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Abstract.

This paper reports on the development of reduced models for electron temperature

gradient (ETG) driven transport in the pedestal. Model development is enabled

by a set of 61 nonlinear gyrokinetic simulations with input parameters taken from

the pedestals in a broad range of experimental scenarios. The simulation data

has been consolidated in a new database for gyrokinetic simulation data, the

Multiscale Gyrokinetic Database (MGKDB), facilitating the analysis. The modeling

approach may be considered a generalization of the standard quasilinear mixing length

procedure. The parameter η, the ratio of the density to temperature gradient scale

length, emerges as the key parameter for formulating an effective saturation rule. With

a single order-unity fitting coefficient, the model achieves an RMS error of 15%. A

similar model for ETG particle flux is also described. We also present simple algebraic

expressions for the transport informed by an algorithm for symbolic regression.

PACS numbers: 00.00

1. Introduction

This paper reports on the development of reduced models for electron temperature

gradient (ETG) driven transport in the pedestal. Reduced models for pedestal transport

may facilitate a more comprehensive predictive capability of pedestal structure.

MHD-based models like EPED have predicted pedestal pressure in many parameter
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regimes [1, 2]. However, they typically require pedestal-top density and separatrix

quantities as inputs and cannot predict pedestal structure in regimes not limited by

peeling-ballooning modes [3, 4]. Reduced models for pedestal transport may mitigate

these weaknesses and expand the scenarios and operating regimes that can be modeled

and predicted.

Reduced models will also faciliate rapid analysis of pedestal transport, thus

expanding the number of discharges and scenarios for which pedestal transport can

be analyzed and paving the way for real-time analysis. Moreover, reduced models for

ETG may also become a useful complement to the new generation of edge gyrokinetic

codes [5, 6, 7, 8], which are developing comprehensive capabilities for modeling edge

turbulence but will likely find the task of brute-force multiscale simulations—spanning

the whole range from ion scales to electron scales—beyond even exascale ambitions.

Recent work has elucidated the instabilities that are most likely responsible for

transport in the pedestal in the various transport channels [9, 10]. Notably, the disparity

between heat diffusivity and particle diffusivity (the latter being much smaller than the

former) identified by edge modeling, points toward a vigorous electron heat transport

mechanism that needs to be accounted for. Two instabilities are likely at play: ETG

and microtearing modes (MTM) [11, 12, 13]. Since ETG fluctuations exist at scales

that are typically inaccessible to diagnostics, we must rely on theory and simulation to

infer their activity. Fortunately, while the smallness of scale makes them indiscernible

to diagnostics, it also makes them more amenable to simulation; the scale separation

between ETG scales and background quantities—even in the exceedingly narrow

pedestal—is sufficient to justify a local flux-tube approach. There is growing evidence

from combined numerical-experimental studies that ETG plays an important role in

pedestal transport in many H-mode discharges [14, 15, 16, 11, 17, 18, 9, 19, 20, 21, 10].

Pedestal ETG turbulence is distinct from ETG turbulence in the core. The extreme

density and temperature gradients in the pedestal far surpass those of the background

magnetic field, thus circumventing the typical magnetic drift resonances and favoring

slab resonances (for an exception to this claim, see Refs. [14, 22], which identified toroidal

ETG modes destabilized at large radial wavenumbers). This results in turbulence (1)

that is isotropic in comparison with the streamer-dominated core ETG [23, 24, 25]; (2)

exhibits high-kz structure, which demands extreme resolution in the parallel direction;

and (3) has contributions from a high number (10-20) of unstable eigenmodes at each

wavenumber. Properties (2) and (3) challenge some of the standard approaches to

reduced quasilinear modeling, making the present work challenging and timely.

In this paper, we exploit a newly-created database for gyrokinetic simulation data—

the Multiscale Gyrokinetic Database (MGKDB)—in order to formulate reduced models

for pedestal transport from ETG turbulence. MGKDB is a community resource for

storing and analyzing gyrokinetic and reduced model simulations that have been run

over the last decades. It utilizes a non-relational MongoDB [26] (NoSQL) based structure

to maximize flexibility so that any output format from any particular code infrastructure

can be easily supported. In addition, MGKDB seeks compatibility with an international
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IMAS data standard [27] to containerize its quantities of interest and interfaces these

data types with a comprehensive python library called the Ordered Multidimensional

Array Structures (OMAS) library [28], that allows for easy conversion to other data

formats including, for example, SQL-based formats. MGKDB may be accessed remotely

through either python scripts, command shell options (i.e. MongoDB or Python), a

custom graphical user interface, or existing MongoDB GUIs.

