

B0
∼ ωo

∗eφ̄
o δT̄

o
e

T0e
, (6.33)

meaning that it is comparable to the first term in (6.4), the electrostatic contribution
due to energy transport by the E ×B flow.
The potential at the outer scale can once again be estimated from the balance of the

nonlinear time (6.6) with the growth rate (6.29):

ρevthe(k
o
⊥)

2φ̄ ∼ γ ⇒ φ̄o ∼ 1

ko⊥
√
LBLT

, (6.34)

while the temperature perturbations can be related to φo via the first equation in (4.14):

δT̄ o
e

T0e
∼ γ

ωo
de

δn̄oe
n0e

∼
(
LB

LT

)1/2

φ̄o ∼ (ko⊥LT )
−1. (6.35)

Therefore, the injected energy flux (6.33) is

ε ∼ vtheρ
2
e

L3
T

√
βe

(
LT

LB

)1/2

(ko⊥de)
−1. (6.36)

We must now determine ko⊥. We conjecture that, like in sETG turbulence, the non-
linear interaction rate in cTAI turbulence will increase faster with k⊥ than the growth
rate (6.29), γ ∝ ky. This would certainly be the case if the cascade were local, wherein

the Kolmogorov-style argument leading to (6.8) applied (in which case t−1
nl ∝ k

4/3
⊥

again). Then ko⊥ will be the smallest that it can be. Since it is related to ko∥ via (4.24)
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(corresponding to the maximum growth rate) viz.,

ko∥LT
√
βe

∼



(
LT

LB

)1/4

(ko⊥de)
1/2, collisionless,(

LT

LB

)1/6

(ko⊥deχ)
1/3, collisional,

(6.37)

we can treat this expression as the analogue of the last expression in (6.14) or (6.20). As
we did in our treatment of sETG turbulence in sections 6.2.1 and 6.2.2, we now posit
that the parallel outer scale of cTAI turbulence will be set by the system’s parallel size,
ko∥ ∼ L−1

∥ . Then, from (6.37),

ko⊥de ∼


L
3/2
T L

1/2
B

βeL2
∥

, collisionless,

L
3/2
T L

1/2
B λe

βeL3
∥

, collisional.

(6.38)

Using (6.38) in (6.36), we can estimate the heat flux due to cTAI turbulence:

QcTAI ∼ n0eT0eεLT ∼ QgB


√
βe

(
L∥

LB

)2(
LB

LT

)3

, collisionless,

√
βe

(
L∥

LB

)3(
LB

λe

)(
LB

LT

)3

, collisional.

(6.39)

In order for this construction to be valid, L∥ must be large enough for ko∥ ∼ L−1
∥ ≲ k∥c,

the latter given by (4.21) — otherwise the system cannot access the cTAI regime in the
first place. The condition for this is

ko∥LT
√
βe
≲

(
LT

LB

)1/2

⇔ LB

LT
≳

(
LB

L∥
√
βe

)2

. (6.40)

Thus, cTAI turbulence is relevant for temperature gradients that are even larger than
those needed to access the sETG and sTAI regimes described by (6.17) and (6.24). By
comparing the heat fluxes (6.39) with the second expressions in (6.17) and (6.24), it is
not hard to ascertain that the cTAI fluxes are larger than the sETG-sTAI ones as long
as (6.40) is satisfied.

6.4. Summary of turbulent regimes

In sections 6.2 and 6.3, we found scaling estimates for the turbulent heat fluxes arising
from sETG, sTAI and cTAI in both the collisionless and collisional limits. Which of these
scalings is realised is determined by the size of the electron temperature gradient LT for
given values of L∥, LB and βe. There are three distinct regimes. For

ko⊥de ∼
LT

L∥
√
βe

≫ 1 ⇔ LB

LT
≪ LB

L∥
√
βe
, (6.41)

the system contains only electrostatic (perpendicular) scales, and the heat flux will simply
be that arising from sETG turbulence, given by the first expressions in (6.17) and (6.24)
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in the collisionless and collisional limits, respectively. For

k∥c ≲
1

L∥
≲

√
βe
LT

⇔ LB

L∥
√
βe
≲
LB

LT
≲

(
LB

L∥
√
βe

)2

, (6.42)

the system can access electromagnetic (perpendicular) scales, with the (isobaric) sTAI
and stable KAW being added to the collection of possible modes. However, we showed
in section 6.3.1 that the only effect of the sTAI was to equip the sETG turbulent
spectrum with an electromagnetic tail at longer wavelengths, with at most an order-
unity enhancement of the turbulent heat flux. This heat flux is still the same as that
arising from the sETG turbulence, but with the outer scaled fixed at the flux-freezing
scale — it is given by the second expressions in (6.17) and (6.24). Finally, for

1

L∥
≲ k∥c ⇔ LB

LT
≳

(
LB

L∥
√
βe

)2

, (6.43)

the system has a large enough parallel size to activate cTAI. The resultant turbulent
heat flux, given by (6.39), dominates over that due to the sETG and sTAI.
To summarise, we can write the turbulent heat flux in the collisionless limit as

Q ∼ QgB
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or, in the collisional limit, as

Qν ∼ QgB
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(6.45)

Notably, this implies that the effect of increasing βe (or increasing L∥/LB ∼ πq, as in
a tokamak edge), is first to make the electron heat transport less stiff, as flux freezing
pins down the ETG injection scale, and then to stiffen it back again, as cTAI takes over.
This is sketched in figure 9. A striking (and perhaps disturbing) feature of these results
is the discontinuity in the collisional turbulent heat flux around the transition between
the sTAI- and cTAI-dominated regimes, described by the last two expressions in (6.45).
Comparing these, it is easy to see that the latter is larger than the former for

LB

LT
≳

(
LB

L∥
√
βe

)3/2

. (6.46)

This condition is obviously met before the parallel system size is large enough in order to
activate the cTAI, meaning that the sTAI regime must persist — despite it supporting
a notionally lower flux than that predicted by the cTAI scaling — until the inequality
in (6.43) is satisfied, at which point the cTAI takes over, leading to the discontinuity.
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(a) Collisionless limit (6.44)

LB/LT

lo
g
( Q

ν
/
Q

g
B
)

∝ (L
B
/L

T
)
3

LB/
√
βeL∥

∝ (LB/LT )
1

(LB/
√
βeL∥)

2

∝ (L
B
/L

T
)
3

(LB/
√
βeL∥)

3/2

(b) Collisional limit (6.45)

Figure 9: The scaling of the turbulent heat-flux with LB/LT in the (a) collisionless and (b)
collisional limits. As LB/LT is increased, the electron transport initially becomes less stiff, as
flux freezing pins down the ETG injection scale, after which it stiffens again as cTAI takes over.

Whether this and the other simple “twiddle-algebra” considerations that led to (6.44)
and (6.45) survive the encounter with quantitative reality is left for future numerical
investigations to determine.
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7. Discussion

7.1. Summary

We have considered electromagnetic instabilities and turbulence driven by the electron-
temperature gradient in a local slab model of a tokamak-like plasma with constant
equilibrium gradients (including magnetic drifts but not magnetic shear, see section 2.1),
with the governing equations (section 2.6) derived in a low-beta asymptotic limit of
gyrokinetics. Central to these considerations was the electron inertial scale de, which
divided our system into two distinct physical regimes: electrostatic (perpendicular scales
below de, k⊥ ≫ d−1

e , or d−1
e χ−1 in the collisional limit, where χ = LT /λe

√
βe) and

electromagnetic (perpendicular scales above de, but still smaller than the ion gyroradius,
ρ−1
i ≪ k⊥ ≪ d−1

e , or d−1
e χ−1 in the collisional limit), distinguished by whether or not

the magnetic field lines were frozen into the electron flow (2.31).

In the electrostatic regime, magnetic field lines are decoupled from the electron flow,
and so electrons are free to flow across field lines without perturbing them. In this regime,
we recovered both the familiar electrostatic electron-temperature-gradient (sETG, sec-
tions 3.1 and 3.2) and curvature-mediated ETG (cETG, section 3.3) instabilities, noting
in particular that the mechanism responsible for the extraction of free energy from the
(radial) equilibrium temperature gradient was the fluctuating E ×B flow — the usual
electrostatic linear drive — in that it converted the equilibrium temperature variation
into perturbations of the electron temperature [see, e.g., the third equation in (3.4)].

In the electromagnetic regime, the magnetic field lines are frozen into the electron
flow (2.31), meaning that perpendicular magnetic-field perturbations δB⊥ are created as
electrons move across field lines and drag the latter along. Crucially, this means that the
equilibrium temperature gradient has a component along the perturbed field line, viz., its
projection onto the radial component of the perturbed magnetic field [see, e.g., the second
term in (2.18)], which proved to be responsible for the electromagnetic destabilisation
associated with the novel thermo-Alfvénic instability (TAI) (section 4). We showed that
the TAI exists in both a slab version (sTAI, destabilising kinetic Alfvén waves, sections
4.3.1 and 4.4.1) and a curvature-mediated version (cTAI, sections 4.1 and 4.4). The
transition between these two occurs at the critical parallel wavenumber k∥c (4.21): from
sTAI at k∥ ≫ k∥c to cTAI at k∥ ≲ k∥c. Another important scale for the TAI is the
perpendicular wavenumber k⊥∗ (4.26), which controls the transition between the isobaric
(k⊥∗ ≲ k⊥ ≲ d−1

e , or d−1
e χ−1 in the collisional limit) and isothermal (ρ−1

i ≪ k⊥ ≲ k⊥∗)
limits. In the isobaric limit (section 4.4), we demonstrated that cTAI is subdominant to
sTAI, and can be regarded as an electron-scale extension of MHD-like modes, such as
kinetic-ballooning modes (KBMs). In contrast, in the isothermal limit (section 4.1), we
found, most importantly for transport, that the cTAI is the dominant instability, with a
peak growth rate (4.15) greater than that of the cETG (3.13), exciting electromagnetic
perturbations with a specific parallel wavenumber (4.24) (unlike the cETG, which is
two-dimensional). This isothermal cTAI’s physical mechanism hinges on the fact that —
in the presence of either dominant parallel streaming k∥vthe (in the collisionless limit)
or thermal conduction κk2∥ ∝ k2∥v

2
the/νe (in the collisional one) — perturbations of the

magnetic field are coupled to those of the electron temperature as the latter must always
adjust to cancel the variation of the equilibrium temperature along the perturbed field
line [see, e.g., the isothermal condition (4.12)]. Such an instability mechanism can only
be present in the electromagnetic regime, when perturbations of the magnetic field’s
direction are significant.

Given that the dominant source of turbulent energy injection is often associated with
the largest scales of a given system, the presence of such a large-scale, electromagnetic
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instability suggested that the picture of electromagnetic turbulence would depart signif-
icantly from the electrostatic one. This is indeed what we found: using a critical-balance
phenomenology analogous to Barnes et al. (2011) to construct a turbulent-cascade theory
for the free energy injected by both the electrostatic and electromagnetic instabilities
(section 6), we demonstrated that the cTAI dominated the turbulent transport for
temperature gradients LB/LT larger than β−1

e (LB/L∥)
2 (section 6.4). Moreover, the

turbulent electron heat flux carried by the fluctuations at the cTAI injection scale (6.33)
turned out to scale more steeply with the temperature gradient than the heat flux due
to the electrostatic sETG turbulence in this regime, thus giving rise to stiffer transport
[see (6.44) in the collisionless limit and (6.45) in the collisional one]. These results would
appear to be particularly relevant in the context of the edge regions of a tokamak, where
both the safety factor and the temperature gradients are large (see, e.g., Ham et al. 2021
and references therein).
These results demonstrate that if finite perturbations of the magnetic-field direction

are allowed in the presence of a radial equilibrium electron temperature gradient, then
the system is able to extract free energy from the equilibrium temperature gradient via
a route that is distinct from the usual E ×B feedback, and that this extraction channel
can be dominant. Given that all realistic plasmas are at least somewhat electromagnetic,
no matter how small the plasma beta, this physics should be of some concern, or at
least interest, to those attempting to model the effect of electromagnetic turbulence in
tokamak-relevant configurations.

7.2. Open issues

The results and conclusions of this paper were derived within the context of a reduced
model, as doing so allowed us to focus directly on the fundamental physical processes
behind electromagnetic destabilisation on electron scales in the presence of an electron
temperature gradient. Such simplifications, however, always come at a cost to general
practical applicability, and so we will here devote some space to a discussion of the most
pressing questions and lines of investigation left open, or opened up, by this work.

7.2.1. Ion dynamics

All of the results of this paper have been derived in the limit where the ion density
response is Boltzmann, as in (2.19). In terms of perpendicular scales, this is equivalent to
the assumption that k⊥ ≫ ρ−1

i . Simultaneously, the electromagnetic physics — our main
subject — occurs on the scales at which magnetic-field perturbations can be created by
electron motions, viz., below the flux-freezing scale, k⊥ ≲ d−1

e . Therefore, in order for
the adiabatic-ion assumption to remain valid, we need a sufficient separation between ρi
and the largest perpendicular scale within our system. For the outer scale (6.38) of our
cTAI turbulence, this implies a restriction on the electron beta of

Z2me

τmi
≪ βe ≪

τmi

Z2me

(
LT

LB

)3


(
LB

L∥

)4

, collisionless,(
LB

L∥

)6(
λe
LB

)2

, collisional,

(7.1)

with the lower bound following from demanding that ρi ≫ de. his scale separation is
never going to be very large in a realistic plasma, and thus an important question is
whether the TAI mechanism — that provides an electromagnetic source of free energy
on the largest electron scales — survives at, or indeed across, the ion-Larmor transition,
for k⊥ρi ≲ 1. Answering this will require both a careful handling of finite-ion-Larmor-
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radius (FLR) effects and the introduction of an ion-temperature gradient, in addition to
the electron one. These extensions have been left for future investigation. We note that,
in what is perhaps a preview of the result of such an investigation, Maeyama et al. (2021)
found that there was very little difference in the electrostatic potential φ between the
cases of adiabatic and kinetic ions when electromagnetic effects were taken into account
(see their figure 4), which suggests that at least qualitatively, the nonlinear results of
section 6 may not be significantly modified by the presence of non-adiabatic ions for the
plasma parameters considered here.

7.2.2. Microtearing modes and magnetic shear

As mentioned in section 1, much of the research into electromagnetic microinstabilities
and turbulence in fusion contexts has focused on two microinstability classes: micro-
tearing modes (MTMs) and KBMs. While we have already discussed the latter within
the context of this work (section 4.4), we have little to say about MTMs because we did
not include in our model any shear of the equilibrium magnetic field, a crucial ingredient
in MTM dynamics, which encourages the associated tearing of magnetic field lines (see,
e.g., Zocco et al. 2015 and references therein). In brief, the TAI cannot be classed as a
particular branch of the MTM zoo. It is, however, an interesting question as to how the
results of this paper would be modified in the presence of magnetic shear; given that the
TAI mechanism leads to a growth of perturbations of the magnetic field’s direction, it is
possible that the TAI could drive tearing in a sheared setting. In any case, introducing
magnetic shear into our reduced system should provide an appropriately simple model
for a thorough investigation of MTM dynamics. An analogue of such a system in full
tokamak geometry is the electromagnetic extension of Hardman et al. (2021), currently
in preparation.

7.2.3. Nonlinear saturation of electromagnetic simulations

An aspect of turbulent transport that has baffled tokamak modellers in recent years is
the failure to find a saturated state in local nonlinear electromagnetic simulations (see,
e.g., Pueschel et al. 2013a,b, 2014 and references therein). It is believed that this failure
is due to the presence of MTMs or KBMs, and to their interactions with zonal flows,
though relatively little is understood about whether this issue is a truly physical one
— related to the mechanisms of saturation of electromagnetic turbulence — or is due
to numerical subtleties and difficulties. Given that the model equations considered in
this paper are clearly electromagnetic, their nonlinear numerical investigation should be
able to provide some insight into this issue. Should these equations experience a blow-up
similar to gyrokinetics, then they are sufficiently simple — in comparison to the full
gyrokinetic system employed by the simulations cited above — that making theoretical
sense of this saturation failure should be more amenable.
The issue of the blow-up aside, there is of course the broader question of the structure

of the saturated state of electromagnetic turbulence in tokamak plasmas — or even
the much simpler tokamak-inspired ones, like ours. The a priori analysis provided in
section 6 is but a preliminary step towards a more thorough numerical investigation,
based on the model derived here, of cTAI turbulence, its saturation, its transport
properties, its ability to support reduced transport states (cf. Ivanov et al. 2020, 2022),
etc. These questions will be addressed in a future publication, for which the present
article provides the nessecary theoretical background.

We are indebted to G. Acton, M. Barnes, S. Cowley, I. Dodin, W. Dorland, M. Hard-
man, D. Hosking, N. Loureiro, L. Milanese, J. Parisi, and F. Parra for helpful discussions



48 T. Adkins et al.

and suggestions at various stages of this project. This work has been carried out within the
framework of the EUROfusion Consortium and has received funding from the Euratom
research and training programme 2014–2018 and 2019–2020 under Grant Agreement
No. 633053, and from the UKRI Energy Programme (EP/T012250/1). The views and
opinions expressed herein do not necessarily reflect those of the European Commission.
TA was supported by a UK EPSRC studentship. The work of AAS was supported in
part by UK EPSRC (EP/R034737/1).

Appendix A. Derivation of low-beta equations

We would like to work with a set of equations that, while representing a correct
approximation to plasma dynamics in some physically realisable limit and containing all
the physics that is of interest to us, have a minimum of features that increase technical
complexity without being qualitatively essential. This attitude was taken in Zocco &
Schekochihin (2011), who where interested in electron kinetics in the context of magnetic
reconnection; the optimal regime to consider turned out to be the low-beta limit of ion
gyrokinetics and electron drift kinetics. A similar regime will serve our purposes here,
but, as we now wish to include also energy injection due to an equilibrium temperature
gradient and the magnetic drifts associated with a magnetic geometry of locally constant
curvature, we will present a self-contained derivation of the relevant equations.
In what follows, appendix A.1 introduces the nature of the equilibrium and fluctuations

that we consider in our system, including the constraints on the equilibrium lengthscales
due to the magnetic geometry defined in section 2.1. Appendix A.2 describes and
physically motivates our asymptotic ordering. Appendix A.3 introduces the gyrokinetic
system of equations. Our low-beta ordering is then implemented to derive equations
describing both ion and electron dynamics in appendices A.4 and A.5, respectively.
The collisional limit of the resultant equations is then derived in appendix A.6. Finally,
appendix A.7 details the reduction of our equations — both collisionless and collisional —
to those considered in the main text. Readers merely interested in the latter equations can
skip ahead to appendix A.7, working backwards where further clarification is required.

