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Abstra
t

Experiments in ASDEX Upgrade (AUG) and JET with the ITER-like wall (JET-ILW)

are performed to separate the pedestal and 
ore 
ontributions to 
on�nement in H-modes

with di�erent main ion masses. A strong isotope mass dependen
e in the pedestal is found

whi
h is enhan
ed at high gas pu�ng. This is be
ause the ELM type 
hanges when going

from D to H for mat
hed engineering parameters, whi
h is likely due to di�eren
es in

the inter ELM transport with isotope mass. With di�erent triangularity the pedestal 
an

be mat
hed between H and D while keeping the engineering parameters relevant for 
ore

transport the same. With mat
hed pedestals Astra /TGLF (Sat1geo) 
ore transport

simulations predi
t the experimental pro�les equally well for H and D. The simulations

for mat
hed parameters show only a small negative mass dependen
e and no gyro-Bohm

s
aling is observed. However, to mat
h the experimental observations at medium β it is

required to take the fast-ion dilution and rotation into a

ount. This is not enough for high

β plasmas where for the �rst time a pro�le mat
h between H and D plasmas was a
hieved

experimentally. Under these 
onditions quasilinear modelling with TGLF over predi
ts

the transport in the 
ore of H and D plasmas alike.

1 Introdu
tion

The isotope mass dependen
e of 
on�nement is a long standing open question in tokamak

physi
s. In multi-ma
hine studies the global 
on�nement time is found to s
ale with M0.2

where M is the main ion mass number [1℄. However, this global number in
orporates

edge and 
ore physi
s at the same time while we know that they 
an s
ale di�erently [2℄.

To address this question a series of dis
harges has been 
ondu
ted with highly resolved

measurements to identify the various 
ontributions to the isotope mass dependen
e of


on�nement in the tokamaks ASDEX Upgrade (AUG) and JET with the ITER-like wall

(JET-ILW).

AUG and JET-ILW are both metal tokamaks with a tungsten divertor. In AUG also the

main 
hamber walls are tungsten while in JET-ILW they are 
oated with beryllium, whi
h
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FIG. 1: Total pressure at the edge for H and D plasmas with di�erent shaping and di�erent gas pu�ng. Low gas pu�ng

Γ ∼ 0.9 · 1022/s (a) (H: JPN97095, D: JPN97036) and medium (D: JPN97035) to high (H: JPN97094) gas pu�ng Γ ∼
13− 18 · 1022/s

is the setup foreseen for ITER. The metal wall results in a relatively low 
on
entration of

low Z impurities and 
onsequently an e�e
tive 
harge Zeff of typi
ally below 1.5 in both

devi
es. To improve ion temperature measurements small amounts of low-Z impurities

are introdu
ed into the plasma externally. In JET-ILW this is neon in H and D plasmas

and in AUG nitrogen in H plasmas. The main plasma parameters in AUG are a plasma


urrent of Ip = 0.8 MA and a toroidal magneti
 �eld Bt = −2.5 T with an edge safety

fa
tor of q95 = 5.2. In JET-ILW Ip = 1.4 MA and Bt = 1.7 T with q95 = 3.7 is used with

the C/C divertor 
on�guration whi
h has the strike points in the inner and outer 
orner a


on�guration similar to the 
losed divertor of AUG. The applied heating power is between

7-22 MW in AUG and 5-15 MW in JET-ILW. Sin
e JET-ILW is twi
e the size of AUG,

JET-ILW has about 2/3 lower ρ⋆ than AUG. The di�eren
e in size also means the power

density in AUG is substantially higher than in JET-ILW for the presented dis
harge set,

whi
h results in higher relative fast-ion 
ontent in AUG 
ompared to JET-ILW.

