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Intermittent fluctuations in the boundary of magnetically confined plasmas are investigated

by numerical turbulence simulations of a reduced fluid model describing the evolution of

the plasma density and electric drift vorticity in the two-dimensional plane perpendicular to

the magnetic field. Two different cases are considered, one describing resistive drift waves

in the edge region and another including only the interchange instability due to unfavorable

magnetic field curvature in the scrape-off layer. Analysis of long data time series obtained

by single-point recordings are compared to predictions of a stochastic model describing

the plasma fluctuations as a super-position of uncorrelated pulses. For both cases investi-

gated, the radial particle density profile in the scrape-off layer is exponential with a radially

constant scale length. The probability density function for the particle density fluctuations

in the far scrape-off layer has an exponential tail. Radial motion of blob-like structures

leads to large-amplitude bursts with an exponential distribution of peak amplitudes and the

waiting times between them. The average burst shape is well described by a two-sided

exponential function. The frequency power spectral density of the particle density is sim-

ply that of the average burst shape and is the same for all radial positions in the scrape-off

layer. The fluctuation statistics obtained from the numerical simulations are in excellent

agreement with recent experimental measurements on magnetically confined plasmas. The

statistical framework defines a new validation metric for boundary turbulence simulations.
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I. INTRODUCTION

At the boundary of magnetically confined plasma, turbulent transport of particles and heat in

the outermost region enhances plasma interactions with the material surfaces. This can become a

serious issue for future fusion experiments and reactors.1–3 A complete description of the physical

mechanisms underlying the cross-field plasma and heat transport in the scrape-off layer (SOL) and

its effects on plasma–wall interactions is necessary if reliable predictions for reactor relevant de-

vices are to be obtained. Unfortunately, such an understanding is at present still not fully achieved

and predictions and extrapolations are often based on empirical scaling laws or highly simplified

transport modelling with limited theoretical foundation.3–5

Fluctuations and turbulent motions in the boundary region of magnetized plasmas have been

extensively investigated both experimentally and theoretically. It is recognized that in the SOL

radial motion of blob-like filament structures is the dominant mechanism for cross-field transport

of particles and heat.6–9 This leads to broadening and flattening of radial profiles and high average

particle density in the SOL that increases plasma–wall interactions.10–23 Experimental measure-

ments using Langmuir probes and gas puff imaging have revealed highly intermittent fluctuations

of the particle density in the far SOL. Interestingly, measurements across a variety of magnetic

geometries, including conventional tokamaks, spherical tokamaks, reversed field pinches and stel-

larators have shown similar fluctuation characteristics.24–27 Recent statistical analysis of excep-

tionally long fluctuation data time series from several tokamak devices has shown that the fluctua-

tions are well described as a super-position of uncorrelated exponential pulses with fixed duration,

arriving according to a Poisson process and with exponentially distributed pulse amplitudes.28–42

A statistical framework based on filtered Poisson processes has proven an accurate description of

both average radial profiles and fluctuations in the boundary of magnetically confined plasma.43–53

So far, this stochastic model has not been utilized to analyze fluctuation data from numerical

turbulence simulations of the boundary region of magnetized plasmas. In order to obtain statisti-

cally significant results, long simulation data time series or a large ensemble are required, equiv-

alent to several hundred milliseconds in experiments with medium-sized magnetically confined

plasma. Since most turbulence simulation studies have been focused on the dynamics of individ-

ual blob structures or on the effects of specific physical mechanisms on turbulence and transport,

the simulations have likely not produced time series data of sufficient duration in order to analyze

them in the same manner as the experimental measurements.28–42 In this paper we present the first
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results from applying the same statistical framework on numerical simulation data as has recently

been done on experimental measurements. By using a simplified turbulence model describing the

fluctuations in the two-dimensional plane perpendicular to the magnetic field, we have obtained

data time series sufficiently long to allow unambiguous identification of the fluctuation statistics.

