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Abstract.

Ion-gyroradius-scale microinstabilities typically have a frequency comparable to

the ion transit frequency. Hence, it is conventionally assumed that passing electrons

respond adiabatically in ion-gyroradius-scale modes, due to the small electron-to-ion

mass ratio and the large electron transit frequency. However, in gyrokinetic simulations

of ion-gyroradius-scale modes, the nonadiabatic response of passing electrons can

drive the mode, and generate fluctuations with narrow radial layers, which may

have consequences for turbulent transport in a variety of circumstances. In flux

tube simulations, in the ballooning representation, these instabilities reveal themselves

as modes with extended tails. The small electron-to-ion mass ratio limit of linear

gyrokinetics for electrostatic instabilities is presented, including the nonadiabatic

response of passing electrons and associated narrow radial layers. This theory reveals

the existence of ion-gyroradius-scale modes driven solely by the nonadiabatic passing

electron response, and recovers the usual ion-gyroradius-scale modes driven by the

response of ions and trapped electrons, where the nonadiabatic response of passing

electrons is small. The collisionless and collisional limits of the theory are considered,

demonstrating interesting parallels to neoclassical transport theory. The predictions for

mass-ratio scaling are tested and verified numerically for a range of collision frequencies.

Insights from the small electron-to-ion mass ratio theory may lead to a computationally

efficient treatment of extended modes.
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1. Introduction

The leading magnetic confinement fusion experiments achieve single particle confinement

by exploiting strong magnetic fields that have nested toroidal flux surfaces: the Lorentz

force prevents particles crossing the magnetic field in the perpendicular direction, but

particles are free to stream along magnetic field lines. Despite this, there are still

particle and heat losses from the confined plasma. Neoclassical transport is driven by

interparticle Coulomb collisions in toroidal magnetic geometry, and turbulent transport

is driven by the free energy available in the equilibrium temperature and density

gradients.

Turbulence forms through the nonlinear saturation of microinstabilities. The

most important microinstabilities for transport have frequencies ω comparable to the

transit frequency of the constituent particle species, and perpendicular wavenumbers

k⊥ comparable to the inverse thermal gyroradius of the particles, i.e., ω ∼ vth,s/a ∼
ρ∗sΩs � Ωs, and k⊥ρth,s ∼ 1, where vth,s =

√
2Ts/ms is the thermal speed of

the component species s, a is a typical equilibrium length scale, Ωs = ZseB/msc is

the cyclotron frequency of the component species s, and ρ∗s = ρth,s/a � 1, with

ρth,s = vth,s/Ωs the thermal gyroradius of the species s. In the above definitions Ts
is the species temperature, ms is the species mass, Zs is the species charge number, e is

the proton charge, B is the magnetic field strength, and c is the speed of light. These

microinstabilities are extended along magnetic field lines, with parallel wave numbers

such that k‖qR ∼ 1, where qR is the “connection length”, q ∼ 1 is the safety factor and

R ∼ a is the major radius. A diffusive random walk estimate for the heat flux Qs driven

by instabilities at the scale ρth,s gives Qs ∼ Qgb,s = ρ2∗snsTsvth,s, with ns the equilibrium

plasma density of species s. To obtain this estimate, we use that the macroscopic profiles

have a scale of order a, and that turbulent eddies transport heat by a step length ρth,s
in a timescale vth,s/a.

A plasma has multiple particle species: the simplest plasma consists of ions, with

charge Zie and mass mi, and electrons, with charge −e and mass me. In a fusion plasma

with deuterium ions, the separation between the ion and electron masses has significant

consequences for the nature of the turbulence and the underlying instabilities. Since√
mi/me ≈ 60, we have that ρth,i � ρth,e and vth,i � vth,e, i.e., instabilities can be driven

over a wide range of space and time scales. Historically, research has largely focused on

transport and instabilities driven at the larger scale of the ion gyroradius. This is for

the simple reason that the heat flux estimate Qgb,i for ρth,i-scale turbulence dominates

the heat flux estimate Qgb,e for ρth,e-scale turbulence by (mi/me)
1/2 � 1. However, it is

important not to discount the ρth,e scales for several reasons. It is known that ρth,e-scale

turbulence can drive experimentally relevant heat fluxes that exceed the Qgb,e estimate

by a large order-unity factor [1–4]. Recently, expensive direct numerical simulations

(DNS) with realistic electron-to-hydrogen-ion-mass ratio [5, 6] and realistic electron-

to-deuterium-ion-mass ratio [6–11] have demonstrated the existence and significance of

cross-scale interactions between turbulence at the scales of ρth,i and ρth,e. Finally, as we
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will demonstrate in this paper, even familiar long-wavelength modes with binormal wave

numbers kyρth,i ∼ 1 may have narrow radial structures near mode-rational surfaces that

satisfy krρth,e ∼ 1, with kr the radial wave number. These structures result from the

dynamics of passing electrons [12, 13], and may be important for understanding cross-

scale interactions in multiscale DNS, cf. [6]. We will see that there are novel kyρth,i ∼ 1

modes driven by the electron response to the electron temperature gradient (ETG) in

the krρth,e ∼ 1 narrow layer, and we will see that even the familiar ion temperature

gradient (ITG) mode can exhibit krρth,e ∼ 1 features.

Anisotropy between the radial wave number kr and the binormal wave number

ky arises naturally in linear modes in magnetic geometry because of the presence of

magnetic shear ŝ. In the presence of magnetic shear, linear modes are conveniently

described in terms of “ballooning” modes that follow the magnetic field line many times

around the torus [14]. Ballooning modes have wave fronts that rotate with position

along the magnetic field line. As we shall describe with more precision later, in a

ballooning mode the radial wave number kr satisfies kr ∝ −kyŝθ for large θ, where θ

is the extended poloidal angle that is used to describe the position along the field line

as it winds around the torus. Therefore, it is possible for kyρth,i ∼ 1 modes to have

extended “ballooning tails” at θ � 1 that correspond to krρth,i � 1 components. In

the real-space picture, modes with extended ballooning tails are modes with significant

amplitude in a layer around mode-rational flux surfaces – flux surfaces where the field

line winds onto itself after an integer number of toroidal and poloidal turns. With

this in mind, we can understand the origin of electron-driven ballooning tails with a

simple physical argument. On irrational flux surfaces, where a single field line covers

the flux surface, rapidly moving passing electrons can sample the entire flux surface and

respond adiabatically. However, on mode-rational flux surfaces, passing electrons can

only sample a subset of the flux surface and hence have a nonadiabatic response.

Linear modes with extended ballooning tails have been observed in simulations

with a variety of equilibrium conditions, for example, in simulations of electrostatic

modes in core tokamak conditions [12, 13] and in the pedestal [15], as well as in

electromagnetic simulations of linear micro-tearing modes in spherical and conventional

tokamaks [16–18]. Although simulations of linear modes are inexpensive compared to

nonlinear simulations of turbulence, simulations of modes with extended ballooning tails

can be remarkably costly. The results presented in this paper are intended as a step

towards efficient reduced models of this class of mode.

In this paper we will obtain an asymptotic theory, valid in the limit of (me/mi)
1/2 →

0, for electrostatic modes that exist at the long wavelengths of the ion gyroradius scale,

i.e., kyρth,i ∼ 1. Reduced models of these modes must provide a reduced treatment of the

electron response. In the simplest case, for example, the classical ITG mode calculation

[19, 20], the electron response is taken to be adiabatic. More advanced calculations

retain the bounce-averaged response due to trapped electrons, see, e.g., [21, 22]. The

nonadiabatic response of passing electrons is traditionally neglected, despite evidence

from DNS that indicates that the nonadiabatic passing electron response can alter
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transport in linear modes [12, 13] and fully nonlinear turbulence [6, 13]. In this paper,

we will show that, in the (me/mi)
1/2 → 0 limit, there are in fact two classes of modes

existing at kyρth,i ∼ 1: first, the traditional ITG or ion-response-driven modes; and

second, ETG modes that are driven by the electron response in the large θ tail of the

ballooning mode. We find the large θ equations that govern the electron response in

the tail of the ballooning mode, and we show that the orderings used to derive these

equations are satisfied by the numerical solutions of both the ion-response-driven and

electron-response-driven modes simulated using the gyrokinetic code GS2 [23].

The nature of the large θ equations, and the nature of the corresponding electron-

driven ballooning tail, depends on the electron self-collision frequency νee and the

electron-ion collision frequency νei ∼ νee. In the “collisionless” limit, where aνee/vth,e ∼
(me/mi)

1/2 � 1, the extent of the mode is set by a balance of free-streaming, finite

orbit width and finite Larmor radius physics. We find that the electron-driven tail

extends to θ ∼ (mi/me)
1/2. In the “collisional” limit, where aνee/vth,e ∼ 1, the

extent of the mode is set by a balance between perpendicular collisional diffusion and

parallel collisional diffusion that is set up by gradients in the fluctuations along the

magnetic field line. The diffusion arises from both classical and neoclassical collisional

mechanisms. As a result of this balance, we find that the electron-driven tail extends to

θ ∼ (mi/me)
1/4, corresponding to krρth,e ∼ (me/mi)

1/4. We treat the collisionless and

collisional asymptotic theories separately, before turning to numerical simulations that

support the analytical results.

The remainder of this paper is structured as follows. In section 2, we briefly review

the electrostatic gyrokinetic model that is the starting point for this work. In section

3, we identify a convenient form of the gyrokinetic equation that we use to describe

electron dynamics. We obtain the asymptotic theory of collisionless modes in section

4, and we obtain the asymptotic theory of collisional modes in section 5. We compare

the results of sections 4 and 5 to numerical simulations in section 6. Finally, in section

7, we discuss the implications of these results and possible extensions of the theory.

Included in this paper are appendices containing results pertaining to the collisional

limit. In Appendix A, we obtain the classical perpendicular flux contributions to the

electron mode equations. In Appendix B, we solve the Spitzer problem necessary to

obtain the neoclassical parallel and perpendicular flux contributions to the electron

mode equations. In Appendix C, we obtain the parallel and perpendicular fluxes for the

electron mode equations in the highly collisional (Pfirsh-Schlüter) limit. In Appendix

D, we obtain the parallel and perpendicular fluxes for the electron mode equations in

the banana regime of collisionality in a small inverse aspect ratio device. Finally, in

Appendix E, we give a detailed analysis of the ion nonadiabatic response at large θ.

2. Electrostatic gyrokinetic equations

In this section, we briefly review the linear, electrostatic, δf gyrokinetic model [24]

that is the starting point for the analysis in this paper. In gyrokinetic theory, the
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microinstability mode frequency ω is taken to be much smaller than the cyclotron

frequency Ωs at which particles gyrate around the magnetic field direction b = B/B,

where B is the magnetic field. The mode frequency ω is taken to be of order the transit

frequency vth,s/a. The spatial scale of the fluctuations perpendicular to the magnetic

field line is of order the thermal gyroradius ρth,s = vth,s/Ωs, and the fundamental

gyrokinetic expansion parameter is ρ∗s = ρth,s/a. In δf gyrokinetics, the fluctuating

distribution function δfs for each species s is a sum of the nonadiabatic response hs, and

the adiabatic response −ZseφF0s/Ts, i.e.,

δfs(r,v, t) = hs(R, ε, λ, t)−
Zseφ(r, t)

Ts
F0s, (1)

where φ is the fluctuating electrostatic potential, F0s is the equilibrium Maxwellian

distribution, r is the particle position, v is the particle velocity, and we have indicated

that hs is a function of guiding centre position R = r−ρs (with ρs = b×v/Ωs), energy

ε = msv
2/2 (with v = |v|), and pitch angle λ = v2⊥/v

2B (with v⊥ = |v−bb ·v|), whereas

φ is a function of r but not of v. In this paper we consider linear theory, and so we

make the eikonal ansatz

hs(R, t) =
∑

k⊥

hs,k⊥ exp [i(k⊥ ·R− ωt)],

φ(r, t) =
∑

k⊥

φk⊥ exp [i(k⊥ · r − ωt)], (2)

where k⊥ is the perpendicular-to-the-field wave vector. Henceforth, we drop the k⊥
subscripts on the Fourier coefficients.

2.1. The gyrokinetic equation and quasineutrality

The linear, electrostatic gyrokinetic equation is

v‖b · ∇θ
∂hs
∂θ

+ i(k⊥ · vM,s − ω)hs − CGK
s [hs] = i (ω∗,s − ω) J0sF0s

Zseφ

Ts
, (3)

where v‖ = b · v, θ is the poloidal angle coordinate that measures distance along the

magnetic field line,

vM,s =
v2‖
Ωs

b× b · ∇b+
v2⊥
2Ωs

b× ∇B
B

(4)

is the magnetic drift, and the finite Larmor radius effects are modelled by the 0th Bessel

function of the first kind J0s = J0(bs), where bs = k⊥v⊥/Ωs, and k⊥ = |k⊥|. Note that

Ωi = ZieB/mic > 0, whereas Ωe = −eB/mec < 0. The frequency ω∗,s contains the

equilibrium drives of instability:

ω∗,s = ωn∗,s

(
1 + ηs

(
ε

Ts
− 3

2

))
, (5)

with

ωn∗,s = − ckαTs
Zsens

dns
dψ

, (6)
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and ns the equilibrium number density of species s, ψ the poloidal magnetic flux (defined

implicitly in section 2.2), and

ηs =
d lnTs
d lnns

. (7)

Finally, the collision operator CGK
s [·] is shorthand for the linearised gyrokinetic collision

operator of the species s.

For ions, the linearised gyrokinetic collision operator is defined by

CGK
i [hi] = 〈exp [ik⊥ · ρi]Cii [exp [−ik⊥ · ρi]hi]〉γR , (8)

with Cii[·] the linearised self-collision operator of the ion species, and 〈·〉γR the gyrophase

average at fixed R, ε, and λ. The self-collision operator of the species s, Css[·], is defined

by

Css [f ] =
2πZ4

s e
4 ln Λ

m2
s

∂

∂v
·
∫
F0sF

′
0sU(v − v′) ·

(
∂

∂v

(
f

F0s

)
− ∂

∂v′

(
f ′

F ′0s

))
d3v′, (9)

where f is a distribution function, and we have used the shorthand notation f = f(v),

f ′ = f(v′), F0s = F0s(v), F ′0s = F0s(v
′), and

U(v − v′) =
I|v − v′|2 − (v − v′)(v − v′)

|v − v′|3 , (10)

with I is the identity matrix. We note that the Coloumb logarithm ln Λ ≈ 17 [25].

After Braginskii [26], we define the ion self-collision frequency νii by

νii =
4
√
π

3

Z4
i nie

4 ln Λ

m
1/2
i T

3/2
i

, (11)

and we define the electron self-collision frequency νee by

νee =
4
√

2π

3

nee
4 ln Λ

m
1/2
e T

3/2
e

, (12)

noting the factor of
√

2 difference in the definitions of νee and νii.

For electrons, the linearised gyrokinetic collision operator is defined by

CGK
e [he] = 〈exp [ik⊥ · ρe]Cee [exp [−ik⊥ · ρe]he]〉γR

+

〈
exp [ik⊥ · ρe]L

[
exp [−ik⊥ · ρe]he −

mev · δui

Te
F0e

]〉γ

R

, (13)

where Cee[·] is the linearised self-collision operator of the electron species, defined by

equation (9), and

L [f ] =
3
√
π

8
νeiv

3
th,e

∂

∂v
·
(
v2I − vv

v3
· ∂f
∂v

)
, (14)

is the Lorentz collision operator resulting from electron-ion collisions, with the electron-

ion collision frequency νei defined following Braginskii [26], i.e.,

νei =
4
√

2π

3

Z2
i nie

4 ln Λ

m
1/2
e T

3/2
e

. (15)
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In equation (13),

δui =
1

ni

∫ (
J0iv‖b+ iJ1i

v⊥
k⊥
k⊥ × b

)
hi d

3v, (16)

where J1s = J1(bs), the 1st Bessel function of the first kind.

For a simple two-species plasma of ions and electrons, quasineutrality implies that

the equilibrium densities satisfy Zini = ne. In the electrostatic limit, the system of

gyrokinetic equations for the fluctuations is closed by the quasineutrality relation. The

quasineutrality relation has the form(
ZiTe
Ti

+ 1

)
eφ

Te
=
δni

ni

− δne

ne

, (17)

where the fluctuating nonadiabatic densities δns are defined by

δns =

∫
J0shs d

3v. (18)

2.2. Magnetic coordinates and boundary conditions

To describe the plane perpendicular to the magnetic field line, we use the dimensionless

binormal field-line-label coordinate α, and the flux label ψ, defined such that the

magnetic field may be written in the Clebsch form

B = ∇α×∇ψ. (19)

We restrict our attention to axisymmetric magnetic fields of the form

B = I∇ζ +∇ζ ×∇ψ, (20)

where ζ is the toroidal angle, and I(ψ) is the toroidal current function. An explicit

formula for α, in terms of ψ, ζ, and the poloidal angle θ, may be obtained by equating

expressions (19) and (20):

α(ψ, ζ, θ) = ζ − q(ψ)θ − ν(ψ, θ), (21)

with the safety factor

q(ψ) =
1

2π

∫ 2π

0

B · ∇ζ
B · ∇θdθ

′, (22)

and

ν(ψ, θ) =

∫ θ

0

B · ∇ζ
B · ∇θdθ

′ − qθ. (23)

Note that ν(ψ, 2π) = ν(ψ, 0) = 0. Using the (ψ, α) coordinates, we write the

perpendicular wave vector as

k⊥ = kψ∇ψ + kα∇α, (24)

with the field-aligned radial and binormal wave numbers kψ and kα, respectively.

In the study of linear modes, it is convenient to consider the coordinate θ as an

extended ballooning angle, and to replace kψ with θ0 = kψ/q
′kα, where q′ = dq/dψ. In

this formulation, hθ0,kα = hθ0,kα(θ), with −∞ < θ <∞ and the boundary conditions

hθ0,kα(θ) = 0 at θ → −∞, for v‖ > 0, and
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hθ0,kα(θ) = 0 at θ →∞, for v‖ < 0. (25)

Much of the discussion in the following sections of this paper is focused on the

behaviour of the solution at large θ. The large θ part of the mode corresponds to a narrow

radial layer in the real-space representation. To see this, consider the (contravariant)

radial wave number

kr = k⊥ · ∇r = (θ0 − θ)kα
dq

dr
|∇r|2 − kα(q∇θ · ∇r +∇ν · ∇r), (26)

where r = r(ψ) is a minor radial coordinate that is a function of ψ only, and has

dimensions of length. For large |θ0 − θ|, we find that kr ' (θ0 − θ)kα(dq/dr)|∇r|2, i.e.,

we may obtain narrow radial structures in a ballooning mode by either imposing a large

θ0 (= kψ/q
′kα), or by following the field line, as a result of magnetic shear.

It will be interesting to consider the behaviour of the magnetic drift. The term due

to the magnetic drift, ik⊥ · vM,s, may be written in the following convenient form

ik⊥ · vM,s = ikαvM,s · (∇α + θ∇q) + ikα
dq

dr
(θ0 − θ)vM,s · ∇r. (27)

We note that the quantity ∇α + θ∇q = ∇ζ − q∇θ −∇ν contains no secular variation

in θ. Hence, for large |θ0− θ| the magnetic drift is dominated by the radial component:

ik⊥ · vM,s ' ikrvM,s · ∇r/|∇r|2 for |θ0 − θ| � 1. Thus, the leading behaviour of a

ballooning mode at large θ should be expected to involve the radial magnetic drift. We

will often make use of the identity for the radial magnetic drift in an axisymmetric

magnetic field,

vM,s · ∇ψ = v‖b · ∇θ
∂

∂θ

(
Iv‖
Ωs

)
. (28)

Finally, we complete this discussion of coordinates by defining a field-aligned

radial wave number and binormal wave number with dimensions of length, kx and

ky, respectively. First, we define local radial and binormal coordinates with units

of length, x = (ψ − ψ0)(dψ/dx)−1 and y = (α − α0)(dα/dy)−1, respectively, where

(ψ0, α0) are the coordinates of the field line of interest. Then, the field-aligned radial

wavenumber kx = kψ(dψ/dx) and the binormal wave number ky = kα(dα/dy). We

take the proportionality constants to be dψ/dx = rI/qR0 and dα/dy = (I/R0)dr/dψ.

The functions I(ψ), r(ψ), and q(ψ) appearing in the proportionality constants should

be evaluated on the local flux surface of interest, and R0 is the major radius at

the magnetic axis. Using these normalisations, we find that the true radial wave

number kr ' (θ0 − θ)kyŝκ̂|∇r|2 for |θ0 − θ| � 1, with the magnetic shear defined

by ŝ = (r/q)dq/dr and the geometrical factor κ̂ = (qR0/Ir)dψ/dr.

3. A convenient form of the gyrokinetic equation

It is possible to use the identity for the radial magnetic drift in equation (28) to rewrite

the gyrokinetic equation in a way that will simplify the asymptotic analysis of the
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electron response. Collecting terms due to parallel streaming, and radial drifts, we find

that we can write

v‖b · ∇θ
∂hs
∂θ

+ ikαq
′(θ0 − θ)v‖b · ∇θ

∂

∂θ

(
Iv‖
Ωs

)
hs

= exp [−iλs(θ0 − θ)]v‖b · ∇θ
∂

∂θ
(exp [iλs(θ0 − θ)]hs) + ib · ∇θ

kαq
′Iv2‖

Ωs

hs, (29)

with

λs =
kαq

′Iv‖
Ωs

. (30)

Note that λs should not be confused with the pitch angle coordinate λ. We define the

new function Hs by

Hs = exp [iλs(θ0 − θ)]hs, (31)

and hence we can rewrite the gyrokinetic equation, equation, (3), as

v‖b · ∇θ
∂Hs

∂θ
+ i(ωM,s − ω)Hs − Ĉs[Hs] = i (ω∗,s − ω) exp [iλs(θ0 − θ)]J0sF0s

Zseφ

Ts
, (32)

where

ωM,s = kα

(
vM,s · (∇α + θ∇q) + b · ∇θ

q′Iv2‖
Ωs

)
, (33)

and

Ĉs[Hs] = exp [iλs(θ0 − θ)]CGK
s [exp [−iλs(θ0 − θ)]Hs]. (34)

It is also useful to consider the form of the nonadiabatic density appearing in the

quasineutrality relation, equation (17). In terms of Hs, we can write the nonadiabatic,

fluctuating density δns as

δns =

∫
exp [−iλs(θ0 − θ)]J0sHs d

3v. (35)

When the gyrokinetic equation is written in terms of Hs, the oscillation in the

distribution function due to the radial magnetic drift appears explicitly as the phase

exp [iλs(θ0 − θ)] – this phase may be thought of in analogy to the phase exp [ik⊥ · ρs]
arising from the finite Larmor radius in gyrokinetic theory. In fact, the appearance of

exp [iλs(θ0 − θ)] is due to the finite particle drift orbit width. This may be noted by

writing λs(θ0 − θ) = kαq
′(θ0 − θ)∆ψ, recalling that ∆ψ = Iv‖/Ωs is the excursion in

flux label ψ made by trapped particles in a banana orbit [27], and finally, noting that,

in the limit of large |θ0 − θ|, λs(θ0 − θ) ' kr(dr/dψ)∆ψ/|∇r|2.