A.1. Equilibrium and fluctuations

We will describe both species (s = e for electrons and s = i for ions) kinetically, with
their distribution functions sought in the form

fs = f0s + δfs. (A 1)

Although we neglected both density and ion-temperature gradients in the main text,
here we shall, for the sake of generality, allow our local equilibria f0s to support radial
gradients, which are assumed to be constant across our domain, in both density and
temperature for both species, viz.,

∇f0s = −
[

1

Lns

+
1

LTs

(
v2

v2ths
− 3

2

)]
x̂f0s, L−1

ns
= − 1

n0s

dn0s
dx

, L−1
Ts

= − 1

T0s

dT0s
dx

,

(A 2)
where n0s and T0s are the equilibrium density and temperature of species s, respectively,
vths =

√
2T0s/ms is their thermal speed and ms their mass. It is assumed that all

equilibrium quantities, of typical lengthscale L, evolve on the (long) transport timescale
τ−1
E ∼ (ρs/L)

3Ωs, and so can be considered static. Here, ρs = vths/|Ωs| is the thermal
Larmor radius and Ωs = qsB0/msc the cyclotron frequency of species s with charge
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qs (qi = Ze, qe = −e), with B0 the equilibrium magnetic field strength. Note that
quasineutrality (n0e = Zn0i) implies that Lne = Lni = Ln.
The perturbations δfs around these equilibria have characteristic frequency ω and

wavenumbers k∥ and k⊥ parallel and perpendicular, respectively, to the magnetic field
B. The magnetic field consists of an equilibrium part that is oriented in the b0 direction
and varies radially, plus a time- and space-dependent fluctuating part:

B(r, t) = B0(x)b0 + δB(r, t). (A 3)

The equilibrium (mean) magnetic field has the scale length and radius of curvature

L−1
B = − 1

B0

dB0

dx
, R−1 = |b0 · ∇b0| , (A 4)

respectively, both of which are assumed to be constant across our domain, while the
fluctuating part δB has the same characteristic frequency and wavenumbers as δfs. The
electric field E is assumed to have no mean part.
For a non-relativistic plasma, the equilibrium magnetic field is described by Ampère’s

law and force balance:

j0 =
c

4π
∇×B0,

1

c
j0 ×B0 = ∇⊥

∑
s

n0sT0s. (A 5)

Combining these two equations, we arrive at the usual expression of force balance between
the pressures of all plasma species, the equilibrium magnetic pressure, and magnetic
curvature force due to field-line bending:

∇⊥

(∑
s

n0sT0s +
B2

0

8π

)
=
B2

0

4π
(b0 · ∇)b0. (A 6)

Adopting the geometry described in section 2.1, with the generalisation (A 2), this gives
us a constraint by which the equilibrium lengthscales of our system are related:

βe
2

(
1

Ln
+

1

LTe

)
+
τβe
2Z

(
1

Ln
+

1

LTi

)
+

1

LB
=

1

R
, (A 7)

where τ = T0i/T0e is the temperature ratio and βe = 8πn0eT0e/B
2
0 the electron beta.

Consideration of such constraints is important at finite beta: e.g., the so-called “Gradient
Drift Coupling” (GDC) instability found by Pueschel et al. (2015) was demonstrated as
spurious by Rogers et al. (2018), with the growth rate of the instability disappearing once
the equilibrium constraint had been taken into account. At vanishingly small beta, which
will be assumed in (A 12), however, (A 7) simply becomes R = LB , and the remaining
equilibrium lengthscales may be chosen arbitrarily. In what follows, we shall no longer
distinguish between R and LB .

A.2. Low-beta gyrokinetic ordering

We want our equations to be simple as possible, but sufficiently complete in order
to retain the parallel streaming of electrons (and their associated kinetic effects, such as
Landau damping; Landau 1946), kinetic Alfvén waves (KAW), drift waves, perpendicular
advection by both magnetic drifts and E ×B flows, and electron collisions. Therefore,
we postulate an asymptotic ordering in which the characteristic frequency of the pertur-
bations ω and the characteristic frequencies of all of the above phenomena are formally
comparable:

ω ∼ k∥vthe ∼ ωKAW ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ νee ∼ νei, (A 8)
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where

ωKAW =
1√
2
k∥vthek⊥de, ω∗s =

kyρsvths
2LTs

, ωds =
kyρsvths
2LB

, (A 9)

are the kinetic Alfvén wave frequency, the drift frequency, and magnetic-drift frequency
respectively, vE = cE ×B/B2 is the E ×B drift velocity (c is the speed of light), and

νei =
4
√
2π

3

e4n0e logΛ

m
1/2
e T

3/2
0e

, νee =
νei
Z
, (A 10)

are the electron-ion and electron-electron collision frequencies, respectively, with logΛ
the usual Coulomb logarithm (Braginskii 1965, Helander & Sigmar 2005).
In (A 9), we also used the electron skin depth (inertial length) de = ρe/

√
βe. This

lengthscale will be of key significance for us because it regulates the transition between
the electrostatic and electromagnetic regimes. Indeed, the ordering of parallel streaming
with respect to KAW implies that

k∥vthe ∼ ωKAW ⇒ k⊥de ∼ 1, (A 11)

meaning that we will retain the effects of electron inertia. Our ordering of βe with
respect to other physical (dimensionless) parameters is determined by our choice of
ordering of perpendicular wavenumbers k⊥ with respect to the electron and ion Larmor
radii. We choose to work in the drift-kinetic approximation for electrons, ordering our
perpendicular wavenumbers so that

k⊥ρi ∼ 1 ⇒ k⊥ρe ∼
√
me

mi
∼ k⊥de

√
βe ⇒ βe ∼

me

mi
, (A 12)

the last relation following from (A11). We stress that this choice, while an analytically
convenient one, it is by no means the unique possible route to the minimalist equations
that we are going to derive here.
The ordering of the drift and collision frequencies with respect to the parallel streaming

rate gives us the ordering of parallel wavenumbers:

k∥vthe ∼ ω∗s ∼ ωds ∼ k⊥ρe
vthe
L

⇒ k∥L ∼
√
βe, (A 13)

k∥vthe ∼ νee ∼ νei ∼
vthe
λe

⇒ k∥λe ∼ 1, (A 14)

where λe = vthe/νe is the electron mean-free path, and νe = νee + νei.
The ordering of the E × B drifts with respect to parallel streaming determines the

size of perpendicular flows within our system:

k∥vthe ∼ k⊥vE ⇒ vE
vthe

∼
k∥

k⊥
∼ de

L

√
βe ≡ ϵ

√
βe, (A 15)

where ϵ = de/L ∼ ρi/L is the gyrokinetic small parameter (see, e.g., Abel et al. 2013),
which need not be ordered with respect to βe. It mandates small-amplitude, anisotropic
perturbations. The frequency of these perturbations is small compared to the Larmor
frequencies of both electrons and ions:

ω

Ωe
∼ k⊥vE

Ωe
= k⊥ρeϵ

√
βe ∼ ϵβe,

ω

Ωi
=

mi

Zme

ω

Ωe
∼ ϵ. (A 16)

The ordering of vE allows us to order the amplitude of the perturbed scalar potential ϕ:

vE
vthe

∼ c

B0
k⊥ϕ ∼ k⊥ρe

eϕ

T0e
⇒ eϕ

T0e
∼ ϵ. (A 17)
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The density perturbations δns are ordered anticipating a Boltzmann density response
and the temperature perturbations δTs are assumed comparable to them:

δTe
T0e

∼ δTi
T0i

∼ δni
n0i

=
δne
n0e

∼ eϕ

T0e
∼ ϵ. (A 18)

Finally, the perpendicular magnetic-field perturbations are ordered so as to allow field
variation along the exact (perturbed) field lines to be order-unity different from the
variation along the direction of the equilibrium magnetic field, viz.,

∂

∂z
∼ δB⊥

B0
· ∇⊥ ⇒ δB⊥

B0
∼
k∥

k⊥
∼

k∥L

k⊥de

de
L

∼ ϵ
√
βe, (A 19)

whereas the (compressive) parallel magnetic-field perturbations are ordered anticipating
pressure balance:

δB∥

B0
=

4π

B2
0

δ

(
B2

8π

)
∼ 4π

B2
0

δ(nsTs) ∼ βe
δTe
T0e

∼ ϵβe. (A 20)

This will allow us to ignore δB∥ everywhere.

By ordering the characteristic frequencies of the perturbations ω to timescales relevant
to the physics that we are interested in [see (A 8)] and adopting a particular ordering of
perpendicular wavenumbers [see (A 12)], we have found that all relevant quantities are
naturally ordered with respect to either βe or the gyrokinetic small parameter ϵ = de/L,
where L ∼ Lns

∼ LTs
∼ LB ∼ R. To summarise, we postulate the following ordering of

frequencies:

ω

Ωe
∼ ϵβe,

ω

Ωi
∼ ϵ, (A 21)

lengthscales:

k⊥ρi ∼ k⊥de ∼ 1, k⊥ρe ∼
√
βe, k∥L ∼

√
βe, k∥λe ∼ 1,

k∥

k⊥
∼ ϵ
√
βe, (A 22)

and fluctuation amplitudes:

eϕ

T0e
∼ δne
n0e

∼ δni
n0i

∼ δTe
T0e

∼ δTi
T0i

∼ ϵ,
δB⊥

B0
∼ ϵ
√
βe,

δB∥

B0
∼ ϵβe. (A 23)

The above ordering of frequencies, lengthscales and amplitudes with respect to the
small parameter ϵ is the standard gyrokinetic ordering (see, e.g., Abel et al. 2013). We
choose to treat the ordering in βe, and thus in the electron-ion mass ratio, as subsidiary
to this, viz.,

ϵ≪
√
βe ∼

√
me

mi
≪ 1, (A 24)

with all other dimensionless parameters, such as the ratios between different equilibrium
scales, being treated as finite (i.e., independent of βe), although we will introduce further
subsidiary expansions in these parameters later on. In section A.3, we introduce the
gyrokinetic approximation, which will serve as the starting point for further reduction of
our equations by means of the low-beta ordering.
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A.3. Gyrokinetics

Under the gyrokinetic ordering, the perturbed distribution function for species s
consists of a Boltzmann and gyrokinetic parts:

δfs(r,v, t) = −qsϕ(r, t)
T0s

f0s(x,v) + hs(Rs, v⊥, v∥, t), (A 25)

where Rs = r − b0 × v⊥/Ωs is the guiding-centre position, and hs evolves according to
the gyrokinetic equation

∂

∂t

(
hs −

qs ⟨χ⟩Rs

T0s
f0s

)
+
(
v∥b0 + vds

)
· ∇hs + vχ · ∇⊥ (hs + f0s) =

(
∂hs
∂t

)
c

. (A 26)

Here, χ = ϕ − v · A/c is the gyrokinetic potential (ϕ and A are the scalar and vector
potential, respectively). It gives rise to the nonlinear drift

vχ · ∇⊥hs = b0 ·
(
∂ ⟨χ⟩Rs

∂Rs
× ∂hs
∂Rs

)
, (A 27)

which includes the E ×B drift, the parallel streaming along perturbed field lines, and
the ∇B drift associated with the perturbed magnetic field (see Howes et al. 2006). There
are also important linear terms: energy injection due to gradients of the equilibrium
distribution [see (A 2)]

vχ · ∇⊥f0s = − c

B0

∂ ⟨χ⟩Rs

∂Ys

∂f0s
∂x

=
c

B0

∂ ⟨χ⟩Rs

∂Ys

[
1

Lns

+
1

LTs

(
v2

v2ths
− 3

2

)]
f0s, (A 28)

and the magnetic drifts associated with the equilibrium field

vds =
b0
Ωs

×
[
v2∥b0 ·∇b0 +

1

2
v2⊥∇ logB0

]
= −sgn(qs)ρsvths

[
1

R

v2∥

v2ths
+

1

2LB

v2⊥
v2ths

]
ŷ,

(A 29)
where R and LB are defined in (A 4). The last term on the right-hand side of (A 26) is
the (linearised) collision operator; we shall specify its explicit form in appendix A.5.
The gyrokinetic equation (A 26) is closed by the quasineutrality condition

0 =
∑
s

qsδns =
∑
s

qs

[
−qsϕ
T0s

T0s +

∫
d3v ⟨hs⟩r

]
, (A 30)

and by the parallel and perpendicular parts of Ampère’s law, which are, respectively,

∇2
⊥A∥ = −4π

c

∑
s

qs

∫
d3v v∥ ⟨hs⟩r , (A 31)

∇2
⊥δB∥ = −4π

c
b0 ·

[
∇⊥ ×

∑
s

qs

∫
d3v ⟨v⊥hs⟩r

]
. (A 32)

However, given the ordering (A 20), we are able to neglect parallel magnetic field pertur-
bations everywhere, meaning that the gyrokinetic potential reduces to

χ = ϕ−
v∥A∥

c
. (A 33)

We thus only need ϕ and A∥ to determine the other fields to lowest order, and so (A 32)
can be dropped from our system of equations.
In the above and throughout this appendix, ⟨...⟩ denotes averages with respect to the
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gyroangle ϑ: for any function g,

⟨g(Rs)⟩r = ⟨g(r − ρs(ϑ))⟩ =
∫ 2π

0

dϑ

2π
g(r − ρs(ϑ)), (A 34)

⟨g(r)⟩Rs
= ⟨g(Rs + ρs(ϑ))⟩ =

∫ 2π

0

dϑ

2π
g(Rs + ρs(ϑ)), (A 35)

where ρs(ϑ) = b0×v⊥/Ωs is the velocity-dependent gyroradius, v = v∥b0+ v⊥(cosϑŷ−
sinϑx̂), and the unit vectors {x̂, ŷ, b0} form a right-handed orthonormal basis.
In appendices A.4 and A.5, we systematically expand the gyrokinetic system of

equations (A 26) and (A 30)-(A 31) to obtain a closed system to leading order in the
low-beta expansion (A 24).

A.4. Ion kinetics and field equations

We can neglect the parallel-streaming term in (A 26) for the ions, because

k∥vthi ∼
√
me

mi
k∥vthe. (A 36)

The gyrokinetic potential reduces to the electrostatic potential in the case of the ions,
χ ≈ ϕ, because

vthiA∥

cϕ
∼
√
βe ∼

√
me

mi
. (A 37)

Finally, we can neglect any contributions arising from the collision operator, because ion
collision rates are small within our expansion:

νii ∼
√
me

mi
νei, νie ∼

me

mi
νei. (A 38)

Introducing the decomposition

hi = gi +
Z

τ
⟨φ⟩Ri

f0i, φ =
eϕ

T0e
, (A 39)

we can, therefore, write our ion gyrokinetic equation as follows(
∂

∂t
+ vdi · ∇⊥

)
gi + vdi · ∇⊥

(
Z

τ
⟨φ⟩Ri

f0i

)
+
ρevthe

2

{
⟨φ⟩Ri

, gi + f0i
}
= 0. (A 40)

In general, we must solve (A 40) for gi in order to determine hi, and thus the ion
contribution to the field equations (A 30)-(A 31). However, since all the parallel dynamics
have been neglected in (A 40), its solution gi, and hence hi, will be an even function of
v∥. Therefore, the ion contribution in (A 31) vanishes, and we obtain a field equation for
A∥ in terms of electron dynamics (the electron parallel current) only:

u∥e

vthe
= d2e∇2

⊥A, A =
A∥

ρeB0
, (A 41)

where we have defined A as the dimensionless counterpart to A∥, as in (2.8). Thus, the
only place where ion dynamics enter into our equations is through the quasineutrality
condition (A 30), which, with the decomposition (A 39), becomes

δne
n0e

= −τ̄−1φ+
1

n0i

∫
d3v ⟨gi⟩r , (A 42)
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where τ̄−1 is an operator defined as follows:

−τ̄−1φ = −Z
τ
(1− Γ̂0)φ ≈


Z

2τ
ρ2i∇2

⊥φ, k⊥ρi ≪ 1,

−Z
τ
φ, k⊥ρi ≫ 1,

(A 43)

and the operator Γ̂0 can be expressed, in Fourier space, in terms of the modified Bessel
function of the first kind: Γ0 = I0(αi)e

−αi , where αi = (k⊥ρi)
2/2.

Throughout this paper, we will be concerned with two physical limits in which (A 40) is
rendered solvable and the quasineutrality constraint (A 42) simplified. The first of these
is the limit k⊥ρi ≫ 1. Under this assumption, and with the ordering ω ∼ ωdi ∼ ω∗i [see
(A 8)], the solution of (A 40) has the size

gi ∼
1√
k⊥ρi

φf0i, (A 44)

because all the drive (inhomogeneous) terms in (A 40) involve the gyroaveraged potential
⟨φ⟩Ri

∼ φ/
√
k⊥ρi. There is another gyroaveraging in (A 42), so the contribution

1

n0i

∫
d3v ⟨gi⟩r ∼ φ

k⊥ρi
(A 45)

can be safely neglected in this limit. The remaining equation relating δne to φ is,
therefore,

δne
n0e

= −τ̄−1φ = −Z
τ
φ, (A 46)

which is (2.19), an approximation of “adiabatic ions”.

The second useful limit is one of strong ETG drive. Let us introduce a subsidiary
ordering of equilibrium gradients

Ln ∼ LTi ∼ LB ≪ LTe (A 47)

and frequencies

ωdi ∼ ω∗i ∼ ωde ≪ ω ∼ ω∗e. (A 48)

If this is satisfied, then, still allowing k⊥ρi ∼ 1,

gi ∼
ω∗i

ω
⟨φ⟩Ri

f0i (A 49)

and, consequently, in (A 42),

1

n0i

∫
d3v ⟨gi⟩r ∼ ω∗i

ω
φ≪ φ. (A 50)

Neglecting this term leaves us again with a simple linear relationship between δne and
φ, but τ̄−1 is still the Bessel operator defined in (A 43), keeping the effects of finite ion
Larmor radius (FLR) without the need to solve the ion gyrokinetic equation. Ion-FLR
modifications do not play a crucial physical role in the majority of this paper, but, for
completeness, we have retained τ̄ dependencies where they may be relevant for future
investigations.
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A.5. Electron equations

A.5.1. Electron kinetic equation

Our ordering of perpendicular lengthscales (A 22) means that the electrons are drift-
kinetic to leading order in our expansion (A 24). It is convenient to revert to working
with the total perturbed distribution function δfe [(A 25) for s = e], instead of he. In the
limit k⊥ρe ≪ 1, all gyroaverages in (A 26) turn into unity operators, and, making use of
the simplification

∂

∂t
+ v∥

∂

∂z
+ vχ · ∇⊥ =

d

dt
+ v∥∇∥, (A 51)

where the operators d/dt (convective derivative with respect to the E×B flow) and ∇∥
(parallel derivative along the exact field line) are defined in (2.7) and (2.8), respectively,
we find(

d

dt
+ v∥∇∥ + vde · ∇⊥

)
δfe = (vde · ∇⊥φ)f0e − vχ · ∇⊥f0e −

v∥eE∥

T0e
f0e +

(
∂δfe
∂t

)
c

.