The main goal of this study is to clarify these statistical properties and compare them with that

found from experimental measurements. This is considered an essential step towards validation of

turbulence simulation codes.54–56

A recent analysis of fluctuation data time series obtained from numerical simulations of turbu-

lent Rayleigh–Bénard-convection in two dimensions has given some illuminating results.57 This

model has frequently been used as a simplified description of the non-linear interchange dynamics

in the SOL of magnetically confined plasmas.58–66 In Ref. 57 it was found that the fluctuation time

series are well described as a super-position of Lorentzian pulses, resulting in an exponential fre-

quency power spectral density. In the present study, more sophisticated models for SOL turbulence

are investigated, including sheath dissipation due to losses along magnetic field lines intersecting

material surfaces as well as drift wave dynamics in the edge region.67–83 The resulting far SOL

data time series are shown to be dominated by large-amplitude bursts with a two-sided exponen-

tial pulse shape and fluctuation statistics that compare favorably with those found in experimental

measurements.28–42

In this contribution we present a detailed statistical analysis of fluctuation data time series from

numerical simulations of a two-dimensional reduced fluid model describing the evolution of the

electron density and electric drift vorticity. The paper is structured as follows. The reduced fluid

model equations, normalization and parameters are discussed in Sec. II. A brief introduction to

the stochastic model is also presented here. We present the results for the time-averaged profiles

and probability densities in Sec. III and for the fluctuation statistics in Sec. IV. A discussion of the

results and the conclusions are finally presented in Sec. V.

II. MODEL EQUATIONS

The reduced fluid model investigated here is motivated by previous simulation studies per-

formed by Sarazin et al.,69–71 Garcia et al.72–74, Myra et al.75–77, Bisai et al.78–80 and Nielsen

et al.81–83 One particular case of the model is equivalent to that used in Ref. 71 and simulates

SOL conditions in the entire simulation domain where a particle source is located close to the
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inner boundary. The particle density profile results from a balance between the plasma source,

the sheath dissipation and radial transport due to the interchange instability. Another case of the

model is similar to that used in Ref. 79 and features a simulation domain separating an edge re-

gion corresponding to plasma dynamics on closed magnetic flux surfaces and a SOL region where

sheath dissipation balances the interchange drive. The source term is located in the plasma edge

region where parallel resistivity gives rise to unstable drift waves. Despite these two fundamen-

tally different descriptions of the primary instability mechanism underlying the SOL turbulence,

the resulting fluctuations are remarkably similar as will be shown in the following.

We use two-field fluid model equations describing the plasma evolution in the edge and SOL

regions for a quasi-neutral plasma, neglecting electron inertia and assuming for simplicity isother-

mal electrons and negligibly small ion temperature. We make these simplifying assumptions in

order to obtain long fluctuation data time series from the numerical simulations. We choose a slab

geometry where x refers to the radial direction and y to the binormal or poloidal direction. The

reduced electron continuity and electron drift vorticity equations are given by

dn
dt

+g
(

∂n
∂y
−n

∂φ

∂y

)
= Sn +D⊥∇2

⊥n+

〈
1
L‖

∇‖J‖e

〉

‖
, (1a)

d∇2
⊥φ

dt
+

g
n

∂n
∂y

= ν⊥∇4
⊥φ +

〈
1

nL‖
∇‖J‖

〉

‖
, (1b)

where n represents the normalized electron density, φ is the normalized electric potential, g is

normalized effective gravity (that is, drive from unfavorable magnetic curvature), Sn is the plasma

source term, and D⊥ and ν⊥ are the normalized particle and vorticity diffusion coefficients. We

use the standard Bohm normalization as previously used and discussed in Refs. 67–80. In addition

we have the advective derivative d/dt = ∂/∂ t +VE ·∇⊥, where VE = ẑ×∇φ is the electric drift.

The plasma source term is given by Sn(x) = S0 exp(−(x− x0)
2/λ 2

s ), where S0 is the maximum

amplitude of the source, x0 is the source location and λs is the e-folding length for the source.

Equations (1) are averaged along the magnetic field lines, with the contribution from the nor-

malized parallel electron J‖e and total plasma currents J‖ in the sheath connected regime given
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by
〈

1
L‖

∇‖J‖e

〉

‖
=−σn exp(Λ−φ)+χ(φ̂ − n̂), (2a)

〈
1

nL‖
∇‖J‖

〉

‖
= σ [1− exp(Λ−φ)]+χ(φ̂ − n̂). (2b)