4. Long-wavelength collisionless electrostatic modes in the (me/mi)
1/2 → 0

limit

In this section we derive reduced model equations for long-wavelength, collisionless,

electrostatic modes in the (me/mi)
1/2 → 0 limit. We will focus on modes that exist
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at the long wavelengths of the ion gyroradius scale, i.e., kyρth,i ∼ 1 and θ0 ∼ 1. For

the modes described in this section, we take the “collisionless” ordering for the electron

collision frequency. Electron-ion collisions occur at a rate νei, and electron-electron self

collisions occur at a rate νee. The collisionless ordering is

qR0νee
vth,e

∼ qR0νei
vth,e

∼
(
me

mi

)1/2

� 1. (36)

In this ordering, the electron collision operator competes with the source term due to the

electrostatic potential and with the precessional magnetic drift. For consistency with

the electron species, we take the ion self-collision frequency νii ∼ (me/mi)
1/2 vth,i/qR0 �

vth,i/qR0 ∼ ω. We find that the extent of the ballooning mode is controlled by the

collisionless terms in the electron gyrokinetic equation, with the result that the mode

extends to a ballooning angle θ ∼ (mi/me)
1/2 � 1. In the following section, we

begin the derivation of the reduced model equations by examining the θ ∼ 1 region

of the ballooning mode. This discussion reveals the existence of passing-electron-

response-driven modes, in addition to the usual ion-response-driven and trapped-

electron-response-driven modes, and motivates an examination of the θ ∼ (mi/me)
1/2

region of the collisionless ballooning mode in section 4.2. To aid comprehension, we

summarise the results of this section for trapped-electron-response-driven and ion-

response-driven modes in section 4.3, and for passing-electron-response-driven modes

in section 4.4. Finally, in section 4.5, we comment on the relationship between the

derivation of gyrokinetics and the derivation of the reduced model equations for the

electron response: although these theories have fundamental differences, they have a

similar structure, relying on the finite Lamor radius and the finite (magnetic drift) orbit

width of particles, respectively.

4.1. Outer solution – krρth,i ∼ 1

We define the outer region of the mode to be the region where θ ∼ 1, equivalently, the

region where krρth,i ∼ 1. In real space, the outer region is the large-scale region far from

the rational flux surface.

In the collisionless ordering, it is natural to expand the electric potential and

distribution functions in (me/mi)
1/2:

φ = φ(0) + φ(1) + O

((
me

mi

)
φ

)
, (37)

with φ(n) ∼ (me/mi)
n/2 φ(0); and

hs = hs
(0) + hs

(1) + O

((
me

mi

)
hs

)
, (38)

where hs
(n) ∼ (me/mi)

n/2 (eφ/Te)F0s. Similarly, it will be natural to expand the

frequency of the mode in powers of (me/mi)
1/2:

ω = ω(0) + ω(1) + O

((
me

mi

)
ω

)
. (39)
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We now derive the equations for the ion response, before moving on to derive the

equations for the electron response.

4.1.1. Ion response in the outer region. For the ion species, we start with the usual

form of the gyrokinetic equation, equation (3). In the collisionless limit, the leading

order equation for the ion response is

v‖b · ∇θ
∂hi

(0)

∂θ
+ i
(
k⊥ · vM,i − ω(0)

)
hi

(0) = i
(
ω∗,i − ω(0)

)
J0iF0i

Zieφ
(0)

Ti
. (40)

Using equation (40), and the estimates ω ∼ vth,i/a ∼ ω∗,i and bi ∼ 1, we find that

hi/F0i ∼ eφ(0)/Te. Hence, the ion nonadiabatic response contributes at leading order to

φ. The equation for the nonadiabatic ion density is

δn
(0)
i

ni

=

∫
J0i
hi

(0)

ni

d3v ∼ eφ(0)

Te
. (41)

4.1.2. Electron response in the outer region. For the electron species we will use the

modified form of the gyrokinetic equation, equation (32). We do this to avoid integrating

the radial magnetic drift vM,e · ∇ψ by parts in θ at every order when applying transit

or bounce averages. The leading order equation for the electron response is

v‖b · ∇θ
∂H

(0)
e

∂θ
= 0, (42)

where we have used that the electron parallel streaming term is larger than every other

term in equation (32) by the ordering ωa/vth,i ∼ kyρth,i ∼ 1 and vth,i/vth,e ∼ (me/mi)
1/2.

We note that for electrons λe ∼ (me/mi)
1/2, and hence, for θ0 ∼ θ ∼ 1 the phase

exp [iλe(θ0 − θ)] may be expanded as

exp [iλe(θ0 − θ)] = 1 + iλe(θ0 − θ)−
λ2e
2

(θ0 − θ)2 + O

((
me

mi

)3/2
)
. (43)

As a consequence of equation (42), the leading-order nonadiabatic electron response

is independent of θ for θ ∼ 1. The remainder of the expansion must be carried out

separately for passing and trapped particles.

Trapped particles occupy the range of pitch angles 1/Bmax < λ ≤ 1/B(θ), with

Bmax the maximum value of B(θ). In each well, trapped particles bounce at the upper

and lower bounce points, θ+b and θ−b , respectively. Equation (42) for trapped particles

states that H
(0)
e is constant in θ within each magnetic well. Imposing the trapped

particle boundary conditions

he(θ
±
b , σ = 1) = he(θ

±
b , σ = −1), (44)

where σ = v‖/|v‖|, and using equation (31), we find that H
(0)
e (σ = 1) = H

(0)
e (σ = −1),

and so H
(0)
e is independent of (θ, σ). The trapped electron piece of the distribution

function H
(0)
e is determined by the equation for the next order in the electron response

v‖b · ∇θ
∂H

(1)
e

∂θ
+ i(ωM,e − ω(0))H(0)

e − Cee[H
(0)
e ]− L[H(0)

e ]
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= −i
(
ω∗,e − ω(0)

)
F0e

eφ(0)

Te
, (45)

where we have used that for be = O((me/mi)
1/2), J0e = 1 + O(me/mi), and

exp [iλe(θ0 − θ)] = 1+O
(

(me/mi)
1/2
)

, and we have employed k⊥ ·ρe ∼ be ∼ (me/mi)
1/2

to reduce the collision operator in equation (45) to the drift kinetic electron collision

operator Cee[·] + L[·]. To close equation (45), we introduce the bounce average for

trapped particles

〈·〉b =

∑
σ

∫ θ+b
θ−b
dθ (·)/|v‖|b · ∇θ

2
∫ θ+b
θ−b
dθ/|v‖|b · ∇θ

. (46)

Applying 〈·〉b to equation (45), we find the solvability condition

i
(
〈ωM,e〉b − ω(0)

)
H(0)

e − Cee[H
(0)
e ]− L[H(0)

e ] = −i
(
ω∗,e − ω(0)

)
F0e

e
〈
φ(0)
〉b

Te
, (47)

where we have used the property
〈
v‖b · ∇θ

∂f

∂θ

〉b

= 0 (48)

of the bounce average, valid for any f = fθ0,kα(ε, λ, σ, θ) satisfying the bounce condition

fθ0,kα(ε, λ, σ = 1, θ±b ) = fθ0,kα(ε, λ, σ = −1, θ±b ).

Passing particles occupy the range of pitch angles 0 ≤ λ ≤ 1/Bmax, and hence,

passing particles are free to travel between magnetic wells. For passing electrons,

equation (42) determines that, for a given (θ0, kα) mode, H
(0)
e is a constant in θ for

each sign of the parallel velocity σ, i.e.,

H(0)
e = H(0)

e (ε, λ, σ). (49)

To determine this constant H
(0)
e , we need to supply an appropriate incoming boundary

condition to the θ ∼ 1 region. This will require us to consider the θ � 1 region.

In the conventional treatment of passing electrons, it is argued that the incoming

boundary condition (25) implies that H
(0)
e = 0 in the passing piece of velocity space,

cf. [28, 29]. This assumption results in modes driven at scales of kyρth,i ∼ 1 by the

ion response or the trapped electron response. Under this assumption, the leading-

order nonadiabatic response of passing electrons H
(1)
e is determined by the first-order

equation

v‖b · ∇θ
∂H

(1)
e

∂θ
− Cee[H

(0)
e ] = −i

(
ω∗,e − ω(0)

)
F0e

eφ(0)

Te
, (50)

where the magnetic drift, frequency, and electron-ion collision terms are neglected

because H
(0)
e = 0 in the passing part of velocity space. The collision operator term

Cee[H
(0)
e ] is retained because Cee[H

(0)
e ] is a nonlocal operator representing the drag of

trapped particles on passing particles. In this ordering, passing electrons coming from

the θ � 1 region receive a (me/mi)
1/2 small impulse from the θ ∼ 1 electrostatic

potential:

H(1)
e (θ, σ = 1) = H(1)

e (−∞, σ = 1) (51)
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+

∫ θ

−∞

1

v‖b · ∇θ

(
Cee[H

(0)
e ]− i

(
ω∗,e − ω(0)

) eφ(0)

Te
F0e

)
dθ′,

and

H(1)
e (θ, σ = −1) = H(1)

e (∞, σ = −1) (52)

+

∫ θ

∞

1

v‖b · ∇θ

(
Cee[H

(0)
e ]− i

(
ω∗,e − ω(0)

) eφ(0)

Te
F0e

)
dθ′,

where H
(1)
e (∓∞, σ = ±1) should be determined consistently in the θ � 1 region.

Because H
(1)
e contributes only a small correction to quasineutrality, the nonadiabatic

response of passing electrons is conventionally ignored.

One of the key contributions of this paper is to notice a flaw in the conventional

argument: in fact, H
(0)
e need not vanish, but instead H

(0)
e can be determined self-

consistently in the θ � 1 region. The resulting class of modes are driven by the

nonadiabatic response of passing electrons, with no leading-order impact from the ion

response or trapped electron response in the θ ∼ 1 region. We now turn to the θ � 1

region for the collisionless ordering. The equations that we obtain there will provide

the nonadiabatic passing electron response, H
(0)
e (ε, λ, σ = ±1), in the case of passing-

electron-response driven modes, and the boundary conditions H
(1)
e (θ = ∓∞, ε, λ, σ =

±1) in the case of modes in the conventional ordering.

4.2. Inner solution – krρth,e ∼ 1

In real space, the inner region is the radial layer close to the rational flux surface. The

inner region is characterised by fine radial scales associated with electron physics. In

order to capture these scales analytically in the ballooning formalism, we introduce an

additional ballooning angle coordinate χ that measures distance along the magnetic

field line. The coordinate θ will capture periodic variation in ballooning angle on the

scale of 2π associated with the equilibrium geometry, whereas the coordinate χ will

measure secular variation on scales much larger than 2π. In the inner region, distribution

functions and fields become functions of the independent variables θ and χ, i.e.,

f(θ)→ f(θ, χ), (53)

and parallel-to-the-field-line derivatives become

∂

∂θ
→ ∂

∂θ
+

∂

∂χ
. (54)

We order ∂/∂χ ∼ (me/mi)
1/2 ∂/∂θ, and we order krρth,e ∼ 1, whilst keeping kyρth,i ∼ 1.

The parallel-to-the-field variable θ appears in two forms in the gyrokinetic equation

(32): as the argument of periodic functions associated with the magnetic geometry; and

linearly in the combination −kαq′(θ− θ0). To treat the scale separation within the part

of the mode where θ ∼ (mi/me)
1/2 � 1, we send θ → χ where θ appears in secular

terms (e.g. −kαq′(θ− θ0)), and we take χ ∼ (mi/me)
1/2 � 1. This assignment captures
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the effect of the secular growth of the radial wave number kr in the θ � 1 region. With

this procedure, we note that, in the inner region, we can usefully write

k⊥ = k
(0)
⊥ + k

(1)
⊥ , (55)

with

k
(0)
⊥ = −kαχ∇q (56)

and

k
(1)
⊥ = kαθ0∇q + kα(∇α + θ∇q) = O

(
χ−1k

(0)
⊥

)
, (57)

where we recall that ∇α + θ∇q = ∇ζ − q∇θ − ∇ν has no secular dependence on θ.

Hence, we find that in the inner region

ik⊥ · vM,s = ik
(0)
⊥ · vM,s + O

(
χ−1k

(0)
⊥ · vM,s

)
. (58)

We also need to consider the argument of the Bessel function

bs =
k⊥v⊥msc

ZseB
=
k⊥(θ)c

Zse

√
2msελ

B(θ)
. (59)

In the region χ ∼ (me/mi)
1/2, we find that

bs = kα|∇q|(θ)
c

Zse

√
2msελ

B(θ)
|χ|+ O

(
χ−1bs

)
. (60)

Note that bs has a linear dependence on χ, whereas θ appears only through the periodic

functions |∇q| = |q′||∇ψ|(θ) and B(θ). The plasma is magnetised, and hence B(θ) will

have a large component independent of θ. Likewise, |∇ψ| will be nowhere zero on any

given flux surface (except perhaps if there is an X-point on the last closed flux surface).

Hence, changes in θ cause only small oscillations in bs, whereas changes in χ can cause

arbitrarily large variations in bs.

Finally, to solve for the electron distribution function, we need to impose a 2π

periodic boundary condition on θ, and a “ballooning” boundary condition on χ, i.e.,

he(θ = π, χ) = he(θ = −π, χ), (61)

and

he(χ = −∞) = 0, for v‖ > 0, and

he(χ =∞) = 0, for v‖ < 0. (62)

The results for large χ above, equations (55)-(62), are not peculiar to the ordering

χ ∼ (mi/me)
1/2. We will reuse results (55)-(62) for χ ∼ (mi/me)

1/4 when we come to

discuss the collisional inner region in section 5.1.

To solve for the electron response, we will again use the modified electron

distribution function He, defined by equation (31), and the modified electron gyrokinetic

equation (equation (32) with s = e). We note that, in the inner region of the collisionless
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ordering, θ ∼ (mi/me)
1/2 � 1 ∼ θ0 � λe ∼ (me/mi)

1/2, and hence the phase in (31)

becomes

exp [iλe(θ0 − θ)] = exp [−iλeχ]

(
1 + iλeθ0 −

λ2eθ
2
0

2
+ O

((
me

mi

)3/2
))

. (63)

Consistent with the expansion in the outer region, in the inner region we expand

the electrostatic potential φ, the distribution functions hi and He, and the frequency ω

in powers of (me/mi)
1/2. However, we leave the relative size of the fluctuations in the

outer and inner regions to be determined. We will return to this point in sections 4.3

and 4.4.

4.2.1. Ion response in the inner region. The leading-order equation for the ion response

in the inner region is
(
k2αq

′2|∇ψ|2χ2v2

4Ω2
i

(
ν‖,iλB +

ν⊥,i
2

(2− λB)
)
− ikαq

′χvM,i · ∇ψ
)
hi

(0)

= i
(
ω∗,i − ω(0)

)
J0iF0i

Zieφ
(0)

Ti
, (64)

where we have defined the collision frequencies

ν‖,i =

√
π

2
νii

Ψ(v/vth,i)

(v/vth,i)3
, (65)

and

ν⊥,i =

√
π

2
νii

erf(v/vth,i)−Ψ(v/vth,i)

(v/vth,i)3
, (66)

with the functions

erf(z) =
2√
π

∫ z

0

exp
[
−s2

]
ds, (67)

and

Ψ(z) =
1

2z2

(
erf(z)− 2z√

π
exp

[
−z2

])
. (68)

The first term on the left of equation (64) is due to the finite-Larmor-radius terms in

the ion gyrokinetic self-collision operator (8) (cf. [30–32]). The ion response given by

equation (64) is local in ballooning angle – a more detailed analysis demonstrating how

this response arises is given in Appendix E. We note that J0i ∼ χ−1/2 ∼ (me/mi)
1/4

for bi ∼ krρth,i ∼ χ ∼ (mi/me)
1/2 � 1. Hence, if νii/ω ∼ (me/mi)

1/2, we take the ion

nonadiabatic response hi
(0)/F0i ∼ χ−3/2(eφ(0)/Te) everywhere in the inner region.

The contribution of hi
(0) to φ is small in the inner region. Estimating the size of

the ion nonadiabatic density δni in the inner region, we find that

δn
(0)
i

ni

=
1

ni

∫
J0ihi

(0) d3v ∼ me

mi

eφ(0)

Te
� eφ(0)

Te
. (69)

We have used the conventional distribution function hi and conventional form of

the gyrokinetic equation to describe the ion species. We could obtain the estimate (69)
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by using the alternative form of the gyrokinetic equation, equation (32). However, if

we use the distribution function Hi and equation (32) for ions, we need to be careful

with estimates involving integrals of the phase exp [−iλiχ], because λiχ� 1 in the inner

region.

4.2.2. Electron response in the inner region. The leading order equation for the

electron response in the inner region is

v‖b · ∇θ
∂H

(0)
e

∂θ
= 0. (70)

Equation (70) appears to be trivially simple because of the choice to use the modified

electron gyrokinetic equation (32), and modified distribution function He. In terms

of he, and using equation (31), equation (70) tells us that the leading-order electron

distribution function has the form

he
(0)(θ, χ) = exp [−iλeχ]H(0)

e (χ). (71)

In other words, the θ dependence in he
(0) comes entirely from the radial-magnetic-drift

phase exp [−iλeχ], and H
(0)
e (χ) is the slowly decaying envelope of he

(0). This observation

motivates the choice to present the derivation in terms of He rather than he.

The distribution function H
(0)
e is determined by the first-order equation for the

electron response in the inner region

v‖b · ∇θ
∂H

(1)
e

∂θ
+ v‖b · ∇θ

∂H
(0)
e

∂χ
+ i
(
ωM,e − ω(0)

)
H(0)

e − Ĉ(0)
e [H(0)

e ]

= −i
(
ω∗,e − ω(0)

)
exp [−iλeχ]J

(0)
0e F0e

eφ(0)

Te
, (72)

where

Ĉ(0)
e [H(0)

e ] = exp [−iλeχ]
〈

exp
[
ik

(0)
⊥ · ρe

]
Cee

[
exp

[
−ik

(0)
⊥ · ρe

]
exp [iλeχ]H(0)

e

]〉γ
R

+ exp [−iλeχ]
〈

exp
[
ik

(0)
⊥ · ρe

]
L
[
exp

[
−ik

(0)
⊥ · ρe

]
exp [iλeχ]H(0)

e

]〉γ
R
, (73)

and J
(0)
0e = J0(b

(0)
e ). In order to solve equation (72) for passing particles, we must impose

the solvability condition that H
(1)
e is periodic in θ. This condition can be imposed by

using the transit average

〈·〉t =

∫ π
−π dθ (·)/v‖b · ∇θ∫ π
−π dθ/v‖b · ∇θ

. (74)

Applying the transit average to equation (72) results in the equation for H
(0)
e ;

〈
v‖b · ∇θ

〉t ∂H(0)
e

∂χ
+ i
(
〈ωM,e〉t − ω(0)

)
H(0)

e −
〈
Ĉ(0)

e

[
H(0)

e

]〉t

= −i
(
ω∗,e − ω(0)

)
F0e

〈
exp [−iλeχ]J

(0)
0e

eφ(0)

Te

〉t

. (75)
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For trapped electrons, we need to be careful in our interpretation of the two

scales in equation (72). Physically, trapped particles cannot pass between wells in

the magnetic field strength. Trapped particles can observe only changes of order

unity in poloidal angle as they follow trapped orbits. This prohibits large variation

in the ballooning poloidal angle χ for individual particles. The trapped particle

distribution function should satisfy the trapped particle boundary conditions, equation

(44). Noting that λe(θ
±
b ) = 0 as v‖(θ

±
b ) = 0, we have that for trapped particles

H
(0)
e (θ±b , σ = 1) = H

(0)
e (θ±b , σ = −1) and hence H

(0)
e is constant in both θ and σ.

To go to higher order, we must impose the solvability condition that H
(1)
e satisfies the

bounce conditions H
(1)
e (θ±b , σ = 1) = H

(1)
e (θ±b , σ = −1). Hence, to obtain the equation

for H
(0)
e for trapped electrons, we apply the bounce average 〈·〉b, defined in equation

(46), to equation (72). The result is

i
(
〈ωM,e〉b − ω(0)

)
H(0)

e −
〈
Ĉ(0)

e

[
H(0)

e

]〉b

= −i
(
ω∗,e − ω(0)

)
F0e

〈
exp [−iλeχ]J

(0)
0e

eφ(0)

Te

〉b

, (76)

where we have used the property (48) of the bounce average, to eliminate the parallel

derivative in θ on the left-hand side of equation (72), and we have used the property
〈
v‖g
〉b

= 0, (77)

for any σ-independent function g = gθ0,kα(ε, λ, θ), to eliminate the term〈
v‖b · ∇θ

〉b
∂H

(0)
e /∂χ. Note that no derivatives in χ appear explicitly in equation (76),

and hence for trapped particles H
(0)
e is only a parametric function of χ. This is the

manifestation of the physical intuition that trapped particles do not move between

magnetic wells.

4.3. Modes with (me/mi)
1/2 small electron tails

In this section we describe the class of modes in the collisionless ordering that have

small electron tails. This class of modes includes the conventional ITG mode and the

trapped-electron mode (TEM), so much of the discussion will be familiar. We describe

the role of the electron response in these modes in detail to provide predictions for

numerical results in sections 6.2 and 6.2.1, and to compare and contrast with the novel

modes described in the next section.

To obtain the “small-tail” modes, we assume a priori that H
(0)
e,outer = 0 for passing

electrons in the outer region of the mode where θ ∼ 1 and krρth,i ∼ 1. Then the

passing electron response has a leading-order nonzero component H
(1)
e,outer, given by

equations (51) and (52). We obtain the leading-order trapped electron response H
(0)
e,outer

from equation (47), and the leading-order ion response h
(0)
i,outer from equation (40). No

parallel boundary condition is required to solve the trapped-electron equation (47). For

equation (40) for the ion response, we supply the zero-incoming boundary condition

(25), without referring to the inner region where krρth,i ∼ θ � 1. This is justified by
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the fact that in the inner region h
(0)
i,inner is small. We can regard H

(0)
e,outer and h

(0)
i,outer

as functionals of φ
(0)
outer and functions of ω(0), i.e., H

(0)
e,outer = H

(0)
e,outer[φ

(0)
outer, ω

(0)] and

h
(0)
i,outer = h

(0)
i,outer[φ

(0)
outer, ω

(0)]. The frequency ω(0) and potential φ(0) are determined

through the leading-order quasineutrality relation in the outer region
(
ZiTe
Ti

+ 1

)
eφ(0)

Te
=

∫
J0i
hi

(0)

ni

d3v −
∫
H

(0)
e

ne

d3v, (78)

where we have used that J0e = 1 + O (me/mi) for kyρth,i ∼ krρth,i ∼ 1. The small

correction H
(1)
e,outer from passing electrons does not enter in the leading-order eigenvalue

problem, equation (78). As a result, in small-tail modes the nonadiabatic passing

electron response is a “cosmetic” feature that does not contribute to determining the

basic properties of the mode. Nonetheless, observable electron tails can develop in

krρth,e ∼ 1 regions (θ ∼ (mi/me)
1/2). We illustrate this in figure 1. The mode is

decomposed into three regions: θ ∼ 1, and |θ| ∼ (mi/me)
1/2 for θ > 0 and θ < 0.