The simulations of which this database is comprised were performed with the

GENE gyrokinetic code [23] applied to multiple radial locations in the pedestal for

discharges spanning multiple devices (DIII-D, JET, C-Mod, AUG) and operating

scenarios. Most of the simulations have been previously described in at least one of

Refs. [16, 11, 17, 18, 9, 29, 20, 19, 10].

We pursue two general approaches to reduced modeling. First, we investigate

variations on the standard quasilinear mixing length approach, wherein a turbulent

diffusivity is approximated with step size determined by the perpendicular wavelength

of the eigenmode and step time by the linear growth rate. Our modest variation

entails allowing for additional parameter dependences in the saturation rule, which are

guided by the dataset of nonlinear simulations. Second, we formulate simple algebraic

expressions for the transport using a symbolic regression algorithm. In both approaches,

the parameter η = Ln/LTe, the ratio of the density to temperature gradient scale length,

emerges as the key parameter. This is consistent with recent theoretical [17, 18] and

experimental [30] studies identifying the importance of this parameter for the JET

pedestal.

The paper is outlined as follows. The MGKDB database and the dataset are

described in Sec. 2. The reduced model based on a quasilinear mixing length estimate

is described in Sec. 3. Various analytic models are described in Sec. 4. Summary and

conclusions are found in Sec. 5.

2. MGKDB and The Data Set

The dataset consists of 61 nonlinear single-scale ETG simulations. The main parameters

for these simulations are shown in the table in Appendix A. The data is shown visually in

Fig. 1, which plots the gyroBohm-normalized nonlinear heat flux. Here, the gyroBohm

heat flux is defined as QGB = n0T0cs
ρ2s
a2
, where ρs = cs/Ωi is the sound gyroradius,

cs =
√

T0e/mi is the sound speed, Ωi = eB0/mi is the ion gyrofrequency, n0e, T0e are the

background electron density and temperature, and a is the minor radius. The parameter

〈ky〉 is the spectrally-weighted value of ky, i.e., a value of ky that is representative of the

nonlinearly-saturated turbulence and not an input parameter. Most of these simulations

were carried out while studying actual discharges on JET, DIII-D, AUG, and C-Mod.

Many of the simulations are scans across radial positions in the pedestal or variations

of background gradients within error bars. Most of the simulations are described in the

following recent publications: Refs. [16, 11, 17, 18, 9, 29, 20, 19, 10].All simulations were

uploaded to the MGK database (MGKDB), which was exploited for the analysis in this
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work.

Many (but not all) of the simulations were subjected to extensive convergence tests.

Generally, for a given study, convergence tests were carried out for a base case and

subsequent scans retained the nominal parameter setup. All simulations were examined

to ensure the following: (1) saturated heat fluxes, and (2) well-behaved (heat flux

peaking much higher than the minimum wavenumber and substantial fall off at high

k) heat flux spectra in the perpendicular wavenumbers.

Forty-eight of the simulations employ an adiabatic ion approximation and thus

dynamically evolve only the electron species. The inclusion of kinetic ions generally

does not produce qualitative differences in the heat flux (ion dynamics are strongly

suppressed by FLR effects at these electron scales) [16, 11, 17]. Six simulations include

both ions and electrons and seven more simulations include three species (including

a dynamic impurity). The main transport channel for ETG modes is electron heat.

Particle transport is enforced to be zero for simulations with adiabatic ions. Even with

kinetic ions, particle transport is generally weak due to FLR suppression of kinetic ion

dynamics, which in turn suppresses particle flux via ampibolarity. Nonetheless, particle

sources are also generally weak in the pedestal, so even low levels of ETG particle

flux may be relevant [10]. Consequently, we use the thirteen kinetic-ion simulations to

generalize the model to include particle flux.

As is common for simulation studies, some potentially-important effects have been

neglected. Most notably, we have not accounted for potential multiscale effects. Ref. [31]

identified, for an idealized setup targeting pedestal-relevant parameters, a reduction of

ETG transport due to interaction with ion-scale microtearing turbulence (or, rather,

zonal flows stimulated by it). There is also a possibility of multiscale interaction between

different branches of ETG: slab (kyρs ∼ 100) and toroidal [22] (kyρs ∼ 10). Although a

rigorous survey of multiscale effects lies beyond the scope of this work, some simulations

were spot-checked with the goal of probing the effects of toroidal ETG modes. For these

cases, we did not identify large heat fluxes from toroidal ETG modes nor did interaction

with toroidal ETG modes significantly alter the transport levels from slab ETG modes.