(A 52)
In terms of our dimensionless field variables, the parallel electric field is

−
eE∥

T0e
=

2

vthe

dA
dt

+
∂φ

∂z
. (A 53)

Following (A 28), the linear drive term is

vχ · ∇⊥f0e =
ρevthe

2

∂

∂y

(
φ− 2

v∥

vthe
A
)[

1

Ln
+

1

LTe

(
v2

v2the
− 3

2

)]
f0e. (A 54)

A.5.2. Electron collision operator

We now wish to specify the form of the collision operator in (A 52). Given that
our primary concern is not precise quantitative capture of collisional transport, we
shall eschew the most general Landau collision operator in favour of something more
analytically convenient, while still retaining the correct conservation properties, as well as
capturing the effects of friction between electrons and ions. Namely, we adopt a modified
version of the Dougherty (1964) operator:(

∂δfe
∂t

)
c

= νe

[
1

2

∂

∂v∥

(
v2the

∂

∂v∥
+ 2v∥

)
+ 2

∂

∂v2⊥
v2⊥

(
v2the

∂

∂v2⊥
+ 1

)]
δfe

+νe

[(
2v2∥

v2the
− 1

)
+ 2

(
v2⊥
v2the

− 1

)]
δT∥e + 2δT⊥e

3Te
f0e + 2νee

v∥u∥e

v2the
f0e, (A 55)

where

δT∥e

T0e
=

1

n0e

∫
d3v

(
2v2∥

v2the
− 1

)
δfe,

δT⊥e

T0e
=

1

n0e

∫
d3v

(
v2⊥
v2the

− 1

)
δfe (A 56)

are the parallel and perpendicular electron temperature perturbations, respectively. The
terms in (A 55) involving δT∥e and δT⊥e are there to ensure that the operator conserves
particle number and energy. It does not conserve momentum:

1

n0e

∫
d3v v∥

(
∂δfe
∂t

)
c

= −νeiu∥e, (A 57)

reflecting the effect of electrons experiencing friction against the motionless ion back-
ground. This collision operator is identical to that adopted in Mandell et al. (2018) (up
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to velocity normalisations; see their appendix A), except we have neglected all electron
FLR contributions, consistent with the ordering (A 22) and the resultant drift-kinetic
approximation.

A.5.3. Hermite-Laguerre expansion

It will be useful to consider a ‘fluid’ description of the plasma, by expanding δfe in
an appropriate polynomial basis. It will prove convenient to use the Hermite-Laguerre
moments of δfe, defined by

gℓ,m(r, t) =
1

n0e

∫
d3v (−1)ℓ

Hm(v∥/vthe)Lℓ(v
2
⊥/v

2
the)√

2mm!
δfe(r, v∥, v

2
⊥, t), (A 58)

δfe(r, v∥, v
2
⊥, t) =

∞∑
ℓ=0

∞∑
m=0

(−1)ℓ
Hm(v∥/vthe)Lℓ(v

2
⊥/v

2
the)f0e√

2mm!
gℓ,m(r, t), (A 59)

where Hm are the Hermite polynomials

Hm(v̂) = (−1)mev̂
2 dm

dv̂m
e−v̂2

,
1√
π

∫
dv̂ Hm(v̂)Hm′(v̂)e−v̂2

= 2mm! δmm′ , (A 60)

and Lℓ are the Laguerre polynomials

Lℓ(µ) =
eµ

ℓ!

dℓ

dµℓ
(e−µµℓ),

∫
dµ Lℓ(µ)Lℓ′(µ)e

−µ = δℓℓ′ . (A 61)

The use of Hermite polynomials as a (parallel) velocity basis for gyrokinetics has seen
much application in the slab-type geometry that we are considering in this paper (Smith
1997; Watanabe & Sugama 2004; Zocco & Schekochihin 2011; Zocco et al. 2015; Hatch
et al. 2013; Loureiro et al. 2016), as they are orthogonal with respect to a (parallel)
Maxwellian weight function, as in (A 60). The Laguerre polynomials are a convenient
extension of this basis to perpendicular velocities, given that they are also orthogonal
with respect to a (perpendicular) Maxwellian weight function, as in (A 61). Our choice
of collision operator (A 55) was motivated by the fact that the Hermite-Laguerre basis
functions are its eigenfunctions.

Applying the transformation (A 58) to (A 52) and making use of the recurrence rela-
tions

v̂Hm =
1

2
Hm+1 +mHm−1,

dHm

dv̂
= 2mHm−1, (A 62)

µLℓ = (2ℓ+ 1)Lℓ − (ℓ+ 1)Lℓ+1 − ℓLℓ−1,
dLℓ

dµ
=

dLℓ−1

dµ
− Lℓ−1, (A 63)

we arrive at the following equation for the Hermite-Laguerre moments of δfe:

dgℓ,m
dt

+
vthe√

2
∇∥(

√
m+ 1 gℓ,m+1 +

√
m gℓ,m−1) + ωde[gℓ,m]− C[gℓ,m] = Iℓ,m, (A 64)
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where, introducing the short-hand δℓ′,m′ = δℓℓ′δmm′ , we define

C[gℓ,m] = −νe(m+ 2ℓ)gℓ,m + νeeg0,1δ0,1 +
νe
3
(
√
2g0,2 + 2g1,0)(

√
2δ0,2 + 2δ1,0), (A 65)

ωde[gℓ,m] =
ρevthe
2LB

∂

∂y

[√
(m+ 1)(m+ 2)gℓ,m+2 + (ℓ+ 1)gℓ+1,m + 2(m+ ℓ+ 1)gℓ,m

+
√
m(m− 1)gℓ,m−2 + ℓgℓ−1,m

]
, (A 66)

Iℓ,m = −ρevthe
2

∂φ

∂y

[
δ0,0
Ln

+
1

LTe

(
δ1,0 +

1√
2
δ0,2

)
− 1

LB

(√
2δ0,2 + δ1,0 + 2δ0,0

)]
+
ρevthe√

2

∂A
∂y

[
δ0,1
Ln

+
1

LTe

(
δ0,1 + δ1,1 +

√
3

2
δ0,3

)]

+
vthe√

2

(
2

vthe

dA
dt

+
∂φ

∂z

)
δ0,1, (A 67)

The second term in (A 64) is responsible for linear (parallel) phase-mixing in the Hermite
moments m at a rate k∥vthe (see Parker et al. 2016; Schekochihin et al. 2016; Adkins &
Schekochihin 2018), while the magnetic-drift term ωde[gℓ,m] is responsible for coupling
between both Hermite and Laguerre moments, adding another mechanism of parallel
phase mixing as well as introducing perpendicular phase-mixing in ℓ. Note that the
coupling to the perpendicular moment hierarchy only occurs in the presence of the
magnetic drifts. The collision operator C[gℓ,m] is responsible for regulating fine structure
in phase space by introducing a collisional cutoff for high m’s and ℓ’s. Lastly, Iℓ,m
represents the energy injection from equilibrium gradients and momentum injection from
the parallel electric field.

A.5.4. ‘Fluid’ equations

In general, (A 64) represents an infinite hierarchy of coupled moments through which
the injected energy flows. However, it will be useful for our main discussion to separate
a particular set of ‘fluid’ moments: the perturbations of density δne/n0e = g0,0,

d

dt

δne
n0e

+∇∥u∥e +
ρevthe
2LB

∂

∂y

(
2
δne
n0e

− 2φ+
δT∥e

T0e
+
δT⊥e

T0e

)
= −ρevthe

2Ln

∂φ

∂y
, (A 68)

parallel velocity u∥e/vthe = g0,1/
√
2,

d

dt

u∥e

vthe
+
vthe
2

∇∥

(
δne
n0e

+
δT∥e

T0e

)
+
ρevthe
2LB

∂

∂y

(
4
u∥e

vthe
+
δq∥e + δq⊥e

n0eT0evthe

)
+ νei

u∥e

vthe
=
ρevthe

2

(
1

Ln
+

1

LTe

)
∂A
∂y

+
dA
dt

+
vthe
2

∂φ

∂z
, (A 69)

parallel temperature δT∥e/T0e =
√
2g0,2 [cf. the first equation in (A 56)],

d

dt

δT∥e

T0e
+ vthe∇∥

(
δq∥e

n0eT0evthe
+ 2

u∥e

vthe

)
+

4

3
νe
δT∥e − δT⊥e

T0e

+
ρevthe
2LB

∂

∂y

(
2
δne
n0e

− 2φ+ 6
δT∥e

T0e
+ 2

√
6g04 +

√
2g12

)
= −ρevthe

2LTe

∂φ

∂y
, (A 70)
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perpendicular temperature δT⊥e/T0e = g1,0 [cf. the second equation in (A 56)],

d

dt

δT⊥e

T0e
+ vthe∇∥

δq⊥e

n0eT0evthe
+

2

3
νe
δT⊥e − δT∥e

T0e

+
ρevthe
2LB

∂

∂y

(
δne
n0e

− φ+ 4
δT⊥e

T0e
+

√
2g12 + 2g20

)
= −ρevthe

2LTe

∂φ

∂y
, (A 71)

parallel heat flux δq∥e/n0eT0evthe =
√
3g0,3,

d

dt

δq∥e

n0eT0evthe
+ vthe∇∥

(√
2g04 +

3

2

δT∥e

T0e

)
+ 3νe

δq∥e

n0eT0evthe

+
ρevthe
2LB

∂

∂y

(
2
√
15g05 + 8

δq∥e

n0eT0evthe
+ 6

u∥e

vthe
+

√
3g13

)
=

3ρevthe
2LTe

∂A
∂y

,

(A 72)

and perpendicular heat flux δq⊥e/n0eT0evthe = g1,1/
√
2,

d

dt

δq⊥e

n0eT0evthe
+ vthe∇∥

(
1√
2
g12 +

1

2

δT⊥e

T0e

)
+ 3νe

δq⊥e

n0eT0evthe

+
ρevthe
2LB

∂

∂y

(√
3g13 + 6

δq⊥e

n0eT0evthe
+

√
2g21 +

u∥e

vthe

)
=
ρevthe
2LTe

∂A
∂y

.

(A 73)

Equations (A 68) and (A 69) are the standard density and parallel-momentum equations
for electrons, including the effects of electron inertia, equilibrium gradients of density,
temperature and magnetic field, and the non-isothermality of electrons. But for this last
feature, they would have been closed equations, as without it, there is no coupling to the
perturbations of temperature and heat flux.
A hybrid fluid-kinetic system consisting of (A 68), (A 69) and (A 52), with the kinetic

equation (A 52) used to close the fluid ones by calculating the temperature and heat-flux
moments, would be ideologically similar to the “Kinetic MHD” description of plasma
dynamics (Kulsrud 1983).

A.6. Collisional limit

A.6.1. Subsidiary collisional ordering

We now consider the collisional limit of our system of equations (A 68)-(A 73), in which
νee and νei are the dominant frequencies, viz., νei ∼ νee ≫ ω. Given that we wish to retain
kinetic Alfvén waves, drift waves, perpendicular advection by both magnetic drifts and
E ×B flows, as well as finite heat conduction and resistivity, we postulate, analogously
to (A 8):

νee ∼ νei ≫ ω ∼ ωKAW ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ (k⊥de)
2νei ∼ κk2∥, (A 74)

where κ ∼ v2the/νe is the electron thermal diffusivity. The parallel stremaing rate k∥vthe is
no longer the relevant parallel frequency; the new ordering can be worked out by following
the same logic as in appendix A.2 but replacing k∥vthe with the parallel conduction rate.

Namely, instead of (A 11), we have

κk2∥ ∼ ωKAW ⇒ k⊥de ∼ k∥λe, (A 75)

where λe is once again the electron mean free path. The same relation guarantees κk2∥ ∼
(k⊥de)

2νei. Ordering κk2∥ with respect to the drift frequencies gives us, with the aid of
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(A 75),

κk2∥ ∼ ω∗s ∼ ωds ∼ k⊥ρe
vthe
L

∼
√
βek∥λe

vthe
L

⇒ k∥L ∼
√
βe, (A 76)

so (A 13) survives unscathed. Combining (A 76) with (A 75) gives us

k⊥de ∼ k∥λe ∼
√
βe
λe
L

≡ χ−1, (A 77)

i.e., the perpendicular wavelengths must be ordered comparable to the flux-freezing scale
anticipated in (2.30) — the collisional analogue of what was k⊥de ∼ 1 in the collisionless
case [see (A 11)].
To obtain the ordering of the fluctuation amplitudes, we let, analogously to (A 15),

and using (A 75) and (A 76),

κk2∥ ∼ k⊥vE ⇒ vE
vthe

∼
k∥

k⊥
k∥λe ∼ ϵ

√
βe. (A 78)

Knowing this and noting that (A 77) implies

k⊥ρe ∼ χ−1
√
βe, (A 79)

we find, by the same logic as (A 16)-(A 19), the ordering of the frequencies

ω

Ωe
∼ k⊥ρe ϵ

√
βe ∼ χ−1ϵβe,

ω

Ωi
∼ χ−1ϵ, (A 80)

and of the fluctuation amplitudes

δTe
T0e

∼ δTi
T0i

∼ δni
n0i

=
δne
n0e

∼ eφ

T0e
∼ χϵ,

δB⊥

B0
∼ χϵ

√
βe. (A 81)

To summarise, (A 77), (A 80) and (A 81) represent once again an ordering of lengthscales,
frequencies, and amplitudes with respect to ϵ and βe, but now also to the subsidiary ex-
pansion parameter χ−1 — that this parameter should be small follows straightforwardly
from, e.g., νei ≫ (k⊥de)νei. Thus, the formal heirarchy of our expansions is now

ϵ≪
√
βe ≪ χ−1 ≪ 1, (A 82)

with all other dimensionless parameters being treated as finite.

A.6.2. Collisional limit of low-beta equations

We begin by considering the equations for the temperature perturbations (A 70) and
(A 71), in which the terms responsible for collisional temperature isotropisation are now
dominant: to leading order in χ−1,

νe
δT∥e − δT⊥e

T0e
= 0 ⇒

δT∥e

T0e
=
δT⊥e

T0e
≡ δTe
T0e

, (A 83)

so we no longer need to distinguish between the parallel and perpendicular temperature
perturbations. We then obtain the equation for δTe by adding (1/2)(A 70)+(A71):

3

2

d

dt

δTe
T0e

+∇∥

(
1
2δq∥e + δq⊥e

n0eT0e
+ u∥e

)
+
ρevthe
LB

∂

∂y

(
δne
n0e

− φ+
7

2

δTe
T0e

)
= −3

2

ρevthe
2LTe

∂φ

∂y
.

(A 84)

We have neglected the higher-order moments (g0,4, g1,2, and g2,0) in (A 70) and (A 71)
because, from the balance of the collision and parallel streaming (or magnetic drift) terms
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in (A 64), they are small in χ−1:

gℓ,m+1 ∼ χ−1gℓ,m, gℓ+1,m ∼ χ−2gℓ,m. (A 85)

The parallel and perpendicular heat fluxes can be calculated from (A72) and (A 73),
where the collisional terms are again dominant and the higher-order moments (g05, g13,
and g21) are negligible by (A 85), viz.,

δq∥e

n0eT0e
= 3

δq⊥e

n0eT0e
= −v

2
the

2νe

(
∇∥

δTe
T0e

− ρe
LTe

∂A
∂y

)
. (A 86)

The combined heat flux that appears in (A 84) is, therefore,

δqe
n0eT0e

=
1
2δq∥e + δq⊥e

n0eT0e
= −3

2
κ∇∥ log Te, (A 87)

where we have introduced the parallel derivative of the total temperature ∇∥ log Te, as
in (2.18) and κ = 5v2the/18νe.

The density equation (A 68) keeps all of its terms under the collisional ordering,
whereas in the parallel-velocity equation (A 69), the electron-inertia and magnetic-drift
terms are all small by a factor of χ−2, and so can be neglected. Assembling all this
together, we obtain the following system of equations

d

dt

δne
n0e

+∇∥u∥e +
ρevthe
LB

∂

∂y

(
δne
n0e

− φ+
δTe
T0e

)
= −ρevthe

2Ln

∂φ

∂y
, (A 88)

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥

(
δne
n0e

+
δTe
T0e

)
− ρevthe

2

(
1

Ln
+

1

LTe

)
∂A
∂y

+ νeid
2
e∇2

⊥A,

(A 89)

d

dt

δTe
T0e

− κ∇2
∥ log Te +

2

3
∇∥u∥e +

2

3

ρevthe
LB

∂

∂y

(
δne
n0e

− φ+
7

2

δTe
T0e

)
= −ρevthe

2LTe

∂φ

∂y
,

(A 90)

with φ and A still satisfying (A 42) and (A 41), respectively. The ion gyrokinetic equation
(A 40) is unchanged by this ordering because ion-ion and ion-electron collisions were
already neglected in the low-beta ordering [see (A 38)].
A consequence of the collisional ordering — evident from (A89) — is that electron

inertia has been neglected, as we are considering perpendicular scales smaller than the
electron inertial scale de [cf. (A 77)]. However, as we demonstrate in sections 3 and
4, these equations support ‘collisional’ analogues of the instabilities found in the full
kinetic system, making them a useful (more analytically tractable) model for illustrating
the underlying physical mechanisms of these instabilities without the (kinetic) technical
detail. Some readers may be concerned about the fact that we have used a model collision
operator (A 55) in the derivation of (A 88)-(A 90), as the velocity dependence of the
collision frequency when using the Landau collision operator could lead to additional
terms that have not been captured in our analysis. While this may be true, none of the
(collisional) physics that we discuss throughout this paper relies on the exact details of
the collision operator.