In order to over
ome the limitation of the NBI in hydrogen and to a
hieve higher NBI

heating powers, D-NBI heating is used for dominantly H and D plasmas. This de
reases

the isotope purity of the plasma and H 
on
entrations of nH/(nH+nD) ≃ 0.9 are a
hieved.
While not dis
ussed in detail here, no indi
ation was found that the residual 10% of D

alters the main 
on
lusions of this study. D plasmas in JET-ILW have 1-2% residual H

while it is up to 5% in AUG. The gas pu�ng rate Γ will be quoted as 'low' or 'high'. A low

Γ is in both ma
hines 
lose to the lowest pu�ng rate for whi
h the plasmas are 
onsidered

reliably stable against impurity a

umulation. A high Γ is a multiple of the low gas pu�ng

rate.

Along with the main ion mass, the heating power P , gas pu�ng and plasma triangularity

δ are varied in AUG and JET-ILW. In JET-ILW the strike points are kept 
onstant for the

di�erent δ whi
h is 
ru
ial to avoid the impa
t of varying divertor 
on�gurations. First we

will des
ribe the impa
t on the pedestal in se
tion 2, then we sele
t pairs with mat
hed

pedestal for a detailed 
ore transport analysis in se
tion 3 and dis
uss the 
ore-edge 
oupling

for the whole data set.

2 Edge pedestal

The pedestal shows a strong dependen
e on the main ion mass in AUG [3�5℄ as well as

in JET-ILW [6,7℄, most notably the pedestal density is lower in H for mat
hed engineering

parameters - like power, gas, plasma shape - while the temperatures 
an be similar result-

ing in lower pressure. To understand the origin of this di�eren
e we are dis
ussing the

three main fa
tors whi
h set the pedestal top: ELM stability, ELM losses and inter ELM

transport.
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FIG. 2: Total pressure at the edge for H and D plasmas with di�erent shaping and di�erent gas pu�ng. Low gas pu�ng

Γ ∼ 0.1 · 1022/s (a) (H: AUG35230, D: AUG35852) and high (H: AUG34716, AUG35231, D: AUG35852) gas pu�ng

Γ ∼ 7− 8 · 1022/s

ELM stability is the main 
andidate. In prin
iple, a mass dependen
e 
ould be intro-

du
ed via diamagneti
 stabilisation [8℄, however, this e�e
t was found to be small for the

JET-ILW pulses dis
ussed here [7℄. Pro�le parameters whi
h 
hange between H and D


an have an impa
t on the ELM stability. A shift of the density pro�le or an in
reasing

separatrix density lowers the pedestal pressure at whi
h ELMs are triggered [9, 10℄. Also

an in
rease of the separatrix temperature due to 
hanges in the divertor 
ondition 
an

have an in�uen
e on the ELM stability [7℄. Both me
hanisms are in
luded in the following

analysis.

ELM losses Ploss,ELM were found to have an impa
t on the pedestal top in D plasmas [11℄.

Sin
e the ELM behaviour is di�erent in H and D plasmas, with typi
ally higher frequen
ies

in H, this was tested in AUG [3℄ and JET-ILW [7℄. However, sin
e the ELM frequen
y is

strongly 
orrelated to the ELM size, Ploss,ELM is not varying enough between isotopes to

be su�
ient to explain the observed di�eren
es in the pedestal. This is why we assume the

impa
t of the ELM losses to be negligible.

The inter ELM transport, is the least understood part of the three 
andidates to explain

the isotope dependen
e in the pedestal. The theoreti
al understanding of the heat and

parti
le transport in the H-mode pedestal is an a
tive �eld of resear
h, however, due to the

steep gradients reliable simulations are di�
ult, but 
an be expe
ted in the up
oming years.