However, we acknowledge the possibility that such dynamics may play a role for yet-

better-resolved and/or longer-simulated runs and/or parameter points that we did not

investigate.

We also note that many of the simulations in our dataset produce transport

levels in close proximity to the experimental expectations (as noted in previous

publications [16, 11, 17, 18, 9, 29, 20, 19, 10]), and none of the simulations significantly

exceed experimental transport levels. In short, although uncertainties remain, we

consider it very likely that the simulations in this database represent realistic predictions

of pedestal ETG transport and that ETG transport often plays a significant role in the

pedestal power balance.
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Figure 1. GyroBohm-normalized heat flux from nonlinear simulations in the data set

plotted against several parameters. This data set is used to formulate and test the

reduced models in this paper. All parameters are simulation inputs except 〈ky〉, which

represents the peak wavenumber of the nonlinear heat flux spectrum as defined in the

text.

3. Generalized Quasilinear Models

We first investigate standard quasilinear [32, 33, 34, 35] mixing-length approaches, and

generalizations thereof, as illustrated in Eq. 1.

QQL = a0(Θ)ωTeMAXky

{

γ

〈k2
⊥〉

}

. (1)

Here, Q is the electron electrostatic heat flux (gyroBohm normalized as defined above),
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ωTe =
a

LTe
= 1

Te

dTe

dρtor
is the normalized inverse electron temperature gradient scale length

(ρtor is the square root of the normalized toroidal magnetic flux). The variable a0 is

a fitting parameter and Θ = (ωTe, ωne, β, ŝ, τ, λD, ν
∗
E) simply denotes the possibility of

incorporating additional parameter dependences into the saturation rule. Here, β is the

ratio of thermal to magnetic energy density, τ = Te0

Ti0
Zeff , Zeff = 1

ne

∑

j Z
2
j nj , λD is the

Debye length, ν∗
e is the normalized electron collision frequency, ωne = a

LTe
= 1

ne

dne

dρtor
is

the normalized inverse electron density gradient scale length, and ŝ = ρtor
q

dq
dρtor

is the

magnetic shear. These quantities are listed and defined in Appendix A.

A scan over ky of linear gyrokinetic simulations is used to formulate the mixing

length estimate, γ/〈k⊥〉
2, where γ is the linear growth rate (normalized to the ratio

of the sound speed to minor radius cs/a) and the eigenmode-averaged perpendicular

wavenumber is

〈k2
⊥〉 =

∫

k2
⊥|φ|

2κ(k⊥)dz
∫

|φ|2κ(k⊥)dz
. (2)

In this equation, z is the distance along the field line, parameterized by the poloidal

angle (our standard domain for this problem is −7π < z < 7π; smaller integration

ranges were also tested with negligible difference), φ is the electrostatic potential for the

eigenmode, k2
⊥ = gxxk

2
x + 2gxykxky + gyyk

2
y is the perpendicular wavenumber, kx(ky) is

the radial (binormal) wavenumber, gij are the relevant components of the metric tensor,

and κ(k⊥) =
(

1 +
2(k2⊥+2/3πk4⊥)

(1+2/3k2⊥)

)−1/2

≈ J0(k⊥)
2 approximates the Bessel functions that

represent gyroaveraging. Note that, due to magnetic shear, the radial wavenumber is

connected to the parallel coordinate, z, as follows: kx = zŝky. All wavenumbers are

normalized to the sound gyroradius mics
eB0

.

The mixing length γ/〈k2
⊥〉 is motivated as a turbulent diffusivity with relevant

scale length, 1/k⊥, and time scale, 1/γ, set by the linear instabilities. We chose the

scan range 10 ≤ kyρs ≤ 240. The maximum value of the mixing length diffusivity

over the scan is selected for the model. Several variations were considered, and, to

some extent, tested, including: (1) scanning also the ballooning angle, (2) maximizing

or summing over multiple eigenmodes using the GENE eigenmode solver, (3) summing

(as opposed to maximizing) over the ky scan, and (4) including an additional factor of

the ratio of the heat flux to the density fluctuation amplitude Q/|n|2. None of these

generalizations substantially improved the model and some actually reduced accuracy.

Consequently, we have retained the simplest, and most computationally inexpensive,

approach: limiting the scan to the most unstable eigenmode at zero ballooning angle

and maximizing the mixing length over ky.

3.1. Heat Flux

The assumption of constant a0 represents the standard mixing length estimate, which

has been effective in modeling transport in several scenarios, including Refs. [33, 36, 37].