Forward-going passing electrons travel along the mode, receiving an impulse

∆He =

∫ ∞

−∞

1

v‖b · ∇θ

(
Cee

[
H

(0)
e,outer

]
− i
(
ω∗,e − ω(0)

) eφ(0)
outer

Te
F0e

)
dθ′ (79)

from the electrostatic potential φ in the θ ∼ 1 region. The impulse (79) sets the natural

size of the electron nonadiabatic response in the θ ∼ (mi/me)
1/2 region He,inner compared

to the size of the potential in the outer region:

He,inner ∼ ∆He ∼
(
me

mi

)1/2
eφouter

Te
F0e. (80)

We can use the leading-order quasineutrality relation in the inner region to obtain

an estimate for the size of the potential in the inner region. The leading-order

quasineutrality relation in the inner region is
(
ZiTe
Ti

+ 1

)
eφ(0)

Te
= −

∫
exp [iλeχ]J

(0)
0e

H
(0)
e

ne

d3v, (81)

where we have used that the ion contribution to quasineutrality is small, cf. equation

(69). Using equation (81), we find that the electrostatic potential in the inner region

φinner is of size

eφinner

Te
∼
(
me

mi

)1/2
eφouter

Te
. (82)

The matching condition for He,inner is obtained by demanding that the passing electron

distribution function is continuous across the boundary between the outer and inner

regions, i.e.,

H
(1)
e,outer(θ = ±∞) = H

(0)
e,inner(χ = 0±), for 0 ≤ λBmax ≤ 1. (83)

Note that the trapped electron distribution function need not be continuous across this

boundary. Combining equations (51), (52), (79) and (83), we find that the matching

condition for solving for the passing electron response in the small-tails limit is

H
(0)
e,inner(χ = 0+) = H

(0)
e,inner(χ = 0−) + ∆He, (84)
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Figure 1. An illustration showing the nonadiabatic passing electron response for

forward-going particles in the small-tail limit. At leading-order in the (me/mi)
1/2

expansion, the mode frequency is determined by the response of ions and trapped

electrons in the outer region (θ ∼ 1), by solving equations (40) and (47), with

quasineutrality (78). The passing part of the electron distribution function He is

propagated from left to right, via equation (75), starting with zero amplitude at θ =

−∞, receiving an impulse ∆He from the potential φ in the outer region (see equation

(79)), and finally, carrying that amplitude into the inner region (θ ∼ (mi/me)
1/2

). In

the inner region, the trapped electron response may be determined with equation (76),

and the electron response determines φ, via quasineutrality (81).

valid for both σ ± 1.

We can self-consistently obtain the electron tails associated with a small-tail mode

in the following way. First, we solve the the eigenvalue problem (78), with H
(0)
e,outer and

h
(0)
i,outer obtained from the equations (47) and (40), respectively. This determines ω(0) and

φ
(0)
outer. Second, we solve the inner region equations (75) and (76) for the nonadiabatic

response of passing electrons and trapped electrons, respectively, subject to the jump

condition (84) at χ = 0. This obtains the functional H
(0)
e,inner = H

(0)
e,inner[φ

(0)
inner, φ

(0)
outer, ω

(0)].

Finally, we impose quasineutrality, equation (81), to obtain a relation for φ
(0)
inner in terms

of the jump over φ
(0)
outer.

4.4. Modes with dominant electron tails

We now turn to the novel class of modes identified in this paper. To obtain a “large-

tail” mode in the (me/mi)
1/2 → 0 limit, we assume that the leading-order nonadiabatic

passing electron response is nonzero in the outer region, i.e.,

He,outer

F0e

∼ eφouter

Te
. (85)
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Figure 2. An illustration showing the nonadiabatic passing electron response for

forward-going particles in the large-tail limit. In this limit, the electron response in

the inner region (θ ∼ (mi/me)
1/2

) determines the mode frequency to leading order

in the (me/mi)
1/2

expansion: we solve equations (75) and (76) for the passing and

trapped electron response, respectively, subject to quasineutrality (81). In the outer

region, the electron response He is approximately constant, and ions respond passively,

without modifying the frequency to leading order.

We recall from section 4.1.2 that H
(0)
e,outer is a constant in θ, and is independent of the

ion response and the trapped electron response in the outer region. As a consequence,

in the ordering (85) we may solve the leading-order equations (75) and (76) for H
(0)
e in

the inner region with the boundary condition that

H
(0)
e,inner(χ = 0−) = H

(0)
e,inner(χ = 0+). (86)

Imposing quasineutrality via equation (81) results in an eigenvalue problem for φ
(0)
inner

and ω(0). We illustrate the mode structure in the large-tail ordering in figure 2. Note

in particular that the nonadiabatic passing electron response changes by only a small

((me/mi)
1/2) amount over the θ ∼ 1 region. As a consequence of the ordering (85), and

the boundary condition (86), we find that the electrostatic potential in the inner region

has no mass ratio scaling with respect to the electrostatic potential in the outer region,

i.e.,

eφinner

Te
∼ eφouter

Te
. (87)

An interesting corollary of these arguments is that the leading order complex frequency

ω(0) of a large-tail mode should be independent of θ0.

Finally, in a large-tail mode the role of the nonadiabatic ion response (and

nonadiabatic trapped electron response for θ ∼ 1) is to modify the leading-order

mode structure at θ ∼ 1 without modifying the frequency ω(0). To see this, note that
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equations (75), (76), and (81) determine the frequency ω(0). However, φ
(0)
outer is not yet

determined: in the θ ∼ 1 region only the nonadiabatic density due to passing electrons

δn
(0)
e,passing is fixed by the passing electron tails. To obtain φ

(0)
outer, we solve equation (40)

for the nonadiabatic ion response h
(0)
i,outer = h

(0)
i,outer[φ

(0)
outer, ω

(0)], and equation (47) for

the nonadiabatic trapped electron response H
(0)
e,outer−trapped = H

(0)
e,outer−trapped[φ

(0)
outer, ω

(0)],

where we have indicated that h
(0)
i,outer and H

(0)
e,outer−trapped are functionals of φ

(0)
outer and

functions of ω(0). We then use θ ∼ 1 quasineutrality, equation (78), to obtain φ
(0)
outer as a

function of δn
(0)
e,passing. The role of the nonadiabatic ion response (and the nonadiabatic

trapped electron response) is to modify the response of the electrostatic potential φ
(0)
outer

to an input ω(0) and δn
(0)
e,passing.

4.5. Relating the derivation of gyrokinetics to the derivation of the transit and bounce

averaged equations for the electron response

We conclude this section on collisionless physics by commenting on the relationship

between the derivation of gyrokinetics and the derivation of the transit and bounce

averaged equations for the electron response in the inner region. We note that in

the derivation of the gyrokinetic equation the change of variables from (r, ε, λ, γ) to

(R, ε, λ, γ) introduces the finite Larmor radius phase exp [ik⊥ · ρs] into the kinetic

equation. The γ dependence in the kinetic equation can be removed by a gyroaverage

〈·〉γ because the finite Larmor radius phases are converted into a Bessel function

J0(bs) by the gyroaverage 〈·〉γ, and the field φ(r) has no dependence on the gyrophase

γ. In the derivation of the equations for the electron response in the inner region,

equations (75) and (76), we find that the leading-order electron distribution function

H
(0)
e = H

(0)
e (χ, ε, λ, σ) is independent of θ, and the phase exp [−iλeχ] keeps track of the

electron drift orbit motion. However, the potential φ(0) = φ(0)(θ, χ) has a nontrivial

dependence on θ. This can be observed by inspecting the inner region quasineutrality

relation, equation (81), where we see that velocity-space structure in H
(0)
e influences the

θ structure of φ(0). As a consequence, we may not directly remove θ when solving the

system of equations (75), (76), and (81).

5. Long-wavelength collisional electrostatic modes in the (me/mi)
1/2 → 0

limit

In this section, we derive reduced model equations for long-wavelength, collisional,

electrostatic modes in the (me/mi)
1/2 → 0 limit. We define the collisional limit to

be the limit where

qR0νei
vth,e

∼ qR0νee
vth,e

∼ 1. (88)

We show that in the collisional limit, the scale of the mode in extended ballooning angle

χ is set by the balance between parallel and perpendicular classical and neoclassical
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diffusion terms appearing in the equations for the mode. Heuristically, this means that

we expect a balance

v2th,e
q2R2

0νee

∂2

∂χ2
∼ νeek

2
yρ

2
th,eχ

2. (89)

We can rearrange the balance (89) to give an estimate for the size of χ. We find that

χ ∼
(
qR0νee
vth,e

)−1/2(
mi

me

)1/4

. (90)

For the collisional ordering of qR0νee/vth,e ∼ 1, the scale of the electron tail is

χ ∼ (mi/me)
1/4. As expected, the “collisionless” ordering of qR0νee/vth,e ∼ (me/mi)

1/2

in the estimate (90) yields the scale χ ∼ (mi/me)
1/2. In consequence, we are able to

demonstrate a smooth matching between the collisional and the collisionless limits. We

discuss this matching in section 5.1.4.

In the following sections, we obtain the equations for the response of ions and

electrons in a kyρth,i ∼ 1 mode with a θ ∼ 1 outer region, and a θ ∼ (mi/me)
1/4

inner region. Although the details of the equations obtained here are different to the

collisionless case, the final result is qualitatively similar: two types of modes exist, large-

tail modes driven by the nonadiabatic electron response at θ ∼ (mi/me)
1/4 scales, and

conventional small-tail modes driven by the ion response at θ ∼ 1 scales. In order to

motivate the (me/mi)
1/4 expansion, we first derive the equations in the θ � 1 region. As

in the collisionless case, the equations that we obtain in the θ � 1 region are common to

both classes of mode. In section 5.2, we then discuss the equations for the two different

classes of modes in the θ ∼ 1 region. Section 5.2.2 provides a detailed description of

the boundary matching between the outer and inner regions for the small-tail mode, in

addition to a plenary summary for how to solve the small-tail mode equations. Finally,

section 5.2.3 provides a description of the boundary matching between the outer and

inner regions for the large-tail mode, and a plenary summary for how to solve the large-

tail mode equations.

5.1. Collisional inner solution – θ ∼ (mi/me)
1/4 – krρth,e ∼ (me/mi)

1/4

The collisional inner solution is characterised by fine radial scales associated with

electron physics. To treat these scales, we again introduce an additional coordinate

measuring distance along the magnetic field line, via the substitutions (53) and (54). We

recall that the coordinate θ will measure 2π periodic variation, whereas χ ∼ (mi/me)
1/4

is an extended ballooning angle for the envelope of the mode. Refer to the discussion

in section 4.2 for the details of the substitution in geometric quantities (equations (55)-

(60)); and the modifications to the boundary conditions on the electron distribution

function (equations (61) and (62)).

In the collisional inner region, we expand electrostatic potential φ, distribution

functions hs, and frequency ω in powers of (me/mi)
1/4, i.e.,

φ = φ(0) + φ(1/2) + φ(1) + O

((
me

mi

)3/4

φ

)
, (91)
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with φ(n) ∼ (me/mi)
n/2 φ;

hs = hs
(0) + hs

(1/2) + hs
(1) + O

((
me

mi

)3/4

hs

)
, (92)

where hs
(n) ∼ (me/mi)

n/2 (eφ/Te)F0s, and

ω = ω(0) + ω(1/2) + ω(1) + O

((
me

mi

)3/4

ω

)
. (93)

As in the collisionless case, we leave the relative size of the fluctuations in the outer and

inner regions to be determined. We will determine the relative sizes of the fluctuations

in section 5.2.

To solve for the electron response we will again use the modified electron

distribution function He, defined by equation (31). We note that in the ordering for the

collisional inner region χ ∼ (mi/me)
1/4 � 1 ∼ θ0 � λe ∼ (me/mi)

1/2, and hence the

phase in (31) becomes

exp [iλe(θ0 − θ)] =

(
1− iλeχ−

λ2eχ
2

2
+ iλeθ0 + O

((
me

mi

)3/4
))

. (94)

In addition, we will need to expand the phase due to the finite Larmor radius

exp [ik⊥ · ρe] in the collision operator CGK
e [·]. In the inner region, we find

exp [ik⊥ · ρe] = 1 + ik
(0)
⊥ · ρe −

1

2
(k

(0)
⊥ · ρe)2 + ik

(1)
⊥ · ρe + O

((
me

mi

)3/4
)
, (95)

where we note that k
(0)
⊥ · ρe ∼ (me/mi)

1/4 and k
(1)
⊥ · ρe ∼ (me/mi)

1/2.

5.1.1. Ion response in the collisional inner region. Before considering the electron

response, we first discuss the ion response in the inner region in the collisional limit.

The analysis proceeds almost identically to the analysis presented in section 4.2.1 for

the ion response in the collisionless limit. For νii/ω ∼ 1, we find that the leading-order

equation for the ion response is

k2αq
′2|∇ψ|2χ2v2

4Ω2
i

(
ν‖,iλB +

ν⊥,i
2

(2− λB)
)
hi

(0) = i
(
ω∗,i − ω(0)

)
J0iF0i

Zieφ
(0)

Ti
. (96)

Equation (96) has the same form as equation (64), apart from the fact that the radial

magnetic drift is neglected because χ ∼ (mi/me)
1/4. Equation (96) allows us to obtain

an estimate for hi
(0):

hi
(0)

F0i

∼ χ−5/2
eφ(0)

Te
∼
(
me

mi

)5/8
eφ(0)

Te
, (97)

where we have employed that J0i ∼ O
(
χ−1/2

)
for χ � 1. The estimate (97) yields

estimates for the ion nonadiabatic density

δn
(0)
i

ni

∼
(
me

mi

)3/4
eφ(0)

Te
� eφ(0)

Te
, (98)
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and the ion mean velocity

δu
(0)
i

vth,i
∼
(
me

mi

)3/4
eφ(0)

Te
� eφ(0)

Te
, (99)

where we have used that J0i ∼ J1i ∼ O
(

(me/mi)
1/8
)

. We estimate the size of the ion

flow velocity δui in order to order the terms in the electron-ion piece of the electron

collision operator, defined in equation (13).

5.1.2. Electron response in the collisional inner region. The calculation of the electron

response in the collisional inner region has a structure that is reminiscent of neoclassical

transport theory. The leading-order equation will constrain the leading-order electron

distribution function to be a perturbed Maxwellian with no flows. The first-order

equation takes the form of a Spitzer-Härm problem. Physically, the first-order terms

control the self-consistent parallel flows that result from the leading-order perturbations.

The second-order equation governs the time evolution of the leading-order fluctuations.

Velocity moments of the second-order equation yield transport equations for the electron

density and temperature fluctuations. In this section we calculate the forms of the

transport equations in the (me/mi)
1/4 → 0 limit, with qR0νee/vth,e ∼ 1. This calculation

demonstrates that the transport equations contain background drives of instability, and

parallel and perpendicular diffusion due to collisions. To obtain explicit analytical

forms for the parallel flow and perpendicular diffusion terms appearing in the transport

equations, in section 5.1.3, we consider the qR0νee/vth,e � 1 (Pfirsh-Schlüter) limit of

collisionality. In section 5.1.4, we consider the qR0νee/vth,e � 1 (banana-plateau) limit

of collisionality to demonstrate the matching between the collisionless and collisional

limits.

The leading order equation for the electron response in the inner region is

v‖b · ∇θ
∂H

(0)
e

∂θ
= Cee

[
H(0)

e

]
+ L

[
H(0)

e

]
. (100)

To simplify the collision operators in equation (100), we have used the equations (94)

and (95) for the finite-orbit-width and finite-Larmor-radius phases, respectively, and the

estimate (99) for δui. We have also noted that H
(0)
e is gyrophase independent, and Cee[·]

and L[·] commute with 〈·〉γ.
To solve equation (100), we follow the standard H-theorem procedure [27, 33]: first,

we multiply equation (100) by H
(0)
e /F0e, with the result

v‖b · ∇θ
∂

∂θ

((
H(0)

e

)2
/2F0e

)
=
H

(0)
e

F0e

Cee

[
H(0)

e

]
+
H

(0)
e

F0e

L
[
H(0)

e

]
. (101)

Second, we integrate over velocity space

B · ∇θ ∂
∂θ

(∫
v‖
B

(
H(0)

e

)2
/2F0e d

3v

)

=

∫
H

(0)
e

F0e

Cee

[
H(0)

e

]
d3v +

∫
H

(0)
e

F0e

L
[
H(0)

e

]
d3v, (102)
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where we have used the form of the velocity integral in (ε, λ) coordinates,
∫
· d3v =

∑

σ

∫ ∞

0

∫ 1/B

0

2πBε

m2
s|v‖|

· dλ dε (103)

and taken the ∂/∂θ derivative through the integral. Finally, we apply the poloidal angle

average

〈·〉θ =

∫ π

−π
· dθ

B · ∇θ

/∫ π

−π

dθ

B · ∇θ (104)

to equation (102), and impose periodicity of H
(0)
e in θ, to obtain

〈∫
H

(0)
e

F0e

Cee

[
H(0)

e

]
d3v

〉θ

+

〈∫
H

(0)
e

F0e

L
[
H(0)

e

]
d3v

〉θ

= 0. (105)

The collision operators Cee [·] and L [·] have the properties [27]
∫

g

F0e

Cee [g] d3v ≤ 0 and

∫
g

F0e

L [g] d3v ≤ 0, (106)

respectively. Collisions always increase the entropy of the system. The equality∫
(g/F0e) Cee [g] d3v = 0 is only achieved when g is a perturbed Maxwellian so that

Cee [g] = 0. The equality
∫

(g/F0e) L [g] d3v = 0 is only achieved when g is isotropic in

v so that L [g] = 0. As a consequence of equation (105), we find that H
(0)
e is a perturbed

Maxwellian with no flow, i.e.,

H(0)
e =

(
δn

(0)
e

ne

+
δT

(0)
e

Te

(
ε

Te
− 3

2

))
F0e, (107)

where δn
(0)
e and δT

(0)
e are functions of θ and χ to be determined. Returning to equation

(100), we now find that H
(0)
e must satisfy

v‖b · ∇θ
∂H

(0)
e

∂θ
= 0. (108)

For equation (108) to hold for all ε, we must have that δn
(0)
e and δT

(0)
e are constant in θ,

i.e.,

δn(0)
e = δn(0)

e (χ), and δT (0)
e = δT (0)

e (χ). (109)

To obtain evolution equations for δn
(0)
e and δT

(0)
e , we will need to go to O

(
(me/mi)

1/2
)

in the expansion.

Before proceeding to higher order in the expansion, we consider the collisional inner-

region quasineutrality relation. Using the expansion (94), the ordering (98), and the

solution (107), with J0e = 1 + O
(

(me/mi)
1/2
)

for χ ∼ (mi/me)
1/4, we find that the

leading-order quasineutrality relation is
(
ZiTe
Ti

+ 1

)
eφ(0)

Te
= −

∫
H

(0)
e

ne

d3v = −δn
(0)
e

ne

. (110)

Equation (110) allows us to note that the electrostatic potential in the inner region is not

a function of geometric angle θ, i.e., φ(0) = φ(0)(χ). This is a significant simplification
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over the collisionless case (cf. equation (81)), where φ(0) = φ(0)(θ, χ). This simplification

arises in the collisional limit because, first, there is no distinction between trapped and

passing particles, and second, the extent of the mode is shortened to χ ∼ (mi/me)
1/4 so

that the phase exp [iλeχ] = 1 + O
(

(me/mi)
1/4
)

, and J0e = 1 + O
(

(me/mi)
1/2
)

.

The O
(

(me/mi)
1/4
)

equation for the electron response in the inner region takes

the form

v‖b · ∇θ
∂H

(1/2)
e

∂θ
+ v‖b · ∇θ

∂H
(0)
e

∂χ
= C

[
H(1/2)

e + iλeχH
(0)
e

]
, (111)

where

C [·] = Cee [·] + L [·] . (112)

To expand the collision operator (34) for electrons, we have used the definition (13),

equations (94) and (95), the estimate (99), and the identities
〈

ik
(0)
⊥ · ρe C

[
H(0)

e

]〉γ
= 0, (113)

〈
C
[
ik

(0)
⊥ · ρe H(0)

e

]〉γ
= 0, (114)

and

C[H(0)
e ] = 0. (115)

Equation (111) bears a resemblance to the neoclassical drift-kinetic equation in the

banana collisionality regime [27, 33]. We note that the term v‖b ·∇θ∂H(0)
e /∂χ plays the

role of the equilibrium inductive electric field in the corresponding neoclassical equation.

The resemblance can be made explicit by absorbing the v‖b ·∇θ∂H(0)
e /∂χ term into the

collision operators by solving the Spitzer-Härm problem [26, 27, 34]

v‖b · ∇θ
∂H

(0)
e

∂χ
= C[HSH]. (116)

It is useful to note that because the collision operator C[·] is isotropic [27], HSH must

have the form

HSH = v‖KSH(ε, χ)F0e, (117)

where KSH is a function of ε and χ. We determine KSH in Appendix B.

Using the Spitzer-Härm solution provided by equation (116), we can rewrite the

equation in the following form

v‖b · ∇θ
∂H

(1/2)
e

∂θ
= C

[
H(1/2)

e + iλeχH
(0)
e −HSH

]
. (118)

In general, equation (118) is not solvable analytically. To maximise the physical insight

from the calculation we will subsequently solve equation (118) in the subsidiary limits

of large and small collisionality, and comment on the result for the time evolution of

δn
(0)
e and δT

(0)
e .
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To demonstrate the physics controlling the time evolution of δn
(0)
e and δT

(0)
e , we

continue to the O
(

(me/mi)
1/2
)

equation, presuming that H
(1/2)
e in equation (118) can

be satisfactorily solved for numerically. After collecting terms of O
(

(me/mi)
1/2
)

, we

find that the equation that determines H
(0)
e is

v‖b · ∇θ
∂H

(1)
e

∂θ
+ v‖b · ∇θ

∂H
(1/2)
e

∂χ
+ i(ωM,e − ω(0))H(0)

e

−C
[
H(1)

e + iλeχH
(1/2)
e −

(
1

2

(
λ2eχ

2 +
〈

(k
(0)
⊥ · ρe)2

〉γ)
+iλeθ0

)
H(0)

e

]
(119)

+iλeχC
[
H(1/2)

e + iλeχH
(0)
e

]
−
〈
k
(0)
⊥ · ρe C

[
k
(0)
⊥ · ρe H(0)

e

]〉γ
= −i(ω∗,e − ω(0))F0e

eφ(0)

Te
,

where, to obtain equation (119), we have used equations (94) and (95), estimate (99),

identities (113)-(115), that J0e = 1 + O
(

(me/mi)
1/2
)

for χ ∼ (mi/me)
1/4, and that C[·]

and 〈·〉γ commute.