Here Λ is the sheath potential, σ the normalized sheath dissipation and χ the normalized parallel

plasma conductivity. Like in several previous investigations, these parameters are taken to be a

function of the radial position in the boundary region.72–83 In particular, the sheath dissipation

coefficient σ is finite in the SOL region (x > xSOL) and vanishes in the edge (x < xSOL), which

corresponds to the region with closed magnetic flux surfaces,

σ(x) =





0, 0≤ x < xSOL,

σ0, xSOL ≤ x≤ Lx.
(3)

Similarly, the plasma conductivity χ is neglected in the SOL and is finite in the edge region,

χ(x) =





χ0, 0≤ x < xSOL,

0, xSOL ≤ x≤ Lx.
(4)

The simulation domain is sketched in Fig. 1, showing the location of the plasma source and the

separation between the edge and SOL regions. Furthermore, the spatially fluctuating electron

density n̂ and plasma potential φ̂ are defined as n̂ = n−〈n〉y and φ̂ = φ −〈φ〉y where 〈·〉y refers

to the flux surface average. This leads to the final reduced electron continuity and electric drift

vorticity equations,

dn
dt

+g
(

∂n
∂y
−n

∂φ

∂y

)
= Sn(x)+D⊥∇2

⊥n−σ(x)nexp(Λ−φ)+χ(x)(φ̂ − n̂), (5a)

d∇2
⊥φ

dt
+

g
n

∂n
∂y

= ν⊥∇4
⊥φ +σ(x) [1− exp(Λ−φ)]+χ(x)(φ̂ − n̂). (5b)

In the following we present results from numerical simulations of this model for two different

cases. In the first case, the domain is split into two regions, effectively the edge and the SOL

regions, by taking xSOL = 50. In the second case, a pure SOL plasma is considered with xSOL = 0,

thus plasma conductivity χ is not present in the simulation domain.

The input parameters have been chosen to be similar to that used in previous publications

based on this model.79 For all runs presented here, the simulation domain lengths are chosen to
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FIG. 1. Schematic illustration of the simulation domain for the xSOL = 50 case. The position of the plasma

source term (gray shaded) and the border between edge and SOL (dashed vertical line) are indicated.

be Lx = 200 and Ly = 100, with the border between the edge and the SOL at xSOL = 50 for the

two-region case. It has been verified that a change of the size of the simulation domain does not

influence the fluctuation statistics. The simulation code is implemented in BOUT++84 utilizing the

STORM branch,85 which uses a finite difference scheme in the x-direction and a spectral scheme

in the y-direction. Time integration is performed with the PVODE solver.86 We use a resolution

of 512×256 grid points for all runs. We further take D⊥ = ν⊥ = 10−2, g = 10−3, χ = 6×10−4,

S0 = 11/2000, σ0 = 5×10−4, Λ = 0.5ln(2πmi/me) with deuterium ions, x0 = 20 and λs = 10. We

apply periodic boundary conditions in the poloidal direction and zero gradient boundary conditions

in the radial direction for both the electron density and vorticity fields. For the plasma potential

we use zero gradient boundary conditions at the outer boundary and fixed boundary conditions

φ(x = 0) = 0 at the inner boundary.

During the simulations, the plasma parameters at 9 different radial positions in the simulation

domain are recorded with a sampling frequency of one in normalized time units. The location of

these probes are presented in Fig. 1. This corresponds to single-point measurements in the ex-

periments, and the simulation data will be analyzed in the same manner as has previously been

done for experimental measurement data. The contour plots of the electron density in both simula-

tion cases presented in Fig. 2 show several blob-like structures with the familiar mushroom-shape

typical for strongly non-linear interchange motions.65

Time series of the plasma parameters with a duration of 2×106 time units have been obtained

under statistically stationary conditions, that is, excluding initial transients in the turbulence sim-

ulations. 10 simulation runs with this duration time are performed for the two-region model and 7

for the one region model. The fluctuation statistics to be presented in Sec. IV are based on these
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FIG. 2. Contour plots of log(n) in the turbulent state for the xSOL = 0 and xSOL = 50 cases showing the

presence of mushroom-shaped blob-like structures in the SOL.

ensembles of simulation data. In the following analysis we will frequently consider plasma pa-

rameters normalized such as to have vanishing mean and unit standard deviation, for example. For

the electron density we define

ñ =
n−〈n〉

nrms
, (6)

where the angular brackets denote a time average and nrms is the root mean square value calculated

from the time series. A short part of the normalized electron density time series are presented in

Fig. 3 for both simulation cases, showing frequent appearance of large-amplitude bursts due to

the high density blob-like structures moving radially outwards. The radial variation of the lowest

order moments of these fluctuations are presented and discussed in Sec. III.