We test this simplest expression right away and find that it results in substantial errors

when attempting to model the transport across the dataset, as shown in Fig. 2.
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To quantify the accuracy, we define a modified relative error as

ε =

√

1

N

∑ (QNL −Qmodel)
2

(Qmodel +QNL)2
, (3)

which equally penalizes errors in the limits Qmodel ≪ QNL and Qmodel ≫ QNL (N is the

number of simulations in the dataset). The standard mixing length estimate produces

ε = 0.35.

100 101 102 103

QNL/QGB

100

101

102

103

Q
m
od
el
(a

0
=
co

ns
ta
nt
)

Standard Mixing Length

Figure 2. The standard mixing length estimate (assuming a0 is constant) (y axis)

plotted against the nonlinear simulations result (x axis) for the same parameter point.

As with many following figures, the accuracy of the model can be gauged by how

closely the points cluster around the line. The error for this model is ε = 0.35.

As a next step, we return to the database to investigate additional parameter

dependences in a0 = QNL

ωTeMAXky

{

γ

〈k2
⊥

]

} , which we define here as the ratio between the

nonlinear heat flux and the mixing length estimate. This is shown in Fig. 3, where one

clear correlation immediately appears: a0 ∝ η2. We modify this slightly as follows with

an eye toward future application to scenarios with extremely weak density gradients:

η = ωTe

ωne
→ η̂ = ωTe

1+ωne
. This modification has very little effect within the current dataset,

for which ωn is typically much larger than unity, but ensures well-behaved solutions in

the limit ωn → 0. We thus arrive at the model that constitutes the core result of this

paper:

QQL = 0.87η̂2
a

LTe

MAXky

{

γ

〈k2
⊥〉

}

, (4)

which is shown in Fig. 4.

As can be seen in Fig. 4, with few exceptions, the model accurately recovers the

nonlinear heat flux across the dataset. The error for the model defined in Eq. 4 is
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Figure 3. The ratio of the heat flux to the standard mixing length estimate is plotted

against the parameters in order to identify additional relevant parameter dependences

for the saturation rule. A clear correlation with η2 is identified as shown by the line.

ε = 0.15 (for reference, the error for the standard quasilinear model is ε = 0.35). We,

thus, have arrived at a model based on a physical (gyrokinetic) quasilinear mixing-length

estimate, one additional parameter dependence (η2), and a single order-unity fitting

parameter, that effectively reproduces heat fluxes from a large dataset of nonlinear

gyrokinetic simulations.

While a thorough investigation of the origin of the additional η dependence is

beyond the scope of this work, we will make a few simple observations. Fig. 5 shows the

spectrally-averaged ky plotted against η, demonstrating a clear proportionality between

the two. The nonlinear spectrum condenses at lower wavenumbers as η increases, thus
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Figure 4. The quasilinear model defined in Eq. 4 is quite accurate (ε = 0.15) and

represents the major result of this work.

enhancing the transport. There is some evidence in the dataset that this downshift

exceeds that predicted by the mixing-length estimate, thus requiring the additional

factor of η2 to compensate. A deeper understanding of the η2 dependence will be

pursued in future work.
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Figure 5. The inverse of the spectrally-averaged wavenumber 〈ky〉 plotted against η.
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3.2. Particle Flux

In this section, we investigate similar reduced models for particle transport from pedestal

ETG. Particle flux from ETG modes is very modest; the ambipolar (net zero radial

charge flux) nature of gyrokinetic transport means that electron particle transport is

constrained to small levels by the low ion particle transport due to FLR effects on the

ions. However, the pedestal parameter regime of interest is also characterized by low

particle transport; several studies have demonstrated via edge modeling that electron

heat diffusivity greatly surpasses electron particle diffusivity in the pedestal [38, 10]:

De/χe ≪ 1. Gyrokinetic simulations have demonstrated that, while ETG particle

transport is not likely to account for the bulk of the transport, it is often at levels

that are not negligible [10]. Moreover, gyrokinetic simulations often exhibit particle

pinches [10], which could be important for fueling the pedestal beyond the capacity of

neutral penetration alone.

Thirteen simulations in the dataset retain kinetic ions (seven of those including also

an impurity species). Kinetic ions also open the possibility of additional instabilities

in the lower wavenumber ranges, but such instabilities have not been observed in these

scenarios for the wavenumber ranges of interest. The electron particle flux for these

simulations is shown in Fig. 6 (normalized to ΓGB = n0ρ2scs
a2

). Note the existence

of both positive and negative fluxes in the dataset and that the density gradient ωn

roughly parameterizes the transition between the two signs. Two simulations (at high

η) exhibit particle fluxes of order unity, one positive and one negative. The simulation

with a large positive particle flux is particularly anomalous considering its relatively

low density gradient and its relative close proximity to the large negative simulation for

most parameters.