For L-mode plasmas drift waves were found in the edge and show properties explaining the

observed mass dependen
e of transport [12,13℄ and it is possible that 
ollisional drift waves

also play an important role in H-mode. While interpretative experimental studies regularly

�nd that the transport in H is larger than in D [7,14℄, the un
ertainties in these studies are

substantial. In parti
ular, due to the mass dependen
e in the pedestal a trade o� between

mat
hing the sour
es or mat
hing the pro�les has to be made. Due to the la
k of theoreti
al

understanding of the pedestal physi
s it is di�
ult to distinguish a sour
e related impa
t

(pro�le sti�ness, ele
tron-ion equipartition) or 
hanging pro�les (
ollisionality, T
i

/T
e

, et
.)

from the a
tual impa
t the ion mass has. Be
ause of these di�
ulties we developed a

new strategy for isotope studies whi
h allows us to keep the sour
es the same while also

mat
hing the pro�les of H and D plasma. This is done by 
hanging the plasma triangularity

δ. Although, we have to understand the impa
t of δ now, this opens up an angle for

investigation of the isotope mass dependen
e 
omplementary to previous studies relying

on sour
e or pro�le 
hanges.

In �gure 1 the total plasma pressure is plotted at the plasma edge for di�erent triangu-

larity δ and gas pu�ng Γ in JET-ILW. For low gas pu�ng (a) as well as medium to high

gas pu�ng (b) one observes a 
lear 
orrelation of the pedestal top pressure and isotope

mass, namely lower pressure in H 
ompared to D. When 
omparing low δ D with high δ
H plasmas, however, we �nd an ex
eptional agreement of the pressure at the pedestal top
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).

for 
onstant input power. This is observed for low (a) and high (b) Γ as shown in �gure 1

for JET-ILW and in �gure 2 for AUG. In both ma
hines the higher δ o�sets the redu
tion
in pressure as introdu
ed by the main ion mass. This is true at low and high Γ whi
h

show a di�erent pressure redu
tion at low δ. This is an indi
ation that the impa
t of the

triangularity is non-linear, whi
h 
ould in
lude a phase transition.

With the variation in the triangularity for the �rst time a mat
hed pedestal 
ould be

obtained in plasmas with di�erent main ion mass while keeping the heating and gas fuelling

the same. A mat
hed pedestal is also bene�
ial for the 
ore transport analysis dis
ussed

in se
tion 3.

The density pedestal is key in understanding the di�eren
es in pressure. The phe-

nomenology of the density pedestal is remarkably similar in AUG and JET-ILW. This is

evident when 
omparing the pro�les shown in �gure 3 and �gure 4. In (a) the density

in
reases with in
reasing gas pu� Γ in the D plasmas due to in
reasing density at the

separatrix. This is expe
ted when the ELM behaviour does not 
hange signi�
antly. The

same in
rease in Γ applied to an H plasma does not in
rease the pedestal top density

shown in (b). Simultaneously the total pedestal pressure is redu
ed by 40% (JET-ILW)

and 70% (AUG), as was shown in �gure 1 and �gure 2, whi
h for 
onstant density has to

be due to a lower temperature. However, when 
hanging δ the density 
an be in
reased

in H as shown in (
) and mat
h the D pedestal density at the same gas fuelling without

degrading the pedestal temperature. In AUG 
hanging δ and Γ had a strong impa
t on the

inter ELM density �u
tuation amplitude, measured in the pedestal region with Doppler

re�e
tometry, with high δ showing lower �u
tuation levels [5℄. While being no proof this

is a strong indi
ation that the parti
le transport 
hanges with δ and Γ.
As dis
ussed above, the most obvious 
andidate to understand the pedestal is the ELM

stability. The review of the density pro�les indi
ates that the shifted position of the density

pro�le might indeed 
ontribute to the lower pedestal pressure in H. To test this hypothesis
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the pedestal stability against peeling-ballooning modes is studied using ELITE (JET-ILW)

and MISHKA (AUG) with a HELENA equilibrium, the results are shown in �gure 5 for

the JET-ILW plasmas and �gure 6 for the AUG plasmas.

The stability boundary where the growth rate γ = 0.03 is indi
ated as a line. For

values of 〈j〉max /j, αmax lower than the boundary the pedestal is 
onsidered stable against

peeling-ballooning modes. For D we �nd the stability boundaries for all 
ases fairly 
lose

to ea
h other with the high δ 
ases tending towards higher αmax as expe
ted. The stability

boundaries for the JET-ILW plasmas shown in �gure 5 are found around αmax ∼ 3 for H

and D alike. This suggests that from ideal peeling-ballooning modes no 
ontribution to

the observed di�eren
e with isotope mass is expe
ted.