We can convert equation (119) into equations for δn
(0)
e (χ) and δT

(0)
e (χ) by

multiplying equation (119) by the appropriate velocity space function (1 or ε/Te−3/2),

integrating over velocity space, integrating over θ, and finally imposing on H
(1)
e the

condition of 2π-periodicity in θ. After performing these operations, and dividing by ne,

the equation for the density moment is

∂

∂χ

(〈
b · ∇θ δU (1/2)

‖,e

〉θ)
+ i
〈
ωth
M,e

〉θ
(
δn

(0)
e

ne

+
δT

(0)
e

Te

)
− iω(0) δn

(0)
e

ne

+

〈
1

ne

∫
iλeχ C

[
H(1/2)

e + iλeχH
(0)
e

]
d3v

〉θ
−
〈

1

ne

∫ 〈
k
(0)
⊥ · ρe C

[
k
(0)
⊥ · ρe H(0)

e

]〉γ
d3v

〉θ

= −i(ωn∗,e − ω(0))
eφ(0)

Te
, (120)

where we have defined the thermal magnetic drift frequency

ωth
M,e =

kαv
2
th,e

2Ωe

(
b×

(
b · ∇b+

∇B
B

)
· (∇α + θ∇q) + b · ∇θq′I

)
, (121)

the nth-order component of the v‖ moment of H
(0)
e

δU
(n)
‖,e =

1

ne

∫
v‖H

(n)
e d3v, (122)

and used that the collision operator C [·] satisfies
∫
C [f ] d3v = 0, (123)

for f an arbitrary function of v. Similarly, the equation for the electron temperature is

∂

∂χ



〈
b · ∇θ

(
δQ

(1/2)
‖,e

neTe
+ δU

(1/2)
‖,e

)〉θ

+ i

〈
ωth
M,e

〉θ
(
δn

(0)
e

ne

+
7

2

δT
(0)
e

Te

)
− i

3

2
ω(0) δT

(0)
e

Te
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+

〈
1

ne

∫ (
ε

Te
− 3

2

)
iλeχ C

[
H(1/2)

e + iλeχH
(0)
e

]
d3v

〉θ
(124)

−
〈

1

ne

∫ (
ε

Te
− 3

2

)〈
k
(0)
⊥ · ρe C

[
k
(0)
⊥ · ρe H(0)

e

]〉γ
d3v

〉θ
= −i

3

2
ωn∗,eηe

eφ(0)

Te
,

where we have defined the nth-order component of the v‖(ε/Te − 5/2) moment of H
(0)
e

δQ
(n)
‖,e =

∫
v‖

(
ε− 5Te

2

)
H(n)

e d3v, (125)

and used that the collision operator C [·] satisfies
∫ (

ε

Te
− 3

2

)
C [f ] d3v = 0. (126)

With the solution of equation (118) for H
(1/2)
e , equations (110), (120), and (124)

represent a closed system of transport equations for φ(0), δn
(0)
e , and δT

(0)
e .

Equations (120) and (124) may be written in a form where the terms admit simple

physical interpretations. The simple forms of the density and temperature equations

are

〈b · ∇θ〉θ ∂δu‖
∂χ

+ i 〈ωD〉θ
(
δn

(0)
e

ne

+
δT

(0)
e

Te

)
− iω(0) δn

(0)
e

ne

− ikyŝκ̂χ

(
δΓC

ne

+
δΓN

ne

)
(127)

= −i(ωn∗,e − ω(0))
eφ(0)

Te
,

and

〈b · ∇θ〉θ ∂

∂χ

(
δq‖
neTe

+ δu‖

)
+ i 〈ωD〉θ

(
δn

(0)
e

ne

+
7

2

δT
(0)
e

Te

)
− i

3

2
ω(0) δT

(0)
e

Te

−ikyŝκ̂χ

(
δΓC

ne

+
δqC
neTe

+
δΓN

ne

+
δqN
neTe

)
= −i

3

2
ωn∗,eηe

eφ(0)

Te
, (128)

respectively. To obtain equations (127) and (128), we use the definitions of the leading-

order nonzero components of the electron parallel velocity,

δu
(1/2)
‖,e =

1

ne

∫
v‖(H

(1/2)
e + iλeχH

(0)
e ) d3v, (129)

and electron parallel heat flux

δq
(1/2)
‖,e =

1

ne

∫
v‖

(
ε− 5Te

2

)
(H(1/2)

e + iλeχH
(0)
e ) d3v, (130)

the definitions of the effective parallel velocity and effective parallel heat flux,

δu‖ =
1

〈b · ∇θ〉θ
〈
b · ∇θ δu(1/2)‖,e

〉θ
, (131)

and

δq‖ =
1

〈b · ∇θ〉θ
〈
b · ∇θ δq(1/2)‖,e

〉θ
, (132)
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respectively, the definition of the thermal magnetic precession drift

ωD =
kαv

2
th,e

2Ωe

b×
(
b · ∇b+

∇B
B

)
· (∇α + θ∇q) , (133)

the definition of HSH via equation (116), and the definition of the fluctuating

perpendicular fluxes: the classical particle flux

δΓC = i

〈∫
∇r · ρe C

[
k
(0)
⊥ · ρe H(0)

e

]
d3v

〉θ
, (134)

the classical heat flux

δqC = i

〈∫ (
ε− 5Te

2

)
∇r · ρe C

[
k
(0)
⊥ · ρe H(0)

e

]
d3v

〉θ
, (135)

the neoclassical particle flux

δΓN = −
〈
I

Ωe

dr

dψ

∫
v‖ C

[
H(1/2)

e + iλeχH
(0)
e −HSH

]
d3v

〉θ
, (136)

and the neoclassical heat flux

δqN = −
〈
I

Ωe

dr

dψ

∫ (
ε− 5Te

2

)
v‖ C

[
H(1/2)

e + iλeχH
(0)
e −HSH

]
d3v

〉θ
. (137)

In writing the definitions (129) and (130), we have used that in the inner-region

he
(0) = H

(0)
e , he

(1/2) = H
(1/2)
e + iλeχH

(0)
e , and that J0e = 1 + O

(
(me/mi)

1/2
)

. The

physical interpretations of the terms in equations (127) and (128) are the following,

from left to right: parallel diffusion, magnetic (precession) drifts within the flux surface,

time evolution, classical perpendicular diffusion, neoclassical perpendicular diffusion,

and drives by equilibrium gradients.

The classical, finite-Larmor-radius perpendicular diffusion terms in equations (127)

and (128) can be evaluated for arbitrary qR0νee/vth,e. We use the results of Appendix

A to write down the classical particle flux δΓC and classical heat flux δqC. We use result

(A.4) to find that

δΓC

ne

= ikyŝκ̂χ
νeiρ

2
th,e

2

〈
B

2 |∇r|2
B2

〉θ(
δn

(0)
e

ne

− 1

2

δT
(0)
e

Te

)
, (138)

where we have used that k
(0)
⊥ = −kα(dq/dr)χ∇r = −kyŝκ̂χ∇r, with ρth,e = vth,e/Ωe,

Ωe = −eB/mec, and B = 〈B〉θ. Similarly, we use the results (A.5) and (A.19) to find

that

δqC
neTe

= ikyŝκ̂χ
νeiρ

2
th,e

2

〈
B

2 |∇r|2
B2

〉θ((
7

4
+

√
2

Zi

)
δT

(0)
e

Te
− 3

2

δn
(0)
e

ne

)
, (139)

where we have used that νee/νei = 1/Zi.

The mode evolution equations for the density and the temperature, equations (127)

and (128), respectively, have the structure promised at the outset of this calculation.

The envelope of the mode is controlled by the combination of the finite-orbit-width and

finite-Larmor-radius perpendicular diffusion, and parallel diffusion. The perpendicular
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diffusion terms scale as νei(kyρth,e)
2χ2, whereas equations (118), (131) and (132) show

implicitly that the parallel diffusion terms scale as (v2th,e/νeiq
2R2

0)∂
2/∂χ2. This result

justifies the initial ordering (90) and the discussion in section 5.1. To obtain explicit

analytical forms for all terms in the transport equations (127) and (128), in the next

section, we consider the qR0νee/vth,e � 1 (Pfirsh-Schlüter) regime. The resulting

analytical forms for the transport equations illustrate the physics of the mode evolution.

To demonstrate the matching between the collisionless and collisional regimes, in section

5.1.4, we consider the qR0νee/vth,e � 1 (banana-plateau) regime.

5.1.3. Parallel flows and perpendicular diffusion in the subsidiary limit of qR0νee/vth,e �
1 – the Pfirsh-Schlüter regime. In order to obtain the analytical form of the transport

equations in the subsidiary limit qR0νee/vth,e � 1, we must solve equation (118) to

obtain approximate solutions for H
(1/2)
e . We expand

H(1/2)
e = H

(1/2)
e,(−1) +H

(1/2)
e,(0) +H

(1/2)
e,(1) + O

((
qR0νee
vth,e

)−2
iλeχH

(0)
e

)
, (140)

with

H
(1/2)
e,(n) ∼

(
qR0νee
vth,e

)−n
H

(1/2)
e,(0) (141)

and H
(1/2)
e,(0) ∼ iλeχH

(0)
e ∼ HSH. The ordering iλeχH

(0)
e ∼ HSH is a manifestation of the

ordering (90) for χ.

With the expansion (140), the leading-order form of equation (118) is

C
[
H

(1/2)
e,(−1)

]
= 0, (142)

i.e.,

H
(1/2)
e,(−1) =

(
δn

(1/2)
e,(−1)

ne

+
δT

(1/2)
e,(−1)

Te

(
ε

Te
− 3

2

))
F0e (143)

is a perturbed Maxwellian distribution function with no flow. Note that δn
(1/2)
e,(−1) =

δn
(1/2)
e,(−1)(θ, χ) and δT

(1/2)
e,(−1) = δT

(1/2)
e,(−1)(θ, χ) are functions of both geometric poloidal angle

θ and the ballooning angle χ.

To obtain equations for δn
(1/2)
e,(−1) and δT

(1/2)
e,(−1), we must go to the second-order equation

in the subsidiary expansion. We proceed to the first-order equation in the subsidiary

expansion, which is

v‖b · ∇θ
∂

∂θ

(
H

(1/2)
e,(−1)

)
= C

[
H

(1/2)
e,(0) + iλeχH

(0)
e −HSH

]
. (144)

Equation (144) can be solved by inverting an additional Spitzer-Härm problem

v‖b · ∇θ
∂

∂θ

(
H

(1/2)
e,(−1)

)
= C

[
H

(1/2)
SH

]
. (145)

With the Spitzer-Härm distribution H
(1/2)
SH defined by equation (145), we may write

equation (144) in the form

C
[
H

(1/2)
e,(0) + iλeχH

(0)
e −HSH −H(1/2)

SH

]
= 0. (146)
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Hence, we find that

H
(1/2)
e,(0) =

(
δn

(1/2)
e,(0)

ne

+
δT

(1/2)
e,(0)

Te

(
ε

Te
− 3

2

))
F0e − iλeχH

(0)
e +HSH +H

(1/2)
SH , (147)

where δn
(1/2)
e,(0) = δn

(1/2)
e,(0) (θ, χ) and δT

(1/2)
e,(0) = δT

(1/2)
e,(0) (θ, χ). The second-order equation in

the subsidiary expansion of equation (118) is

v‖b · ∇θ
∂

∂θ

(
H

(1/2)
e,(0)

)
= C

[
H

(1/2)
e,(1)

]
. (148)

The equations for δn
(1/2)
e,(−1) and δT

(1/2)
e,(−1) are obtained from the solvability conditions of

equation (148). These are

B · ∇θ ∂
∂θ

(∫
v‖
B
H

(1/2)
e,(0) d

3v

)
= 0 (149)

and

B · ∇θ ∂
∂θ

(∫
v‖
B

(
ε

Te
− 5

2

)
H

(1/2)
e,(0) d

3v

)
= 0. (150)

The conditions (149) and (150) are obtained by multiplying equation (148) by 1 and

ε/Te− 5/2, respectively, and integrating over velocity space. Equations (149) and (150)

indicate that ∫
v‖
B
H

(1/2)
e,(0) d

3v = Kn(χ) (151)

and ∫
v‖
B

(
ε

Te
− 5

2

)
H

(1/2)
e,(0) d

3v = KT (χ), (152)

respectively, where Kn(χ) and KT (χ) are functions of the ballooning angle χ only. In

Appendix C, we use these solvability conditions to obtain equations for δn
(1/2)
e,(−1) and

δT
(1/2)
e,(−1), and to obtain the parallel flows and neoclassical perpendicular diffusion terms

appearing in the transport equations (127) and (128).

Using the results of Appendix C, we can write down the effective parallel velocity,

parallel heat flux, and perpendicular diffusion terms that appear in the transport

equations (127) and (128) in the qR0νee/vth,e � 1 limit. We find that

δu‖
vth,e

= −vth,e
2νei

(〈B · ∇θ〉θ)2
〈b · ∇θ〉θ 〈B2〉θ

[
1.97

∂

∂χ

(
δn

(0)
e

ne

)
+ 3.37

∂

∂χ

(
δT

(0)
e

Te

)]
(153)

+
i

2

kyρth,eκ̂ŝχ

〈b · ∇θ〉θ
BI

dr

dψ

(〈
B · ∇θ
B2

〉θ
− 〈B · ∇θ〉

θ

〈B2〉θ

)(
δn

(0)
e

ne

+
δT

(0)
e

Te

)
,

where we have used equation (C.11), with the numerical results (B.16) and (B.17) for the

transport coefficients, assuming Zi = 1. Similarly, using (C.12), we obtain the effective

electron parallel heat flux

δq‖
neTevth,e

= −5vth,e
4νei

(〈B · ∇θ〉θ)2
〈b · ∇θ〉θ 〈B2〉θ

[
0.56

∂

∂χ

(
δn

(0)
e

ne

)
+ 2.23

∂

∂χ

(
δT

(0)
e

Te

)]
(154)
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+
5i

4

kyρth,eκ̂ŝχ

〈b · ∇θ〉θ
BI

dr

dψ

(〈
B · ∇θ
B2

〉θ
− 〈B · ∇θ〉

θ

〈B2〉θ

)
δT

(0)
e

Te
.

We note that the terms linear in χ in equations (153) and (154) arise from the radial

magnetic drift, whereas the terms in ∂/∂χ arise from the effective electric field generated

by the leading-order electron response (cf. equation (111)).

The neoclassical particle flux δΓN appearing in the nonadiabatic density transport

equation, equation (127), can be evaluated using the result (C.15). We find that

δΓN

ne

= −vth,eρth,e
2

I
dr

dψ
B

(
〈B · ∇θ〉θ

〈B2〉θ
−
〈
B · ∇θ
B2

〉θ)(
∂

∂χ

(
δn

(0)
e

ne

)
+

∂

∂χ

(
δT

(0)
e

Te

))

+ikyŝκ̂χ
νeiρ

2
th,e

2

(
I
dr

dψ

)2


〈
B

2

B2

〉θ

− B
2

〈B2〉θ



[

0.67
δn

(0)
e

ne

+ 0.11
δT

(0)
e

Te

]
. (155)

Similarly, the neoclassical heat flux δqN appearing in the temperature transport equation,

equation (128), can be evaluated using the result (C.16). We find that

δqN
neTe

= −5vth,eρth,e
4

I
dr

dψ
B

(
〈B · ∇θ〉θ

〈B2〉θ
−
〈
B · ∇θ
B2

〉θ)
∂

∂χ

(
δT

(0)
e

Te

)
(156)

+ikyŝκ̂χ
νeiρ

2
th,e

2

(
I
dr

dψ

)2


〈
B

2

B2

〉θ

− B
2

〈B2〉θ



[

1.41
δT

(0)
e

Te
− 0.56

δn
(0)
e

ne

]
.

Physically, equations (155) and (156) indicate that diffusive transport arises from the

radial magnetic drift (note the terms linear in χ).

We conclude this section on the qR0νee/vth,e � 1 limit by noting that the scale

of the extended tail, χ, decreases with increasing qR0νee/vth,e. This is explicit in the

estimate (90). Using (90), we can see that for extreme collision frequencies where

qR0νee/vth,e ∼ (mi/me)
1/2 there is no separation between the scale of the electron tail

and the scale of the geometric quantities: for such an extreme collisionality, χ ∼ 1. The

fluid equations for this extreme regime are not examined in this paper.

5.1.4. The subsidiary limit of qR0νee/vth,e � 1 – the banana-plateau regime. We now

examine equation (118) in the subsidiary limit qR0νee/vth,e � 1. This discussion will

enable us to demonstrate the matching between the collisionless and collisional regimes.

We will need to go to first-order in the subsidiary expansion of qR0νee/vth,e � 1, and so

we expand

H(1/2)
e = H

(1/2)
e,(0) +H

(1/2)
e,(1) + O

((
qR0νee
vth,e

)2

H
(1/2)
e,(0)

)
(157)

where H
(1/2)
e,(0) ∼ iλeχH

(0)
e ∼ HSH and H

(1/2)
e,(n) ∼ (qR0νee/vth,e)

nH
(1/2)
e,(0) . The leading-order

form of equation (118) is

v‖b · ∇θ
∂

∂θ

(
H

(1/2)
e,(0)

)
= 0, (158)
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i.e., we learn that H
(1/2)
e,(0) = H

(1/2)
e,(0) (χ, ε, λ, σ). Going to first-order terms in the expansion

of the drift-kinetic equation (118), we find that

v‖b · ∇θ
∂

∂θ

(
H

(1/2)
e,(1)

)
= C

[
H

(1/2)
e,(0) + iλeχH

(0)
e −HSH

]
. (159)

We now impose the solvability condition that H
(1/2)
e,(1) (θ, χ, ε, λ, σ) should be 2π-periodic

in θ. We must treat the passing and trapped part of the velocity space independently.

For passing particles we apply the transit average 〈·〉t, defined in equation (74), to obtain
〈
C
[
H

(1/2)
e,(0) + iλeχH

(0)
e −HSH

]〉t
= 0. (160)

We note that equation (160) is a partial differential equation in (ε, λ) at fixed χ. For

trapped particles we apply the bounce average 〈·〉b, defined in equation (46), to obtain
〈
C
[
H

(1/2)
e,(0)

]〉b
= 0, (161)

where we have used that iλeχH
(0)
e and HSH are odd in σ = v‖/|v‖|, and therefore vanish

under 〈·〉b. The trapped particle bounce condition requires that

H(1/2)
e (θ±b , σ = 1) = H(1/2)

e (θ±b , σ = −1),

and hence H
(1/2)
e,(0) is even in σ, by virtue of being constant in θ. In contrast, we can see

from equation (160) that the passing particle response must be odd in σ. A Maxwellian

solution to equation (161) is not valid, because of the change in the σ symmetry of

H
(1/2)
e,(0) at the trapped-passing boundary, and hence we must have that H

(1/2)
e,(0) = 0 for

trapped particles. To obtain H
(1/2)
e,(0) for passing particles, we must solve equation (160)

subject to continuity in H
(1/2)
e,(0) at the trapped-passing boundary.

In order to make progress analytically, it is necessary to expand in inverse aspect

ratio ε = r/R0 � 1, where r is the minor radial coordinate of the flux surface of interest.

We assume that the normalised collisionality

ν∗ =
qR0νee
ε3/2vth,e

� 1, (162)

and assume that the equilibrium can be approximated by the solution with circular

flux surfaces [25, 35]. Then, we can use the techniques of neoclassical theory [27, 33] to

obtain H
(1/2)
e,(0) to leading-order in ε, and the velocity δu‖ and flux δq‖, and the neoclassical

perpendicular diffusion terms to order ε1/2. These calculations are performed in

Appendix D. We conclude that for ν∗ � 1 the electron parallel velocity and electron

parallel heat flux has a diffusive character.

Finally, we comment on the matching between the equations for the electron

response in the collisionless and the collisional regimes, discussed in sections 4.2.2 and

5.1.2, respectively. We have demonstrated that for (me/mi)
1/2 � qR0νee/vth,e � 1,

the leading-order electron response is a perturbed Maxwellian, given by equation (107).

Small, diffusive parallel flows are obtained by simultaneously solving equations (160)

and (161). The evolution of the leading-order density and temperature is controlled by

perpendicular diffusion, diffusive parallel flows, and drives of instability via the mode
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transport equations (127) and (128), respectively. To obtain the same physics from

the equations in the collisionless limit for the passing electron response, equation (75),

and the trapped electron response, equation (76), we take the following steps: First, in

equations (75) and (76), we take the electron collision frequency to be large compared to

the ion transit frequency, i.e., qR0νee/vth,i � 1, and we take the extent of the ballooning

mode to be small, with

1� χ ∼
(
qR0νee
vth,i

)−1/2(
mi

me

)1/2

�
(
mi

me

)1/2

. (163)

Then, the leading-order equation for the electron response is

C
[
H(0)

e

]
= 0, (164)

i.e., H
(0)
e is a perturbed Maxwellian with no flow, and with no dependence on θ.

Second, we collect terms of O
(
(qR0νee/vth,i)

−1/2) in the subsidiary expansion, and obtain

equations for the passing and trapped electron response of the form (160) and (161),

respectively. Finally, we collect terms of O ((qR0νee/vth,i)
−1) in the subsidiary expansion

and obtain the transport equations for the nonadiabatic density and temperature,

equations (127) and (128), respectively. Hence, we have demonstrated that the equations

for the electron response in the χ� 1 region match at the boundary of the collisionless

and collisional limits. The fact that the extent of the mode shortens when going from

the collisionless to the collisional limits, according to the ordering (163), along with the

Maxwellianisation of the distribution function by increasing interparticle collisions, cf.

equation (164), ensures that the collisionless inner-region quasineutrality relation (81)

takes the form of the collisional inner-region quasineutrality relation (110).

5.2. Collisional outer solution – θ ∼ 1 – krρth,e ∼ (me/mi)
1/2

As we saw in the previous section, the collisional θ � 1 region requires the asymptotic

expansion to be carried out in powers of (me/mi)
1/4. For consistency, we must also

expand in powers of (me/mi)
1/4 in the θ ∼ 1 region. The potential, distribution

functions, and frequency are expanded as in equations (91), (92), and (93), respectively.

In the following sections we consider the response of electrons in the outer region for

both the small-tail and large-tail orderings, and we describe the small-tail and large-tail

modes in the asymptotic limit. First, we describe the ion response in the outer region.

5.2.1. Ion response in the outer region. In the collisional ordering, we take νii ∼
vth,i/qR. As the electron mass does not appear in the ion gyrokinetic equation, no

approximations are possible in this ordering and the gyrokinetic equation for the ions

is simply equation (3) with s = i. The main observation that we make in this section is

that the nonadiabatic response of ions hi contributes at leading-order to the potential

φ in the outer region. As in the collisionless case (see equation (41)), the estimate for

the size of the ion nonadiabatic density is δni/ni ∼ eφ/Te.
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5.2.2. Electron response in the outer region for small-tail modes. In a collisional small-

tail mode, the fluctuations must satisfy the ordering

He,inner

F0e

∼ eφinner

Te
∼ He,outer

F0e

� eφouter

Te
, (165)

so that the nonadiabatic electron response is subdominant to the nonadiabatic ion

response in the outer region. This ordering will recover the ITG mode. We now

determine the relative size of He,outer/F0e to eφouter/Te. In the inner region, the electron

flows are (me/mi)
1/4 smaller than the density and temperature components of the

electron response. This must be true in the outer solution for the solutions to be

matched.