Perhaps the most obvious generalization of the model to include particle flux would

weight the heat flux prediction (Eq. 4) by the quasilinear ratio of the fluxes as follows:

ΓQL,naive = QQLMAXky

{

Γe

Qe

}

, (5)

where QQL is the model defined above for the heat flux (defined in Eq. 4), and the final

term denotes the maximum of the ratio of the particle to heat flux defined by the linear

modes maximized over the ky scan. As shown in Fig. 7, this model is not very accurate,

under predicting in particular the extreme flux cases. We find that one additional factor

of η improves the model substantially:

ΓQL = η̂QQLMAXky

{

Γe

Qe

}

, (6)

Note that this model includes one additional factor of η beyond those already included

in QQL. As seen in Fig. 7, this improves the agreement significantly, particularly for the

cases with large fluxes. Notably, this model reproduces the transition between positive

and negative fluxes and distinguishes between the two simulations with large fluxes (one

positive and one negative) despite their apparent proximity in parameter space.
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Figure 6. The gyroBohm-normalized particle flux plotted against several parameters.
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Figure 7. The models ΓQL,naive = QQLMAXky

{

Γe

Qe

}

(Eq. 5) (top) and ΓQL =

η̂QQLMAXky

{

Γe

Qe

}

(Eq. 6) (bottom). Note that Eq. 6 successfully reproduces the

sign of the particle flux for nearly all (one exception) simulations.

4. Algebraic Expressions

Although we have formulated a rather accurate quasilinear model for pedestal transport,

this model still requires several linear gyrokinetic simulations. This represents enormous

savings in comparison with full nonlinear simulations, but a simple algebraic expression

would still be desirable for the purposes of rapid evaluation and physical intuition.

Consequently, as a final investigation, we abandon the quasilinear mixing-length

framework entirely and investigate simple algebraic expressions for the fluxes.

To this end, we apply a novel symbolic regression algorithm, which minimizes the

error by systematically surveying combinations of pre-selected algebraic forms. More

specifically, the algorithm, called System Identification and Regression (SIR), minimizes
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Eq. 7 relative to a collection of rational functions of fixed top admissible monomial degree

d (in its elements), fixed top admissible nonlinearity order nℓ per input (in its elements),

and maximum number of linearly combined terms nu allowed in the resulting expression

(in either the numerator or the denominator). For example,

MINa,b ε

(

y,
a1P1(u) + . . .+ amPm(u)

b1Q1(u) + . . .+ bnQn(u)

)

, (7)

where y is the target, u are the inputs, and ai and bi are the coefficients on the monomial

numeratorPi and denominatorQi terms. The resulting ε is then computed and stored at

each degree d0 ∈ [0, d] consecutively for all admissible nonlinear combinations starting

at nu = 1, and results in an ordered set of candidate rational function expressions

effectively minimizing ε. These candidate expressions are then surveyed, and the most

likely resultant expression is chosen based on physics insight.

In carrying out this exercise, we are wary of over-fitting, particularly for the small

set of particle flux data. Consequently, we favor simple expressions with a willingness

to sacrifice to some extent accuracy.

Fig. 8 shows four models defined in the following equations (corresponding to A-D

respectively):

Q1 =

√

me

mi

ωTe

(

a0 + b0η
2
)

(8)

with a0 = −12.1 and b0 = 6.73, with error ε = 0.290,

Q2 =

√

me

mi

ωTe

(

a0 + b0η
4
)

(9)

with a0 = 1.44 and b0 = 0.50 with error ε = 0.279,

Q3 =

√

me

mi

ωTe

(

a0 + b0η
4/τ

)

(10)

with a0 = 3.23 and b0 = 0.63, with error ε = 0.303,

Q4 =

√

me

mi

ω2
Te (a0 + b0η) (11)

with a0 = −1.26, and b0 = 0.919, with error ε = 0.368.

The final expression follows the form proposed in Ref. [21]. This does indeed

qualitatively capture the major trend of the data but is not as accurate for this data set

as Eqs. 8,9,10. We view Eqs. 9, 10 as likely the most reliable. Eq. 9 captures the major

trends using only simple combinations of the gradients. Eq. 10 additionally incorporates

a factor of τ = Te0

Ti0
Zeff . Note that τ is only relevant for simulations with adiabatic ions;

it captures the effects of the ions in the field equation and is well known to be stabilizing.