A.7. Strongly driven limit

Finally, we would like to make a further step to simplify the equations derived in
appendix A.5.4 and their collisional counterparts (A 88)-(A 90). This consists of adopting
the strongly driven limit introduced in (A 47) and (A 48). As already explained at
the end of appendix A.4, all remaining ion physics in this limit is contained in the



61

closure (A 42) without the gi contribution. In the equations for the fluid moments (A 68)-
(A 71) and (A 88)-(A 90), this limit allows one to drop some magnetic-drift terms that
never contribute in a qualitatively important way.
Namely, consider (A 68). Since Ln ∼ LB , ωde ≪ ω, and φ ∼ δne/n0e, we can always

reduce it to

d

dt

δne
n0e

+∇∥u∥e +
ρevthe
2LB

∂

∂y

(
δT∥e

T0e
+
δT⊥e

T0e

)
= 0. (A 91)

This is (2.20), the first equation of our minimalist collisionless system, or (2.24) in
the collisional case. The surviving magnetic-drift term provides the feedback for the
curvature-mediated instabilities that are the focus of section 3.3 and much of section 4.
Clearly, it can only be non-negligible if the temperature perturbations

δT∥e

T0e
∼ δT⊥e

T0e
∼ δTe
T0e

∼ ω

ωde

δne
n0e

(A 92)

are large compared to the density ones, which they will be, in some subsidiary limits
(when ω ≪ ω∗e). If they are not, the magnetic-drift term in (A 91) is as small as the
terms that we have already neglected and so must also be dropped, but the important
point is that the neglected terms are never large enough to need retaining.
By a similar argument, if Ln ∼ LB and ω ≫ ωde, the terms containing LB and Ln can

all be dropped from (A89) and (A 90), giving us (2.25) and (2.26), the two remaining
equations in our minimalist collisional system. In the collisionless case, (2.21)-(2.23) are
obtained from (A69)-(A 71) in a similar way, but one must stipulate also ωde ≪ k∥vthe
and assume that none of the Hermite-Laguerre moments involved can be much larger
than δT∥e/T0e or δT⊥e/T0e.
We reiterate that the strongly driven limit is not formally an ordering — in the sense

that some of the terms that are retained can, in certain meaningful limits, turn out to be
as small as those terms that have been neglected — but the latter are negligible always,
and so the remaining equations are always no worse off for not having them. Cautious
readers may be reassured by the fact that all of the instabilities considered in sections 3
and 4 are derived in a limit in which this is a valid approximation.
Given that throughout the majority of this paper we will be concerned with the

dynamics arising from the electron temperature gradient LTe
, we shall henceforth adopt

the notation LT = LTe
, apart from where there is possible ambiguity about which

temperature gradient is being referred to, such as in appendix B.

Appendix B. Conservation laws

In this appendix, we derive the free energy associated with our low-beta equa-
tions (A 40) and (A 52) [or, equivalently, the hierarchy of moments (A 64)].

B.1. Free energy

Plasma systems containing small perturbations around a Maxwellian equilibrium
nonlinearly conserve free energy, defined as

W = U −
∑
s

T0sδSs, U =

∫
d3r

V

|δB|2

8π
, −δSs =

∫
d3r

V

∫
d3v

δf2s
2f0s

, (B 1)

where δSs is the entropy of the perturbed distribution function of species s (see Schekochi-
hin et al. 2008, 2009 and references therein), and V = LxLyL∥ is the volume of the system.
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Given the ordering of the parallel magnetic field perturbations (A 20), the internal energy
consists only of the perpendicular magnetic field perturbations

U =

∫
d3r

V

|δB⊥|2

8π
= n0eT0e

∫
d3r

V
|de∇⊥A|2 . (B 2)

We now consider the contributions of each of the kinetic species to the free energy. Noting
that the Hermite-Laguerre basis (A 58)-(A 59) has a Parseval theorem, we may write

−T0eδSe = n0eT0e

∫
d3r

V

1

2

∞∑
ℓ=0

∞∑
m=0

g2ℓ,m. (B 3)

Recalling, from (A25) and (A 39), that

δfi =
Z

τ

(
⟨φ⟩Ri

− φ
)
f0i + gi, (B 4)

we can express the ion contribution to the entropy as

−T0iδSi = T0i

∫
d3r

V

∫
d3v

〈
δf2i
〉
r

2f0i
= n0eT0e

∫
d3r

V

φτ̄−1φ

2
+ T0i

∫
d3r

V

∫
d3v

〈
g2i
〉
r

2f0i
.

(B 5)

Here the operator τ̄ , which contains only even powers of ∇⊥ [see (A 43)], is understood
to act on both sides of itself, with the powers of ∇⊥ distributed evenly.
Putting (B 3) and (B 5) together, we can write the overall free energy of the system as

W

n0eT0e
=

W0

n0eT0e
+

τ

Zn0i

∫
d3r

V

∫
d3v

〈
g2i
〉
r

2f0i
, (B 6)

where W0 is the free energy of the system for gi = 0:

W0

n0eT0e
=

∫
d3r

V

(
φτ̄−1φ

2
+ |de∇⊥A|2 + 1

2

∞∑
ℓ=0

∞∑
m=0

g2ℓ,m

)
. (B 7)

As expected, this free energy is a sum of the quadratic norms of the electromagnetic
fields and the Hermite-Laguerre moments gℓ,m of the electron distrubution function δfe.
In the collisional limit, we do not need to retain all of the latter contributions to (B 7),

because, according to (A 85), higher-order moments are small in the collisional expansion.
To leading order in χ−1, we find

W0

n0eT0e
=

∫
d3r

V

(
φτ̄−1φ

2
+ |de∇⊥A|2 + 1

2

δn2e
n20e

+
3

4

δT 2
e

T 2
0e

)
. (B 8)

This is (6.2).

B.2. Free-energy budget

Let us now work out the time derivative of the free energy. To calculate the time deriva-
tive of the last term in (B 7), we multiply (A 64) by gℓ,m and sum over ℓ and m. Neither
the parallel-streaming nor the magnetic-drift terms in (A 64) make any contribution, viz.,

∞∑
ℓ=0

∞∑
m=0

∫
d3r

V
gℓ,m

[
vthe√

2
∇∥
(√
m+ 1 gℓ,m+1 +

√
m gℓ,m−1

)
+ ωde[gℓ,m]

]
= 0, (B 9)

because pairwise terms of the form

gℓ,m∇∥gℓ,m′ + gℓ,m′∇∥gℓ,m, gℓ,m
∂

∂y
gℓ,m′ + gℓ,m′

∂

∂y
gℓ,m, (B 10)
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vanish identically when integrated over all space. The contribution from the collision
term in (A 64) is

De = −
∞∑
ℓ=0

∞∑
m=0

∫
d3r

V
gℓ,mC[gℓ,m]

= 2νei

∫
d3r

V

∣∣d2e∇2
⊥A
∣∣2 + νe

∫
d3r

V

[
2

3

(
δT∥e − δT⊥e

T0e

)2

+

∞∑
m=3

mg20,m +

∞∑
m=1

(m+ 2)g21,m +

∞∑
ℓ=2

∞∑
m=0

(m+ 2ℓ)g2ℓ,m

]
⩾ 0, (B 11)

where we have used the fact that

2g20,2 + 2g21,0 −
1

3

(√
2g0,2 + 2g1,0

)2
=

2

3

(
δT∥e − δT⊥e

T0e

)2

(B 12)

to simplify the temperature terms in (A 65). The contribution from the injection term
on the right-hand side of (A 64) can be written as follows, after integrating by parts and
using (A 68),

∞∑
ℓ=0

∞∑
m=0

∫
d3r

V
gℓ,mIℓ,m = εe +

∫
d3r

V

(
φ
d

dt

δne
n0e

− d

dt
|de∇⊥A|2

)
, (B 13)

where the energy injection due to the electron density and temperature gradients is:

εe =
1

Ln

∫
d3r

V

δne
n0e

vEx +
1

LTe

∫
d3r

V

[(
1

2

δT∥e

T0e
+
δT⊥e

T0e

)
vEx +

1
2δq∥e + δq⊥e

n0eT0e

δBx

B0

]
.

(B 14)
This is the first expression in (6.4), with vEx and δBx/B0 defined in (6.5). We recognise
the terms proportional to vEx as the transport of density and temperature perturbations
by the E×B flow, while the terms proportional to δBx/B0 are the fluxes of temperature
along the perturbed field lines. Note that (B 13) contains a contribution equal to the
time derivative of the second term in (B 7) (the magnetic energy), which we transfer to
the left-hand side of our emerging free-energy budget.
We now turn to the first term in (B 7). Using (A 40) and (A 42), its time derivative is

d

dt

∫
d3r

V

φτ̄−1φ

2
= −

∫
d3r

V
φ
d

dt

δne
n0e

+Dx, (B 15)

where a term has arisen that represents energy exchange between electrons and ions due
to equilibrium magnetic field gradients:

Dx = − 1

n0i

∫
d3r

V

∫
d3v φ vdi · ∇⊥

〈
gi +

Z

τ
⟨φ⟩Ri

f0i

〉
r

. (B 16)

If we had retained ion collisions in (A 40), a collisional energy-exchange term would also
have had to be included in (B 15).
Assembling (B 11), (B 13) and (B 15), we find

1

n0eT0e

dW0

dt
= εe −De +Dx. (B 17)

In the collisional limit, the expressions for De and εe are significantly simplified. Since,
in this limit, δT∥e = δT⊥e = δTe, the first term in the square brackets in (B 11) vanishes.
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Then, recalling the definition of the collisional heat flux (2.17) and neglecting terms of
order χ−2(δqe/n0eT0evthe)

2 and higher, which are small by (A 85), we find that (B 11)
becomes

De = 2νei

∫
d3r

V

∣∣d2e∇2
⊥A
∣∣2 + 12

5
νe

∫
d3r

V

(
δqe

n0eT0evthe

)2

. (B 18)

The expression for the collisional energy injection follows similarly from (B 14):

εe =
1

Ln

∫
d3r

V

δne
n0e

vEx +
1

LTe

∫
d3r

V

(
3

2

δTe
T0e

vEx +
δqe

n0eT0e

δBx

B0

)
. (B 19)

This is the second expression in (6.4). Naturally, both (B 18) and (B 19) can also be
obtained by direct calculation from (B8) using the collisional equations (A 88)-(A 90).
Finally, to calculate the gi contribution to (B 6), we multiply the ion gyrokinetic equa-

tion (A 40) by gi/f0i and integrate over the entire phase space. After some manipulations,
we obtain

τ

Zn0i

∫
d3r

V

∫
d3v

d

dt

〈
g2i
〉
r

2f0i
= εi −Dx, (B 20)

where Dx is as defined in (B 16), and the energy injection due to ion equilibrium
gradients is

εi = −ρivthi
2n0i

∫
d3r

V

∫
d3v

[
1

Ln
+

1

LTi

(
v2

v2thi
− 3

2

)]〈
∂ ⟨φ⟩Ri

∂Yi
gi

〉
r

. (B 21)

Combining this result with (B 17), we arrive at

1

n0eT0e

dW

dt
= εi + εe −De. (B 22)

In the absence of any ion equilibrium gradients, all of the energy injection is due to the
equilibrium electron gradients. Then (B 22) becomes (6.3).

Appendix C. Magnetic-flux conservation

The conservation of magnetic flux is guaranteed if there exists some effective velocity
field ueff such that material loops moving with this velocity always enclose the same
amount of magnetic flux. Should such a ueff exist, then it also preserves magnetic field
lines and their topology (Newcomb 1958). Following Cowley (1985), we consider

ueff =
c

B
(E −∇Φ)× b, (C 1)

where B is the total magnetic field, B = |B| and b = B/B are its magnitude and
direction, respectively, and Φ is some single-valued scalar function. Physically, (C 1) can
be interpreted as the E×B flow resulting from an effective electric field E−∇Φ. It can
then be shown by direct substitution that the electric field satisfies

E +
ueff ×B

c
= ∇Φ+ (E∥ −∇∥Φ)b, (C 2)

where E∥ = b ·E, ∇∥ = b · ∇. Faraday’s law can then be written as

∂B

∂t
= −c∇×E = ∇× (ueff ×B)− c∇×

[
(E∥ −∇∥Φ)b

]
. (C 3)
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If we recognise ueff as the flux- and field-line-preserving velocity, then, following the
standard proof of flux conservation (reproduced in numerous MHD textbooks), we find
(see, e.g., Eyink & Aluie 2006)

d

dt

∫
S(t)

B · dS = −c
∮
∂S(t)

(E∥ −∇∥Φ)b · dℓ, (C 4)

where S(t) is the surface advected by the velocity ueff, and ∂S(t) its boundary. This
implies that the conservation of magnetic flux is broken only by the non-zero parallel
projection of the effective electric field that gives rise to ueff, i.e., E∥ − ∇∥Φ, meaning
that we must look to parallel force balance to determine whether or not the magnetic
flux is conserved.
In our system of equations, this is given by (A 69), which, recalling the definition

of E∥ (A 53) and parallel Ampère’s law (A41), can be written as

E∥ −∇∥Φ = −ρeB0

c

[
d

dt

u∥e

vthe
+ η∇2

⊥A+
ρevthe
2LB

∂

∂y

(
4
u∥e

vthe
+
δq∥e + δq⊥e

n0eT0evthe

)]
, (C 5)

where we have defined the Ohmic resitivity η = νeid
2
e, and identified Φ to be the

‘potential’ associated with the total parallel pressure, viz.,

− e

T0e
∇∥Φ =

1

n0eT0e
∇∥p∥e = ∇∥

(
δne
n0e

+
δT∥e

T0e

)
−
(
ρe
Ln

+
ρe
LTe

)
∂A
∂y

, (C 6)

where p∥e = neT∥e, ne = n0e + δne, and T∥e = T0e + δT∥e are the total parallel
pressure, density, and parallel temperature, respectively. It is clear that the conservation
of magnetic flux is broken by the terms on the right-hand side of (C 5); namely, from left
to right, finite electron inertia, finite resistivity and magnetic drifts.
In the collisionless limit, η → 0, allowing us to neglect the resistive term. Below the

flux-freezing scale (2.28), k⊥de ≪ 1, the remaining terms on the right-hand side are
negligible in comparison to those on the left [the magnetic drifts also vanishing in the
strongly driven limit, cf. (2.21)], meaning that, on electromagnetic scales, the magnetic
field becomes frozen into the effective velocity

ueff =
ρevthe

2
b0 ×∇

(
φ+

eΦ

T0e

)
= vE − ρevthe

2

b0 ×∇p∥e
n0eT0e

, (C 7)

where vE is defined in (2.7), and we have evaluated (C 1) to leading order in the
gyrokinetic expansion and used (C 6). This is (2.31).
In the collisional limit, we retain only finite resitivity on the right-hand side of (C 5)

[cf. (A 89)], while (C 6) remains valid under the replacement δT∥e → δTe. Below the flux-
freezing scale (2.30), the resistive term can also be ignored, and the magnetic field once
again becomes frozen into (C 7).

Appendix D. Collisionless linear theory

We begin with our field equations, namely, quasineutrality (A 42) [with gi = 0;
see (A 47) and what follows it] and parallel Ampère’s law (A41):

δñe
n0e

=
1

n0e

∫
d3v δf̃e = g̃0,0 = −τ̄−1φ̃, (D 1)

ũ∥e

vthe
=

1

n0e

∫
d3v

v∥

vthe
δf̃e =

1√
2
g̃0,1 = −(k⊥de)

2Ã, (D 2)
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where tildes indicate the Fourier components of the fields, and we have expressed the
perturbations of the electron density and parallel velocity in terms of the Hermite-
Laguerre moments g̃ℓ,m of δf̃e, defined in (A 58). To calculate these moments, we linearise
and Fourier-transform the electron kinetic equation (A 52). Neglecting collisions and
normalising all frequencies to the parallel streaming rate, viz.,

ζ =
ω

|k∥|vthe
, ζ∗ =

ω∗e

|k∥|vthe
, ζd =

ωde

|k∥|vthe
, (D 3)

with ω∗e and ωde defined in (A 9), (A 52) can be written as[
−ζ +

k∥

|k∥|
v∥

vthe
+ ζd

(
2v2∥

v2the
+

v2⊥
v2the

)]
δf̃e
f0e

=

[
−ζ +

k∥

|k∥|
v∥

vthe
+ ζd

(
2v2∥

v2the
+

v2⊥
v2the

)]
φ̃+

[
ζ − ζ∗

(
1

ηe
+

v2

v2the
− 3

2

)](
φ̃−

2v∥

vthe
Ã
)
,

(D 4)

where ηe = Ln/LT . Introducing the dimensionless velocity variables

v̂ =
k∥

|k∥|
v∥

vthe
, µ =

v2⊥
v2the

, (D 5)

we can write the Hermite-Laguerre moments as follows:

g̃ℓ,m =

(
k∥

|k∥|

)m(
Mℓ,mφ̃−Nℓ,m

k∥

|k∥|
Ã
)
+ φ̃ δ0,0, (D 6)

where the coefficient-matrix elements are

Mℓ,m =
1√
π

∫ ∞

−∞
dv̂ e−v̂2

∫ ∞

0

dµ e−µ(−1)ℓ
Hm(v̂)Lℓ(µ)√

2mm!

ζ − ζ∗
(
η−1
e + v̂2 + µ− 3

2

)
v̂ − ζ + ζd(2v̂2 + µ)

,

(D 7)

Nℓ,m =
1√
π

∫ ∞

−∞
dv̂ e−v̂2

∫ ∞

0

dµ e−µ(−1)ℓ
Hm(v̂)Lℓ(µ)√

2mm!
2v̂
ζ − ζ∗

(
η−1
e + v̂2 + µ− 3

2

)
v̂ − ζ + ζd(2v̂2 + µ)

.

(D 8)

Using (D 6) in (D 1) and (D2), and combining the resultant expressions, we find, after
some algebra, the dispersion relation:(

1 +
1

τ̄
+M0,0

)(
k2⊥d

2
e −

1√
2
N0,1

)
+

1√
2
M0,1N0,0 = 0. (D 9)

As we shall shortly demonstrate by recovering some familiar limits, this is the ETG
dispersion relation (Liu 1971; Lee et al. 1987) coupled to the KAW one, and including
the effects of magnetic drifts.