To satisfy the ordering (165), in the outer region we take H
(0)
e = 0. Expanding in

(me/mi)
1/4, the next order equation is

v‖b · ∇θ
∂H

(1/2)
e

∂θ
= Cee

[
H(1/2)

e

]
+ L

[
H(1/2)

e

]
. (166)

Superficially, equation (166) has an identical form to equation (100). However, in the

outer region, H
(1/2)
e cannot be assumed to be periodic in θ. To solve for H

(1/2)
e , we

multiply equation (166) by H
(1/2)
e /F0e, and integrate over velocity and θ. We obtain



∫
v‖
B

(
H

(1/2)
e

)2

2F0e

d3v




θ=∞

θ=−∞

=

∫ ∞

−∞

[∫
H

(1/2)
e

F0e

Cee

[
H(1/2)

e

]
d3v +

∫
H

(1/2)
e

F0e

L
[
H(1/2)

e

]
d3v

]
dθ

B · ∇θ . (167)

In the inner region the leading-order distribution function is Maxwellian, with no flow.

Assuming continuity of the leading-order piece of He in the matching region, we have

that the term on the left-hand side of equation (167) is identically zero, i.e.,
∫ ∞

−∞

[∫
H

(1/2)
e

F0e

Cee

[
H(1/2)

e

]
d3v +

∫
H

(1/2)
e

F0e

L
[
H(1/2)

e

]
d3v

]
dθ

B · ∇θ = 0. (168)

With the entropy production properties (106), equation (168) shows that

H(1/2)
e =

(
δn

(1/2)
e

ne

+
δT

(1/2)
e

Te

(
ε

Te
− 3

2

))
F0e, (169)

where δn
(1/2)
e and δT

(1/2)
e are a constant density and temperature, respectively,

determined by matching to the inner region. To calculate the electron flows needed

to match to the inner region, we proceed to the next order equation

v‖b · ∇θ
∂H

(1)
e

∂θ
− Cee

[
H(1)

e

]
− L

[
H(1)

e −
mev‖δu

(0)
‖,i

Te
F0e

]
= −i

(
ω∗,e − ω(0)

)
F0e

eφ(0)

Te
,(170)

where

δu
(0)
‖,i =

1

ni

∫
v‖J0ihi

(0) d3v. (171)
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We cannot solve equation (170) for H
(1)
e , but it transpires that we do not need to.

Instead, we extract equations for the leading-order (nonzero) electron mean velocity

δu
(1)
‖,e, and electron heat flux δq

(1)
‖,e . Noting that he

(1) = H
(1)
e for H

(0)
e = 0, λe ∼ (me/mi)

1/2

and θ ∼ 1, by virtue of expanding the definition (31), we obtain that δu
(1)
‖,e = δU

(1)
‖,e and

δq
(1)
‖,e = δQ

(1)
‖,e, where δU

(1)
‖,e and δQ

(1)
‖,e are the moments of H

(1)
e defined by equations (122)

and (125), respectively. Taking density and temperature velocity moments, we find that

B · ∇θ ∂
∂θ

(
δu

(1)
‖,e

B

)
= −i(ωn∗,e − ω(0))

eφ(0)

Te
, (172)

and

B · ∇θ ∂
∂θ

(
δq

(1)
‖,e

BneTe
+
δu

(1)
‖,e

B

)
= −i

3

2
ωn∗,eηe

eφ(0)

Te
. (173)

Equations (172) and (173) can be integrated to obtain the leading-order jump in

δu‖,e and δq‖,e across the outer region. We find that

[
δu

(1)
‖,e

B

]θ=∞

θ=−∞

= −i(ωn∗,e − ω(0))

∫ ∞

−∞

eφ(0)(θ)

Te

dθ

B · ∇θ , (174)

and
[
δq

(1)
‖,e

neTeB

]θ=∞

θ=−∞

= −i

(
3

2
ωn∗,eηe − ωn∗,e + ω(0)

)∫ ∞

−∞

eφ(0)(θ)

Te

dθ

B · ∇θ . (175)

Equations (174) and (175) give the estimates for the jump in the electron flows across

the outer region. These are
[
δu‖,e
vth,e

]θ=∞

θ=−∞
∼
[

δq‖,e
vth,eneTe

]θ=∞

θ=−∞
∼
(
me

mi

)1/2
eφouter

Te
. (176)

Note that the size of the jump is set entirely by size of the potential fluctuation in the

outer region. There is an implicit assumption that the potential due to the nonadiabatic

ion response decays for large θ in the outer region, such that the integrals in equations

(174) and (175) exist. In fact, it is possible to show that there is a logarithmic matching

region between the outer and inner regions where the nonadiabatic ion response decays

exponentially with θ, and both the nonadiabatic ion and electron responses contribute

to a (me/mi)
1/4 small potential. Formally, we can neglect this matching region in our

analysis because the electron density, temperature, and flows remain constant over the

matching region, and because no information about the ions in this region is propagated

into either the outer or inner regions. See Appendix E for further details regarding the

local (in ballooning space) response of ions at large θ.

The matching of the leading-order electrons flows at the boundary between the

outer and inner regions requires that

δu
(1)
‖,e,outer ∼ δu

(1/2)
‖,e,inner, and δq

(1)
‖,e,outer ∼ δq

(1/2)
‖,e,inner. (177)
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In the collisional inner region, there is always a fixed relationship between the size of

the electron flows and the density and temperature fluctuations. We can see this in

equations (153) and (154). In terms of estimates, we find that

δu
(1/2)
‖,e,inner

vth,e
∼
δq

(1/2)
‖,e,inner

vth,eneTe
∼
(
me

mi

)1/4 δn
(0)
e,inner

ne

∼
(
me

mi

)1/4 δT
(0)
e,inner

Te
. (178)

Combining estimates (176), (177), and (178), we find an estimate for the size of the

fluctuations in the inner region:

eφ
(0)
inner

Te
∼
δn

(0)
e,inner

ne

∼
δT

(0)
e,inner

Te
∼
(
me

mi

)1/4
eφ

(0)
outer

Te
. (179)

Finally, we can describe the procedure for solving for the small-tail mode in the

(me/mi)
1/2 → 0 limit. To determine the frequency ω(0) and the potential φ

(0)
outer, we

solve the ion gyrokinetic equation (3) with s = i, closed by the quasineutrality relation

(neglecting the electron nonadiabatic response)
(
ZiTe
Ti

+ 1

)
eφ

(0)
outer

Te
=

∫
J0i
h
(0)
i,outer

ni

d3v. (180)

With ω(0) and φ
(0)
outer determined, we can solve for the electron response using equations

(127) and (128), with the inner-region quasineutrality equation (110). The causal

link between the solution in the outer region and the inner region is provided by

boundary matching. The matching conditions are continuity of the electron density

and temperature

δn
(1/2)
e,outer = δn

(0)
e,inner(χ = 0), (181)

and

δT
(1/2)
e,outer = δT

(0)
e,inner(χ = 0), (182)

respectively, with jump conditions on the electron mean velocity and heat flux.

The jump conditions can be obtained by taking the following steps. First, we note

that taking the |θ| → ∞ limit in equations (172) and (173) leads to the results

B · ∇θ ∂
∂θ

(
δu

(1)
‖,e,outer

B

)
= 0, (183)

and

B · ∇θ ∂
∂θ

(
δq

(1)
‖,e

BneTe
+
δu

(1)
‖,e,outer

B

)
= 0, (184)

where we have used that eφ
(0)
outer/Te becomes exponentially small for large |θ|, due to the

decaying nonadiabatic ion response. Equations (183) and (184) state that δu
(1)
‖,e,outer/B

and δq
(1)
‖,e,outer/B are independent of θ at large |θ|. Second, we note that, in the inner

region, we can show that δu
(1/2)
‖,e,inner/B and δq

(1/2)
‖,e,inner/B are independent of θ by taking the

density and temperature moments of equation (118). Third, we demand that δu‖,e/B
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and δq‖,e/B should be continuous over the boundaries between the outer and inner

regions, i.e., δu‖,e and δq‖,e should satisfy

δu
(1)
‖,e,outer

B

∣∣∣∣∣
θ→±∞

=
δu

(1/2)
‖,e,inner

B

∣∣∣∣∣
χ→0±

, (185)

and

δq
(1)
‖,e,outer

B

∣∣∣∣∣
θ→±∞

=
δq

(1/2)
‖,e,inner

B

∣∣∣∣∣
χ→0±

, (186)

Finally, we combine equations (174), (175), (185), and (186) to find the appropriate

boundary conditions on δu‖ and δq‖. These are

[
δu‖

]χ=0+

χ=0−
= −i(ωn∗,e − ω(0))

〈B · ∇θ〉θ

〈b · ∇θ〉θ
∫ ∞

−∞

eφ
(0)
outer(θ)

Te

dθ

B · ∇θ , (187)

and
[
δq‖
neTe

]χ=0+

χ=0−

= −i

(
3

2
ωn∗,eηe − ωn∗,e + ω(0)

)〈B · ∇θ〉θ

〈b · ∇θ〉θ
∫ ∞

−∞

eφ
(0)
outer(θ)

Te

dθ

B · ∇θ . (188)

The fact that there are changes in δu
(1)
‖,e,outer and δq

(1)
‖,e,outer across the outer region leads

the appearance of apparent discontinuities in δu
(1/2)
‖,e,inner and δq

(1/2)
‖,e,inner. An illustration

demonstrating the matching in the collisional small-tail mode is given in figure 3.

5.2.3. Electron response in the outer region for large-tail modes. In the large-tail

ordering, we have that

He,inner

F0e

∼ eφinner

Te
∼ He,outer

F0e

∼ eφouter

Te
. (189)

In consequence, the equation for the leading-order electron response H
(0)
e in the outer

region takes the form of equation (100), where we note that H
(0)
e is not periodic in

θ in the outer region. Following the same arguments as used to solve equation (166)

in section 5.2.2, we can demonstrate that the solution to equation (100) is that the

electron distribution is a perturbed Maxwellian with no flow, and no dependence on θ

at fixed (ε, λ). Thus, we learn that, in the outer region, H
(0)
e is given by equation (107)

where the fluctuating nonadiabatic density δn
(0)
e and the fluctuating temperature δT

(0)
e

are constants. This solution for H
(0)
e,outer trivially matches to the solution for H

(0)
e,inner. We

simply require that the constant nonadiabatic density and temperature that define the

electron distribution function take the values

δn
(0)
e,outer = δn

(0)
e,inner(χ = 0), (190)

and

δT
(0)
e,outer = δT

(0)
e,inner(χ = 0). (191)

For this class of modes, the frequency is determined by the eigenmode equations

(127) and (128), with the inner-region quasineutrality equation (110) and the matching
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Figure 3. An illustration showing the nonadiabatic electron density δne and electron

mean velocity δu‖,e in the collisional, small-tail limit. The leading-order mode

frequency is determined by ions in the θ ∼ 1 (outer) region, by solving equation

(3) (with s = i) subject to quasineutrality, equation (180). The electron tails at

θ ∼ (mi/me)
1/4

are obtained by solving the transport equations (127) and (128), with

inner-region quasineutrality (110) and the boundary conditions (181), (182), (187),

and (188). From the perspective of the θ ∼ (mi/me)
1/4

region, the electron density is

a cusp, set up by the discontinuity in δu‖,e, ∆δu‖,e.

conditions (190) and (191). Because the eigenmode equations are second order

differential equations in χ, two further matching conditions are required. These

conditions are that the electron flows δu‖ and δq‖ are continuous across χ = 0, i.e.,

δu‖(χ = 0+) = δu‖(χ = 0−), (192)

and

δq‖(χ = 0+) = δq‖(χ = 0−). (193)

Equations (192) and (193) can be derived by noting that the jump in the electron parallel

flows across the outer region have a fixed size, given by the estimate (176). In a large

tail mode, we have that

δu‖,e
vth,e

∼ δq‖,e
vth,eneTe

∼
(
me

mi

)1/4
eφinner

Te
∼
(
me

mi

)1/4
eφouter

Te
�
(
me

mi

)1/2
eφouter

Te
. (194)

and hence the flows are continuous across the outer region to leading order. This result

can be obtained explicitly by inspecting equations (187) and (188), with the ordering

(194). An illustration of the structure of the collisional, large-tail mode is presented in

figure 4.

Finally, we note that the nonadiabatic ion response has no role in determining

the leading-order frequency ω(0). Instead, the ions effectively respond passively,
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Figure 4. An illustration showing the nonadiabatic electron density δne and electron

mean velocity δu‖,e in the collisional, large-tail limit. At leading-order, the mode

frequency is determined by the nonadiabatic electron response in the θ ∼ (mi/me)
1/4

(inner) region, by solving the transport equations (127) and (128), with inner-region

quasineutrality (110), and the boundary conditions (190)-(193). The ion response

to the leading-order frequency can be obtained by solving equation (3) (with s = i)

subject to quasineutrality, equation (78). In contrast to the small-tail mode, in the

large-tail mode the leading-order flows are developed in the θ ∼ (mi/me)
1/4

region,

and there is no leading-order electron density cusp near the boundary of the θ ∼ 1

region.

serving only to self-consistently determine the electrostatic potential φ
(0)
outer through the

quasineutrality equation (78) (noting that here the velocity space dependence of H
(0)
e

is given by equation (107)). Note that φ
(0)
outer has not entered into the equations that

determine the electron response in the large-tail mode.

6. Numerical results

In this section we present numerical results that support the analytical theory presented

in the previous sections. We use the gyrokinetic code GS2 [23] to calculate the fastest-

growing linear modes for parameters where we observe extended electron-driven tails in

the ballooning eigenfunction. As discussed in the introduction, extended tails have been

observed in both electrostatic modes [12, 13, 15] and (electromagnetic) micro-tearing

modes [16–18] for a variety of magnetic geometries. In the analytical theory that we

have developed, the geometrical factors enter into the equations for the inner region

only through the poloidal angle average 〈·〉θ. Hence, modes that are driven by the

electron response in the inner region are unlikely to be sensitive to the details of any

given magnetic geometry. We therefore choose the simple Cyclone Base Case (CBC) [36]

magnetic geometry to illustrate our theory: we study modes on a circular flux surface
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centred on the magnetic axis.

To specify the magnetic geometry, we use the Miller equilibrium parameterisation

[37]. We take the major radius at the magnetic axis R0 = 3.0a, with the normalising

length a the half-diameter of the last-closed flux surface. We examine micro-stability on

the flux surface with minor radius r = 0.54a. We take the safety factor to be q = 1.4, the

magnetic shear to be ŝ = (q/r)dq/dr = 0.8, the plasma beta β = 0, the Shafranov shift

derivative d∆/dr = 0, the elongation κ = 1.0, the elongation derivative dκ/dr = 0.0,

the triangularity δ = 0.0, and the triangularity derivative dδ/dr = 0.0. The reference

magnetic field is given by Bref = I(ψ)/Rgeo, i.e., toroidal magnetic field at the reference

major radial position Rgeo. We take Rgeo = R0. In section 2.2, we define local radial and

binormal coordinates with units of length x and y, respectively, and associated radial

and binormal wavenumbers kx and ky, respectively. We parameterise the radial wave

number kx with θ0 = kx/ŝky.

For the simulations presented here, we use the following numerical resolutions:

nθ = 33 points per 2π element in the ballooning angle grid; nλ = 27 points in the pitch

angle grid; and nε = 24 points in the energy grid. The energy grid is constructed from

a spectral speed grid [38], and the pitch angle grid is constructed from a Radau-Gauss

grid for passing particles and an unevenly spaced grid for trapped particles. The number

of 2π elements in the ballooning grid was chosen to be n2π = 65 for the approximate

deuterium mass ratio (mD/me)
1/2 = 61. For different ion masses mi, the number of 2π

elements was taken to be n2π = 65
√
mi/mD. Unless otherwise stated, the timestep size

was taken to be ∆t = 0.025a/vth,i. The convergence of these resolutions was tested by

doubling each parameter.

We consider a two-species plasma of ions and electrons, with Zi = 1, equal

temperatures Ti = Te, and an equilibrium density gradient a/Ln = 0.733, where the

length scale Ln = −dr/d lnne. In order to examine different instabilities, we vary θ0, the

equilibrium temperature gradient length scales LTs = −dr/d lnTs, and the normalised

electron collisionality ν∗ = qR0νee/vth,eε
3/2, where ε = r/R0 = 0.18. We vary the ion

collision frequency νii consistently with ν∗, i.e., νii = ε3/2ν∗vth,i/
√

2qR0. In section 6.1, we

take θ0 = 1.57 and a/LTe = 3a/LTi = 6.9, and consider example modes that conform to

the large-tail mode ordering. In section 6.2, we take θ0 = 0.1 and a/LTe = a/LTi = 2.3,

and consider example modes that conform to the small-tail mode ordering. Finally, in

section 6.3, we briefly discuss the transition between large-tail and small-tail modes as

a function of θ0.

6.1. Large tail modes

In this section we present numerical results that are consistent with the asymptotic

theory of linear modes with large electron tails, summarised in sections 4.4 (the

collisionless case) and 5.2.3 (the collisional case). In order to make the passing-electron-

response-driven modes the fastest growing instability in the system, it is necessary to

increase the electron drive with respect to the ion drive. We present results where the
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Figure 5. The growth rate γ and frequency ωr for the large-tail mode with

(mi/me)
1/2

= 61 kyρth,i = 0.5 and θ0 = 1.57, as a function of ν∗. For ν∗ < 10−3

the large-tail mode is no longer the fastest-growing mode at this (ky, θ0). The vertical

dashed lines A and B indicate the ν∗ of the collisionless and collisional examples of

large-tail modes that are discussed in sections 4.4 and 5.2.3, respectively.

normalised electron temperature gradient scale a/LTe = 3a/LTi = 6.9, and we focus on

modes at kyρth,i = 0.5 with θ0 = π/2. We vary ν∗ in order to see the effect of electron

collisionality on the mode – although we present results where νii is varied consistently

with ν∗, qualitatively and quantitatively similar results may be obtained by artificially

setting νii = 0. The geometry and physical parameters of the simulations are otherwise

as described at the start this section. We use the full GS2 model collision operator

[31, 32], including pitch angle scattering, energy diffusion, and momentum and energy

conserving terms. We find that the inclusion of pitch-angle scattering collisions is crucial

for making the large-tail mode the fastest-growing instability.

We now briefly describe the method by which we identify large-tail modes

numerically, before going on to discuss the identification of a collisionless large-tail

mode and a collisional large-tail mode in detail. We recall the cartoon given in figure

2. In a collisionless large-tail mode, the relative amplitude of the electron distribution

function He in the outer and inner regions remains fixed as (me/mi)
1/2 → 0. To test

this numerically, we scan in (me/mi)
1/2 and determine whether or not we can rescale

He(θ)→ He(θ (me/mi)
1/2) and so overlay a measure of He for the modes with different

values of (me/mi)
1/2. We also must find that φ has the same size in the outer and inner

regions as (me/mi)
1/2 → 0, although we expect to see O (1) oscillatory features in φ.

For a collisional large-tail mode the procedure is the same, with (me/mi)
1/2 replaced by

(me/mi)
1/4.

In figure 5 we show the result of calculating the linear growth rate γ and frequency

ωr for the deuterium mass ratio (me/mi)
1/2 ≈ 1/61. For the range of ν∗ shown in figure

5, we identify that the modes are large-tail modes. For ν∗ � 1 we are able to identify

the modes with the collisionless ordering described in section 4.4, and for ν∗ & 1 we are
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able to identify the modes with the collisional ordering described in section 5.2.3. For

intermediate ν∗ neither ordering for the scaling of χ perfectly describes the structure of

the eigenmode, but the basic orderings He,outer ∼ He,inner and φouter ∼ φinner continue to

hold. We now focus on the clean example of a collisionless large-tail mode, indicated

by “A” on figure 5, before moving on to the example of a collisional large-tail mode,

indicated by “B” on figure 5.

6.1.1. Case A – a collisionless large-tail mode. To identify a mode as a collisionless

large-tail mode, we must demonstrate first that He,outer ∼ He,inner and φouter ∼ φinner as

(me/mi)
1/2 → 0, and second, that the scale of the ballooning envelope χ ∼ (mi/me)

1/2.

We will also study the dependence of growth rate γ and real frequency ωr on (me/mi)
1/2.

We use the geometric parameters described at the start of section 6, with the density

and temperature gradient scale lengths a/Ln = 0.733, a/LTi = 2.3, and a/LTe = 6.9.

We scan in the electron mass ratio from me/mi = 5.4 × 10−4 to 1.08 × 10−3, whilst

holding fixed ν∗ = 3.32× 10−3.

We define a useful measure of the electron distribution function

j‖ = j+‖ − j−‖ (195)

with

j±‖ = −ene

∫ ∞

0

∫ 1/Bmax

0

|v‖|
B
He(σ = ±1)

2πBε

m2
e|v‖|

dλ dε. (196)

The field j‖ has dimensions of current over magnetic field strength, and the quantities

j+‖ and j−‖ are the contributions from the forward going (σ = 1) and backward going

(σ = −1) particles, respectively. The prime usefulness of j±‖ stems from the fact that

H
(0)
e is independent of the 2π-periodic poloidal angle θ in the asymptotic theory, and

hence, we expect that j±‖ are smoothly varying functions of ballooning angle, with

minimal geometric 2π-periodic oscillation. We can use j+‖ as a proxy to visualise the

distribution of forward-going particles. In figure 6, we plot |j+‖ |, normalised to its

maximum value, for three values of (mi/me)
1/2: the maximum, and minimum values in

the scan, and the approximate value of the deuterium-ion-to-electron-mass ratio. Figure

6 shows that j+‖ is self-similar for modes with different (me/mi)
1/2, provided that the

ballooning angle θ is rescaled to θ/ (mi/me)
1/2. This confirms that He,outer ∼ He,inner,

and that χ ∼ (mi/me)
1/2.

Having inspected a measure of He, we comment on the use of the modified

distribution function He in place of the usual nonadiabatic response he. In figure 7,

we plot the distribution functions he and He, as a function of θ, for the velocity space

element ε/Te = 0.79, λBref = 0.22 and σ = 1. We show the distribution functions

for the (mi/me)
1/2 = 61 mode featured in figure 6. We observe that the distribution

function he shows large 2π-scale oscillations in phase, whereas He is a smoothly varying

function. In general, He appears to be a smoother variable than he for the parts of the

electron distribution function where v‖ ∼ vth,e � vth,i. These observations justify the

choice to use the modified distribution function He in the asymptotic theory.
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Figure 6. The field j+‖ , calculated for ν∗ = 3.32 × 10−3 (case A of figure 5) for

three different mass ratios. The fact that the curves overlay on the θ/ (mi/me)
1/2

axis

confirms that the mode is a collisionless large-tail mode.