When 
omparing the operational points with their respe
tive stability boundary we �nd

that most JET-ILLW plasmas are near the stability boundary. Only the high gas pu� Γ and

low δ H 
ase is found with 30% lower αmax whi
h also deviates from the peeling-ballooning

stability boundary. Figure 6 illustrates the ELM stability for AUG where D plasmas are


lose to the peeling-ballooning boundary while low δ H plasmas are to be stable against

peeling-ballooning modes, in parti
ular, with in
reasing gas fuelling.

It appears ELM stability 
annot explain the observations in low δ H plasmas and a

me
hanism is required to prevent the pedestal from rea
hing the peeling-ballooning sta-

bility limit. High inter-ELM transport 
ould potentially serve this fun
tion. The AUG

plasma found to be most stable against peeling-ballooning modes is the one with high den-

sity �u
tuations in the pedestal mentioned above. Whi
h is an independent measurement

that is 
onsistent with the hypothesis that in AUG the inter ELM transport is important

and that its properties 
hange with isotope mass and plasma shape. Comparable mea-

surements of the density �u
tuations are not yet available for JET-ILW, still the similar

phenomenology of pro�les and ELM stability suggests that the same physi
s me
hanisms
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FIG. 7: Comparison of a H plasma (JPN97095) and a D plasma (JPN97036) in ele
tron density (a), ele
tron temperature

(b) and ion temperature (
). The heating power and gas pu� is mat
hed in both 
ases, while the triangularity is di�erent.

The lines 
orrespond to Astra TGLF Sat1geo simulations with the boundary at ρtor = 0.85 as indi
ated by the verti
al

bla
k dashed line.
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FIG. 8: Comparison of a H plasma (JPN97096) and a D plasma (JPN96831) in ele
tron density (a), ele
tron temperature

(b) and ion temperature (
). The heating power and gas pu� is mat
hed in both 
ases, while the triangularity is di�erent.

The lines 
orrespond to Astra TGLF Sat1geo simulations with the boundary at ρtor = 0.85 as indi
ated by the verti
al

bla
k dashed line.

dominate the plasmas in both ma
hines.

Despite the observed di�eren
es in ELM stability, in all the plasmas ELMs are present.

It is not trivial to identify the ELM type when the pedestal is deep in the peeling-ballooning

stable region. The theoreti
al framework regarding these type of ELMs is far less developed

than that for the ideal peeling-ballooning limited type-I ELMs. Although, new resistive

models are being tested against experimental observations whi
h 
ould provide a potential

explanation for this type of instability [10℄, the nature of these ELMs remains an open

question.

3 Core transport

Very similar to the plasma edge dis
ussed in se
tion 2 many di�erent fa
tors in�uen
e the


ore transport. The main ion mass is expe
ted to be one these fa
tors. The s
aling of mass

and transport is also not 
onstant and 
an vary depending on the plasma regime. Non-

linear gyrokineti
 simulations provide the foundation for our theoreti
al understanding. For

example trapped ele
tron mode (TEM) turbulen
e with a strong dependen
e on 
ollisions

[15℄ does s
ale di�erently than ion temperature gradient (ITG) driven turbulen
e with

adiabati
 ele
trons in the 
ollisionless limit [4,16℄. However, when 
onsidering the in�uen
e

of 
ollisions [4,12℄, E×B shear [17℄ and β stabilisation physi
s [17℄ for ITG turbulen
e the

expe
ted s
aling with main ion mass will 
hange. A more 
omplete a

ount of the di�erent

physi
s me
hanisms depending on the main ion mass 
an be found in [18℄.