Many similar expressions produce similar accuracy. For example, in the following

expression, the model applies the exponent outside the parentheses in a form that would

reflect threshold behavior more transparently:

Q5 =

√

me

mi

a0ωTe (b0 + η)4 (12)
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Figure 8. The models defined in Eqs. 8, 9, 10, 11 plotted in A-D respectively.

with a0 = 0.309, b0 = 0.413, and error ε = 0.271. The result is very similar to that in

Eq. 10. Slight differences like these, however, may become important when attempting

to capture the transport near threshold.

Although we have used a very simple gyroBohm normalization (defined above),

the more-natural variation for ETG transport would be [16, 21] QeGB = ne0Te0vTe
ρ2e
L2
Te
,

where LTe is the electron temperature gradient scale length. If this is interpreted in

terms of a Fick’s law Q = n∇Tχ, then one factor of 1/LTe comes from the gradient and

the other comes from the assumption that the ETG growth rate scales like vTe/LTe.

However, for slab ETG, the growth rate is dependent on η = Ln/LT as opposed to LTe

alone. This may explain the superior fit in Eqs. 8, 9, 10 (which entail a single factor of

ωTe) in comparison with Eq. 9 (with ω2
Te).

We note also note that Ref. [39] proposes a diffusivity for ETG transport with very

strong dependence on gradient scale lengths: Qe ∝ ω5
Te similar to Eqs. 9,10. However,
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in contrast to our expressions, the model includes only temperature gradients but not

density gradients (i.e., it is not parameterized in terms of η and does not capture the

stabilizing effects of density gradients). This may be attributable to its focus on a

core-like parameter regime, where curvature-driven (as opposed to slab) ETG is salient.

For particle transport, we propose an expression that includes a diffusive and pinch

component, amplified by η2 as shown in Fig. 9 and defined in Eq. 13.

Γ1 =

√

me

mi

η2 (a0ωTe + b0ωne) (13)

with a0 = −0.18 and b0 = 0.56. Note that these expressions (as well as all others we

investigated) is not capable of capturing the simulation with large positive particle flux,

in contrast with the quasilinear model defined above in Eq. 6. It is likely that a more

sophisticated treatment of geometry and/or impurities would be necessary to achieve a

more comprehensive expression for the particle flux.
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Figure 9. The model defined in Eq. 13.

5. Summary and Conclusions

This paper has presented reduced models for ETG transport in the pedestal. The

development of the models exploited a dataset of 61 nonlinear simulations from the

MGKDB database. As may be expected for slab ETG modes, the parameter η emerges

as the key parameter for both the quasilinear mixing-length approach as well as simple

algebraic expressions for the transport. The most important models are reproduced here

for easy reference.
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The best quasilinear mixing length model for the heat flux identified in this work

(η̂ = ωTe/(1 + ωne)):

QQL = 0.867η̂2ωTeMAXky

{

γ

〈k2
⊥〉

}

(14)

The best quasilinear mixing length model for the particle flux identified in this

work:

ΓQL = η̂QQLMAXky

{

Γe

Qe

}

, (15)

where QQL is defined immediately above.

The best algebraic expression for the heat flux identified in this work (un-normalized

with quantities defined in Sec. 2):

Q3 =

[√

me

mi

n0eT0ecs
ρ2s
a2

]

ωTe

(

3.23 + 0.63η4/τ
)

(16)

or

Q2 =

[√

me

mi

n0eT0ecs
ρ2s
a2

]

ωTe

(

1.44 + 0.5η4
)

. (17)

Slight variations to these expressions, for example, applying the exponent outside of the

parentheses ((a0 + η)4) may be useful to explore closer to the stability threshold.

The best algebraic expression for the particle flux identified in this work (un-

normalized):

Γ1 =

[√

me

mi

n0ecs
ρ2s
a2

]

η2 (−0.18ωTe + 0.56ωne) (18)

Further refinements may be expected as additional scenarios are explored. For

example, additional simulation data at the pedestal top would be informative. Several

applications of these models are envisioned, including: (1) rapid analysis of experimental

discharges, (2) a component of more comprehensive models for pedestal structure, and

(3) a complement to edge GK codes.
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T Görler, O Gürcan, F Koechl, F Imbeaux, O Linder, K van de Plassche, P Strand, and



Reduced models for ETG transport in the pedestal 19

G Szepesi and. Tractable flux-driven temperature, density, and rotation profile evolution with

the quasilinear gyrokinetic transport model QuaLiKiz. Plasma Physics and Controlled Fusion,

59(12):124005, nov 2017.