D.1. Evaluation of coefficient-matrix elements

In its form (D9), our dispersion relation is not particularly amenable to analytical
solution, owing to the complexity of the coefficient-matrix elements (D 7) and (D8).
We devote this section to an approximate evaluation of these coefficients in order to
express (D 9) in terms of known functions; readers interested in only the outcome of this
procedure can skip ahead to (D 23)
Following Biglari et al. (1989), we write the coefficient-matrix elements appearing
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in (D 9) as follows:

M0,0 = lim
a,b→1

[
ζ − ζ∗

(
1

ηe
− ∂a − ∂b −

3

2

)]
Ia,b (D 10)

N0,0 =
√
2M0,1 = lim

a,b→1
2

[
ζ − ζ∗

(
1

ηe
− ∂a − ∂b −

3

2

)]
Ja,b (D 11)

N0,1 = lim
a,b→1

−2
√
2

[
ζ − ζ∗

(
1

ηe
− ∂a − ∂b −

3

2

)]
∂aIa,b, (D 12)

where we have defined

Ia,b(ζ, ζd) =
1√
π

∫ ∞

−∞
dv̂

∫ ∞

0

dµ
e−av̂2

e−bµ

v̂ − ζ + ζd(2v̂2 + µ)
, (D 13)

Ja,b(ζ, ζd) =
1√
π

∫ ∞

−∞
dv̂

∫ ∞

0

dµ
v̂e−av̂2

e−bµ

v̂ − ζ + ζd(2v̂2 + µ)
, (D 14)

with positive, real constants a and b (ensuring integral convergence). By using a partial-
fraction expansion of its integrand, the latter of these can be written in terms of
derivatives of the former with respect to a and b:

Ja,b =
1

a1/2b
+ ζIa,b + ζd(2∂a + ∂b)Ia,b. (D 15)

In writing the coefficient-matrix elements in this way, we have reduced our problem to
determining (D 13) in terms of functions that can be either computed numerically or
expanded analytically in sensible limits. In the absence of magnetic drifts, Ia,b reduces
trivially to the well-studied plasma dispersion function (Faddeeva & Terent’ev 1954; Fried
& Conte 1961):

I1,1(ζ, 0) = Z(ζ) =
1√
π

∫
dv̂

e−v̂2

v̂ − ζ
(D 16)

with the integral understood to be along the Landau contour — while for two-dimensional
modes with k∥ → 0, Ia,b can be also written in terms of products of plasma dispersion
functions (see, e.g., Similon et al. 1984; Biglari et al. 1989; Zocco et al. 2018). How to
calculate Ia,b analytically in the presence of both parallel streaming and magnetic drifts
without approximation remains an open research question, despite some progress being
made numerically (Parisi et al. 2020).
Given that we are most interested in the strongly driven limit (see appendix A.7), we

choose to expand the resonant denominator7 in (D 13) as a series in ζd ≪ 1 ∼ ζ:

1

v̂ − ζ + ζd(2v̂2 + µ)
=

1

v̂ − ζ

∞∑
n=0

(
2v̂2 + µ

v̂ − ζ

)n

(−ζd)n ≈ 1

v̂ − ζ
− 2v̂2 + µ

(v̂ − ζ)2
ζd + . . .

(D 17)

We will discuss the validity and consequences of this approximation in appendix D.6.
Substituting (D 17) into (D 13) and retaining only terms linear in ζd, we find, after
integrating by parts in the second term and evaluating the integral over µ, that Ia,b can

7A careful reader may be concerned about the potential breakdown of this expansion in the
region of the resonance, viz., for |v̂ − ζ| ∼ ζd ≪ ζ. However, if one removes this potential

resonance by changing variables to u = v̂ + ζd(2v̂
2 + µ), with dv̂dµ = dudµ/

√
1 + 8uζd − 8µζ2d ,

and performs a similar expansion for ζd ≪ 1, one finds the same result as the “naive” expansion
(D 17), to linear order.
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be expressed entirely in terms of the plasma dispersion function (D 16):

Ia,b(ζ, ζd) =
1

b
Z(

√
aζ) +

4

b

[
1

2a1/2
+
(
aζ2 +

a

2b
− 1
)( 1

a1/2
+ ζZ(

√
aζ)

)]
ζd. (D 18)

Finally, substituting (D 18) into (D 10)-(D 12), via (D 15) where necessary, and making
use of the identities

Z ′ = −2(1 + ζZ), Z ′′ =
2

ζ
− 2

ζ

(
ζ2 − 1

2

)
Z ′, (D 19)

we find, neglecting density gradients (ηe → ∞):

M0,0 = −ζζ∗ +
[
ζ − ζ∗

(
ζ2 − 1

2

)]
Z

+
{
4ζ3 + (4ζ4 − 2ζ2)Z −ζ∗

[
4ζ4 − 6ζ2 + (4ζ5 − 8ζ3 + ζ)Z

]}
ζd, (D 20)

N0,0 = −ζ∗ + 2

[
ζ − ζ∗

(
ζ2 − 1

2

)]
(1 + ζZ)

+
{
8ζ4 − 4ζ2 + (8ζ5 − 8ζ3 − 2ζ)Z

−ζ∗
[
8ζ5 − 16ζ3 − 2ζ + (8ζ6 − 20ζ4 + 2ζ2 − 1)Z

]}
ζd, (D 21)

N0,1 = −
√
2ζζ∗ + 2

√
2

[
ζ − ζ∗

(
ζ2 − 1

2

)]
ζ(1 + ζZ)

+ 2
√
2
{
4ζ5 − 4ζ3 − 2ζ + (2ζ5 − 3ζ3 − ζ)Z

−ζ∗
[
4ζ6 − 10ζ4 − 2ζ2 − 2 + (4ζ7 − 12ζ5 + ζ3 − ζ)Z

]}
ζd. (D 22)

Together with (D 9), re-written here using the first equality in (D 11) as(
1 +

1

τ̄
+M0,0

)(
k2⊥d

2
e −

1√
2
N0,1

)
+

1

2
N2

0,0 = 0, (D 23)

these expressions for the coefficient-matrix elements give us the dispersion relation for
our kinetic system in the limit ζd ≪ 1, written in terms of ζ, ζ∗, ζd and the plasma
dispersion function Z. As ever in linear plasma (kinetic) theory, physically transparent
cases arise when the plasma dispersion function is expanded in large or small argument
— as we shall see, these are the natural limits for recovering characteristic electrostatic
and electromagnetic phenomena, respectively.

D.2. Two-dimensional perturbations

Let us first consider purely two-dimensional perturbations — which amounts to setting
k∥ = 0 everywhere — without ordering k⊥de with respect to unity. In this limit, ζ ∝
k−1
∥ → ∞, so the plasma dispersion function can be expanded as:

Z(ζ) ≈ i
√
πe−ζ2

− 1

ζ

(
1 +

1

2ζ2
+

3

4ζ4
+ . . .

)
. (D 24)
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Ignoring the exponentially small term — and thus working within the ‘fluid’ approxima-
tion — (D20)-(D 22) can be expanded as

M0,0 ≈ −1 +
1

2ζ2

(
ζ∗
ζ

− 1

)
+

2ζdζ∗
ζ2

+ . . . , (D 25)

N0,0 ≈ 1

ζ

(
ζ∗
ζ

− 1

)
+

16ζdζ∗
ζ3

+ . . . , (D 26)

1√
2
N0,1 ≈ −1 +

ζ∗
ζ

+
8ζdζ∗
ζ2

+ . . . , (D 27)

where we have kept ζd only where it multiplies ζ∗, consistent with the strongly driven
limit. Then (D23) becomes(

1

τ̄
+

2ζdζ∗
ζ2

)(
1 + k2⊥d

2
e −

ζ∗
ζ

)
= 0, (D 28)

where we have ignored all higher-order terms in ζ−1 ∝ k∥ → 0. This dispersion relation,
of course, could have been obtained without resorting to the kinetic formalism that we
have adopted in this appendix; setting k∥ = 0 in (2.20)-(2.23), and solving the resultant
fluid equations, one obtains exactly (D 28). The dispersion relation (D 28) admits two
solutions.

D.2.1. Magnetic drift wave

From the second bracket in (D 28), we find a “magnetic drift wave”

ζ =
ζ∗

1 + k2⊥d
2
e

⇒ ω =
ω∗e

1 + k2⊥d
2
e

. (D 29)

This is a purely linear magnetic oscillation involving the balance between the inductive
part of the parallel electric field, the electron inertia, and the gradient of the equilibrium
pressure along the perturbed field line:

∂

∂t

(
A−

u∥e

vthe

)
=

∂

∂t

(
A− d2e∇2

⊥A
)
= −ρevthe

2LT

∂A
∂y

. (D 30)

In setting k∥ = 0, we have decoupled perturbations of the magnetic field — or, in the
electrostatic regime, of the parallel velocity — from those of density and temperature.

D.2.2. Curvature-mediated ETG instability

From the first bracket in (D 28), we find

ζ2 = −2ζdζ∗eτ̄ ⇒ ω = ±i (2ωdeω∗eτ̄)
1/2

. (D 31)

This is the cETG growth rate (3.13). We note that there is no critical gradient for
the cETG instability, i.e., formally, the k∥ = 0 mode is unstable at all values of the
equilibrium temperature gradient. This is because, in adopting the strongly driven limit
(appendix A.7), we dropped the density gradient, leaving the critical gradient for any
instability, including the cETG, to be formally LB/LT = 0 (in other words, there are
no finite critical temperature gradients because there is nothing to compare LB/LT to).
Finite critical temperature gradients, and how they related to the main body of this
work, are discussed in appendix F.
Both modes (D 29) and (D31) persist at all perpendicular wavenumbers because

there is no distinction between the electrostatic and electromagnetic regimes for purely
two-dimensional phenomena. Indeed, the dispersion relation (D 28) is formally valid for
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k⊥de ∼ 1, and thus in both the electrostatic (k⊥de ≫ 1) and electromagnetic (k⊥de ≪ 1)
limits. Restoring finite k∥, however, significantly alters this behaviour, as it allows cou-
pling between perturbations of the magnetic field and those of density and temperature,
which introduces new instabilities in both the electrostatic and electromagnetic regimes.

D.3. Electrostatic 3D perturbations: collisionless sETG

Let us consider perturbations below the flux-freezing scale (2.28), viz., with

k⊥de → ∞, (D 32)

for which (D 23) reduces to the electrostatic ETG dispersion relation (cf. Liu 1971; Lee
et al. 1987):

1 +
1

τ̄
+M0,0 = 0. (D 33)

If, in addition to (D 32), we adopt the limit of long parallel wavelengths and small
magnetic drifts, viz.,

ωde ≪ k∥vthe ≪ ω ≪ ω∗e ⇔ ζd ∼ ζ−1/3 ≪ 1 ≪ ζ ∼ ζ
1/3
∗ ≪ ζ∗, (D 34)

and once again make use of the expansion (D 25), we find, retaining only the leading-order
terms,

ζ3 + 2ζdζ∗τ̄ ζ +
τ̄ ζ∗
2

= 0. (D 35)

This has three roots, whose behaviour is easy to deduce by balancing terms in various
limits. The balance of the first two terms in (D 35) recovers the cETG instability (D 31);
the balance of the first and third terms yields

ζ =

(
− τ̄ ζ∗

2

)1/3

⇒ ω = sgn(ky)

(
−1,

1

2
± i

√
3

2

)(
k2∥v

2
the|ω∗e|τ̄
2

)1/3

. (D 36)

This is the collisionless sETG growth rate (3.5) — the one unstable root of the three
(of the other two, one is damped, and another is a pure drift wave) — which we would
expect to recover in the electrostatic regime (magnetic field lines and electron flows are
liberated from one another as flux is unfrozen by finite electron inertia).
Being a cubic equation with real coefficients and a negative-definite discriminant,

(D 35) has at least one unstable solution at all parallel and perpendicular wavenumbers:
there is no region of stability between the cETG and sETG modes — with the former
transitioning into the latter as k∥ is increased — and the sETG is formally unstable for
k∥ → ∞. This is because we have thus far neglected the exponentially small resonant
term in (D 24) that is responsible for the Landau damping of sETG at larger parallel
wavenumbers. It is relatively obvious that this will occur for ζ ∼ ζ∗ ∼ 1, where the rate of
parallel streaming and energy injection are comparable; this is confirmed in appendix D.6.

D.4. Electromagnetic stabilisation of sETG

Formally, the dispersion relation (D 35) is derived in the limit k⊥de → ∞, the
electrostatic limit. Restoring finite but large k⊥de, viz.,

ζd ∼ ζ
−1/3
∗ ≪ 1 ≪ ζ ∼ k⊥de ∼ ζ

1/3
∗ ≪ ζ∗, (D 37)
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(a) LB/LT = 250, kxde = 0 (b) LB/LT = 250, kxde = 0

Figure 10: The (a) growth rates and (b) frequencies of the collisionless electrostatic instabilities,
normalised to ω∗e, for k∥LT /

√
βe = 0.2 and τ̄ = 1. In both plots, the red, blue and black solid

lines are the three solutions to the cubic dispersion relation (D 38), while the vertical grey dashed
line is the ‘fluid’ stability boundary (D 43). At perpendicular wavenumbers smaller than (D43),
there are only stable modes, as expected, corresponding to the electrostatic limit of the magnetic
drift wave [(D 39), red dot-dashed line] and two isobaric KAW modes [(D 40), blue and black dot-
dashed lines]. At perpendicular wavenumbers greater than (D 43), the positive-frequency KAW
and the magnetic drift wave transition into the two positive-frequency ETG modes [(D 36),
red and blue dashed lines] — one growing, one damped — while the negative-frequency KAW
transitions into the negative-frequency ETG drift wave [(D 36), black dashed line]. We chose a
very large value of LB/LT in order to show the asymptotic regimes clearly.

and using (D 25)-(D 27) in (D 23), we have, instead of (D 35),(
ζ2 + 2ζdζ∗τ̄

)(
ζ − ζ∗

k2⊥d
2
e

)
+
τ̄

2
ζ∗ = 0. (D 38)

In addition to the cETG (D31) and sETG (D36) instabilities, (D 38) admits two further
solutions: from the second bracket, we obtain the electrostatic (i.e., k⊥de ≫ 1) limit of
the magnetic drift wave (D 29),

ζ =
ζ∗
k2⊥d

2
e

⇒ ω =
ω∗e

k2⊥d
2
e

, (D 39)

while the balance of the first term in the first bracket and second term in the second
bracket with the last term gives rise to two isobaric KAW modes:

ζ2 =
1

2
k2⊥d

2
e τ̄ ⇒ ω = ±ωKAW

√
τ̄ . (D 40)

These are a ζ ≫ 1 continuation of the isobaric KAWs that arise at lower frequencies, in
the electromagnetic regime (see section 4.4.1). These solutions of (D 38) are plotted in
figure 10.
Together, (D 39) and (D 40) conspire to stabilise the sETG mode (D 36) at longer

perpendicular wavelengths, around the flux-freezing scale (2.28). To show this, we con-
sider the stability boundary associated with (D 38): assuming ζ to be purely real, with
Im(ζ) → +0, and demanding that the real and imaginary parts of the resultant expression
must vanish individually, we find that the real part is given by (D 38), while the imaginary
part is

3ζ2 − 2ζ∗
k2⊥d

2
e

ζ + 2ζdζ∗τ̄ = 0. (D 41)
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At the stability boundary, ζ is purely real, meaning that the discriminant of (D 41) must
be positive. This places a restriction on the perpendicular wavenumbers at which sETG
is stabilised: (

2ζ∗
k2⊥d

2
e

)2

− 24ζdζ∗τ̄ ⩾ 0 ⇒ k⊥de ⩽

(
1

6τ̄

LB

LT

)1/4

. (D 42)

Now considering perpendicular wavenumbers much smaller than (D42) — which
amounts to ignoring the effects of the magnetic drifts — we can solve (D 38) and (D 41)
simultaneously for the stability boundary:

(k⊥de)
2 =

2

3

(
ζ∗√
τ̄

)2/3

⇒
k∥LT√
βe

=
1

2
√
τ̄

(
2

3

)3/2
1

(k⊥de)2
ky
k⊥

. (D 43)

This is the slanted black dashed line in figures 11 and 12. It is worth noting that this
‘fluid’ stability boundary is, in fact, only approximate: in our treatment of the ζ ≫ 1
limit, we have neglected the exponentially small resonant term in (D 24) that can lead
to exponentially small growth rates below the line (D 43)8. However, these exponentially
small growth rates would easily be erased by the effects of finite dissipation in any realistic
physical system (or, indeed, simulation), meaning that (D 43) can be interpreted as a
criterion for the electromagnetic stabilisation of the sETG instability due to the effects
of finite βe. This was the conclusion of Maeyama et al. (2021), who also derived (D 43)
[their equation (23)] via similar methods to those used here.

D.5. Electromagnetic 3D perturbations: collisionless TAI

Moving towards larger scales, we now consider perturbations above the flux-freezing
scale (2.28), viz.,

k⊥de ≪ 1. (D 44)

As we shall see shortly, long perpendicular wavelengths correspond to low frequencies.
Let us consider the ordering

ωde ≪ ω ≪ ω∗e ∼ k∥vthe ⇔ ζd ∼ ζ2 ≪ ζ ∼ k⊥de ≪ ζ∗ ∼ 1, (D 45)

under which the plasma dispersion function can again be expanded, this time in small
argument:

Z(ζ) ≈ i
√
πe−ζ2

− 2ζ

(
1− 2ζ2

3
+

4ζ4

15
+ . . .

)
. (D 46)

Then, (D 20)-(D 22) can be expanded as

M0,0 ≈ i

√
π

2
ζ∗ +

(
i
√
π − 2ζ∗

)
ζ + . . . , (D 47)

N0,0 ≈ 2

(
1 + i

√
π

2
ζ∗

)
ζ + . . . , (D 48)

1√
2
N0,1 ≈ 2

(
1 + i

√
π

2
ζ∗

)
ζ2 + 4ζdζ∗ + . . . , (D 49)

8These growth rate are only exponentially small as long as the limit ζ ≫ 1 is satisfied. At
ζ ≲ 1, however, this is no longer true, and the resonant term in (D 24) can have a significantly
destabilising effect, as in the electromagnetic regime.
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where we have once again only kept ζd where it multiplies ζ∗. Retaining only leading-order
terms, (D 23) becomes(

1 +
1

τ̄
+ i

√
π

2
ζ∗

)(
k2⊥d

2
e − 4ζdζ∗

)
− 2

τ̄

(
1 + i

√
π

2
ζ∗

)
ζ2 = 0, (D 50)

or, after straightforward manipulations,

ζ2 +

(
2ζdζ∗ −

1

2
k2⊥d

2
e

)(
τ̄ +

1

1 + iξ∗

)
= 0, ξ∗ =

√
π

2
ζ∗. (D 51)

This is the dispersion relation of the collisionless thermo-Alfvénic instability (TAI),
which we treat in detail in section 4 and appendix G. The TAI dispersion relation
(D 51) captures all of the properties of the more general dispersion relation (D 23) in the
electromagnetic regime, with the important exception of the stabilisation of isothermal
and isobaric sTAI — see (4.30) and (4.50), respectively — that we shall work out in the
next section.

D.6. General stability boundary

Let us now consider the stability boundary associated with the dispersion
relation (D 23). At the stability boundary, ζ is purely real, so the real and imaginary parts
of (D 23) must vanish individually. For a purely real ζ, imaginary terms can only enter
through the plasma dispersion functions Z(ζ), implying that the coefficient in front of
it must vanish, as must, separately, the remainder of the dispersion relation. This yields
two equations for the frequency ζ and wavenumber at the stability boundary, which can
then be solved simultaneously to find the corresponding curve in the wavenumber (and
parameter) space.