Additional to the dire
t impa
t of the main ion mass on turbulent transport, there are

the indire
t e�e
ts due to operational 
onstraints whi
h be
ome important when testing

theory against the experiment. The mass dependen
e in the ele
tron-ion equipartition [19℄
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FIG. 9: Rotation pro�les for the H-D 
omparison with mat
hed pedestal pressure using D-NBI and di�erent triangularity

for the 10 MW 
ases (a) and 15 MW 
ases (b).

and the fast-ion slowing down [4,20℄ 
an result in di�erent transport properties. The same

is true for the mass dependen
e originating from the edge - dis
ussed in se
tion 2 - be
ause

the pedestal is strongly 
oupled with the plasma 
ore [21,22℄. Then there are more trivial

di�eren
es like ele
tron and ion heat fra
tions and di�erent torque whi
h need to be taken

into a

ount.

For the interpretative analysis of JET-ILW plasmas we are presenting in this se
tion

we rely on a quasilinear transport model to take into a

ount the e�e
ts dis
ussed above.

We present simulations with Astra [23, 24℄ and a re
ent release of TGLF [25℄ with the

saturation rule Sat1geo [26℄. We use the experimental rotation and the fast-ion density

and heat �ux pro�les from PENCIL and PION and an experimental boundary 
ondition

at ρtor = 0.85. The fast ions are treated as a non-resonant spe
ies in the simulations [27℄

and no additional e�e
ts like non-linear stabilisation of ITGs [28℄ are taken into a

ount.

While TGLF with Sat1geo is one of the best models 
urrently available for su
h simula-

tions and has been steadily improved over the last years, it does not perform similarly well

under all 
onditions [29, 30℄. This 
an in�uen
e isotope mass studies be
ause we expe
t a

mass dependen
e of the heat �ux Q ∝ Mµ
with µ ∈ [−0.5, 0.5] while our expe
ted temper-

ature dependen
e is Q ∝ T 2.5
. In the data set available both mass and temperature 
hange

by a fa
tor of two. Consequently, we are 
omparing an e�e
t below 0.4 with one around

5.7 and a 10% un
ertainty in the treatment of the temperature 
ould mask any isotope

e�e
t. While the di�eren
e in the temperature is not as severe for dedi
ated 
omparison

plasmas, the di�eren
e is systemati
 due to isotope dependen
e of the pedestal.

To minimize the potential un
ertainties introdu
ed by the transport model experimen-

tally, we 
ompare plasmas with di�erent main ion mass and di�erent δ, but mat
hed

pedestal 
onditions and mat
hed heating and gas pu�ng. This is the �rst study of this

kind in JET-ILW and allows to analyse the di�erent 
ontributions to the 
ore transport

with unpre
edented pre
ision.

In �gure 7 the pro�les for a pair of 10 MW JET-ILW dis
harges with moderate βN = 1.7
are shown and in �gure 8 the same is done for pro�les of dis
harges with 15 MW at higher

βN ≥ 2.5. Note this is the �rst high β H plasma whi
h was a
hieved in JET. In all 4

plasmas the only auxiliary heating sour
e is D-NBI. The solid lines in these �gures are

predi
tions from the Astra /TGLF simulations with the boundary at ρtor = 0.85. For

the moderate βN = 1.7 
ase shown in �gure 7, TGLF predi
ts the pro�les ex
eptionally

well and even reprodu
es details like the di�erent density peaking between H and D as

well the higher 
ore temperature peaking in the ions 
ompared to the ele
trons. At higher

βN ≥ 2.5, the predi
tion of TGLF is not as good as with lower heating, but still reasonable

sin
e it again 
aptures the di�eren
es in 
ore temperature peaking between ele
trons and

ions. Notably, the predi
ted pro�les are pra
ti
ally the same for H and D, whi
h is also

the 
ase in the experiment.
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FIG. 10: Change of Astra TGLF Sat1geo predi
tion for 
ore 
ontribution to thermal energy when removing fast ions (a)

or setting the rotation to zero (b).