In the following, the numerical simulation data will be compared to predictions of a stochastic

model which describes the fluctuations as a super-position of uncorrelated pulses with fixed shape
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FIG. 3. A short part of the normalized electron density time series recorded at x = 100 for the xSOL = 0 and

xSOL = 50 simulation cases.

and constant duration. This is written as43–53

ΨK(t) =
K(T )

∑
k=1

Akψ

(
t− tk

τd

)
, (7)

where ψ is the pulse function, τd is the pulse duration time, K(T ) is the number of pulses for a

realization of duration T , and for the event labelled k the pulse amplitude is Ak and the arrival

time tk. The mean value of the random variable ΨK is 〈Ψ〉 = (τd/τw)〈A〉, where 〈A〉 is the av-

erage pulse amplitude and τw is the average pulse waiting time. We will assume pulses arriving

according to a Poisson process, which implies independent and exponentially distributed waiting

times and independent arrival times uniformly distributed on the realization. We further assume

independently and exponentially distributed amplitudes, PA(A) = exp(−A/〈A〉)/〈A〉, and we will

consider the case of a two-sided exponential pulse function,50

ψ(θ ;λ ) =





exp(θ/λ ), θ < 0,

exp(−θ/(1−λ )), θ ≥ 0,
(8)

where the pulse asymmetry parameter λ is restricted to the range 0 < λ < 1. For λ < 1/2, the

pulse rise time is faster that than the decay time, while the pulse shape is symmetric in the case

λ = 1/2. The frequency power spectral density for this process is just the spectrum of the pulse

function,50

ΩΨ̃(ω) =
2τd

[1+(1−λ )2(τdω)2][1+λ 2(τdω)2]
, (9)

where ω is the angular frequency. Note that the power spectral density of Ψ̃ is independent of

the amplitude distribution. From this it follows that the frequency power spectral density can be
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used to estimate the pulse parameters τd and λ , which will be done in the following analysis of the

numerical simulations.

The stationary probability density function (PDF) for the random variable ΨK can be shown to

be a Gamma distribution,53

〈Ψ〉PΨ(Ψ) =
γ

Γ(γ)

(
γΨ
〈Ψ〉

)γ−1

exp
(

γΨ
〈Ψ〉

)
, (10)

with shape parameter γ = τd/τw, that is, the ratio of the pulse duration and the average pulse

waiting time τw. This parameter describes the degree of pulse overlap, which determines the level

of intermittency in the process. From the Gamma distribution it follows that the skewness moment

is SΨ = 〈(Ψ− 〈Ψ〉)3〉/Ψ3
rms = 2/γ1/2 and the flatness moment is FΨ = 〈(Ψ− 〈Ψ〉)4〉/Ψ4

rms =

3+ 6/γ . Accordingly, there is a parabolic relationship between these moments given by FΨ =

3+ 3S2
Ψ/2. For strong pulse overlap and large γ , the probability density function approaches a

normal distribution and the skewness SΨ and excess flatness FΨ−3 moments vanish.

III. PROFILES AND DISTRIBUTIONS

The time-averaged electron density profiles in the turbulence simulations are presented in

Fig. 4. Since the xSOL = 50 case does not include any sheath dissipation in the edge region,

the average density is higher here than for the xSOL = 0 case. Throughout the entire SOL region,

we observe that the electron density decreases exponentially with a radially constant scale length

of 35.5. This is to be compared with the equilibrium SOL profile scale length in the absence of

turbulence given by (D⊥/σ0) =
√

20 for the simulation parameters used here. Interestingly, both

the scale length and the absolute density are very similar for the two simulation cases investigated.

We further show the relative fluctuation level at different radial positions for both cases in Fig. 5.

The normalized fluctuation level is very high, increases radially outwards and is roughly similar

for the two simulation cases.