We visualise the electrostatic potential in figure 8. We normalise the potential to

the maximum value of |j+‖ |, and give the result |φ|/|j+‖ | in the units of φref/jref‖ , where

φref = Te/e and jref‖ = enevth,e/Bref . We note that in contrast to the leading order

component of j±‖ , φ has oscillatory structures in geometric poloidal angle θ. These

oscillations appear because of geometric poloidal angle dependence in the Jacobian

Bε/|v‖| of the velocity integral, equation (103); because of the inclusion of trapped

particles in the velocity integral; and because of the appearance of the Bessel function

J
(0)
0e and phase exp [iλeχ] in the quasineutrality relation in the large-θ region, equation

(81). Inspecting figure 8 (left), we can see that the φ curves for different (me/mi)
1/2

modes do not exactly overlay. This is a result of the irreducible 2π geometric scale in

θ. From figure 8 (right), we can see that the general envelope of the mode amplitude
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Figure 7. The distribution function for forward going particles, for the mode with

(mi/me)
1/2

= 61 in figure 6, for ε/Te = 0.79 and λBref = 0.22. Left, we plot he for

forward going particles. Note the rapid oscillation in θ for θ � 1. Right, we plot He

for forward going particles. Note the smoothness of He compared to he for θ � 1.
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is independent of (me/mi)
1/2, consistent with φouter ∼ φinner. We note that the central

peak in φ does change with (me/mi)
1/2 – this might be a result of the change in the ion

(and θ ∼ 1 trapped electron) nonadiabatic density with (me/mi)
1/2.
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Figure 8. Two views of the electrostatic potential φ, calculated for ν∗ = 3.32× 10−3

(case A of figure 5) for three different mass ratios. The potential is plotted against the

scaled ballooning angle θ/ (mi/me)
1/2

, and normalised to the maximum value of j+‖
(see equation (196) and figure 6). Note the geometric 2π-periodic oscillation in φ due

to geometric factors in the velocity integral over the electron distribution function (cf.

equation (81)). The dimensions are φref = Te/e and jref‖ = enevth,e/Bref .
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Figure 9. Plots of the growth rate γ (left) and real frequency ωr (right) as a function

of (me/mi)
1/2

, for ν∗ = 3.32 × 10−3 (case A of figure 5). We give a linear fit to

demonstrate that the dependence of γ and ωr on (me/mi)
1/2

is consistent with a

(me/mi)
1/2

expansion.

Finally, we discuss the change in γ and ωr with (me/mi)
1/2. In figure 9 we plot

γ and ωr as functions of (me/mi)
1/2, with a linear fit. From the asymptotic theory in

section 4, we would expect to see that the growth rate had a leading order piece γ(0),

and an O
(

(me/mi)
1/2
)

small correction γ(1). This is borne out by figure 9 (left), which

shows a linear trend in (me/mi)
1/2. We would have a similar expectation for the real
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frequency ωr. In fact, figure 9 (right) does not show a linear trend for all (me/mi)
1/2.

In general, we observed linear trends in both γ and ωr for the relatively small range of

(me/mi)
1/2 shown in figure 9. The breakdown of the asymptotic behaviour for very small

(me/mi)
1/2 may be a numerical artefact, although we cannot rule out the possibility of

a more complicated asymptotic theory. Non-asymptotic behaviour is to be expected for

(me/mi)
1/2 too large.

6.1.2. Case B – a collisional large-tail mode. We now move on to examine an example

of a collisional large-tail mode. We must demonstrate that He,outer ∼ He,inner and

φouter ∼ φinner as (me/mi)
1/4 → 0, and show that the envelope of the eigenmode scales

like χ ∼ (mi/me)
1/4. The physics parameters are identical to those described for the

collisionless large-tail mode in section 6.1.1, except that the electron collisionality is

increased to ν∗ = 0.86. We scan in the electron mass ratio from me/mi = 5.4× 10−4 to

1.08× 10−3 while holding ν∗ fixed.
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Figure 10. (left) The electron nonadiabatic density δne, calculated for ν∗ = 0.86

(case B of figure 5) for three different mass ratios. The density is normalised to

its maximum value, and plotted against the scaled ballooning angle θ/ (mi/me)
1/4

.

(right) The electron temperature, normalised to the maximum value of the electron

nonadiabatic density. Here nref = ne, T
ref = Te.

We first consider the eigenmodes. In the collisional ordering, the asymptotic theory

of large-tail modes in sections 5 and 5.1.2 indicate that there are three leading-order

quantities that are free from geometric 2π poloidal angle oscillations, the electron

nonadiabatic density δne, the electron temperature δTe, and the electrostatic potential

φ. The electron nonadiabatic density and temperature are plotted in figure 10, with

the ballooning angle θ rescaled by (mi/me)
1/4. We observe good agreement for different

(mi/me)
1/2 in the mass ratio scan. The rescaled electrostatic potential φ is plotted

in figure 11, again, with good agreement for different (mi/me)
1/2. In the asymptotic

theory of the collisional large-tail mode, the parallel-to-the-field flows play an important

diffusive role, despite being small by (me/mi)
1/4. In figure 12, we plot the current-like

field j‖, defined in equation (195), with the ballooning angle θ rescaled by (mi/me)
1/4,
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Figure 11. The electrostatic φ, calculated for ν∗ = 0.86 (case B of figure 5) for

three different mass ratios. The potential is normalised to the maximum value of

δne, max|δne|. The good agreement for the rescaled potential normalised to max|δne|
suggests that this mode can be regarded as a collisional large-tail mode. Here

φref = Te/e and nref = ne.
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Figure 12. The current-like field j‖, defined in equation (195), normalised to the

maximum value of δne. Note that j‖ is a (me/mi)
1/4

small quantity. If the numerics

perfectly reproduced the asymptotic theory of section 5 the plotted curves would

overlay. The (mi/me)
1/4

rescaling at produces better agreement than a (mi/me)
1/2

rescaling. Here, jref‖ = enevth,e/Bref and nref = ne.

and the amplitude rescaled by (me/mi)
1/4. Although the curves do not overlay perfectly

in the (mi/me)
1/4 ballooning angle rescaling, we note that the (mi/me)

1/4 ballooning

angle rescaling shown in figure 12 gives better agreement than a (mi/me)
1/2 ballooning

angle rescaling.

Finally, we discuss the dependence of the growth rate γ and the real frequency

ωr on (me/mi)
1/4 for the collisional large-tail mode. The asymptotic expansion for

the collisional large-tail mode is carried out in powers of (me/mi)
1/4. In consequence,

we would expect that γ and ωr would have leading order component γ(0) and ω
(0)
r ,
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Figure 13. Plots of the growth rate γ (left) and real frequency ωr (right) as a function

of (me/mi)
1/4

, for ν∗ = 0.86 (case B of figure 5). We give a linear fit to illustrate the

dependence of γ and ωr on (me/mi)
1/4

.

respectively, that are independent of mass ratio, and sub-leading components γ(1/2) and

ω
(1/2)
r , respectively, that scale linearly with (me/mi)

1/4. In figure 13 we plot γ and ωr

with (me/mi)
1/4: the linear fit in figure 13 is good for a range of (me/mi)

1/2, although

we again note the non-asymptotic behaviour for the smallest (me/mi)
1/2. Although we

cannot rule out a more complicated asymptotic theory, the scaling with (me/mi)
1/4 of the

leading-order eigenmodes of φ, δne, and δTe strongly suggests that the mode considered

here is a collisional large-tail mode.

6.2. Small tail modes

In this section we verify the mass ratio scalings for collisionless small-tail modes,

described in section 4.3, and collisional small-tail modes, described in section 5.2.2.

We focus on the example of the ITG mode. We perform simulations using the magnetic

geometry described at the start of section 6, we take the temperature and density scale

lengths to be a/LTi = a/LTe = 2.3 and a/Ln = 0.733, respectively. We examine the

mode with kyρth,i = 0.5 and θ0 = 0.1. We calculate the fastest-growing mode for a range

of normalised electron collision frequencies ν∗. For each ν∗, we scan in (me/mi)
1/2 to

test the (me/mi)
1/2 dependence of the solution. We vary νii consistently with ν∗. As

in the large-tail mode case, we note that qualitatively and quantitatively similar results

are obtained by artificially setting νii = 0 in the scan. In figure 14, we plot the growth

rate γ and real frequency ωr as a function of ν∗, for (mi/me)
1/2 = 61. We identify

that the modes in figure 14 are small-tail modes by verifying that the θ � 1 part of the

eigenmode eφinner/Te is bounded by the estimates (me/mi)
1/2 eφouter/Te (the collisionless

case) and (me/mi)
1/4 eφouter/Te (the collisional case). The vertical dashed lines indicate

the ν∗ of the clean examples of the collisionless and collisional small-tail modes that we

describe in detail in the following sections. Figure 14 shows that γ and ωr depend on

ν∗ for ν∗ & 10−2, in contrast to the theoretical expectations for small-tail modes. Since

similar behaviour is observed for νii = 0, this dependence on ν∗ in figure 14 results from
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Figure 14. The growth rate γ and real frequency ωr of the (small-tail), ITG mode

with kyρth,i = 0.5, θ0 = 0.1, and (mi/me)
1/2

= 61, as a function of normalised

electron collisionality ν∗. We vary the ion collision frequency νii consistently with

ν∗, but quantitatively similar results may be obtained for νii = 0. Note that γ

and ωr experience O (1) changes for ν∗ & 10−2. This indicates that the (me/mi)
1/4

small nonadiabatic response of electrons in collisional modes can, in practice, matter

numerically for the physical value of (mi/me)
1/4 ≈ 8. The vertical dashed lines C and

D indicate the ν∗ of the collisionless and collisional examples of the small-tail mode

that are discussed in sections 4.3 and 5.2.2 respectively.

the nonadiabatic electron response. For collisionless small-tail modes, the nonadiabatic

electron response is small by (me/mi)
1/2 ≈ 1/60, but for collisional small-tail modes,

the nonadiabatic electron response is only small by (me/mi)
1/4 ≈ 1/8. Hence, we take

figure 14 to indicate that, in collisional modes, in practice, for realistic (me/mi)
1/2, the

(me/mi)
1/4 small nonadiabatic electron response matters numerically.

6.2.1. Case C – a collisionless small-tail mode. We consider the ITG mode from figure

14 with ν∗ = 3.82 × 10−5. To identify a mode as a collisionless small-tail mode, we

must demonstrate several properties. First, that there is a θ ∼ 1 region where eφ/Te
is independent of (me/mi)

1/2 at leading order. Second, that the potential in the θ � 1

region has an amplitude given by estimate (82), and an envelope θ ∼ (mi/me)
1/2.

Third, that the electron distribution function has a size given by estimate (80), and

an envelope with scale θ ∼ (mi/me)
1/2. In figure 15, we demonstrate that the first and

second properties are satisfied. In figure 16, we use j+‖ as a measure of He to demonstrate

that the third property is satisfied.

Finally, we discuss the (me/mi)
1/2 dependence of the growth rate γ and real

frequency ωr in the ν∗ = 3.82 × 10−5 example of a small-tail mode. The growth rate

and frequency are plotted in figure 17. As the asymptotic expansion is carried out in

(me/mi)
1/2, we expect to see a linear dependence in (me/mi)

1/2. This is observed for a

wide range of (me/mi)
1/2 in γ, but for a smaller range of (me/mi)

1/2 for ωr. We note
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Figure 15. Two views of the electrostatic potential φ, calculated for ν∗ = 3.82×10−5

(case C of figure 14) for three different mass ratios. (left) The potential φ is plotted

against the unscaled ballooning angle θ, and normalised to its maximum value. The fact

that the curves overlay for θ ∼ 1 indicates that the potential eigenmode is independent

of (me/mi)
1/2

to leading order. (right) The potential is plotted against the scaled

ballooning angle θ/ (mi/me)
1/2

, and normalised by a factor of (me/mi)
1/2

max|φ|. The

fact that the curves overlap in the region θ ∼ (mi/me)
1/2

indicates that the mode is a

small-tail mode, satisfying the ordering (82).
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Figure 16. The field j+‖ , calculated for ν∗ = 3.82 × 10−5 (case C of figure 14) for

three different mass ratios. The fact that the curves overlay on the θ/ (mi/me)
1/2

axis

confirms that the mode is a collisionless small-tail mode, satisfying the ordering (80).

that an ITG mode with ν∗ = 0 shows notably better linear fits for both γ and ωr.

6.2.2. Case D – a collisional small-tail mode. In the collisional limit, the electron

response of a small-tail mode is characterised by a jump in the electron flows across the

θ ∼ 1 region. This results in the scalings (179) for the electrostatic potential, electron

density, and electron temperature in the θ � 1 region. As in the large-tail collisional

mode, the size of the envelope of the mode is expected to be of scale θ ∼ (mi/me)
1/4.

To test these scalings, we examine an ITG mode with normalised electron collision
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Figure 17. Plots of the growth rate γ (left) and real frequency ωr (right) as a function

of (me/mi)
1/2

, for ν∗ = 3.82 × 10−5 (case A of figure 14). We give a linear fit to

demonstrate that the dependence of γ and ωr on (me/mi)
1/1

is consistent with a

(me/mi)
1/2

expansion.
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Figure 18. Two views of the electrostatic potential φ, calculated for ν∗ = 0.86

(case D of figure 14) for three different mass ratios. (left) The potential φ is plotted

against the unscaled ballooning angle, and normalised to its maximum value. That

the curves overlay in the θ ∼ 1 region indicates that the mode is a small-tail mode.

(right) The potential φ is plotted against the scaled ballooning angle θ/ (mi/me)
1/4

,

and normalised to its maximum value, divided by (me/mi)
1/4

. That the curves overlay

for θ ∼ (mi/me)
1/4

indicates that we have correctly identified the scaling (179) for the

size of the electron response, and the size of the mode envelope.

frequency ν∗ = 0.86 (case D of figure 14). We plot the electrostatic potential φ in

figure 18. We note that φ has no mass dependence for θ ∼ 1, and that φ has the mass

scaling given by the estimate (179) for θ ∼ (mi/me)
1/4. This confirms that the mode is

a collisional, small-tail mode.

To illustrate the electron response further, we plot the nonadiabatic electron density

δne and electron temperature δTe in figure 19. The scaling (179) is confirmed by the fact

that the curves overlay with the mass scaling (me/mi)
1/4 in the amplitude, and the

mass scaling (mi/me)
1/4 in the ballooning angle. In figure 20, we plot the field j‖,

normalised to the maximum value of |φ|. Consistent with the identification of the mode
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Figure 19. (left) The electron nonadiabatic density δne, and (right) the electron

temperature δTe, calculated for ν∗ = 0.86 (case D of figure 14) for three different mass

ratios.
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Figure 20. The field j‖, calculated for ν∗ = 0.86 (case D of figure 14) for three

different mass ratios.

as a collisional small-tail mode, the envelope of j‖ appears to scale like θ ∼ (mi/me)
1/4,

and the amplitude is small by (me/mi)
1/2. Although the envelope rescaling is not perfect

in figure 20, the (mi/me)
1/4 rescaling is better than a (mi/me)

1/2 rescaling. This figure

completes the demonstration of the physical picture for the collisional small-tail mode:

the ions generate an electrostatic potential at θ ∼ 1, the electrons respond with a

(me/mi)
1/2 small flow, and a small electron flow self-consistently sets up a (me/mi)

1/4

nonadiabatic electron density and temperature response.

Finally, in figure 21 we plot the growth rate γ and the real frequency ωr as a function

of (me/mi)
1/4. The asymptotic expansion for the collisional small-tail mode is carried

out in powers of (me/mi)
1/4. Hence, we would expect small corrections to the frequency

to scale as ω(1/2)/ω(0) ∼ (me/mi)
1/4. Consistent with this, in figure 21 we see that the

linear fit is plausible for a range of (me/mi)
1/4.
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Figure 21. Plots of the growth rate γ (left) and real frequency ωr (right) as a

function of (me/mi)
1/4

, for ν∗ = 0.86 (case D of figure 14). We give a linear fit

to demonstrate that the dependence of γ and ωr on (me/mi)
1/4

is consistent with a

(me/mi)
1/4

expansion.

6.3. The transition between the large-tail and small-tail modes

In the results that we have presented in the previous sections, we have focused on

examples where either a large-tail or the small-tail mode is clearly dominant. However,

in practice it is possible to find cases where these different asymptotic branches have

similar growth rates, and so a transition can be observed with the variation of some

parameter. To illustrate this, we consider modes in a range of θ0, for kyρth,i = 0.5,

a/LTe = 3a/LTi = 6.9 (the temperature gradients used in section 6.1), and a normalised

electron collisionality of ν∗ = 3.82 × 10−5. Figure 22 shows the real frequency ωr and

growth rate γ of these modes as a function of θ0, for different values of (mi/me)
1/2. For

the smallest value of (mi/me)
1/2, (mi/me)

1/2 = 43, ωr and γ are continuous functions

of θ0. However, for increasing (mi/me)
1/2 a discontinuity in ωr appears. This indicates

a transition between different mode branches. By examining the eigenmodes using the

techniques of sections 6.1 and 6.2, we verify that the modes to the right of the dashed

line are collisionless large-tail modes. In accordance with the predictions of section 4.4,

the growth rate and frequency of the large tail mode are approximately independent of

θ0. In contrast, we identify that the modes to the left of the dashed line are collisionless

small-tail modes. The small-tail mode observed here is likely to be a TEM, since it is

stabilised by sufficiently large ν∗.

We note that initial-value simulations of eigenmodes are challenging to converge

when distinct instabilities exist at the same (ky, θ0) with the same γ. The data plotted

in figure 22 are for modes where the ωr and γ are converged to 1% (compared to values

averaged over a 5a/vth,i window) after 500a/vth,i. A time step size of ∆t = 0.1a/vth,i
was found to be adequate to resolve the collisionless modes featured in this section.



Extended electron tails in electrostatic microinstabilities 54

0 1 2 3
θ0

−0.15

−0.10

ωr/(vth,i/a)

√
mi/me

43.0

61.0

96.0

0 1 2 3
θ0

0.20

0.25

0.30

γ/(vth,i/a)

√
mi/me

43.0

61.0

96.0

Figure 22. The real frequency ωr (left) and growth rate γ (right) as a function of θ0
and (mi/me)

1/2
, for ν∗ = 3.82 × 10−5 and a/LTe

= 3a/LTi
= 6.9. A discontinuity in

the frequency opens up for increasing (mi/me)
1/2

– indicating a transition between

different instability branches. Modes to the left of the dashed line are small-tail

modes (driven by trapped electrons and ions), whereas modes to the right of the

dashed line are large-tail modes (driven by passing electrons). Note that ωr and γ are

approximately independent of θ0 for the large-tail modes.

7. Discussion

In the traditional treatment of the nonadiabatic electron response in modes with

binormal wavenumbers on the scale of the ion thermal gyroradius, i.e., in modes with

kyρth,i ∼ 1, rapid electron parallel streaming is assumed to imply that the nonadiabatic

response of passing electrons should be small. This assumption leads to the usual

ITG-driven modes and TEMs where the nonadiabatic passing electron response is

subdominant. However, several numerical investigations have revealed the existence of

long-wavelength modes with extended ballooning tails where the nonadiabatic passing

electron response appears to play a significant role, see, e.g., [12, 13, 15–18, 39, 40]. In

terms of a wavenumber-space description, these electron-driven modes are fluctuations

with large radial wave numbers, i.e., krρth,i � 1. In the real-space description, these

modes are fine-scale fluctuations with significant amplitudes near mode-rational flux

surfaces. Examples of these modes may be found in the core of tokamaks [12, 13],

and in the pedestal [15]. Qualitatively, micro-tearing modes in tokamaks share the

same features as the extended electrostatic modes in [12, 13, 15], with both extended

ballooning tails and an ETG drive [16–18].

In this paper, we show that it is possible to obtain an asymptotic theory for novel

electron-response-driven kyρth,i ∼ 1 modes by assuming that the nonadiabatic response

of passing electrons cannot be neglected, and by carefully considering the regions in the

mode with large kr. The physics of these novel modes turn out to be dominated by the

physics at krρth,i � 1, and surprisingly, the nonadiabatic ion response is unimportant

(but not small). When the nonadiabatic-electron-response-driven modes are unstable,

their growth rate is expected to be insensitive to the exact details of the magnetic
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geometry, because the leading-order equations for the mode contain only poloidal-angle-

averaged geometric quantities. As a corollary, the growth rate of the mode is expected

to be independent of θ0. Hence, this type of mode may be insensitive to equilibrium

flow shear.

We identify two limits where there are simple orderings. First, we examine the

collisionless limit, where qR0νee/vth,e ∼ (me/mi)
1/2 � 1, the radial wave number

satisfies krρth,e ∼ 1, and the fundamental expansion parameter is (me/mi)
1/2 � 1.

In the collisionless ordering, the extent of the mode is set by the physics of electron free

streaming, and electron finite Larmor radius and electron finite orbit width effects.

Second, we examine the collisional limit where qR0νee/vth,e ∼ 1, the radial wave

number satisfies krρth,e ∼ (me/mi)
1/4, and the fundamental expansion parameter is

(me/mi)
1/4 � 1. In the collisional ordering, the extent of the mode is set by parallel

and perpendicular classical and neoclassical diffusion.

We derive scaling laws for the relative sizes of the electron and ion responses in the

krρth,i ∼ 1 and krρth,i � 1 regions of the ballooning mode. To confirm our analytically

derived scalings, we use the gyrokinetic stability code GS2 to perform a series of linear

simulations for a range of normalised electron collisionality ν∗ = qR0νee/ε
3/2vth,e, and

a range of me/mi. We identify parameters where a novel passing-electron-driven mode

is the fastest unstable mode. We present two relatively clean examples of the passing-

electron-driven mode: a collisionless case and a collisional case. We perform the same

analysis for an ITG mode, and verify the scalings for the subdominant nonadiabatic

electron response.

Although the theory presented here neglects electromagnetic fluctuations, many

features of these novel electrostatic modes are common to micro-tearing modes. We

speculate that some classes of micro-tearing modes may be well described by an

collisionless (me/mi)
1/2 → 0 theory or collisional (me/mi)

1/4 → 0 theory similar to the

theories presented in this paper. Development of these asymptotic theories provides not

just physical insight, but also the possibility of performing reduced linear simulations

of nonadiabatic-electron-response-driven modes. Simulations of extended ballooning

modes can be expensive in comparison to simulations of familiar ITG-driven modes:

a reduction of the size of the problem by removing the geometric 2π poloidal-angle

scale from the gyrokinetic equations may be an advantage. We anticipate that the

need for computational efficiency in simulating extended ballooning modes will become

more urgent in light of recent work [41] that suggests high-β spherical tokamak reactor

equilibria may be unstable to extended micro-tearing modes for a wide range of ky.

The nonadiabatic response of passing electrons has recently been shown to be

a significant factor in determining the isotope effect [42, 43]. In fact, [43] argues

that changes in a (me/mi)
1/2-small passing electron nonadiabatic response can lead

to O (1) changes in the heat fluxes as a result of the divergent asymptotic expansion

in (me/mi)
1/2. In this paper we have seen that, in linear modes, the nonadiabatic

response of passing electrons does not need to be small in (me/mi)
1/2. Indeed, it is

not even obvious that an expansion should be carried out in (me/mi)
1/2. Instead,



Extended electron tails in electrostatic microinstabilities 56

(me/mi)
1/4 could be the relevant expansion parameter for sufficiently large collisionality.

This is an important observation, because, in practice, (me/mi)
1/4 ≈ 1/8 is likely

to a be worse expansion parameter than (me/mi)
1/2 ≈ 1/60. For sufficiently large

collisionality, nonasymptotic behaviour may perhaps be observed because the physical

value of (me/mi)
1/4 is not small enough. Whilst we do not develop a nonlinear theory in

this paper, we speculate that the isotope effect may well be the result of the nonadiabatic

response of passing electrons in krρth,i � 1 narrow layers regulating turbulent transport.