With su
h a good mat
h between theory and experiment our 
on�den
e in
reases that

the model 
aptures the 
ore physi
s well and we 
an extra
t the di�erent 
ontributions to

the heat transport from the simulations. This is important be
ause despite the mat
h in

the pedestal density and temperatures there are di�eren
es between these plasmas besides

the main ion mass number. Most notably are the toroidal rotation shown in �gure 9 and

the fast-ion 
ontent. Due to similar torque input by D-NBI, the H plasma with lower

inertia rotates faster than the D plasma. While D-NBI also in
reases the fast-ion 
ontent


ompared to H-NBI, the mass dependen
e in the slowing down results in lower total fast-

ion 
ontent in H 
ompared to D. However, with D-NBI the di�eren
e in fast-ion 
ontent

between H and D is lower than if the H plasma is heated with H-NBI.

To test the 
ontribution of main ion mass, rotation and fast-ion 
ontent to the 
ore

transport we 
hose the 4 
ases with mat
hed pedestal and an additional H plasma with 10

MW of auxiliary heating with H-NBI. For these 5 plasmas two additional Astra /TGLF

simulations were performed ea
h - one without fast ions nfast = 0 and one without rotation

ω = 0.
In order to systemati
ally 
ompare the simulations we tra
k the 
hanges of the thermal


ore energy W tglf
th,core resulting from the predi
ted pro�les. We de�ne Wth,core = Wth −

Wth,ped where the pedestal thermal energy Wth,ped = 1.5
∫

pped(ρtor)dV with pped(ρtor) =

min
(

pped(ρtor), pped(ρ
bdry
tor )

)

and ρbdrytor = 0.85 being the position of the simulation boundary.

The results of this s
an are shown in �gure 10 where a 
orrelation is observed between the

Astra /TGLF predi
tion and the fast-ion 
ontent Wfast (a) as well as the toroidal rotation

in the plasma 
enter ωcore (b). In the model both higher fast-ion 
ontent and higher rotation

yield improved 
on�nement, this improvement is found to be between 5-10%. These 5-10%

are of the same order as the predi
ted impa
t of the isotope mass. When simulating the

hydrogen dis
harges with deuterium mass, while keeping all other inputs - heat distribution,

fast-ion 
ontent, rotation, shape and boundary 
ondition - �xed, the 
ases with M = 2 are
found to have lower 
ore 
on�nement by 7% for 10 MW and 12% for 15 MW. This would


orrespond to a weak negative mass s
aling of Wth,core ∝ M−0.10...−0.16
. Not showing a gyro-

Bohm s
aling M−0.5
is 
onsistent with a 
ode ben
hmark study with TGLF Sat1geo [30℄.

However, it is di�erent to earlier 
ore studies where TGLF with saturation rule Sat1 was

assumed to follow gyro-Bohm [6℄. This of 
ourse has a dire
t impa
t on the interpretation

of the observations. In [6℄ the deviation between the experimental and the gyro-Bohm mass

dependen
e was attributed to higher pro�le sti�ness of transport in D plasmas 
ompared

to H ones. This was supported by non-linear gyrokineti
 simulations [18℄. In our 
ases

with mat
hed pedestal and a di�erent saturation rule, the deviation between modelled and

experimental pro�les is mu
h smaller and a mass dependent pro�le sti�ness is not required

to explain the observations. However, our experiment design with mat
hed pedestal and
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FIG. 11: Quality of the TGLF predi
tion in relation to the experiment as a fun
tion of heat �ux in gyroBohm units at

mid-radius for the JET-ILW data set.

mat
hed heat sour
es intrinsi
ally redu
es the importan
e of sti�ness.

When having three parameters - mass, rotation and fast-ions - 
hange in the experiment,

it is di�
ult to a

urately determine how well ea
h parameter 
hange is des
ribed by the

model. However, the Astra /TGLF predi
tions show similar small impa
t 5-10% for

ea
h parameter for these JET-ILW plasmas without any one parameter being signi�
antly

more important than the others.