D.6.1. Stability boundary without magnetic drifts

It will prove instructive to consider first the simplified case of no magnetic drifts
(ζd = 0), in which, making use of (D 20)-(D 22), the dispersion relation (D 23) can be
simplified to (

2ζ2

k2⊥d
2
e

− τ̄

)[
1 + ζZ − ζζ∗ − ζ∗

(
ζ2 − 1

2

)
Z
]
= 1. (D 52)

Following the steps laid out above, we find, at the stability boundary,(
ζ2 − 1

2

)
ζ∗ = ζ,

(
2ζ2

k2⊥d
2
e

− τ̄

)
(1− ζζ∗) = 1. (D 53)

Substituting ζ∗ from the first equation into the second, we find the real frequency at the
stability boundary:

ζ2 =
1 + τ̄

2

k2⊥d
2
e

1 + k2⊥d
2
e

. (D 54)

In view of (D 54), ζ at the stability boundary can be either small or order unity, but
never large, for any perpendicular wavenumber. This means that no mode with ζ ≫ 1
is, in fact, stable — as we discussed at the end of appendix D.4, the curve (D 43) was
where the ‘fluid’ stability was achieved, but exponentially small growth rates feeding off
Landau resonances were still allowed. This is also why we were unable to capture the
Landau damping of the sETG in our previous analysis.
Substituting (D 54) into the first equation in (D 53), we find the expression for the
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Figure 11: The growth rates of the collisionless instabilities normalised to ω∗e, in the absence
of magnetic drifts and with τ̄ = 1. Panel (a) is a contour plot of the positive growth rates
(γ > 0) in the (ky, k∥) plane. The white dashed line is the exact stability boundary (D 55), while
the horizontal grey dashed line is (D 57), corresponding to the stabilisation of the isothermal
sTAI at large parallel wavenumbers. The vertical grey dashed line is (D 58), around which the
isobaric sTAI is stabilised; the slanted grey dashed line on the right is the sETG stability
boundary (D 56); the slanted black dashed line is the ‘fluid’ sETG stability boundary (D 43).
In the remaining plots, the solid lines represent the exact growth rate obtained by solving the
(collisionless) linear dispersion relation (D 23), while the dashed line in panel (c) is the growth
rate predicted by the approximate TAI dispersion relation (D 51). Panel (b) is a cut of the
growth rate along k∥LT /

√
βe = 0.2 (plotted against a logarithmic scale), in which the vertical

gray dashed lines correspond to the two branches of the exact stability boundary (D 55), between
which the growth rate negative. Panels (c) and (d) are cuts of the growth rate for kyde = 0.1
and kyde = 3.5, respectively. In panel (c), the vertical grey dashed line is (D 57), while the same
line in panel (d) is (D 56). Lastly, the vertical black dashed line on the left of panel (d) is (D 43).

stability boundary in the wavenumber space:

±ωKAW

√
1 + τ̄ =

1− k2⊥d
2
e τ̄

2
√
1 + k2⊥d

2
e

ω∗e, (D 55)
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where ωKAW is defined in (A 9). This is the white dashed curve in figures 11(a) and 12(a).
In the absence of magnetic drifts, (D 55) is an exact result.
In the limit of large perpendicular wavenumbers, (D 55) gives us the stabilisation of

the electrostatic sETG mode due to Landau damping (at large parallel wavenumbers),
viz., for k⊥de ≫ 1, it becomes

∓k∥vthe

√
1 + τ̄

2
=
τ̄ω∗e

2
⇒

k∥LT√
βe

= ± τ̄

2
√

2(1 + τ̄)
kyde. (D 56)

This is the slanted grey dashed line in the top right-hand corner of figures 11(a) and 12(a).
(D 56) also confirms the assertion made in appendix D.3 that this stabilisation occurs
when the rates of parallel streaming and energy injection are comparable, k∥vthe ∼ ω∗e.
In the opposite limit of small perpendicular wavenumbers, (D 55) asymptotes to a line

of constant k∥, viz., for k⊥de ≪ 1, it becomes

±ωKAW

√
1 + τ̄ =

ω∗e

2
⇒

k∥LT√
βe

= ± 1

2
√

2(1 + τ̄)

ky
k⊥

. (D 57)

This is the upper horizontal grey dashed line in figures 11(a) and 12(a). It corresponds
to the stabilisation of the isothermal sTAI mode (4.30) at large parallel wavenumbers
due to compressional heating, as explained in section 4.3.3 and appendix D.7.2.
Similarly, the stabilisation of the isobaric sTAI mode (4.50) can be deduced from (D55)

in the limit k⊥de ∼ 1. To see this, we note that left-hand side of (D 55) is proportional
to ωKAW ∝ k∥k⊥, whereas the right-hand side is proportional to ω∗e ∝ ky. This means
that as k∥ → 0, the left-hand side approaches zero faster than the right-hand side, unless
the numerator of the right-hand side similarly approaches zero. This means that both
branches of the stability boundary will asymptotically approach:

1− k2⊥d
2
e τ̄ = 0 ⇒ k⊥de =

1√
τ̄
. (D 58)

Thus, there is a thin sliver of stability around the flux-freezing scale (2.28), where the
isobaric sTAI is quenched as k⊥ is increased. This is due to the effects of finite electron
inertia coming into play, and competing with parallel streaming, as explained in sec-
tion 4.4.2 and appendix D.7.3. (D 58) also describes the stabilisation of the exponentially
small sETG growth rates that occur below the line (D 43) on the small-scale side of the
flux-freezing scale, as shown in figures 11(a) and 12(a). In appendix D.7, we reproduce the
boundaries (D 57) and (D 58) via ‘fluid’ arguments similar to those used in section 4.3.3
and section 4.4.2 in the collisional limit.

D.6.2. Stability boundary with finite magnetic drifts

Let us now consider how this picture of stability is modified in the presence of magnetic
drifts. Though we could, in principle, apply the procedure that resulted in (D 53) to the
full dispersion relation (D 23), this will not actually yield the correct stability boundary
for our system: (D 23) is only approximate, owing to the fact that we have expanded
the resonant denominators in (D 7) and (D8) for ζd ≪ 1, as in (D 17), in order to
obtain (D 20)-(D 22). While this does not have any significant consequences for the
instabilities derived in appendices D.2-D.5 — since they all sit in regimes where this
approximation holds — it does mean that the stability properties of (D 23) are not the
exact stability properties of the kinetic system.
In particular, (D 23) does not retain the (nonlinear) property of gyrokinetics —

inherited by the system of equations derived in appendix A — that local gradients of
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Figure 12: The same as figure 11 but with magnetic drifts restored, and now normalised to the
cETG growth rate (D 31). We chose a large value of LB/LT in order to show the asymptotic
regimes clearly. The lower horizontal grey dashed line in panel (a) is k∥ = k∥c, as defined
in (4.21). The inset in panel (c) shows the growth rate for k∥ > k∥c; the vertical grey dashed
line is (D 57). The small discontinuity in the growth rate to the left of k∥ = k∥c in panel (c) is
due to the difficulty of resolving such a rapid change in the growth rate over a small range of k∥
on a finite grid. From this figure, it is clear that the stability properties of the system at higher
k∥ are not modified in the presence of finite magnetic drifts. We draw the reader’s attention to
the enhancement of the cETG growth rate by the cTAI mechanism that can be seen from the
red contours in the bottom left-hand corner of panel (a).

the equilibrium magnetic field cannot inject free energy (see, e.g., Abel et al. 2013). This
is because the argument that led to the expression of free-energy conservation (B 22)
relied on the magnetic-drift terms vanishing at every order in the Hermite-Laguerre
moment hierarchy (A 64) [see (B 9) and (B 10)]; in order to preserve this property in our
dispersion relation, we would have to retain the magnetic drifts, without approximation,
everywhere, including in the resonant denominators of (D 7) and (D8). Instead, solving
(D 23) directly leads to spurious growth rates at small parallel wavenumbers, whose
magnitudes are inversely proportional to LB/LT and vanish only at ωde = 0. However,
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given that LB/LT is large in the strongly driven limit, we find contributions of these
growth rates to be everywhere negligible.
In figure 12, we plot the growth rates from the solutions of (D 23). From panel (a), it

is clear that the stability properties at large parallel wavenumbers are not significantly
modified by the presence of magnetic drifts and both sETG and sTAI are still stabilised
along (D 56) (slanted grey dashed line on the right) and (D 57) (horizontal grey dashed
line), respectively. At lower parallel wavenumbers, sTAI and sETG are replaced by cTAI
and cETG, respectively, with their growth rate becoming equal to the cETG growth rate
(D 31) at k∥ = 0, as evident from panels (c) and (d). We draw the reader’s attention to
the similarity between figure 12(a) and the wavenumber-space portrait associated with
our collisionless equations (figure 7), in that figure 12(a) reproduces all the key features
that were predicted using the näıve estimates of section 5.

D.7. Fluid derivation of collisionless TAI results

In section 4, we illustrated the physical mechanisms that led to the instabilities
associated with the general TAI dispersion relation (4.18), namely cTAI and sTAI,
by considering a series of fluid equations in the collisional limit. While the physical
mechanisms in the collisionless limit are almost identical — with collisional conduction
being replaced by parallel particle streaming, κk2∥ → (2/

√
π)|k∥|vthe — we seek here

to demonstrate these mechanisms explicitly by reproducing many of the key results of
section 4 from a set of equivalent fluid equations in the collisionless limit.
In particular, we will recover the stabilisation of isothermal and isobaric sTAI via

methods similar to those used in sections 4.3.3 and 4.4.2. Given that we are interested
in sTAI physics — that occurs at k∥ ≫ k∥c [see (4.21)] — we shall, in what follows,
neglect any incidence of the magnetic drifts. With this simplification, (D 7) and (D7)
can be expressed exactly in terms of derivatives of the plasma dispersion function (D 16):
neglecting the density gradient (ηe → ∞), as in (D 20)-(D 22),

Mℓ,m = −ζ∗
(
ζδ0,0 +

1√
2
δ0,1

)
+

{[
ζ − ζ∗

(
ζ2 − 1

2

)]
δ0,m − ζ∗δ1,m

}
(−1)m√
2mm!

Z(m)(ζ),

(D 59)

Nℓ,m = 2ζδ0,0 − ζ∗(2δ1,0 +
√
2δ0,2) + 2ζMℓ,m, (D 60)

where we have used the orthogonality properties (A 60) and (A 61) of the Hermite-
Laguerre basis and the associated recurrence relations (A 62) and (A 63), as well as the
identity

Z(m)(ζ) =
dmZ
dζm

=
(−1)m√

π

∫
dv̂

e−v̂2

v̂ − ζ
Hm(v̂), (D 61)

where the integral is once again taken along the Landau contour.

D.7.1. Parallel gradient of total parallel temperature

In section 4, the parallel gradient of the total temperature along the perturbed field
line (2.18) was a key quantity in understanding the physics associated with the TAI
in the collisional limit, and satisfied (4.8). The equivalent quantity in the collisionless
limit is, unsurprisingly, the parallel gradient of the total parallel temperature along the
perturbed field line:

∇∥ log T∥e = ∇∥
δT∥e

T0e
− ρe
LT

∂A
∂y

. (D 62)
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Subtracting ∇∥(2.22)−(ρe/LT )·(2.21) and using (4.1), we find the evolution equation
for (D 62)

d

dt
∇∥ log T∥e + ρe

{
dA
dt

+
vthe
2

∂φ

∂z
,
δT∥e

T0e

}
+ 2∇2

∥u∥e +
ρe
LT

∂

∂y

d

dt

u∥e

vthe

= −∇2
∥
δq∥e

n0eT0e
− ρevthe

2LT

∂

∂y
∇∥ log p∥e, (D 63)

where we have recognised the parallel derivative of the total parallel pressure

∇∥ log p∥e = ∇∥
δne
n0e

+∇∥ log T∥e. (D 64)

This is the same as (4.8), except for the replacements δTe → δT∥e, −κ∇∥ log Te →
δq∥e/n0eT0e, (2/3)∇2

∥u∥e → 2∇2
∥u∥e, νeiu∥e → du∥e/dt, as promised in section 4.2.

The parallel heat flux in (D 63) must be determined kinetically. In the spirit of
“Landau-fluid” closures (Hammett & Perkins 1990; Hammett et al. 1992, 1993; Dorland
& Hammett 1993; Beer & Hammett 1996; Snyder et al. 1997; Passot & Sulem 2004;
Goswami et al. 2005; Passot et al. 2017), let us seek an expression for δq∥e in terms of of

∇∥ log T∥e. Recalling that δT∥e/T0e =
√
2g0,2, δq∥e/n0eT0evthe =

√
3g0,3 and that, using

(D 19) in (D 59) and (D60),

√
2M02 = 1 + 2

(
ζ2 − 1

2

)[
1 + ζZ − ζζ∗ − ζ∗

(
ζ2 − 1

2

)
Z
]
, (D 65)

N02 = −
√
2ζ∗ + 2ζM02, (D 66)

√
3M0,3 = ζ

√
2M0,2 − 2

[
ζ − ζ∗

(
ζ2 − 1

2

)]
(1 + ζZ), (D 67)

N0,3 = 2ζM0,3, (D 68)

we can use (D 6) to write

δq̃∥e

n0eT0evthe
=

√
3

(
k∥

|k∥|
M0,3φ̃−N0,3Ã

)
=

k∥

|k∥|

(
φ̃−

k∥

|k∥|
2ζÃ

)√
3M0,3. (D 69)

Similarly, ∇∥ log T∥e can, in Fourier space, be written as

(
∇∥ log T∥e

)
k
= ik∥

δT̃∥e

T0e
− i

kyρe
LT

Ã = ik∥

(
φ̃−

k∥

|k∥|
2ζÃ

)√
2M0,2. (D 70)

Combining (D 69) and (D 70), we obtain the desired expression for the heat-flux in terms
of the parallel gradient of the total parallel temperature:

δq̃∥e

n0eT0evthe
= − 1

|k∥|
µ(ζ)

(
∇∥ log T∥e

)
k
, (D 71)

where the collisionless heat-conduction coefficient is

µ(ζ) = i

√
3M0,3√
2M0,2

= i

[
ζ − 1 + ζZ

ζ +
(
ζ2 − 1

2

)
Z

]
≈


2√
π
, ζ ≪ 1,

− 3i

2ζ
, ζ ≫ 1.

(D 72)

This is identical to the Landau-fluid closure derived in Wang et al. (2019), and is formally
valid over the entire range of frequencies ζ.
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Let us now return to (D 63). Under the ordering (D 45), its left-hand side is negligible
in its entirety, meaning that

−∇2
∥
δq∥e

n0eT0e
=
ρevthe
2LT

∂

∂y
∇∥ log p∥e. (D 73)

As in the collisional case, the competition between these two terms is controlled by ξ∗,
now defined by (D51). Using (D 64), (D 71) and (D 72) (the latter for ζ ≪ 1), (D 73) can
be recast as an expression for ∇∥ log T∥e in terms of the parallel gradient of the density
perturbation: (

∇∥ log T∥e
)
k
= − iξ∗

1 + iξ∗

(
∇∥

δne
n0e

)
k

, (D 74)

where ξ∗ is defined in (D 51). This is the collisionless equivalent of (4.17), which reduces
to (4.31) and (4.51) in the isothermal (ξ∗ ≪ 1) and isobaric (ξ∗ ≫ 1) limits, respectively.
We have thus demonstrated how both isothermal and isobaric sTAI, given by (4.30) and
(4.50), respectively, arise as corrections to isothermality and isobaricity not only in the
collisional limit, but in the collisionless one as well.

D.7.2. Stabilisation of isothermal sTAI

As discussed in section 4.3.3, the isothermal sTAI is eventually quenched by the
compressional heating term in the temperature equation (2.22) that begins to compete
with the TAI drive.

To show this, let us adopt, instead of (D 45), the ordering

ω ∼ ω∗e ≪ k∥vthe ⇔ ζ ∼ ζ∗ ≪ 1, (D 75)

but still consider perturbations above the flux-freezing scale, k⊥de ≪ 1. In this limit, the
system is still isothermal to leading order in ξ∗ ≪ 1, but now we must also retain the
compressional heating term in (D 63) to determine ∇∥ log T∥e at next order: instead of
(D 73), we have, therefore,

−
(
∇2

∥
δq∥e

n0eT0e

)
k

= − 2√
π
|k∥|vthe

(
∇∥ log T∥e

)
k
=

(
ρevthe
2LT

∂

∂y
∇∥

δne
n0e

+ 2∇2
∥u∥e

)
k

,

(D 76)

where we have used (D 72) for ζ ≪ 1. Combining (D 76) with the equations for density
and parallel momentum, still the same as (4.32), we obtain the following dispersion
relation

ω2 − ω2
KAW(1 + τ̄ − iξ∗) = −i

√
π

ω

|k∥|vthe
ω2
KAW. (D 77)

This is the same as (4.33) apart from the right-hand side, previously neglected. At the
stability boundary, the frequency ω must be purely real, and both the real and imaginary
parts of (D 77) must vanish individually, giving

ω2 = ω2
KAW(1 + τ̄), ω = −ω∗e

2
⇒ ∓ωKAW

√
1 + τ̄ =

ω∗e

2
. (D 78)

This is (D 57). This stabilisation of isothermal sTAI was not captured by the TAI
dispersion relation (D 51) because the ordering (D 45) did not formally allow frequencies
comparable to ω∗e, required by (D 78).
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D.7.3. Stabilisation of isobaric sTAI

As discussed in section 4.4.2, the isobaric sTAI is stabilised within a certain region of
wavenumber space, due to the effects of finite electron inertia in the parallel momentum
equation (2.21).

To work out this stabilisation, let us consider, instead of (D 45), the ordering

ω ∼ k∥vthe ≪ ω∗e ⇔ ζ ∼ 1 ≪ ζ∗, (D 79)

while allowing perpendicular wavenumbers to sample the flux-freezing scale, k⊥de ∼ 1.
A direct consequence of this ordering is that one has to retain the electron inertia in the
leading-order parallel momentum equation, viz., the second equation in (4.52) is replaced
with

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥ log p∥e +
d

dt

u∥e

vthe
. (D 80)

This means that, instead of the system being isobaric to leading order in ξ∗ ≫ 1, the
parallel pressure gradient now balances the electron-inertial force:

∇∥ log p∥e +
2

vthe

d

dt

u∥e

vthe
= 0. (D 81)

This is obvious from (D63) in the limit (D 79). To the next order in this limit, we
must retain both the time derivative of ∇∥ log T∥e and the compressional-heating term
in (D 63):[

ρevthe
2LT

∂

∂y

(
∇∥ log p∥e +

2

vthe

d

dt

u∥e

vthe

)]
k

=

(
d

dt
+ µ(ζ)|k∥|vthe

)(
∇∥

δne
n0e

+
2

vthe

d

dt

u∥e

vthe

)
k

−
(
2∇2

∥u∥e

)
k
. (D 82)

Combining (D 80), (D 82) and the density equation from (4.52), we find the dispersion
relation

ω2 − ω2
KAW

(
τ̄ +

1

iξ∗

)
= − 1

iξ∗
k2⊥d

2
eω

2 −
(
3ω2

KAW − k2⊥d
2
eω
) ω

ω∗e
, (D 83)

where, since ζ ∼ 1, we have here defined ξ∗ = ω∗e/(µ|k∥|vthe). This is the same as (4.53),
apart from the right-hand side, previously neglected, and up to the definition of ξ∗. The
second term on the right-hand side simply leads to a small, in ξ∗ ≪ 1, modification of
the (real) frequency, and so can be neglected.