[35] Cole Darin Stephens, Xavier Garbet, Jonathan Citrin, Clarisse Bourdelle, Karel Lucas van de

Plassche, and Frank Jenko. Quasilinear gyrokinetic theory: a derivation of qualikiz. Journal of

Plasma Physics, 87(4), 2021.

[36] F. Merz and F. Jenko. Nonlinear saturation of trapped electron modes via perpendicular particle

diffusion. Phys. Rev. Lett., 100:035005, Jan 2008.

[37] T. Xie, M. J. Pueschel, and D. R. Hatch. Quasilinear modeling of heat flux from microtearing

turbulence. Physics of Plasmas, 27(8):082306, August 2020.

[38] J. D. Callen, R. J. Groebner, T. H. Osborne, J. M. Canik, L. W. Owen, A. Y. Pankin, T. Rafiq,

T. D. Rognlien, and W.M. Stacey. Analysis of pedestal plasma transport. Nuclear Fusion,

50(6):064004, 2010.

[39] Frank Jenko. On the nature of etg turbulence and cross-scale coupling. J. Plasma Fusion Res.

Ser, 6(11), 2004.

Appendix A. Data set

The parameters in the table are ωTe =
a

LTe
= 1/Tedρtor/dTe, ωne =

a
Lne

= 1/nedρtor/dne,

η = ωTe/ωne, τ = Te0

Ti0
Zeff , the ratio of thermal to magnetic energy β = 8πne0Te0/B

2
0

(cgs), magnetic shear ŝ = ρtor
q

dq
dρtor

, the Debye length normalized to the sound gyroradius

λD/ρs, and the normalized electron collision frequency ν∗
e = 16

3
√
π
qZ2

ǫ3/2
R
a

ni

ne

πln(Λ)e4ne0a

23/2T 2
e0

.

These are standard GENE definitions, which can be found in the GENE documentation

[genecode.org].
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Case ωTe ωne η τ ŝ β ν∗e λ2