Simulations were performed for the whole JET-ILW data set, in
luding the plasmas with

high δ in D and low δ in H and 
onsequently di�erent pedestal top pressures. This allows

us to assess the quality of the TGLF predi
tions of the 
ore transport. In �gure 11 the

deviation ratio between the experiment and the predi
tion is plotted as a fun
tion of the

heat �uxes at mid-radius in gyroBohm units Qtot/QgB. One �nds that TGLF predi
ts the


ore 
on�nement a

urately within ±5% for Qtot/QgB > 15. In parti
ular, for H this is

true despite a variation of the pedestal pressure by over a fa
tor of 2 (
p. to �gure 1).

From the points whi
h exhibit a larger deviation between model and experiment impor-

tant information 
an be dedu
ted. First there is a single plasma in the data set with a 3,2

NTM. For a plasma with 
ore MHD a
tivity the model should overestimate the 
on�ne-

ment, be
ause, the magneti
 island is not treated in the model. In �gure 11 this plasma

at Qtot/QgB = 15 is 
learly visible as outlier with W
(TGLF )
th,core /W

(EXP)
th,core = 1.15 as is expe
ted.

As a one point 
ontrol group this in
reases our 
on�den
e in the validity of the remaining

data set.

For Qtot/QgB < 15 TGLF starts to over estimate the 
ore transport in H and D plasmas.

The two H points with Qtot/QgB ∼ 13 are unique, be
ause for the �rst time in JET-ILW a

heating power of 15 MW was introdu
ed in a H plasma with good pedestal performan
e.

As a thought experiment, we dis
uss the data set as if these two new H points were not

present. Then a 
lear separation between H and D plasmas would remain. This might be

interpreted su
h that theory overestimates the 
ore heat transport in deuterium plasmas

and a yet unknown isotope e�e
t is ne
essary to bridge the gap between H and D plasmas.

However, the separation in gyro-Bohm units is not only due to the mass dependen
e in

the normalisation, but also due to the mass dependen
e in the pedestal temperature and

density as des
ribed in se
tion 2. A lower pedestal top will result in larger heat �uxes in

gyro-Bohm units, despite the same experimental heat �uxes. I.e. the isotope dependen
e of

the pedestal 
an have a signi�
ant impa
t on the interpretation of 
ore transport modelling.

However, the new H plasmas, with high heating and high δ, show the same overesti-

mated 
ore heat transport in the modelling as do the D plasmas. This suggests that the

short
oming of the model for Qtot/QgB < 15 does not originate in the isotope mass and

is instead 
onne
ted to an a

urate predi
tion of threshold and sti�ness properties of heat

transport under the present 
onditions.

This overestimation of the 
ore transport in H and D plasmas at low Qtot/QgB by TGLF



10

0.0

0.5

1.0

1.5

2.0

0.0 0.3 0.6 0.9 1.2 1.5

W
th

,c
or

e 
[M

J]

Wth,ped [MJ]

H
D

0.0

0.5

1.0

1.5

2.0

0.0 0.3 0.6 0.9 1.2 1.5

(a)

JET: 1.4 MA, 1.7 T

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.3 0.6 0.9 1.2 1.5

τ t
h,

co
re

 [
s]

Wth,ped [MJ]

H
D

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.3 0.6 0.9 1.2 1.5

(b)

JET: 1.4 MA, 1.7 T

FIG. 12: Core 
ontribution to the thermal plasma energy Wth,core (a) and thermal 
on�nement time τth,core (b) as a

fun
tion of the edge 
ontribution Wth,ped for di�erent isotope masses in an JET-ILW power/gas s
an.

was also observed in 
omparisons with non-linear gyrokineti
 Gene simulations [30℄. For

su
h plasmas with higher β
e

the nonlinear ele
tromagneti
 turbulen
e stabilisation - whi
h

is not present in TGLF - be
omes more important [29, 31, 32℄. Non-linear stabilisation of

ITGs via fast ions [20, 28, 33℄ is likely not responsible for this di�eren
e. In the AUG 
ore

transport an empiri
al threshold of Wfast/Wth > 1/3 was found for NBI heated plasmas [4℄.

The JET-ILW 1.4 MA, 1.7 T, H and D plasmas all have Wfast/Wth < 1/4. In order to


ontribute to this questions nonlinear gyrokineti
 simulations will be performed for our

data set in the near future.