The radial variation of the skewness and flatness moments of the electron density fluctuations

are presented in Figs. 6 and 7, respectively. From these figures it is clear that the intermittency of

the fluctuations increases radially outwards in the SOL, qualitatively similar for the xSOL = 0 and

xSOL = 50 cases. By plotting the flatness moment versus the skewness, presented in Fig. 8, it is

seen that for both simulation cases there is a nearly parabolic relationship between these higher

order moments. Such a parabolic relationship is predicted by the stochastic model describing
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FIG. 4. Time-averaged electron density profile for the xSOL = 0 and xSOL = 50 cases. The broken line is the

best fit of an exponential function with a scale length of 35.5.
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FIG. 5. The relative fluctuation level of the electron density at different positions in the SOL for the xSOL = 0

and xSOL = 50 cases.

the fluctuations as a super-position of uncorrelated pulses,43–46 which can be related to blob-like

structures moving radially outwards in the SOL as seen in Fig. 2.

The PDFs for the normalized electron density fluctuations at different radial positions are pre-

sented in Figs. 9 and 10 for the xSOL = 0 and xSOL = 50 cases, respectively. The PDFs change from

a narrow and nearly symmetric distribution in the edge/near SOL region to a distribution with an

exponential tail for large fluctuation amplitudes in the far SOL. In Fig. 11 we further compare the

PDFs of the electron density time series recorded in the far SOL at x = 100 for both simulation

cases with a Gamma distribution with a shape parameter of 1.4. Such a Gamma distribution is

predicted by the stochastic model describing the fluctuations as a super-position of uncorrelated

exponential pulses. The Gamma distribution is clearly an excellent description of the PDF for the

electron density fluctuations in the simulations. A similar change in the shape of the PDF radially
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FIG. 6. Skewness of the electron density fluctuations at different radial positions for the xSOL = 0 and

xSOL = 50 cases.

0 50 100 150 200

x

−5

0

5

10

15

20

25

F n

xSOL = 50
xSOL = 0

FIG. 7. Flatness of the electron density fluctuations at different radial positions for the xSOL = 0 and xSOL =

50 cases.

outwards in the SOL has also been reported from previous turbulence simulations.72–74

IV. FLUCTUATION STATISTICS

In this section we present a detailed analysis of the electron density fluctuations recorded at x =

100. In order to reveal the typical shape of large-amplitude bursts in the time series, a conditional

averaging method which allows for overlapping events is applied. This identifies a total of 3128

conditional events with peak amplitudes larger than 2.5 times the root mean square value above

the mean for the xSOL = 50 case and 1701 conditional events for the xSOL = 0 case. The average

burst structures are presented in Fig. 12 and shows an asymmetric shape with a fast rise and a

slower decay. The is compared to an asymmetric, two-sided exponential function given by Eq. (8)

with duration time τd = 300 and asymmetry parameter λ = 0.2. The conditional burst shape is
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FIG. 8. Flatness plotted versus skewness for the electron density fluctuations in the SOL. The broken line

shows the parabolic relationship Fn = 3+3S2
n/2 for comparison.
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FIG. 9. Probability density functions of the normalized electron density recorded at different radial positions

for the xSOL = 0 case.

shown with semi-logarithmic axes in the inset in Fig. 12, showing that the decay of the conditional

pulse shape is approximately exponential. However, the two-sided exponential function obviously

fails to describe the smooth peak of the average burst shape in the simulations. As shown for short

time lags in Fig. 12, this is better described using a skewed Lorentzian pulse as a fit function with

duration 80 and skewness parameter 1 for the xSOL = 50 case.87–90 The slightly elevated tails of

the conditional burst shape is likely due to finite pulse overlap in the turbulence simulations.

The frequency power spectral density of the electron density fluctuations recorded at x = 100 is

presented with semi-logarithmic axes in Fig. 13 for the xSOL = 50 case. This shows an exponential

decrease of power with frequency for high frequencies. This exponential fall off is attributed to

the smooth peak of the large-amplitude bursts in the simulations. In agreement with the fit of a

Lorentzian function to the peak of the conditionally averaged burst shape in Fig. 12, the power
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FIG. 10. Probability density functions of the normalized electron density recorded at different radial posi-

tions for the xSOL = 50 case.
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FIG. 11. Probability density functions of the normalized electron density recorded at x = 100 for both

simulations cases compared to a Gamma distribution with shape parameter γ = 1.4 shown with the dashed

black line.

spectral density decreases exponentially with a characteristic scale given by the duration of the

Lorentzian-shaped peak.89 The flattening of the power spectral density at low powers and high

frequencies is due to the noise floor implied by round off errors in the computations.49