As usual, at the stability boundary, the frequency ω must be purely real, and both the
real and imaginary parts of (D 83) must vanish individually, giving

ω2 = ω2
KAWτ̄ , k2⊥d

2
eω

2 = ω2
KAW ⇒ k2⊥d

2
e =

1

τ̄
. (D 84)

This is (D 58). As with the case of the isothermal sTAI, this stabilisation was not captured
by the general TAI dispersion relation (D 51) because the ordering (D 45) did not formally
allow frequencies comparable to the parallel streaming rate, required by (D 84).
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Appendix E. Collisional linear theory

We begin by linearising and Fourier-transforming our equations for density (2.24),
parallel velocity (2.25) and temperature (2.26) in the collisional, strongly driven limit:

ω

τ̄
φ̃− k∥vthe(k⊥de)

2Ã+ 2ωde
δT̃e
T0e

= 0, (E 1)

[
ω − ω∗e + i(k⊥de)

2νei
]
Ã+

k∥vthe

2

[
δT̃e
T0e

−
(
1 +

1

τ̄

)
φ̃

]
= 0, (E 2)

(
ω + iκk2∥

) δT̃e
T0e

+
2

k∥vthe

[
1

3
(k∥vthek⊥de)

2 − κk2∥iω∗e

]
Ã − ω∗eφ̃ = 0, (E 3)

where tildes indicate the Fourier components of the fields, and we have used (2.18) in
order to express ∇∥ log Te in terms of δTe/T0e and A, as well as (A 42) with gi = 0
[see (A 47) and what follows it] in order to express δne/n0e in terms of φ. The dispersion
relation is[

ω − ω∗e + i(k⊥de)
2νei

] (
ω2 + iκk2∥ω + 2ωdeω∗eτ̄

)
(E 4)

−
[
2

3
ω2
KAW − κk2∥iω∗e

]
[ω + 2ωde(1 + τ̄)]− ω2

KAW

[(
ω + iκk2∥

)
(1 + τ̄)− ω∗eτ̄

]
= 0,

with ω∗e, ωde and ωKAW as defined in (A 9). Note that it is important to retain the
magnetic drift term ωde in the fourth bracket; despite it being formally smaller than
the frequency ω with which it shares that bracket, it is required for some leading-order
cancellations in certain limits. In what follows, we shall neglect magnetic-drift terms
where they are not multiplied by ω∗e, consistent with the strongly driven limit explained
in appendix A.7.
Though an exact solution of the cubic (E 4) is, in principle, possible to write explicitly,

it is not be particularly useful or enlightening in its full generality. Therefore, we shall
consider various asymptotic limits of (E 4) in order to highlight the important aspects of
the linear physics supported by our reduced system of equations, as we did in appendix D.

E.1. Two-dimensional perturbations

Let us first consider purely two-dimensional perturbations — which amounts to setting
k∥ = 0 everywhere — without ordering k⊥deχ with respect to unity. In this case, (E 4)
reduces instantly to [

ω − ω∗e + i(k⊥de)
2νei

] (
ω2 + 2ωdeω∗e

)
= 0. (E 5)

The dispersion relation (E 5) admits two solutions.

E.1.1. Magnetic drift wave

From the first bracket in (E 5), we have

ω = ω∗e − i(k⊥de)
2νei, (E 6)

which is a (damped) version of the “magnetic drift wave” described in appendix D.2.1,
a purely magnetic oscillation involving the balance between the inductive part of the
parallel electric field, the gradient of the equilibrium pressure along the perturbed field
line, and the resistive force in (2.25):

∂A
∂t

= −ρevthe
2LT

∂A
∂y

+ νeid
2
e∇2

⊥A. (E 7)
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By setting k∥ = 0, we have decoupled perturbations of the magnetic field — or, in the
electrostatic regime, of the parallel velocity — from those of density and temperature,
as in appendix D.2.1.

E.1.2. Curvature-mediated ETG instability

From the second bracket in (E 5), we find

ω2 = −2ωdeω∗eτ̄ ⇒ ω = ±i(2ωdeω∗eτ̄)
1/2. (E 8)

This is the cETG growth rate (3.13). We note, as in (D.2.2), that there is no critical
gradient for the cETG instability, i.e., formally, the k∥ = 0 mode is unstable at all values
of the equilibrium temperature gradient. This is because, in adopting the strongly driven
limit (appendix A.7), we dropped the density gradient, leaving the critical gradient for
any instability, including the cETG, to be formally LB/LT = 0 (in other words, there
are no finite critical temperature gradients because there is nothing to compare LB/LT

to). Finite critical temperature gradients, and how they related to the main body of this
work, are discussed in appendix F.
Both modes (E 6) and (E 8) persist at all perpendicular wavenumbers because there

is no distinction between the electrostatic and electromagnetic regimes for purely two-
dimensional phenomena. Restoring finite k∥, however, significantly alters this behaviour,
as it allows coupling between perturbations of the magnetic field and those of density
and temperature, which introduces new instabilities in both the electrostatic and elec-
tromagnetic regimes.

E.2. Electrostatic 3D perturbations: collisional sETG

Let us consider perturbations below the flux-freezing scale (2.30), viz., with

k⊥deχ≫ 1 ⇔ (k⊥de)
2νei ≫ ω∗e. (E 9)

Then, given that we always have ω ≲ ω∗e, the first two terms in the first bracket of (E 4)
can be neglected in comparison to the third. Similarly, noting that, from (E 9),

ω2
KAW =

(k∥vthe)
2

2νei
(k⊥de)

2νei =
1

a
κk2∥(k⊥de)

2νei ≫ κk2∥ω∗e, (E 10)

where a = 2νeiκ/v
2
the = 5νei/9νe = 5/[9(1 + 1/Z)], the second term in the third bracket

can also be neglected. Dividing throughout by (k⊥de)
2νei, we can therefore write (E 4)

as a quadratic in ω:

ω2 +

(
τ̄ + a+

5

3

)
i
(k∥vthe)

2

2νei
ω + 2ωdeω∗eτ̄

−
[
(1 + τ̄)a

(k∥vthe)
2

2νei
− iω∗eτ̄

]
(k∥vthe)

2

2νei
= 0. (E 11)

The originally cubic dispersion relation has reduced to a quadratic because our collisional
system of equations becomes a two-field system (φ and δTe) in the electrostatic limit,
with A no longer a dynamic field: neglecting ω in the first bracket of (E 4) is equivalent
to neglecting the inductive part of the parallel electric field in (2.25), meaning that A is
determined instantaneously from the parallel pressure balance.
If, in addition to (E 9), we consider the limit of short parallel wavelengths, which

amounts to ignoring the magnetic-drift terms everywhere, viz.,

ωde ≪
(k∥vthe)

2

νei
≪ ω ≪ ω∗e, (E 12)
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Figure 13: Growth rate of the ETG instability in the collisional, electrostatic regime: these are
solutions of (E 11) with τ̄ = 1. Panel (a) is a contour plot of the positive growth rates (γ > 0)
in the (ky, k∥) plane; panel (b) shows the growth rate plotted as a function of k∥LT /

√
βe. We

have normalised to the cETG growth rate (E 8) in both cases. The stability boundary (E 15) is
indicated by the grey dashed line in panel (a). We chose a very large value of LB/LT in order
to show the asymptotic regimes clearly.

then the balance of the first and last terms in (E 11) gives us

ω2 = iω∗e
(k∥vthe)

2

2νei
τ̄ ⇒ ω = ±1− isgn(ky)√

2

(
k2∥v

2
the|ω∗e|τ̄
2νei

)1/2

. (E 13)

We recognise this as the collisional sETG growth rate (3.5), which we would expect to
recover in the electrostatic regime (magnetic field lines and electron flows are liberated
from one another as flux is unfrozen by, in this case, resistivity).
At short enough parallel wavelengths, however, the sETG instability is quenched

by rapid thermal conduction that leads to the damping of the associated temperature
perturbation. To see this, we relax the assumption (E 12) and consider the exact stability
boundary of (E 11): assuming that ω is purely real, the real and imaginary parts of (E 11)
are, respectively,

ω2 + 2ωdeω∗eτ̄ − (1 + τ̄)a

(
k∥vthe

)4
(2νei)2

= 0,

(
τ̄ + a+

5

3

)
ω + ω∗eτ̄ = 0. (E 14)

Given that the second equation in (E 14) implies that the frequency at the stability
boundary is of order ∼ ω∗e, the second term in the first equation will always be negligible
in comparison to the first, and so can be dropped. The resultant equations can be
straightforwardly combined to yield:(

k∥LT√
βe

)4

=
τ̄2

(1 + τ̄)a (τ̄ + a+ 5/3)
2
(1 + 1/Z)

2 (kydeχ)
2. (E 15)

This is the stability boundary in the electrostatic limit, plotted as the grey dashed line in
figure 13(a). Above this line, corresponding to the limit (k∥vthe)

2/νei ≫ ω∗e, all modes
are purely damped due to rapid thermal conduction, as in figure 13(b).
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The maximum growth rate of the collisional sETG instability is, therefore, reached at
ω∗e ∼ (k∥vthe)

2/νei, as claimed in (3.10). Apart from factors of order unity, this is the
same scaling as (E 15). Indeed, ignoring the magnetic-drift term in (E 11) and maximising
the resultant growth rate with respect to (k∥vthe)

2/νei, one finds

γmax = C(τ̄)ω∗e, (E 16)

where C(τ̄) is a constant formally of order unity, e.g., C(1) ≈ 0.096.
Given that (E 15) is the only stability boundary in the electrostatic limit, there is

no intermediate region of stability between the cETG and sETG instabilities: as k∥ is
increased, the cETG mode gradually transitions into the sETG mode (see figure 13b).
Furthermore, (E 16) implies that, for large temperature gradients, the sETG growth rate
will always be asymptotically larger than the cETG one:

γmax√
2ωdeω∗e

∼
(
LB

LT

)1/2

. (E 17)

This is (5.1). Thus, maximum growth in the electrostatic limit occurs at a finite k∥, which
scales the same as the stability boundary (E 15).

E.3. Electromagnetic 3D perturbations: collisional TAI

Moving towards larger scales, we now consider perturbations above the flux-freezing
scale (2.30), viz.,

k⊥deχ≪ 1 ⇔ (k⊥de)
2νei ≪ ω∗e, (E 18)

meaning that the resistive term in the first bracket in (E 4) can be neglected, with all
other terms retained. In order to demonstrate how the two-dimensional perturbations
of appendix E.1 are modified in the presence of finite k∥, we consider perturbations
satisfying

(k⊥de)
2νei ∼ ωde ≪ ω ≪ ω∗e ∼ κk2∥. (E 19)

Under this ordering, we ignore the frequency in the first bracket in (E 4), except for where
is multiples the (large) term proportional to κk2∥ in the second bracket, and, as usual,
drop all incidences of ωde where it is not multiplied by ω∗e. The result is

(−ω∗e + iκk2∥)ω
2 + (2ωdeω∗e − ω2

KAW)
[
−ω∗eτ̄ + iκk2∥(1 + τ̄)

]
= 0. (E 20)

With some straightforward manipulations, this can be rearranged to give

ω2 + (2ωdeω∗e − ω2
KAW)

(
τ̄ +

1

1 + iξ∗

)
= 0, ξ∗ =

ω∗e

κk2∥
. (E 21)

This is the dispersion relation of the collisional TAI, which we treat in detail in section 4
and appendix G. The TAI dispersion relation (E 21) captures all of the properties of the
more general dispersion relation (E 4) in the electromagnetic regime9, with the important
exception of the stabilisation of isothermal and isobaric sTAI — see (4.30) and (4.50),
respectively — that we shall discover in the next section.

E.4. Exact stability boundary

Let us now consider the exact stability boundary associated with our collisional
dispersion relation (E 4). As in section E.2, we assume that ω is purely real, and demand

9Quantitatively well at low k∥ (especially in the case of ωde ̸= 0), but only qualitatively at higher
k∥ — as is evident from figures 14 and 15.



85

that the real and imaginary parts of (E 4) must vanish individually. The real part gives

ω2 =

(
ω2
KAW − 2ωdeω∗e

)
(1 + τ̄)− 2ωdeω∗eτ̄ ξη

1 + ξη
. (E 22)

where we have defined

ξη =
(k⊥de)

2νei
κk2∥

=
2

a

(
k⊥deχ

1 + 1/Z

)2(k∥LT√
βe

)−2

, (E 23)

which is the resistive dissipation rate normalised to the thermal conduction rate. Given
that, according to (E 15), we expect unstable modes in the electrostatic regime to exist
only for (k∥LT /

√
βe)

2 ≲ k⊥deχ, it follows that ξη ≫ 1 corresponds to the electrostatic
limit (E 9), while ξη ≲ 1, in general, corresponds to the electromagnetic limit (E 18).
Extracting the imaginary part of (E 4), and using the solution (E 22) for the frequency

ω at the stability boundary, we find:

±

√
(ω2

KAW − 2ωdeω∗e) (1 + τ̄)− 2ωdeω∗eτ̄ ξη
1 + ξη

= ω∗e
ω2
KAW(1− τ̄ ξη)− 2ωdeω∗e

ω2
KAW(1 + τ̄)− ω2

KAW (τ̄ + a+ 5/3) (1 + ξη)− 2ωdeω∗e
. (E 24)

This is the white dashed curve in figures 14(a) and 15(a).
In the limit of large perpendicular wavenumbers, (E 24) asymptotes to the elec-

trostatic stability boundary (E 15), which is the slanted grey dashed line in the top
right-hand corner of figures 14(a) and 15(a). To show this, anticipating the balance
ω∗e ∼ (k∥vthe)

2/νei ≫ 2ωdeω∗e, we neglect all incidences of the magneticdrift frequency
ωde. Then, assuming the resisitive rate to be the dominant frequency (ξη ≫ 1), and
making use of (E 10), we find that (E 24) reduces to

(k∥vthe)
4

(2νei)2
=

τ̄2ω2
∗e

(1 + τ̄)a (τ̄ + a+ 5/3)
2 . (E 25)

This is (E 15) up to normalisations.
In the limit of small perpendicular wavenumbers, (E 24) asymptotes to lines of con-

stant k∥. To show this, we consider the limit of vanishing resistivity (ξη ≪ 1), in which
(E 24) becomes

∓
√
(ω2

KAW − 2ωdeω∗e) (1 + τ̄) = ω∗e
ω2
KAW − 2ωdeω∗e

ω2
KAW (a+ 2/3) + 2ωdeω∗e

. (E 26)

Clearly, the line

ω2
KAW = 2ωdeω∗e ⇒ k∥ = k∥c, (E 27)

with k∥c defined in (4.21), is a solution to this equation, corresponding to the lower
horizontal grey dashed line in figure 15(a).

In fact, in order for the stability boundary to exist at all, we require that k∥ ⩾ k∥c; this
follows from the fact that the expression under the square-root on the left-hand side of
(E 26) must be positive semi-definite. Going back to (E 22) (i.e., assuming nothing about
k⊥) and demanding that the numerator is positive semi-definite, we find a more general
condition for the stability boundary to exist:

k2∥ ⩾ k
2
∥c

(
1 +

τ̄

1 + τ̄
ξη

)
. (E 28)
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Figure 14: The growth rates of the collisional instabilities in the absence of magnetic drifts and
with τ̄ = 1, normalised to ω∗e. Panel (a) is a contour plot of the positive growth rates (γ > 0)
in the (ky, k∥) plane. The white dashed line is the exact stability boundary (E 24), while the
horizontal grey dashed line is (E 29), corresponding to the stabilisation of the isothermal sTAI at
large parallel wavenumbers. The slanted grey dashed line on the left is (E 31), around which the
isobaric sTAI is briefly stabilised; the slanted grey dashed line on the right is the electrostatic
stability boundary (E 15). Panel (b) is a cut of the growth rate along k∥LT /

√
βe = 0.4 (plotted

against a logarithmic scale); panels (c) and (d) are cuts of the growth rate for kydeχ = 0.001
and kydeχ = 0.04, respectively. The growth rates are normalised to ω∗e in all three plots. The
solid lines represent the exact growth rate obtained by solving the (collisional) linear dispersion
relation (E 4), while the dashed lines are the growth rates predicted by the approximate TAI
dispersion relation (E 21). In panels (b) and (d), the vertical grey dashed line is (E 31), while
the same line in panel (c) is (E 29).

Since ξη ⩾ 0, this implies that our system can never be stable for k∥ ⩽ k∥c. Returning
again to (E 26) and considering the limit of k∥ ≫ k∥c, we find that the stability boundary
asymptotically approaches

∓ωKAW

√
1 + τ̄ =

ω∗e

a+ 2/3
⇒

k∥LT√
βe

= ± 1

(a+ 2/3)
√
2(1 + τ̄)

ky
k⊥

. (E 29)
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Figure 15: The same as figure 14 but with magnetic drifts restored, and now normalised to
the cETG growth rate (E 8). We chose a large value of LB/LT in order to show the asymptotic
regimes clearly. The grey dashed curved line in panel (a) is now (E 32), while the lower horizontal
grey dashed line is k∥ = k∥c, as defined in (4.21). The inset in panel (c) shows the growth rate
for k∥ ⩾ k∥c, within which the vertical grey dashed line is (E 29).

This is the upper horizontal grey dashed line in figures 14(a) and 15(a). It corresponds
to the stabilisation of the isothermal sTAI (4.30) at large parallel wavenumbers due to
compressional heating, as explained in section 4.3.3.
Similarly, the stabilisation of the isobaric sTAI (4.50) can be extracted from (E 24) in

the limit ξη ∼ 1. Let us initially consider the limit of k∥ ≫ k∥c, in which we can neglect
magnetic drifts, so (E 24) becomes

±ωKAW

√
1 + τ̄

1 + ξη
= ω∗e

1− τ̄ ξη
1 + τ̄ − (τ̄ + a+ 5/3) (1 + ξη)

. (E 30)

The left-hand side of (E 30) is proportional to ωKAW ∝ k∥k⊥, whereas the right-hand side
is proportional to ω∗e ∝ ky. This means that as k∥, ky → 0, while maintaining ξη ∼ 1,
the left-hand side approaches zero faster that the right-hand side, unless the numerator
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of the right-hand side similarly approaches zero. This means that both branches of the
stability boundary will asymptotically approach

1− τ̄ ξη = 0 ⇒
(
k∥LT√
βe

)2

=
2τ̄

a

(
k⊥deχ

1 + 1/Z

)2

. (E 31)

This means that there is a thin sliver of stability within the otherwise unstable isobaric
sTAI region: the growth rate briefly dips below zero, before picking back up again and
reaching a maximum around ξ∗ ∼ 1 [cf. (G 21) and the following discussion], as shown
in figures 14(d) and 15(d). This is due to finite-resistivity effects coming into play, and
competing with thermal conduction, as explained in section 4.4.2.