The impact of electron-driven narrow radial layers in nonlinearly saturated

turbulence is the subject of active research. Studies of turbulence using DNS have

demonstrated that the nonadiabatic response of passing electrons in narrow layers near

the mode-rational flux surfaces can have a significant impact on turbulence saturation

levels and fluxes, see, e.g., [13, 39, 40, 44, 45]. The regulation of turbulent fluxes

by narrow radial layers formed by toroidal ETG modes near the top and bottom of

the tokamak has recently been observed in nonlinear DNS of ETG-driven pedestal

turbulence [46]. Further evidence for the importance of the nonadiabatic response of

passing electrons in narrow layers may be found in DNS that bridge kyρth,i ∼ 1 to

kyρth,e ∼ 1 scales: entropy transfer analysis suggests that the nonadiabatic response

of passing electrons mediates the backreaction of kyρth,e ∼ 1 eddies on kyρth,i ∼ 1

turbulence, via krρth,i � 1 narrow layers [6]. These observations suggest that theories

of turbulence that attempt to capture the (me/mi)
1/2 → 0 limit may need to be modified

to include the effects of electrons in narrow radial layers on saturation: this includes

theories of turbulence on kyρth,i ∼ 1 scales in isolation (cf. [29]) and theories of cross-

scale interactions between kyρth,i ∼ 1 and kyρth,e ∼ 1 scales (cf. [28, 47]).

Finally, we note that whilst results presented here would appear to be specialised to

an axisymmetric tokamak by virtue of using the identity (28), a similar theory to the one

we present may be obtained for an omnigenous stellarator [48–53], providing that the

departure from omnigeneity is small in the mass ratio expansion. Extended ETG-driven

microinstabilities may well exist in linear simulations of current stellarators.
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Appendix A. Classical perpendicular diffusion collisional terms

The collision integrals appearing in the definitions of the classical fluxes δΓC and δqC,

equations (134) and (135), respectively, have the structural form
∫
g(v)v · τ C

[
H(0)

e (v)v · σ
]
d3v, (A.1)

with the isotropic function of v, g, satisfying either g = 1 or g = v2/v2th,e − 5/2, and

σ = k
(0)
⊥ × b/Ωe and τ = i∇r × b/Ωe velocity independent vectors. We now proceed

to evaluate the integral defined by equation (A.1). We first evaluate contributions from

the electron Lorentz collision operator L[·].

Appendix A.1. Lorentz collision operator contributions.

The Landau form of the Lorentz collision operator is given by equation (14). Inserting

the definition (14) into equation (A.1), using the form of H
(0)
e , equation (107), and

integrating by parts, we find that
∫
g(v)v · τ L

[
H(0)

e (v)v · σ
]
d3v =

3
√
π

8
νeiv

3
th,eτσ :

∫ {
g(v)

(
δn

(0)
e

ne

+
δT

(0)
e

Te

(
v2

v2th,e
− 3

2

))
v2I − vv

v3
F0e

}
d3v. (A.2)

To evaluate equation (A.2) for the appropriate functions g, we use the normalised

velocity w = v/vth,e, and the identities
∫ (

1, w2, w4
)

exp
[
−w2

]w2I −ww
w3

d3w =
4π

3
I (1, 1, 2) , (A.3)

with w = |w|. For the case of g = 1, we find that
∫
v · τ L

[
H(0)

e (v)v · σ
]
d3v = −neνeiv

2
th,e

τ · σ
2

(
δn

(0)
e

ne

− 1

2

δT
(0)
e

Te

)
. (A.4)

For the case of g = v2/v2th,e − 5/2, we find that

∫ (
v2

v2th,e
− 5

2

)
v · τ L

[
H(0)

e (v)v · σ
]
d3v =

−neνeiv
2
th,e

τ · σ
2

(
7

4

δT
(0)
e

Te
− 3

2

δn
(0)
e

ne

)
. (A.5)
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Appendix A.2. Electron self-collision operator contributions.

In this section we evaluate the perpendicular-diffusion contributions from the electron

self-collision operator Cee [·], following [54]. The electron self-collision operator is defined

by equation (9) with s = e. To perform the calculation, first, we substitute the

definition (9) into the form (A.1) of the perpendicular-diffusion integral, noting that

2πe4 ln Λ/m2
e = 3

√
πνeev

3
th,e/8ne, with νee defined by equation (12). Second, we integrate

by parts, and symmetrise the resulting integral by relabelling the dummy variables v

and v′. Writing f(v) = H
(0)
e (v)/F0e, we obtain the result

∫
g(v)v · τ Cee [f(v)v · σF0e] d

3v =

−3
√
π

16

νeev
3
th,e

ne

∫ ∫
F0eF

′
0eΨ ·U ·Φ d3v′ d3v, (A.6)

where the vectors

Ψ(v,v′) = τ (g − g′) + (v · τ )
∂g

∂v
− (v′ · τ )

∂g′

∂v′
, (A.7)

and

Φ(v,v′) =
∂f

∂v
(v · σ)− ∂f ′

∂v′
(v′ · σ) + σ(f − f ′), (A.8)

respectively, with g′ = g(v′), and f ′ = f(v′). The form of the vector Ψ, defined

in equation (A.7), shows that there is no self-collision operator contribution to the

perpendicular-diffusion terms in the density equation, for which g = 1. To evaluate

the self-collision operator contribution to the temperature equation, we take g(v) =

v2/v2th,e − 3/2 and use that

f(v) =
H

(0)
e

F0e

=
δn

(0)
e

ne

+
δT

(0)
e

ne

(
v2

v2th,e
− 3

2

)
. (A.9)

After substituting for g and f in equations (A.7) and (A.8), respectively, we find that

Ψ(v,v′) = τ
v2 − v′2
v2th,e

+
2(v(v · τ )− v′(v′ · τ ))

v2th,e
, (A.10)

and

Φ(v,v′) =

(
σ
v2 − v′2
v2th,e

+
2(v(v · σ)− v′(v′ · σ))

v2th,e

)
δT

(0)
e

Te
. (A.11)

To compute the velocity integrals in equation (A.6), we convert to the center-of-mass

variables

s =
v + v′√

2vth,e
, and w =

v − v′√
2vth,e

, (A.12)

with the result
∫ ∫

F0eF
′
0eΨ ·U ·Φ d3v′ d3v =

4n2
e√

2π3vth,e

δT
(0)
e

Te
× (A.13)
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∫ ∫

exp
[
−w2 − s2

]
(τ (s ·w) + (w · τ )s) · Û · (σ(s ·w) + s(w · σ)) d3s d3w,

where we have used that the Jacobian d3v′d3v = v6th,ed
3sd3w, the functions v2 − v′2 =

2v2th,ew · s, vv − v′v′ = v2th,e(ws + sw), v2 + v′2 = v2th,e(w
2 + s2), and U(v − v′) =

Û(w)/(
√

2vth,e), with

Û(w) =
w2I −ww

w3
. (A.14)

Note as well that w · Û (w) = 0. We first evaluate the integral in s using the identity
∫

exp
[
−s2

]
ss d3s =

π3/2

2
I. (A.15)

The result is∫ ∫
F0eF

′
0eΨ ·U ·Φ d3v′ d3v = (A.16)

√
2n2

e

π3/2vth,e

δT
(0)
e

Te
τσ :

∫
exp

[
−w2

] (
w2Û +ww Tr

[
Û
])

d3w, (A.17)

where Tr
[
Û
]

= 2/w is the trace of the tensor Û(w). Finally, using equations (A.6)

and (A.16), with the identities (A.3) and
∫
wwTr

[
Û
]

exp
[
−w2

]
d3w =

4π

3
I, (A.18)

we can write down the result of the perpendicular-diffusion collision integral
∫ (

v2

v2th,e
− 3

2

)
v · τ Cee

[
H(0)

e (v)v · σ
]
d3v = − 1√

2
νeenev

2
th,eτ · σ

δT
(0)
e

Te
. (A.19)

Appendix B. Spitzer-Härm component of the parallel diffusion collisional

terms

In order to evaluate the parallel flow and neoclassical perpendicular diffusion terms in

equations (127) and (128), we need to solve equation (116) for HSH. To solve for HSH,

we first note that the collision operators Cee[·] and L[·], defined in equations, (9) and

(14), respectively, are isotropic operators [27], and hence HSH may be assumed to have

the form given in equation (117). Second, we note that equation (116) is linear in δn
(0)
e

and δT
(0)
e . Third, we may express the ε dependence of KSH in a convenient basis of

polynomials. Hence, KSH is given by

KSH = b · ∇θ ∂
∂χ

(
δn

(0)
e

ne

)
fSH(x̂) + b · ∇θ ∂

∂χ

(
δT

(0)
e

Te

)
gSH(x̂), (B.1)

where

fSH(x̂) =
∑

p=0

apL
3/2
p (x̂), (B.2)
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and

gSH(x̂) =
∑

p=0

cpL
3/2
p (x̂), (B.3)

with x̂ = ε/Te = v2/v2th,e, L
3/2
p (x̂) the pth generalised Laguerre polynomial Ljp(x̂) of

index j = 3/2, and ap and cp coefficients to be determined. The generalised Laguerre

polynomials of index j = 3/2 are particularly convenient for this problem because we

will be able to exploit the orthogonality relation [27]
∫ ∞

0

Ljp(x̂)Ljq(x̂) exp [−x̂]x̂jdx̂ =
Γ(p+ j + 1)

p!
δp,q, (B.4)

where Γ(j) =
∫∞
0
x̂j−1 exp [−x̂]dx̂ is the Gamma function, and δp,q is the Kronecker

delta. The polynomial Ljp(x̂) may be obtained from the generating function [27]

G(x̂, z) =
exp [−x̂z/(1− z)]

(1− z)j+1
=
∑

p=0

zpLjp(x̂). (B.5)

With the form of KSH given by equation (B.1), the problem (116) may be cast into

two seperate Spitzer problems for fSH and gSH,

v‖L
3/2
0 F0e = C

[
v‖fSHF0e

]
, (B.6)

and

v‖(L
3/2
0 − L3/2

1 )F0e = C
[
v‖gSHF0e

]
, (B.7)

where we have used the first two generalised Laguerre polynomials, L
3/2
0 (x̂) = 1 and

L
3/2
1 (x̂) = 5/2− x̂. We solve equations (B.6) and (B.7) by converting them into matrix

equations for the coefficients ap and cp, respectively. To do this, we define an inner

product 〈·|·〉 acting on velocity space functions f = f(v) and g = g(v) by

〈f |g〉 =

∫
f(v)g(v)

F0e

d3v, (B.8)

and we take the inner product of equations (B.6) and (B.7) with the function v‖L
3/2
q F0e.

To perform the velocity integrals, we use the velocity coordinates (x̂, ξ, γ), where

ξ = v‖/v, and we recall that γ is the gyrophase. The velocity integral in these coordinates

becomes
∫
· d3v =

∫ 2π

0

∫ 1

−1

∫ ∞

0

·
v3th,e

2

√
x̂ dx̂ dξ dγ. (B.9)

Using the orthogonality relation (B.4), we find that the matrix form of equation (B.6)

is
∑

q

(νeeCp,q + νeiLp,q) aq = −δ0,p, (B.10)

where the matrix elements Cp,q and Lp,q are defined by

Cp,q = − 2

neνee

〈
x̂1/2ξF0eL

3/2
p

∣∣Cee

[
x̂1/2ξF0eL

3/2
q

]〉
(B.11)
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and

Lp,q = − 2

neνei

〈
x̂1/2ξF0eL

3/2
p

∣∣L
[
x̂1/2ξF0eL

3/2
q

]〉
, (B.12)

respectively. Similarly, we find that the matrix form of equation (B.7) is
∑

q

(νeeCp,q + νeiLp,q) cq =
5

2
δ1,p − δ0,p. (B.13)

To solve the problem, we invert the matrix equations (B.10) and (B.13). In practice,

we must include a finite number of polynomials, with the series truncated at a finite

p = N . Velocity moments of HSH will depend only on low-order coefficients ap and cp,

and so only a few polynomials are required before convergence is reached. This same

solution may be obtained using a variational method [27].

Although the calculation is tedious, it is relatively straightforward to calculate the

matrix elements Cp,q and Lp,q using the generating function G(x̂, z). Truncating the

polynomial series at N = 4, we find the coefficient matrices (cf. [26, 27])

C =
√

2




0 0 0 0 0

0 1 3/4 15/32 35/128

0 3/4 45/16 309/128 885/512

0 15/32 309/128 5657/1024 20349/4096

0 35/128 885/512 20349/4096 149749/16384



, (B.14)

and

L =




1 3/2 15/8 35/16 315/128

3/2 13/4 69/16 165/32 1505/256

15/8 69/16 433/64 1077/128 10005/1024

35/16 165/32 1077/128 2957/256 28257/2048

315/128 1505/256 10005/1024 28257/2048 288473/16384



. (B.15)

To illustrate the final result of the calculation for a simple case, we solve equations

(B.10) and (B.13) for a hydrogenic plasma with Zi = 1, i.e., νei = νee. To three decimal

places, we find that the coefficients {an} and {cn} are



a0
a1
a2
a3
a4




=
1

νei




-1.969

0.559

0.017

0.016

0.027



, (B.16)

and 


c0
c1
c2
c3
c4




=
1

νei




-3.366

2.226

-0.635

0.095

0.003



, (B.17)

respectively.
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To calculate the parallel flow and the neoclassical perpendicular diffusion terms, we

need to evaluate velocity integrals of the form
∫
v‖HSH d

3v =
nev

2
th,e

2
b · ∇θ

(
a0

∂

∂χ

(
δn

(0)
e

ne

)
+ c0

∂

∂χ

(
δT

(0)
e

Te

))
, (B.18)

and
∫
v‖

(
v2

v2th,e
− 5

2

)
HSH d

3v (B.19)

= −
5nev

2
th,e

4
b · ∇θ

(
a1

∂

∂χ

(
δn

(0)
e

ne

)
+ c1

∂

∂χ

(
δT

(0)
e

Te

))
.

Appendix C. Pfirsh-Schlüter parallel and perpendicular fluxes

In this section we compute the parallel flows and the perpendicular diffusion terms in

the subsidiary limit of qR0νee/vth,e � 1. Following on from the results (151) and (152)

in section 5.1.3, we explicitly evaluate Kn and KT using the results (B.18) and (B.19)

of Appendix B. We find that
∫
v‖
B
H

(1/2)
e,(0) d

3v =
nev

2
th,e

2

B · ∇θ
B2

[
a0

(
∂

∂χ

(
δn

(0)
e

ne

)
+

∂

∂θ

(
δn

(1/2)
e,(−1)

ne

))

+c0

(
∂

∂χ

(
δT

(0)
e

Te

)
+

∂

∂θ

(
δT

(1/2)
e,(−1)

Te

))]
−
nev

2
th,e

2

ikαq
′χI

ΩeB

(
δn

(0)
e

ne

+
δT

(0)
e

Te

)
, (C.1)

where a0 = −1.969/νei, c0 = −3.366/νei, and we have assumed Zi = 1; and

∫
v‖
B

(
ε

Te
− 5

2

)
H

(1/2)
e,(0) d

3v = −
5nev

2
th,e

4

B · ∇θ
B2

[
a1

(
∂

∂χ

(
δn

(0)
e

ne

)
+

∂

∂θ

(
δn

(1/2)
e,(−1)

ne

))

+c1

(
∂

∂χ

(
δT

(0)
e

Te

)
+

∂

∂θ

(
δT

(1/2)
e,(−1)

Te

))]
−

5nev
2
th,e

4

ikαq
′χI

ΩeB

δT
(0)
e

Te
, (C.2)

where a1 = 0.559/νei and c1 = 2.226/νei. We obtain explicit expressions for Kn and KT
by multiplying equations (C.1) and (C.2) by B2, and applying poloidal angle average

〈·〉θ. The results are

Kn(χ) =
nev

2
th,e

2

〈B · ∇θ〉θ

〈B2〉θ

[
a0

∂

∂χ

(
δn

(0)
e

ne

)
+ c0

∂

∂χ

(
δT

(0)
e

Te

)]

−
nev

2
th,e

2

ikαq
′χIB

Ωe

1

〈B2〉θ

(
δn

(0)
e

ne

+
δT

(0)
e

Te

)
, (C.3)

and

KT (χ) = −
5nev

2
th,e

4

〈B · ∇θ〉θ

〈B2〉θ

[
a1

∂

∂χ

(
δn

(0)
e

ne

)
+ c1

∂

∂χ

(
δT

(0)
e

Te

)]
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−
5nev

2
th,e

4

ikαq
′χIB

Ωe

1

〈B2〉θ
δT

(0)
e

Te
, (C.4)

respectively. Finally, to obtain equations for δn
(1/2)
e,(−1) and δT

(1/2)
e,(−1), we subtract equation

(C.3) from equation (C.1), and equation (C.4) from equation (C.2). The result is that

B · ∇θ
B2

[
a0
∂

∂θ

(
δn

(1/2)
e,(−1)

ne

)
+ c0

∂

∂θ

(
δT

(1/2)
e,(−1)

Te

)]
=

(
〈B · ∇θ〉θ

〈B2〉θ
− B · ∇θ

B2

)[
a0

∂

∂χ

(
δn

(0)
e

ne

)
+ c0

∂

∂χ

(
δT

(0)
e

Te

)]
(C.5)

+

(
1

B2
− 1

〈B2〉θ

)
ikαq

′χIB

Ωe

(
δn

(0)
e

ne

+
δT

(0)
e

Te

)
,

and

B · ∇θ
B2

[
a1
∂

∂θ

(
δn

(1/2)
e,(−1)

ne

)
+ c1

∂

∂θ

(
δT

(1/2)
e,(−1)

Te

)]
=

(
〈B · ∇θ〉θ

〈B2〉θ
− B · ∇θ

B2

)[
a1

∂

∂χ

(
δn

(0)
e

ne

)
+ c1

∂

∂χ

(
δT

(0)
e

Te

)]
(C.6)

−
(

1

B2
− 1

〈B2〉θ

)
ikαq

′χIB

Ωe

δT
(0)
e

Te
.

Inverting equations (C.5) and (C.6) for ∂
(
δn

(1/2)
e,(−1)

)
/∂θ and ∂

(
δT

(1/2)
e,(−1)

)
/∂θ, we find that

B · ∇θ
B2

∂

∂θ

(
δn

(1/2)
e,(−1)

ne

)
=

(
〈B · ∇θ〉θ

〈B2〉θ
− B · ∇θ

B2

)
∂

∂χ

(
δn

(0)
e

ne

)
(C.7)

+

(
1

B2
− 1

〈B2〉θ

)
ikαq

′χIB

Ωe

(
c1

a0c1 − a1c0
δn

(0)
e

ne

+
c1 + c0

a0c1 − a1c0
δT

(0)
e

Te

)
,

and

B · ∇θ
B2

∂

∂θ

(
δT

(1/2)
e,(−1)

Te

)
=

(
〈B · ∇θ〉θ

〈B2〉θ
− B · ∇θ

B2

)
∂

∂χ

(
δT

(0)
e

Te

)
(C.8)

−
(

1

B2
− 1

〈B2〉θ

)
ikαq

′χIB

Ωe

(
a0 + a1

a0c1 − a1c0
δT

(0)
e

Te
+

a1
a0c1 − a1c0

δn
(0)
e

ne

)
.

To evaluate the effective electron parallel velocity δu‖, defined in equation (131),

we compute the integral

δu‖ =
1

〈b · ∇θ〉θ
〈
b · ∇θ
ne

∫
v‖

(
H

(1/2)
e,(−1) +H

(1/2)
e,(0) + iλeχH

(0)
e

)
d3v

〉θ
, (C.9)
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where we have used the definition (129) and the expansion (140). With the solutions

(143) and (147), and the integral (B.18), we find that

δu‖ =
v2th,e/2

〈b · ∇θ〉θ
〈

(B · ∇θ)2
B2

〉θ [
a0

∂

∂χ

(
δn

(0)
e

ne

)
+ c0

∂

∂χ

(
δT

(0)
e

Te

)]
(C.10)

+
v2th,e/2

〈b · ∇θ〉θ

〈
(B · ∇θ)2

B2

[
a0
∂

∂θ

(
δn

(1/2)
e,(−1)

ne

)
+ c0

∂

∂θ

(
δT

(1/2)
e,(−1)

Te

)]〉θ

.

Finally, using equations (C.7) and (C.8) to substitute for ∂
(
δn

(1/2)
e,(−1)

)
/∂θ and

∂
(
δT

(1/2)
e,(−1)

)
/∂θ, we find that

δu‖ =
v2th,e/2

〈b · ∇θ〉θ
(〈B · ∇θ〉θ)2
〈B2〉θ

[
a0

∂

∂χ

(
δn

(0)
e

ne

)
+ c0

∂

∂χ

(
δT

(0)
e

Te

)]
(C.11)

+i
vth,e

2

kαq
′Iχρth,eB

〈b · ∇θ〉θ

(〈
B · ∇θ
B2

〉θ
− 〈B · ∇θ〉

θ

〈B2〉θ

)(
δn

(0)
e

ne

+
δT

(0)
e

Te

)
.

Using the same techniques, and the integral (B.19), we obtain the effective electron

parallel heat flux

δq‖ = −5

4

neTev
2
th,e

〈b · ∇θ〉θ
(〈B · ∇θ〉θ)2
〈B2〉θ

[
a1

∂

∂χ

(
δn

(0)
e

ne

)
+ c1

∂

∂χ

(
δT

(0)
e

Te

)]
(C.12)

+i
5

4
neTevth,e

kαq
′Iχρth,eB

〈b · ∇θ〉θ

(〈
B · ∇θ
B2

〉θ
− 〈B · ∇θ〉

θ

〈B2〉θ

)
δT

(0)
e

Te
.

We now turn to the calculation of the neoclassical perpendicular diffusion terms

appearing in equations (127) and (128). To evaluate the particle flux δΓN, defined in

equation (136), we use equations (142) and (144) to show that

δΓN = −
〈
I

Ωe

dr

dψ

∫
v2‖b · ∇θ

∂

∂θ

(
H

(1/2)
e,(−1)

)
d3v

〉θ
. (C.13)

Substituting the solution (143) into equation (C.13), we find that

δΓN = −
nev

2
th,e

2

IB

Ωe

dr

dψ

〈
B · ∇θ
B2

(
∂

∂θ

(
δn

(1/2)
e,(−1)

ne

)
+

∂

∂θ

(
δT

(1/2)
e,(−1)

Te

))〉θ

. (C.14)

Finally, we substitute the results (C.7) and (C.8) into equation (C.14), to find the

neoclassical particle flux

δΓN

ne

= −
v2th,e

2

IB

Ωe

dr

dψ

(
〈B · ∇θ〉θ

〈B2〉θ
−
〈
B · ∇θ
B2

〉θ)(
∂

∂χ

(
δn

(0)
e

ne

)
+

∂

∂χ

(
δT

(0)
e

Te

))
(C.15)

+ikα
dq

dr
χ
v2th,e

2

(
IB

Ωe

dr

dψ

)2
(〈

1

B2

〉θ
− 1

〈B2〉θ

)[
a1 − c1

a0c1 − a1c0
δn

(0)
e

ne

+
a1 + a0 − c1 − c0
a0c1 − a1c0

δT
(0)
e

Te

]
.
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Following identical steps, we find that the neoclassical heat flux δqN, defined in equation

(137), is

δqN
neTe

= −
5v2th,e

4

IB

Ωe

dr

dψ

(
〈B · ∇θ〉θ

〈B2〉θ
−
〈
B · ∇θ
B2

〉θ)
∂

∂χ

(
δT

(0)
e

Te

)
(C.16)

+ikα
dq

dr
χ
v2th,e

2

(
IB

Ωe

dr

dψ

)2
(〈

1

B2

〉θ
− 1

〈B2〉θ

)[
(5/2)(a1 + a0)

a0c1 − a1c0
δT

(0)
e

Te
+

5a1/2

a0c1 − a1c0
δn

(0)
e

ne

]
.