The frequency power spectral density due to a super-position of uncorrelated exponential pulses

is clearly not a good description of the simulation data for high frequencies. However, present-

ing the power spectrum with double-logarithmic axes shows that the spectrum given by Eq. (9)

gives excellent agreement for high powers and low frequencies. This is clearly shown in Fig. 14

for the case xSOL = 50. The exponential decay of the power at high frequencies is clearly due

to the smooth peak of the large-amplitude bursts in the time series. This is consistent with the
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FIG. 12. Conditionally averaged burst shape at x = 100 of the xSOL = 50 case (full blue line) compared to a

two-sided exponential pulse (dashed orange line), as well as a skewed Lorentzian pulse for short time lags

(dashed black line). The conditional average is normalized by its peak amplitude.
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FIG. 13. Frequency power spectral density for the electron density fluctuations recorded at x = 100 for

the xSOL = 50 case (full line). This is compared to the predictions of a stochastic model describing the

fluctuations as a super-position of uncorrelated, two-sided exponential pulses (dashed orange line), as well

as an exponential function for the high frequency part (dashed black line).

conditionally averaged burst shape presented in Fig. 12. Similar results for conditional averag-

ing and frequency power spectra are found for the case xSOL = 0 but with slightly different pulse

parameters.

The conditionally averaged burst shape is presented in Fig. 15 for different radial positions in

the SOL for the xSOL = 50 case. Here it is seen that the burst shape in the far SOL region is

the same for all radial positions, despite the fact that the relative fluctuation amplitude increases

radially outwards. Accordingly, as predicted by the stochastic model, the frequency power spectral

density has the same shape for all these different radial positions, as is shown in Figs. 16 and 17
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FIG. 14. Frequency power spectral density of the electron density fluctuations recorded at x = 100 for the

xSOL = 50 case (full blue line). This is compared to the predictions of a stochastic model describing the

fluctuations as a super-position of uncorrelated, two-sided exponential pulses with duration time τd = 300

and asymmetry parameter λ = 0.2 (dashed orange line).
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FIG. 15. Conditionally averaged burst shapes at different radial positions for the xSOL = 50 case. The

conditional averages are normalized by their peak amplitude.

for both the one- and two-region cases. The spectra are well described by that of a two-sided

exponential pulse function, shown by the dashed black line in the figures.

Restricting the peak amplitude of conditional events in the electron density to be within a range

of 2–4, 4–6 and 6–8 times the rms value, the appropriately scaled conditional burst shapes are

presented in Fig. 18. This reveals that the average burst shape and duration do not depend on

the burst amplitude and is again well described by a two-sided exponential function except for

the smooth peak. This supports the assumption of fixed pulse duration in the stochastic model

describing the fluctuations as a super-positions of pulses.

From the conditional averaging we further obtain the peak amplitudes of conditional events and
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FIG. 16. Frequency power spectral densities of the electron density fluctuation recorded at different radial

positions for the xSOL = 50 model. The dashed line shows the spectrum due to a super-position of uncorre-

lated, two-sided exponential pulses with duration time τd.
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FIG. 17. Frequency power spectral densities of the electron density fluctuation recorded at different radial

positions for the xSOL = 0 model. The dashed line shows the spectrum due to a super-position of uncorre-

lated two-sided exponential pulses.

the waiting times between them. The PDFs of these are presented in Figs. 19 and 20, respectively.

The distributions are similar for both simulation cases and are clearly well described by an expo-

nential distribution as shown by the dashed black line in the plots. This is in agreement with the

assumptions for the stochastic model presented in Sec. II. In particular, the exponential waiting

time distribution supports the hypothesis that the events are uncorrelated and arrive according to a

Poisson process.
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FIG. 18. Conditionally averaged burst shape at x = 100 of the xSOL = 50 case for different conditional

amplitude threshold intervals. The conditional averages are normalized by their peak amplitudes.
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FIG. 19. Probability density functions of conditional burst amplitudes of the electron density time series

recorded at x = 100.