D
ρtor Spec. Qe/QGB

1 26.7 5.97 4.46 0.975 4.06 0.00172 3.84 0.000208 0.97 1 107.0
2 31.2 8.34 3.74 1.72 2.24 0.00197 0.375 0.000409 0.965 1 61.9
3 49.4 13.7 3.6 1.58 3.04 0.00118 0.743 0.000455 0.975 1 116.0
4 19.4 2.91 6.67 1.17 3.68 0.00179 2.39 0.000238 0.97 1 244.0
5 47.6 11.0 4.33 0.87 5.92 0.001 5.85 0.000261 0.985 1 286.0
6 26.9 3.98 6.74 0.923 4.05 0.00139 3.15 0.000256 0.97 1 412.0
7 41.7 12.2 3.42 0.7 6.52 0.00074 8.11 0.000286 0.985 1 114.0
8 94.8 53.7 1.77 2.35 2.69 0.000895 0.27 0.000674 0.985 1 14.0
9 21.0 4.35 4.83 1 1.29 0.00208 0.812 0.000311 0.9675 1 33.1
10 52.9 18.1 2.93 1 1.12 0.00118 1.68 0.000351 0.98 1 49.0
11 74.2 12.9 5.75 2.8 4.99 0.000319 2.31 0.00112 0.5 1 938.0
12 19.1 8.83 2.16 2.35 0.909 0.00417 0.0661 0.000393 0.965 1 2.58
13 48.7 17.2 2.83 1.8 3.28 0.000888 0.816 0.000544 0.975 1 34.9
14 8.55 5.45 1.57 1 4.07 0.0029 0.28 0.000217 0.965 1 0.38
15 32.2 13.1 2.46 3.7 -2.19 0.00299 0.117 0.000595 0.9675 1 4.28
16 30.1 20.6 1.46 0.664 6.72 0.000785 0.942 0.000408 0.972 1 0.807
17 41.5 25.5 1.63 0.556 13.4 0.000448 1.55 0.000506 0.982 1 2.1
18 22.6 10.9 2.08 0.666 2.17 0.000817 1.07 0.000873 0.962 1 7.92
19 29.8 13.1 2.29 0.623 3.35 0.000551 1.61 0.000989 0.972 1 14.0
20 32.3 13.5 2.4 0.581 6.32 0.000353 2.68 0.00113 0.982 1 19.8
21 25.5 17.4 1.47 1.7 3.37 0.00224 0.36 0.000239 0.975 1 1.72
22 28.3 15.3 1.85 1.7 3.37 0.00224 0.36 0.000239 0.975 1 6.13
23 31.1 13.2 2.36 1.7 3.37 0.00224 0.36 0.000239 0.975 1 15.9
24 33.9 11.1 3.07 1.7 3.37 0.00224 0.36 0.000239 0.975 1 35.2
25 25.8 5.82 4.43 1 1.12 0.00202 0.897 0.000301 0.97 1 39.8
26 52.9 18.1 2.92 1 1.12 0.00118 1.69 0.000351 0.98 1 50.5
27 42.5 14.9 2.85 2.0 -0.789 0.00307 0.151 0.000808 0.975 1 22.5
28 48.3 20.2 2.39 2.0 1.33 0.0015 0.415 0.00093 0.978 1 17.1
29 42.5 15.0 2.84 2.0 -0.715 0.00301 0.15 0.00082 0.975 1 12.5
30 42.5 18.4 2.31 2.0 -0.895 0.00293 0.143 0.000848 0.975 1 6.91
31 48.0 16.6 2.9 2.0 -0.477 0.0018 0.369 0.000447 0.978 1 20.3
32 37.5 24.7 1.52 2.35 1.04 0.00266 0.0991 0.00046 0.975 1 2.45
33 42.5 14.9 2.85 2.0 -0.794 0.00307 0.15 0.000309 0.975 1 16.9
34 32.4 13.3 2.44 1 -2.05 0.00296 0.12 0.000593 0.9675 1 10.2
35 32.4 13.3 2.44 2.5 -2.05 0.00296 0.12 0.000593 0.9675 1 5.48
36 40.6 18.1 2.24 1.8 3.32 0.00121 1.58 0.000348 0.975 1 15.4
37 30.6 9.98 3.07 1.8 2.75 0.0019 1.04 0.000297 0.97 1 22.0
38 41.2 11.2 3.69 1.8 2.86 0.00152 0.605 0.000412 0.97 1 60.7
39 49.4 11.2 4.43 1.8 2.86 0.00152 0.605 0.000412 0.97 1 159.0
40 32.3 13.2 2.44 2.8 -2.14 0.00408 0.08 0.000549 0.9675 1 4.15
41 32.2 13.1 2.46 3.7 -2.25 0.0041 0.0784 0.000551 0.9675 1 3.39
42 42.5 14.9 2.86 2.0 -0.811 0.00307 0.15 0.000402 0.975 1 16.1
43 48.4 17.2 2.81 1 -0.0149 0.00161 0.355 0.000488 0.978 1 40.3
44 14.2 2.66 5.36 n/a 2.51 0.00174 1.57 0.000214 0.96 3 36.0
45 6.84 1.37 5.0 n/a 2.05 0.00415 0.249 0.000256 0.934 3 13.5
46 15.2 1.99 7.65 n/a 3.02 0.0014 2.86 0.0002 0.973 3 60.2
47 42.7 15.9 2.69 n/a 3.86 0.0015 0.993 0.000317 0.973 3 27.7
48 25.3 6.29 4.02 n/a 2.87 0.00146 1.39 0.000263 0.964 3 45.7
49 33.9 10.1 3.35 n/a 3.69 0.000966 4.34 0.000214 0.986 2 54.5
50 11.6 2.34 4.98 n/a 1.91 0.00368 0.298 0.000261 0.945 3 15.0
51 29.9 9.48 3.16 1.72 2.24 0.00197 0.383 0.000406 0.965 1 32.9
52 47.5 15.5 3.06 1.58 3.04 0.00119 0.725 0.000459 0.975 1 58.7
53 62.2 23.1 2.69 1.41 4.45 0.000563 1.79 0.000556 0.985 1 71.6
54 15.9 8.83 1.8 2.35 0.909 0.00417 0.0661 0.000393 0.965 1 1.09
55 46.8 24.7 1.9 2.35 1.04 0.00266 0.0991 0.00046 0.975 1 8.24
56 23.1 10.3 2.24 n/a 3.69 0.00268 3.36 0.000206 0.5 3 8.31
57 25.5 17.4 1.47 n/a 3.37 0.00224 0.36 0.000239 0.975 2 2.4
58 28.3 15.3 1.85 n/a 3.37 0.00224 0.36 0.000239 0.975 2 7.84
59 33.9 11.1 3.07 n/a 3.37 0.00224 0.36 0.000239 0.975 2 40.7
60 26.9 3.98 6.74 n/a 4.05 0.00139 3.15 0.000256 0.97 2 322.0
61 49.4 13.7 3.6 n/a 3.04 0.00118 0.743 0.000455 0.975 2 139.0