Appendix D. The parallel flows and neoclassical perpendicular diffusion

terms in the ν∗ � 1, ε� 1 (banana) limit

In this section we calculate the electron distribution function H
(1/2)
e,(0) by solving equation

(160) to leading-order in the expansion in inverse aspect ratio ε = r/R0 � 1, where we

recall that r is the minor radial coordinate and R0 is the major radius at the magnetic

axis. We take the normalised electron collisionality ν∗ = qR0νee/ε
3/2vth,e � 1. We

assume that the equilibrium can be approximated by circular flux surfaces [25, 35].

Then we can use the fact that the 2π-periodic θ variation in geometric quantities is

small by O (ε). For example, the magnetic field strength

B ' B0 (1− ε cos θ) = B0 + O (εB) , (D.1)

where B0 = I/R0 is a constant. As a consequence, the fraction of velocity space occupied

by trapped particles become small. This can be seen from the definition of

v‖ = σ

(
2ε

me

)1/2

(1− λB(θ))1/2 : (D.2)

passing particles occupy 0 ≤ λB0 < B0/Bmax ' 1 − ε; and trapped particles occupy

B0/Bmax ≤ λB0 ≤ B0/B(θ) ' 1 + ε cos θ. We can identify two regions in the problem:

there is a “deeply passing” region where λB0 ∼ 1 ∼ 1−λB0 � ε, and also the trapped-

passing boundary layer where λB0 = 1−O (ε). In the deeply passing region, we can find

the leading-order solution by taking λB0 ∼ 1 ∼ 1−λB0 and using ε� 1 to approximate

the geometric quantities. We find that

H
(1/2)
e,(0) = HSH,0 − iλ0eχH

(0)
e + O

(
ε1/2H

(1/2)
e,(0)

)
, (D.3)

where

λ0e = σλ0th,e

√
ε

Te

√
1− λB0, (D.4)

with λ0th,e = kαq
′Ivth,e/Ω

0
e, Ω0

e = −eB0/mec, and

HSH,0 = σ

√
ε

Te

√
1− λB0vth,eKSHF0e. (D.5)

The O
(
ε1/2H

(1/2)
e,(0)

)
correction in equation (D.3) arises from the presence of the trapped-

passing boundary layer. To solve for the λB0 = 1−O (ε) boundary layer, we note that
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the pitch-angle scattering components of of the collision operator, Cλλ[·] are larger than

the other test-particle and field-particle terms by O (ε−1). In other words, we need only

the pitch-angle scattering collision operator (cf. [25, 27])

Cλλ[·] = νe(ε)

√
1− λB
B

∂

∂λ

(
λ
√

1− λB ∂

∂λ
[·]
)
, (D.6)

where

νe(ε) =
3
√
π

2

(
Te
ε

)3/2 (
νei + νee

(
erf
(√

ε/Te

)
−Ψ

(√
ε/Te

)))
, (D.7)

with the error function erf(z) defined by equation (67), and the function Ψ(z) defined

by equation (68). We note the similarity of the forms of the collision frequencies νe
and ν⊥,i, defined in equation (66). This similarity arises because the terms involving

these collision frequencies are due to the pitch-angle scattering pieces of the electron

and ion collision operators, respectively. With these considerations, to leading-order in

ε, equation (160) becomes

2

B0

∂

∂λ

(
λ
〈√

1− λB(θ)
〉θ ∂

∂λ

(
H

(1/2)
e,(0)

))

+σ

√
ε

Te

(
vth,eKSHF0e − iλ0th,eχH

(0)
e

)
= 0, (D.8)

where we have divided by the ε-dependent collision frequency pre-factors, we have used

the identity

Cλλ[v‖g(ε)] = −νe(ε)
2

v‖g(ε) (D.9)

to simplify the terms proportional to v‖, and we have employed the definitions of

the transit average 〈·〉t, and poloidal angle average 〈·〉θ, equations (74) and (104),

respectively, and finally we have expanded the geometrical factors to leading-order

in ε � 1. We note that
√

1− λB(θ) may not be usefully expanded in ε because

λB0 = 1 + O (ε), and the θ dependence of B(θ) comes in at O (ε). We also note that

H
(1/2)
e,(0) ∼ O

(
ε1/2

(
me

mi

)1/4

H(0)
e

)
(D.10)

in the boundary layer. We can integrate equation (D.8) directly, with the boundary

conditions H
(1/2)
e,(0) = 0 at λB0 = B0/Bmax, and no divergence at λ = 0. The result is

H
(1/2)
e,(0) = −σ

√
ε

Te

(
vth,eKSHF0e − iλ0th,eχH

(0)
e

) ∫ λ

1/Bmax

B0dλ/2〈√
1− λB(θ)

〉θ . (D.11)

We can match to the deeply passing solution (D.3) by taking the solution (D.11), and

evaluating the integral with ε→ 0 and 1− λB0 � O (ε).

Having evaluated the distribution function using the methods of neoclassical theory,

we are now able to calculate the electron parallel velocity δu‖ and electron parallel heat

flux δq‖, defined in equations (131) and (132), respectively. From the deeply passing
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solution, equation (D.3), we can see that the leading-order contributions will result

from the response HSH,0 to the parallel gradients of density and temperature. As in

the neoclassical calculation for the bootstrap current [27], we calculate the additional

contribution arising from the interaction between passing and trapped electrons in the

λB0 = 1−O (ε) boundary layer.

To evaluate the electron parallel velocity and the electron parallel heat flux, we

need to compute an integral of the form

Γ =
1

〈b · ∇θ〉θ
〈
b · ∇θ

∫
v‖g(ε)

(
H

(1/2)
e,(0) + iλeχH

(0)
e

)
d3v

〉θ
, (D.12)

where for g(ε) = 1 we obtain δu‖ = Γ/ne, and where for g = ε/Te − 5/2 we obtain

δq‖ = TeΓ. First, we use that the result is expected to be close to the Spitzer-Härm

flows obtained from HSH. We write

Γ = ΓSH + ΓB, (D.13)

with ΓSH defined by

ΓSH =
1

〈b · ∇θ〉θ
〈
b · ∇θ

∫
v‖g(ε)HSH d

3v

〉θ
, (D.14)

and

ΓB =
1

〈b · ∇θ〉θ
〈
b · ∇θ

∫
v‖g(ε)

(
H

(1/2)
e,(0) −HSH + iλeχH

(0)
e

)
d3v

〉θ
. (D.15)

We can calculate ΓSH using the results of Appendix B. To evaluate the leading

nonzero component of ΓB requires that we calculate the sub-leading corrections to H
(1/2)
e,(0)

everywhere in λ. To avoid this, we convert the integral (D.15) into an integral where the

dominant contribution comes from the trapped-passing boundary, and we can use the

solution (D.11). We localise the integral to the trapped-passing boundary by introducing

C[·] into the integral. We do this by using the Spitzer-Härm problem (B.6) to replace

v‖ in equation (D.15), with the result

ΓB =
1

〈b · ∇θ〉θ

〈
b · ∇θ

∫
g(ε)
C
[
v‖fSHF0e

]

F0e

(
H

(1/2)
e,(0) −HSH + iλeχH

(0)
e

)
d3v

〉θ

. (D.16)

Now using the self-adjointness of C[·] with respect to the inner product (B.8) [27], the

integral becomes

ΓB =
1

〈b · ∇θ〉θ
〈
b · ∇θ

∫
v‖fSH C

[
g(ε)(H

(1/2)
e,(0) −HSH + iλeχH

(0)
e )
]
d3v

〉θ
. (D.17)

Finally, we estimate the size of the contributions to ΓB from the deeply passing region

and the trapped-passing boundary. In the deeply passing region, we find that the

contribution is of size

ΓB ∼ ε

(
me

mi

)1/4

vth,eδn
(0)
e , (D.18)
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since C
[
H

(1/2)
e,(0) −HSH + iλeχH

(0)
e

]
is small by O (ε) in the deeply passing region. In the

trapped-passing boundary layer, we find that the contribution is of size

ΓB ∼ ε1/2
(
me

mi

)1/4

vth,eδn
(0)
e , (D.19)

since H
(1/2)
e,(0) − HSH + iλeχH

(0)
e ∼ ε1/2 (me/mi)

1/4H
(0)
e by the estimates (D.10) and

v‖ ∼ ε1/2vth,e, and Cλλ[·]d3v/v3th,e ∼ (νei/ε)ε
1/2 ∼ νeiε

−1/2. As the contribution from the

trapped-passing boundary layer is larger than the contribution from the deeply passing

region, we replace C [·] by Cλλ [·] when we evaluate the integral in equation (D.17).

To evaluate the integral in equation, we insert the definition of Cλλ [·], equation

(D.6), with d3v = (Bε/m2
e|v‖|)dεdλdγ, and integrate by parts once in λ. The integrals

in ε and λ are separable, and we find the intermediate result

ΓB =
πv4th,e

3
ftrap

∫ ∞

0

g(ε)νe(ε)

(
ε

Te

)3/2

fSH
(
vth,eKSHF0e − iλ0th,eχH

(0)
e

) dε

Te
, (D.20)

where following [27] we have defined the fraction of trapped particles

ftrap =
3B2

0

4

〈

∫ 1/B(θ)

0

λdλ√
1− λB(θ)

−
∫ 1/Bmax

0

λdλ
〈√

1− λB(θ)
〉θ



〉θ

, (D.21)

and taken ε→ 0 in the other geometrical quantities appearing in equation (D.20). We

note that the λ limits of the integrals in equation (D.21) are determined by the fact that

H
(1/2)
e,(0) is nonzero for passing particles only, whereas KSHF0e and H

(0)
e have both trapped

and passing particle components. Standard manipulations can be used to simplify ftrap
in the limit ε→ 0. To leading order [27]

ftrap =
3
√

2

2

[
1−

∫ 1

0

(
π

2E(z)
− 1

)
dz

z2

]
ε1/2 = 1.462 ε1/2, (D.22)

where

E(z) =
1

2

∫ π

0

√
1− z2 sin2

(
θ

2

)
dθ (D.23)

is the elliptic integral of the second kind. Finally, using the result in equation (D.20),

we can calculate the “bootstrap” corrections to the electron parallel velocity and heat

flux, δuB, and δqB, respectively. We find that

δuB = vth,e
ftrapνei

2

[
vth,e
qR0

(∑

p,q

apDp,qaq
∂

∂χ

(
δn

(0)
e

ne

)
+
∑

p,q

apDp,qcq
∂

∂χ

(
δT

(0)
e

Te

))

−iλ0th,eχ

(∑

p

apDp,0
δn

(0)
e

ne

+
∑

p

ap(Dp,0 −Dp,1)
δT

(0)
e

Te

)]
, (D.24)

with the matrix element

Dp,q =

∫ ∞

0

exp [−x̂]L3/2
p (x̂)L3/2

q (x̂)ν̂(x̂) dx̂, (D.25)
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and the function

ν̂(x̂) = 1 + erf(x̂1/2)−Ψ(x̂1/2). (D.26)

Similarly, we find that

δqB = vth,eneTe
ftrapνei

2

[
vth,e
qR0

(∑

p,q

apQp,qaq
∂

∂χ

(
δn

(0)
e

ne

)
+
∑

p,q

apQp,qcq
∂

∂χ

(
δT

(0)
e

Te

))

−iλ0th,eχ

(∑

p

apQp,0
δn

(0)
e

ne

+
∑

p

ap(Qp,0 −Qp,1)
δT

(0)
e

Te

)]
, (D.27)

with the matrix element

Qp,q =

∫ ∞

0

exp [−x̂]

(
x̂− 5

2

)
L3/2
p (x̂)L3/2

q (x̂)ν̂(x̂) dx̂. (D.28)

The numerical coefficients appearing in equations (D.24) and (D.27) may be evaluated

by using the N = 4 truncated polynomial solution obtained in Appendix B. We use the

values of {ap} and {cp} given in equations (B.16) and (B.17), respectively. We compute

the matrix elements Dp,q and Qp,q, with the results (to two decimal places)

D =




1.53 2.12 2.53 2.85 3.13

2.12 4.64 5.88 6.78 7.53

2.53 5.88 9.25 11.15 12.61

2.85 6.78 11.15 15.34 17.91

3.13 7.53 12.61 17.91 22.88



, (D.29)

and

Q = −




2.12 4.64 5.88 6.78 7.53

4.64 7.79 13.07 15.87 17.98

5.88 13.07 17.03 25.14 29.65

6.78 15.87 25.14 29.80 40.79

7.53 17.98 29.65 40.79 46.09



, (D.30)

respectively. Combining these results, we find that

δuB = vth,e
ftrap

2

[
vth,e
qR0νei

(
2.55

∂

∂χ

(
δn

(0)
e

ne

)
+ 3.51

∂

∂χ

(
δT

(0)
e

Te

))

+iλ0th,eχ

(
1.66

δn
(0)
e

ne

+ 0.47
δT

(0)
e

Te

)]
, (D.31)

and

δqB = vth,eneTe
ftrap

2

[
vth,e
qR0νei

(
2.98

∂

∂χ

(
δT

(0)
e

Te

)
− 0.07

∂

∂χ

(
δn

(0)
e

ne

))

−iλ0th,eχ

(
1.19

δn
(0)
e

ne

− 2.63
δT

(0)
e

Te

)]
. (D.32)
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Including both the Spitzer-Härm and the bootstrap contributions, the results for

the flows are (to O
(
ε1/2
)
)

δu‖
vth,e

= i
qŝkyρ

0
th,eχ

2ε1/2

(
2.43

δn
(0)
e

ne

+ 0.69
δT

(0)
e

Te

)
(D.33)

− vth,e
2qR0νei

[
1.97

(
1− 1.90ε1/2

) ∂

∂χ

(
δn

(0)
e

ne

)
+ 3.37

(
1− 1.52ε1/2

) ∂

∂χ

(
δT

(0)
e

Te

)]
,

and

δq‖
vth,eneTe

= −i
5qŝkyρ

0
th,eχ

4ε1/2

(
0.70

δn
(0)
e

ne

− 1.54
δT

(0)
e

Te

)
(D.34)

− 5vth,e
4qR0νei

[
0.56

(
1 + 0.07ε1/2

) ∂

∂χ

(
δn

(0)
e

ne

)
+ 2.23

(
1− 0.78ε1/2

) ∂

∂χ

(
δT

(0)
e

Te

)]
,

respectively, where we have defined ρ0th,e = vth,e/Ω
0
e, and used that, for ε � 1 and

circular flux surfaces, ftrap = 1.46ε1/2, κ̂ ' 1, b · ∇θ ' 1/qR0 and Idr/dψ ' q/ε. We

note that λ0th,e = ŝkyρ
0
th,eq/ε.

Having calculated the parallel flows and fluxes, we now turn to the calculation of

the transport due to perpendicular diffusion via the neoclassical fluxes δΓN and δqN,

defined in equations (136) and (137). To evaluate these fluxes, we need to compute

integrals of the form

Γ⊥ = −
〈
I

Ωe

dr

dψ

∫
v‖g(ε)C

[
H

(1/2)
e,(0) + iλeχH

(0)
e −HSH

]
d3v

〉θ
. (D.35)

We note that the form of the integral (D.35) is structurally similar to the integral defined

in equation (D.17). To be precise, we can use the estimates (D.18) and (D.19) to justify

replacing C [·] with Cλλ [·] when evaluating (D.35). Again, since the integrals in ε and λ

are separable in (D.35), we find the intermediate result

Γ⊥ = − I

Ω0
e

dr

dψ

πv4th,e
3

ftrap

∫ ∞

0

g(ε)νe(ε)

(
ε

Te

)3/2 (
vth,eKSHF0e − iλ0th,eχH

(0)
e

) dε

Te
, (D.36)

where we note the similarity to (D.20). To compute the neoclassical particle flux, we

set g(ε) = 1 in equation (D.36), and obtain the result (correct to O
(
ε1/2
)
)

δΓN

ne

= −ρ0th,e
q

ε

ftrapνei
2

[
vth,e
qR0

(∑

q

D0,qaq
∂

∂χ

(
δn

(0)
e

ne

)
+
∑

q

D0,qcq
∂

∂χ

(
δT

(0)
e

Te

))

−ikyρ
0
th,eŝχ

q

ε

(
D0,0

δn
(0)
e

ne

+ (D0,0 −D0,1)
δT

(0)
e

Te

)]
.

Similarly, to compute the neoclassical heat flux, we set g(ε) = ε/Te − 5/2 in equation

(D.36), and obtain the result (correct to O
(
ε1/2
)
)

δqN
neTe

= −ρ0th,e
q

ε

ftrapνei
2

[
vth,e
qR0

(∑

q

Q0,qaq
∂

∂χ

(
δn

(0)
e

ne

)
+
∑

q

Q0,qcq
∂

∂χ

(
δT

(0)
e

Te

))
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−ikyρ
0
th,eŝχ

q

ε

(
Q0,0

δn
(0)
e

ne

+ (Q0,0 −Q0,1)
δT

(0)
e

Te

)]
.

Inserting the numerical coefficients, we find that

δΓN

ne

= ρ0th,e
q

ε

ftrap
2

vth,e
qR0

(
1.66

∂

∂χ

(
δn

(0)
e

ne

)
+ 1.75

∂

∂χ

(
δT

(0)
e

Te

))

+iνeikyŝχ(ρ0th,e)
2
(q
ε

)2 ftrap
2

(
1.53

δn
(0)
e

ne

− 0.59
δT

(0)
e

Te

)
,

and

δqN
neTe

= ρ0th,e
q

ε

ftrap
2

vth,e
qR0

(
0.11

∂

∂χ

(
δT

(0)
e

Te

)
− 1.19

∂

∂χ

(
δn

(0)
e

ne

))

+iνeikyŝχ(ρ0th,e)
2
(q
ε

)2 ftrap
2

(
2.51

δT
(0)
e

Te
− 2.12

δn
(0)
e

ne

)
.

Appendix E. A detailed analysis of the ion response for large θ

In this appendix, we give a more detailed analysis of the nonadiabatic ion response at

large ballooning θ. This discussion will illustrate in more detail how the hyperbolic ion

gyrokinetic equation, equation (3) with s = i, reduces to the local algebraic equations

(64) and (96) in the electron-dominated tail of the ballooning mode.

We begin this analysis by noting that, for large θ, the leading-order ion gyrokinetic

equation has the form

σ
∂hi
∂θ

+ P (θ)hi = S(θ), (E.1)

where we have emphasised the θ dependence of the source

S = i (ω∗,i − ω) J0iF0i
Zieφ

Ti
, (E.2)

and the factor P � 1. We argue, in section 4.2.1, that in the collisionless limit

P =
1

|v‖|b · ∇θ

(
k2αq

′2|∇ψ|2θ2v2
4Ω2

i

(
ν‖,iλB +

ν⊥,i
2

(2− λB)
)
− ikαq

′θvM,i · ∇ψ
)
, (E.3)

whereas, in section 5.1.1, we argue that in the collisional limit

P =
k2αq

′2|∇ψ|2θ2v2
4Ω2

i |v‖|b · ∇θ
(
ν‖,iλB +

ν⊥,i
2

(2− λB)
)
, (E.4)

i.e., we can neglect the term due to the radial magnetic drift. In solving for the ion

response, we have no need to distinguish between θ and χ – this distinction is only

a requirement for solving for the electron response. For simplicity, in the subsequent

algebra we drop the usage of χ. In writing equation (E.1), we have neglected the

differential terms of the ion gyrokinetic collision operator, and the terms due to the

time derivative of hi, and the precessional magnetic drift. These terms can be neglected
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because θ � 1, kyρth,i ∼ 1 and ω ∼ vth,i/a, and hence the leading terms are large, i.e.,

P � 1. Note that the real part of P is positive, i.e., < [P ] > 0.

We consider the solution of equation (E.1) for θ > 0. Integrating equation (E.1)

directly, we find that, for forward going particles (σ = 1),

hi =

∫ θ

0

S(θ′′) exp

[
−
∫ θ

θ′′
P (θ′)dθ′

]
dθ′′ + hi(θ = 0, σ = 1) exp

[
−
∫ θ

0

P (θ′)dθ′
]
. (E.5)

For backward-going particles (σ = −1), we find that

hi =

∫ ∞

θ

S(θ′′) exp

[
−
∫ θ′′

θ

P (θ′)dθ′

]
dθ′′, (E.6)

where we have used hi(θ = ∞, σ = −1) = 0 as a boundary condition. Inspecting the

solutions (E.5) and (E.6), we note that there are two components: a “local” solution

involving S, and an exponentially decaying solution (proportional to hi(θ = 0, σ = 1))

due to the outgoing particles from θ = 0. The exponentially decaying part of the

solution gives rise to the logarithmic boundary layer referred to in section 5.2.2. In this

discussion, we can neglect the exponentially decaying part of the ion response, because

the electron tail at large θ generates its own potential that drives the ions via the “local”

response.

We now consider the form of the local solution when P � 1 and <[P ] > 0, and

the integrals can be treated using the standard Laplace method [55]. We treat the case

of σ = 1 explicitly. First, we note that the dominant contributions to the integrals in

equation (E.5) come from where θ ' θ′′. In this region, we write

exp

[
−
∫ θ

θ′′
P (θ′)dθ′

]
= exp [−P (θ)(θ − θ′′)]

(
1 + O

(
1

P

∂P

∂θ
(θ − θ′′)

))
, (E.7)

which is accurate provided that (θ − θ′′)/θ � 1. We introduce a parameter δ, so that

we can write

hi = I0 + Iδ (E.8)

with

I0 =

∫ θ

θ−δ
S(θ′′) exp

[
−
∫ θ

θ′′
P (θ′)dθ′

]
dθ′′, (E.9)

and

Iδ =

∫ θ−δ

0

S(θ′′) exp

[
−
∫ θ

θ′′
P (θ′)dθ′

]
dθ′′. (E.10)

We can use the appoximation (E.7) in I0 provided δ/θ � 1. Using (E.7), the leading

contribution to I0 is given by

I0 =

∫ θ

θ−δ
S(θ) exp [−P (θ)(θ − θ′′)]dθ′′. (E.11)

Evaluating the integral, we find that

I0 =
S(θ)

P (θ)
(1− exp [−P (θ)δ]) . (E.12)
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Taking δ such that <[P ]δ � 1 (consistent with δ/θ � 1), we find that, to leading order,

hi =
S(θ)

P (θ)
, (E.13)

where we have used the smallness of exp [−P (θ)δ] to neglect Iδ. An analogous calculation

can be performed for σ = −1, with the result that hi satisfies (E.13) for both signs of

the velocity. The result (E.13) is identical in form to equations (64) and (96). We have

demonstrated that, although the ion gyrokinetic equation is hyperbolic, the fact that

P � 1 means that parallel streaming is unable to effectively propagate information at

large θ, and hence, the nonadiabatic response of ions is local in ballooning angle.
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