V. DISCUSSION AND CONCLUSIONS

The abundant experimental evidence for universal statistical properties of fluctuations in the

SOL of magnetically confined fusion plasmas sets high requirements for validation of turbulence

simulation codes for the boundary region.54–56 In this context, we have examined the statistical

properties of the electron density fluctuations in the SOL by numerical simulations of plasma tur-

bulence in the two-dimensional plane perpendicular to the magnetic field. Two model cases have

been considered, one describing resistive drift waves in the edge region and another including only

the interchange instability due to unfavorable magnetic field curvature. For both cases, mushroom-

shaped blob-like structures move radially outwards, resulting in large-amplitude fluctuations and

high average particle densities in the SOL. The numerical simulations show that the time-averaged

radial profile decreases exponentially with radial distance into the SOL with the same characteris-
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FIG. 20. Probability density functions of waiting times between consecutive large-amplitude burst in the

electron density time series recorded at x = 100.

tic length scale for both simulation cases. Moreover, the fluctuation statistics in the SOL are the

same for both cases. This is despite the different linear instability mechanisms driving the fluctu-

ations in the edge/near SOL region in the two simulation cases. It appears that any drift-ordered

instability mechanism will lead to formation of filament structures when coupled to a SOL region

with unfavorable magnetic field curvature.

According to a stochastic model describing the profile as due to radial motion of filament struc-

tures, the profile scale length is given by the product of the radial filament velocity and the parallel

transit time.46–48 This suggests that typical filament velocities are the same in both simulation

cases. Future work will investigate the distribution of filament sizes and velocities by analysis of

the velocity fluctuations and applying a blob tracking algorithm as described in Ref. 91.

The relative fluctuation level increases radially outwards, nearly reaching unity in the far SOL

for the plasma parameters investigated here. Similarly, the skewness and flatness moments also

increase into the SOL, and these higher order moments closely follow a quadratic dependence as

predicted by the stochastic model describing the fluctuations as a super-position of uncorrelated

pulses. The PDF of the electron density fluctuations changes from a nearly Gaussian distribution

in the edge/near SOL region to a distribution with an exponential tail for large amplitudes in the

far SOL. In the far SOL region, the PDFs are well described by a Gamma distribution with the

shape parameter given by the ratio of the pulse duration and average waiting time. The increase of

this intermittency parameter with radial distance into the SOL suggests that only the most coherent

and large-amplitude blob structures are able to move through the entire SOL region before they

disperse and break up due to secondary instabilities.
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A conditional averaging analysis has revealed that the shape of large-amplitude bursts in single-

point recordings in the far SOL is well described by a two-sided exponential pulse, as has previ-

ously been found in experimental measurements. However, the high resolution and smoothness of

the solution from the numerical computations implies that the burst structure has a rounded peak as

opposed the to break point in experimental measurements due to their much lower sampling rate

and additional measurement noise. The smooth peak is well described by a skewed Lorentzian

pulse function. This is further supported by the frequency power spectral density, which is well

described by that of a two-sided exponential pulse for high powers and low frequencies. However,

for low powers and high frequencies, the frequency power spectral density has an exponential de-

cay which obviously can be attributed to the smooth, Lorentzian shaped peak of large-amplitude

fluctuations in the numerical simulations. In experimental measurements, this exponential tail

in the spectrum may readily be masked by low sampling rates, limiting the highest frequencies

resolved, or by additive measurement noise, limiting the lowest power resolved.49,50

In summary, it is here demonstrated that a simple but self-consistent model for turbulent fluc-

tuations in the scrape-off layer reveals the same statistical properties of large-amplitude events

as found in the experiments. This includes exponentially distributed pulse amplitudes and wait-

ing times, the latter supporting the assumption of Poisson events.32,33,36,37,40,42 The simulation

data also agree with predictions of the stochastic model, namely an exponential average profile,

Gamma distributed fluctuation amplitudes and a frequency power spectral density determined by

the average shape of large-amplitude bursts. It is concluded that the filtered Poisson process,

describing the fluctuations in single-point recordings as a super-position of uncorrelated pulses

with fixed duration, is an excellent description of the SOL plasma fluctuations in the turbulence

simulations investigated here.

The simple turbulence model used in this study does not include finite ion temperature effects,

X-point physics, parallel collisional conductivity in the scrape-off layer, or any effect of interac-

tions with neutral particles. Numerous SOL turbulence models and codes are now being extended

to include these features.92–100 The statistical framework with super-position of filaments can be

used for analysis and interpretation of simulation results in these more advanced models, similar

to what has been done here and previously for experimental measurements. As such, this work

sets a new standard for validation of turbulence simulation codes.54–56
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