To approa
h this open question from the experimental side in �gure 12 (a) the 
ore-edge


oupling of the plasma energy between H and D is shown. While a 
orrelation between

Wth,core and Wth,ped is not entirely surprising as it was observed before, for example, in

JET-ILW [18℄. In our data set the heating power is varied by over a fa
tor of 2 and the

pedestal top is varied via the shaping at 
onstant heating power and still the 
orrelation

between edge and 
ore holds. Further, in �gure 12 (b) it is shown that the 
ore 
on�nement

time τth,core = Wth,core/Psep, with Psep = Paux−Prad, even in
reases with in
reasing pedestal

top. This is not trivial as one would expe
t a strong power degradation with in
reasing

Psep whi
h is visible in the two outliers at Wth,ped = 0.7 MJ whi
h are the D plasmas with

the lowest heating power.

For our data set it is not obvious what drives this 
orrelation. When one ex
ludes fast

ion e�e
ts a remaining 
andidate is β stabilisation where the experimental reasoning is that

β is one of the few 
ore parameters whi
h is dire
tly a�e
ted by the pedestal. However, an

higher pedestal also redu
es R/LT ∝ 1/T and thereby the turbulen
e drive. Independent

of the potential explanations the data shows no signi�
ant deviation between H and D

plasmas. But sin
e H plasmas are on average found with a lower pedestal energy Wth,ped

than their D 
ounterparts, also the 
ore 
on�nement time will be lower in H on average.

Given our observations we 
on
lude that the improvement of 
ore 
on�nement is not a


onsequen
e of an isotope mass dependen
e in the 
ore transport, but a 
onsequen
e of

the 
ore-edge 
oupling whi
h is found in H and D plasmas alike.

4 Summary

While performing experiments with di�erent main ion masses, the mass number is never

the only parameter that is 
hanging. We rather observe di�erent overlapping e�e
ts. Most

notably is the 
ore-edge 
oupling. Changes in the edge will impa
t the 
ore and vi
e versa.

In the pedestal a very strong dependen
e on the mass number and the gas fuelling is

observed. This will have dire
t 
onsequen
es for the 
ore 
on�nement time - independent

of the main ion mass.

Where the parameter spa
e in AUG and JET-ILW overlaps, plasmas exhibit the same
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physi
s responses to 
hanges in the engineering parameters. This is found for the 
ore

transport at moderately low fast-ion 
ontent and for the strong isotope mass dependen
e

of the pedestal, whi
h is 
omparable in both ma
hines. At the edge the inter-ELM transport

is the most promising 
andidate to explain the experimental observations. However, the

detailed underlying physi
s me
hanisms 
ould not be identi�ed due to the la
k of a

urate

transport modelling of the steep gradient region in the H-mode edge.

When the edge isotope dependen
e is o�set by varying the triangularity at the sepa-

ratrix Astra /TGLF (Sat1geo) simulations predi
t the 
ore transport surprisingly well

for moderate β. In the simulations of the 
ore transport, fast-ion and rotation e�e
ts are

found to be of the same order as the isotope mass dependen
e. The 
ore transport is found

near Bohm in the simulations. This is di�erent in AUG when the fast-ion 
ontent between

H and D diverges at higher NBI power density and non-linear turbulen
e stabilisation due

to fast ions starts playing a role [4℄. This is 
onsistent with JET-ILW where the relative

fast-ion 
ontent is lower than in AUG and the e�e
t of thermal ion dilution by fast ions is

su�
ient to model the observations.

For the �rst time an isotope study between H and D 
ould be extended to high β H

plasmas. This is only possible due to the pedestal mat
h with di�erent δ and an in
rease

of the heating power in H by applying D-NBI. This allows to investigate the isotope depen-

den
e of the EM stabilisation. While the experimental data suggests only a small impa
t

of the main ion mass on the 
ore transport also for high β plasmas, a detailed 
omparison

to advan
ed theoreti
al models is still missing and will be subje
t to future investigations.
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