In the more general case including magnetic drifts, viz., for k∥ ≳ k∥c, the curve that
both branches of the exact stability boundary asymptotically approach is well described
by the vanishing of the numerator of the right-hand side of (E 24):

ω2
KAW(1− τ̄ ξη)− 2ωdeω∗e = 0 →

(
k∥LT√
βe

)2

=
LT

LB

(
ky
k⊥

)2

+
2τ̄

a

(
k⊥deχ

1 + 1/Z

)2

.

(E 32)

This is indicated by the grey dashed curved line in figure 15(a). It reproduces (E 27) and
(E 31) in the appropriate limits.

We have thus used the expression for the exact stability boundary (E 24) to derive the
boundaries that limit the unstable regions of wavenumber space. From figures 14 and 15,
it is clear that (E 15) bounds the electrostatic instabilities at large parallel wavenumbers,
while the electromagnetic region of instability at k∥ > k∥c, corresponding to the sTAI,
is bounded by (E 29) and (E 31). We also draw the reader’s attention to the similarity
between figure 15(a) and the wavenumber-space portrait associated with our collisional
equations (figure 8), in that it reproduces all the key features that were predicted using
the naive estimates of section 5.

Appendix F. Finite critical gradients

Given that we are primarily interested in investigating the phenomena associated with
a steep electron-temperature gradient, we have everywhere else focused on the strongly
driven limit, described by (2.20)-(2.23) and (2.24)-(2.26), in which we have neglected
both density and magnetic-field gradients Ln and LB in comparison to the electron-
temperature gradient LT , as discussed in appendix A.7. If one were to re-introduce these
finite gradients, one would notice the following two modifications: (i) quantitative differ-
ences in coefficients associated with the instabilities and stability boundaries found in the
appendices D and E, and (ii) the emergence of finite linear critical gradients/thresholds
for some instabilities. Given that all of the instabilities considered in sections 3 and
4 are derived in the strongly driven limit, the former of these does not introduce any
qualitative differences into the results of the main body of this paper. In this appendix,
using the collisional equations (A 88)-(A 90) as an example case study, we show that
the emergence of finite linear critical gradients likewise does not introduce significant
qualitative differences into our results. Note that what follows is only formally valid in
the adiabatic-ion limit (A 46), i.e., at k⊥ρi ≫ 1, as the solution (A 43) for τ̄ cannot be
realised for Ln ∼ LB ∼ LT .

We begin by linearising and Fourier-transforming our collisional equations for the
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density (A 88), velocity (A 89) and temperature (A 90), in a similar fashion to appendix E:[
ω

τ̄
− 2

(
1 +

1

τ̄

)
ωde +

1

ηe
ω∗e

]
φ̃− k∥vthe(k⊥de)

2Ã+ 2ωde
δT̃e
T0e

= 0, (F 1)[
ω −

(
1 +

1

ηe

)
ω∗e + i(k⊥de)

2νei

]
Ã+

k∥vthe

2

[
−
(
1 +

1

τ̄

)
φ̃+

δT̃e
T0e

]
= 0, (F 2)(

ω − 14

3
ωde + iκk2∥

)
δT̃e
T0e

+
2

k∥vthe

[
1

3
(k∥vthek⊥de)

2 − κk2∥iω∗e

]
Ã

−
[
ω∗e −

4

3

(
1 +

1

τ̄

)
ωde

]
φ̃ = 0, (F 3)

where ηe = Ln/LT . The dispersion relation for the system of equations (F 1)-(F 3) can
be written as[

ω −
(
1 +

1

ηe

)
ω∗e + i(k⊥de)

2νei

](
MφφMTT −MφTMTφ + κk2∥Mφφ

)
+

(
2

3
ω2
KAW − κk2∥iω∗e

)[
Mφφ +

(
1 +

1

τ̄

)
MφT

]
+

(
1 +

1

τ̄

)
ω2
KAW

(
MTT + κk2∥

)
+ ω2

KAWMTφ = 0, (F 4)

where we have defined the coefficients independent of k∥ by

Mφφ =
ω

τ̄
− 2

(
1 +

1

τ̄

)
ωde +

1

ηe
ω∗e, (F 5)

MTT = ω − 14

3
ωde,

MTφ = −ω∗e +
4

3

(
1 +

1

τ̄

)
ωde,

MφT = 2ωde,

and ω∗e, ωde and ωKAW are as defined in (A 9). Note that (F 4) straightforwardly reduces
to (E 4) if one neglects ωde and ω∗e/ηe where they are directly compared with larger
terms (viz., with ω or ω∗e) in (F 5).

To illustrate the emergence of finite critical gradients, we specialise to the case of purely
two-dimensional modes. If we set k∥ = 0 everywhere, (F 4) reduces to[

ω −
(
1 +

1

ηe

)
ω∗e + i(k⊥de)

2νei

]
(MφφMTT −MφTMTφ) = 0. (F 6)

The solution from the first bracket is again the magnetic drift wave (E 6), except the
gradient of the equilibrium pressure now also includes a contribution from the equilibrium
density gradient.

Focusing on the second bracket, and solving for the growth rate γ = Im(ω), we find

γ = ±
√
2ωdeω∗eτ̄

√
1 +

1

2ηe

(
τ̄ − 4

3

)
− τ̄

8η2e

LB

LT
− 1

2

(
τ̄ +

40

9

1

τ̄

)
LT

LB
. (F 7)

Clearly, in order to have an instability, we need the expression under the square root to
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be positive-definite, which gives us a condition on LB/LT :(
LB

LT

)
−
<
LB

LT
<

(
LB

LT

)
+

, (F 8)

where the critical gradients are(
LB

LT

)
±
= 2η2e

[
2

τ̄
+

1

ηe

(
1− 4

3τ̄

)
± 2

τ̄

√
1 +

1

ηe

(
τ̄ − 4

3

)
− 2

3η2e
(1 + τ̄)

]
. (F 9)

These solutions exist only if the temperature gradient is sufficiently steep compared to
the density gradient: demanding that the expression under the square root in (F 9) be
positive semi-definite, we find that ηe must satisfy

ηe ⩾
4(1 + τ̄)

3τ̄ − 4 +
√
40 + 9τ̄2

. (F 10)

This result is consistent with the long-established understanding that the critical tem-
perature gradient for the ETG instability is proportional to the density gradient (Jenko
et al. 2001).

In the limit of ηe → ∞, we find that (F 8) becomes

LB

LT
>

1

2

(
τ̄ +

40

9

1

τ̄2

)
. (F 11)

The results derived in appendix E are formally valid for LB/LT sufficiently far above
this lower bound, which, for τ̄ ∼ 1, is a quantity of order unity. Therefore, the condition
(F 11) can perhaps be readily satisfied in steep-temperature-gradient regions, such as the
tokamak edge/pedestal. Finite critical temperature gradients do not introduce significant
qualitative differences into our results.

It is not a forgone conclusion, however, that the limit of ηe → ∞ can be achieved in
experimentally relevant conditions. Though an emerging paradigm for JET-ILW (ITER-
like wall) pedestal transport appears to be that the ILW conditions modify the pedestal
density in ways that preferentially decrease its gradient (Hatch et al. 2019; Ham et al.
2021) — thereby increasing both ηe and ηi = Ln/LTi

— other recent studies have found
that the average value of ηe in the pedestal appears to saturate at ηe ∼ 1 − 2 during
the inter-ELM (edge-localised mode) period (Field et al. 2020; Guttenfelder et al. 2021).
Within the latter context, the stiff heat-flux scalings derived in section 6 can be viewed
as an argument against electron-temperature gradients much above the critical linear
threshold being achievable. Whether these considerations are relevant to the findings of
this paper, especially in the nonlinear context, will be addressed in future work.

Appendix G. Analysis of TAI dispersion relation

In this appendix, we consider the mathematical details of the TAI dispersion rela-
tion (4.18)

ω2 = −
(
2ωdeω∗e − ω2

KAW

)(
τ̄ +

1

1 + iξ∗

)
, (G 1)
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where ξ∗ is given by

ξ∗ =


√
π

2

ω∗e

k∥vthe
, collisionless,

ω∗e

κk2∥
=

18

5

ω∗e

(k∥vthe)2/νe
, collisional.

(G 2)

Defining

σ = sgn
(
2ωdeω∗e − ω2

KAW

)
= sgn(k∥c − k∥) ≡ einπ, (G 3)

with k∥c defined in (4.21), we can write (G 1) as

−iω =
∣∣2ωdeω∗e − ω2

KAW

∣∣1/2A1/2ei(θ+nπ)/2, (G 4)

where

A =

√(
τ̄ +

1

1 + ξ2∗

)2

+
ξ2∗

(1 + ξ∗)2
, θ = tan−1

[
ξ∗/(1 + ξ2∗)

τ̄ + 1/(1 + ξ2∗)

]
. (G 5)

Taking the real and imaginary parts of (G 4), and using the fact that

cos2
(
θ + nπ

2

)
=

1

2
(1 + σ cos θ) , sin2

(
θ + nπ

2

)
=

1

2
(1− σ cos θ) , (G 6)

we find the real frequency ωr = Re(ω) and the growth rate γ = Im(ω) that satisfy (G 1):

ω2
r = |2ωdeω∗e − ω2

KAW|τ̄ f−(ξ∗), γ2 = |2ωdeω∗e − ω2
KAW|τ̄ f+(ξ∗), (G 7)

where we have defined the functions

f±(ξ∗) =
1

2τ̄

√(τ̄ + 1

1 + ξ2∗

)2

+
ξ2∗

(1 + ξ2∗)
2
± σ

(
τ̄ +

1

1 + ξ2∗

) . (G 8)

These are exactly the formulae (4.22) and (4.23). Note that the correspondence between
the signs of γ and ωr was lost in (G 7). Most of the time, this information will not be
important but, if needed, it can be recovered by going back to (G 1) and extracting its
imaginary part:

2γωr =
∣∣2ωdeω∗e − ω2

KAW

∣∣ σξ∗
1 + ξ2∗

. (G 9)

Therefore, for an unstable mode (γ > 0),

sgn(ωr) = sgn(σξ∗). (G 10)

In what follows, it will be useful to consider the asymptotic expansions of (G 8) for
small and large argument:

f±(ξ∗) =


1

2

(
1 +

1

τ̄

)
(1± σ)− 2τ̄ + 1± 2σ(1 + τ̄)

4τ̄(1 + τ̄)
ξ2∗ + . . . , ξ∗ ≪ 1,

1

2
(1± σ) +

1 + 2τ̄(1± σ)

4τ̄2
1

ξ2∗
+ . . . , ξ∗ ≫ 1.

(G 11)

Given that we are interested in the behaviour of (G 8) as functions of k∥ — at constant
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Figure 16: The functions (G 8): (a) f+ and (b) f− plotted as functions of k∥/k∥∗, for τ̄ = 1 and
σ = 1 (for σ = −1, f+ ↔ f−). It is clear that the region of maximum variation of f± occurs
around k∥ ∼ k∥∗ ⇔ ξ∗ ∼ 1.

perpendicular wavenumber — we define a parallel wavenumber k∥∗ such that

ξ∗ =

(
k∥∗

k∥

)α

, (G 12)

where α = 1, 2 in the collisionless and collisional cases, respectively. The wavenumber
k∥∗ can be read off (G2) and depends on ky. Then, k∥ ∼ k∥∗ corresponds to the
transition between the isothermal range of wavenumbers (4.11) (k∥ ≫ k∥∗) and the
isobaric one (4.43) (k∥ ≪ k∥∗).

G.1. Isothermal limit

We first consider the isothermal limit k∥ ≫ k∥∗. Examining the first expression in (G 7)
in the region k∥ < k∥c, we notice that f+(ξ∗) is a monotonically increasing function of k∥
(figure 16), while the prefactor |2ωdeω∗e−ω2

KAW| is obviously a monotonically decreasing
function of it. Thus, the growth rate may have a maximum in the isothermal range, the
condition for which we will check a posteriori. Using (G 11) with σ = 1, we expand the
growth rate in the isothermal limit ξ∗ ≪ 1:

γ2 = 2ωdeω∗eτ̄

[
1−

(
k∥

k∥c

)2
] [(

1 +
1

τ̄

)
− 3 + 4τ̄

4τ̄(1 + τ̄)
ξ2∗ + . . .

]

= 2ωdeω∗e(1 + τ̄)

[
1−

(
k∥

k∥c

)2

− 3 + 4τ̄

4(1 + τ̄)2

(
k∥∗

k∥c

)2α(k∥c
k∥

)2α

+ . . .

]
, (G 13)

where we have used (G12) and assumed that k∥ ≪ k∥c. Maximising (G 13) with respect
to (k∥/k∥c)

2, we find

k∥max

k∥c
=

[
3 + 4τ̄

4(1 + τ̄)2
α

(
k∥∗

k∥c

)2α
]1/2(1+α)

. (G 14)

Using the definition of k∥∗ (G 12), we obtain (4.24). This solution is valid provided k∥∗ ≪
k∥max ≪ k∥c (i.e., provided it lies in the isothermal regime and σ = 1). This translates
into (4.25) by noticing that (G 14) implies

ξ∗(k∥max) =

(
k∥∗

k∥max

)α

=
2(1 + τ̄)√
α(3 + 4τ̄)

k∥max

k∥c
. (G 15)
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(a) LB/LT = 100, kxde = 0 (b) LB/LT = 100, kxdeχ = 0

Figure 17: Contour plots of the TAI growth rate (G 7) in the (ky, k∥) plane, normalised to
the cETG growth rate (3.13). Panels (a) and (b) show the collisionless and collisional cases,
respectively. The horizontal white dashed line is k∥ = k∥c, as defined in (4.21), while the vertical
black dashed line is k⊥ = k⊥∗, as defined in (4.26). There is clear enhancement of the cETG
growth rate due to the cTAI (G16) at k⊥ < k⊥∗ (the isothermal regime, section 4.1), while
there is no enhancement for k⊥ > k⊥∗ (the isobaric regime, section 4.4). We chose a large value
of LB/LT in order to show a clear transition between these two regimes.

This observation also allows us to write the peak growth rate, given by (G13) with
k∥ = k∥max, as follows:

γmax ≈
√
2ωdeω∗e (1 + τ̄)

[
1− 1

2

(
1 +

1

α

)(
k∥max

k∥c

)2
]
, (G 16)

which reduces to (4.15) if we ignore the small correction due to k∥max.

For k∥ > k∥c and ξ∗ ≪ 1 (the isothermal KAW regime), the expansion (G11) with
σ = −1 gives us

ω2
r ≈ ω2

KAW(1 + τ̄)

[
1−

(
k∥c

k∥

)2
]
, γ2 ≈ ωdeω∗e

2(1 + τ̄)

[(
k∥

k∥c

)2

− 1

]
ξ2∗ . (G 17)

At k∥ ≫ k∥c, these turn into (4.30). In the collisionless limit, ξ∗ ∝ k−1
∥ , so γ → const

as k∥ → ∞; this constant value is (4.34). In the collisional limit, ξ∗ ∝ k−2
∥ , so γ → 0 as

k∥ → ∞, and peak growth is reached at a finite k∥: from (G17), we get

γ2 ∝

[(
k∥

k∥c

)2

− 1

](
k∥c

k∥

)4

, (G 18)

so the maximum is reached at k∥ =
√
2k∥c. Putting this back into (G 17), we find (4.35)

for γmax.
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G.2. Isobaric limit

Now consider the limit ξ∗ ≫ 1, which, in section 4.4, we showed to be isobaric. Consider
first k∥ < k∥c and again use (G 11) with σ = 1 to expand the growth rate, now in ξ∗ ≫ 1:

γ2 = 2ωdeω∗eτ̄

[
1−

(
k∥

k∥c

)2
] [

1 +
1 + 4τ̄

4τ̄2
1

ξ2∗
+ . . .

]

= 2ωdeω∗eτ̄

[
1−

(
k∥

k∥c

)2

+
1 + 4τ̄

4τ̄2

(
k∥c

k∥∗

)2α( k∥

k∥c

)2α

+ . . .

]
, (G 19)

where we have used (G12). When k∥∗ ≫ k∥c, i.e., when all wavenumbers k∥ < k∥c are in
the isobaric limit, the last term in (G19) is negligible and the resultant expression simply
describes the gradual petering out of the cETG growth rate due to the stabilising effect
of the KAW response — γ has no extrema. If k∥∗ ≪ k∥c and α = 1 (collisionless limit),
then (G19) describes the increase of γ with k∥ — it will reach the maximum (G14) after
is crosses over from the isobaric regime into the isothermal one around k∥ ∼ k∥∗. In the
collisional limit (α = 2), (G 19) does have an extremum in the isobaric regime, viz.,

k∥

k∥c
=

√
2τ̄2

1 + 4τ̄

(
k∥∗

k∥c

)α

, (G 20)

but this extremum is a minimum, not a maximum: the growth rate dips slightly before
starting to increase again towards the isothermal maximium (G14) [this is visible in
figure 5(c)].
Returning to the case k∥∗ ≫ k∥c, we must also examine the isobaric behaviour at

k∥ > k∥c, because the transition to the isothermal regime does not happen until well into
this range. Using (G 11), we find, at ξ∗ ≫ 1,

γ2 ≈ ωdeω∗e

2τ̄

[(
k∥

k∥c

)2

− 1

]
1

ξ2∗
=
ωdeω∗e

2τ̄

[(
k∥∗

k∥c

)2
1

ξ
2/α
∗

− 1

]
1

ξ2∗
. (G 21)

This increases monotonically with 1/ξ∗ ∝ kα∥ until the isobaric regime transitions into the

isothermal one at ξ∗ ∼ 1. In the collisionless limit, γ asymptotes to the constant (4.34),
whereas in the collisional limit, it has a maximum at ξ∗ ∼ 1 before decaying at k∥ → ∞.
To find this maximum, one must extremise

γ2 ≈ 2ωdeω∗eτ̄

(
k∥∗

k∥c

)2
1

ξ
2/α
∗

f+(ξ∗) (G 22)

with respect to ξ2∗ without further approximations — a thankless exercise leading to a
quartic equation. The answer is

γ2max = ωdeω∗e

(
k∥∗

k∥c

)2

C(τ̄) (G 23)

where C(τ̄) is a constant formally of order unity, e.g., C(1) ≈ 0.093 (for which ξ∗ ≈ 0.67).
This is the same as (4.55).
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