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Abstract

As the international tokamak ITER is being built, non-linear MHD simulations are playing an
essential role in active research, understanding, and prediction of tokamak plasmas for the realisa-
tion of a fusion power plant. The development of MHD codes like JOREK is a key aspect of this
research effort, and provides invaluable insight into the plasma stability and the control of global
and localised plasma events, like Edge-Localised-Mode and disruptions. In this paper, we present
an operational implementation of a new, generalised formulation of Bezier finite-elements applied
to the JOREK code, a significant advancement from the previously C1-continuous bi-cubic Bezier
elements. This new mathematical method enables any polynomial order of Bezier elements, with
a guarantee of C-continuity at the level of (n − 1)/2, where n is the order of the Bezier polyno-
mials. The generalised method is defined, and a rigorous mathematical proof is provided for the
C-continuity requirement. Key details on the code implementation are mentioned, together with
a suite of tests to demonstrate the mathematical reliability of the finite-element method, as well
as the practical usability for typical non-linear tokamak MHD simulations. A demonstration for
a state-of-the-art simulation of an Edge-Localised-Mode instability in the future ITER tokamak,
with complex grid geometry, finalises the study.

1 Introduction

Industrial electricity production using nuclear fusion power would greatly contribute to the re-
duction of greenhouse gas emissions and of long-lived radioactive nuclear waste, while providing
electricity to society without the limit of an exhaustible natural resource. A favorable candidate
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for industrial fusion reactors is the tokamak device. Tokamaks use a helical magnetic field that
winds itself around a toroidal vacuum chamber. The periodic nature of the torus ensures that
charged particles, which approximately follow magnetic field lines, are not lost at the end of open
field lines like in linear plasma devices. However, this periodicity can be subject to resonance and
instabilities. Large-scale instabilities typically involve both the plasma and the magnetic field, and
are often studied in the fluid picture using magnetohydrodynamics (MHD).

There is a wide variety of MHD instabilities in tokamak plasmas, some of which can reduce or
limit the operational capabilities of the machine. Edge-Localised-Modes (ELMs) are instabilities
that eject plasma from the confined region onto the material surfaces of the first wall of the machine;
these instabilities can lead to large heat-fluxes that may reduce the life-time of the material surfaces
[1–4]. Toroidal Alfven Eigenmodes (TAEs) can be excited by the 3.5MeV alpha-particles born from
fusion reactions; these can significantly limit the plasma pressure, and are a concern for future
reactors where the burning plasma will produce a large amount of alpha-particles [5–8]. Global
MHD instabilities, during which the entire plasma is affected, can lead to disruptions; during
such events the kinetic and magnetic energy of the plasma can be transferred to the wall, leading
to material heat-fluxes and/or wall-currents that can damage the machine and its structure [9–
14]. In order to study, understand and predict these instabilities, non-linear MHD simulations are
performed using numerical codes like JOREK [15–18], M3D-C1 [19, 20], NIMROD [21, 22], XTOR
[23], BOUT++ [24, 25], MEGA [26–28], HALO [7] and many others.

There is a wide range of finite-element methods used in the community of fusion modelling.
The use of C1-continuous finite-elements has proven essential for the numerical stability of many
codes, in particular JOREK [16, 18] and M3D-C1 [19, 20]. C1-continuity is particularly essential
when dealing with physics models that include high-order spatial derivatives, typically order-2
derivatives for diffusive terms like viscosity, resistivity and particle/heat diffusion, as well as order-
4 derivatives for hyper-diffusion terms. In addition, the magnetohydrodynamic equations are based
on an equilibrium between two very large pressure terms: the kinetic pressure ∇p, and the magnetic
pressure ~J × ~B. At equilibrium, these two terms in the momentum equation cancel each other out,
but when dealing with instabilities, it is precisely this balance that breaks, leading to spatially finely
localised differences arising from the ∇p− ~J × ~B imbalance. In this highly-nonlinear environment,
precision is key, such that high-order finite-element methods can provide definite advantages.

In this paper, we present a generalised method for high-order Bezier finite-elements, which en-
sure that G-continuity increases linearly with the polynomial order of the elements. The method is
defined, proven, and implemented in the JOREK code with several numerical tests and benchmark
cases. Note that in the remainder of this paper the term C-continuity is often used for simplicity
since it is more frequently used in literature, but in all instances, this means G-continuity. Section-2
introduces the C2-continuous Bezier finite-elements, which serves as an introduction to the gener-
alised method. Section-3 presents the definition the generalised Bezier formulation, together with
the mathematical proofs to demonstrate C-continuity. Section-4 describes some of the key details
that were required for the implementation of this new method in the JOREK code, and Section-5
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presents the series of tests conducted to demonstrate the mathematical accuracy of the new method,
together with the practial usability and advantages of using higher-order finite-element methods
for non-linear MHD instabilities in tokamaks. Finally Section-6 summarises the work and lays out
the further improvements required for future studies of tokamak instabilities.

2 C2-continuous Bi-Quintic Bezier Elements

2.1 Bezier curves and Bezier elements

Iso-parametric Bezier curves of order n are described by the formulation of any function (including
spatial coordinates) as

F (s) =
n∑
i=0

Bi(s)Pi (1)

Where s is the element’s local coordinate, the points Pi are the control points of the curve, and the
Bernstein polynomials are defined as

Bi(s) = n!
i!(n− i)!s

i(1− s)n−i (2)

This is represented for Bezier segments of order 3 and 5 in Figure-1. For cubic curves, the end control
points P0 and P3 determine the position of the segment vertices (or nodes), while the vectors [P0, P1]
and [P3, P2] control the first derivatives (or directions) of the segments. Cubic Bezier segments can
have up to two inflexion points. For quintic curves, the end control points P0 and P5 determine the
position of the segment vertices, the first vectors [P0, P1] and [P5, P4] control the first derivatives,
and the second vectors [P1, P2] and [P4, P3] control the second derivatives. Quintic Bezier segments
can have up to four inflexion points.

(a) (b)

Figure 1:(a) Cubic Bezier segments and (b) quintic Bezier segments, showing control points.

Similarly, iso-parametric Bezier finite elements of order n are described by the formulation of
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any function (including spatial coordinates) as

F (s, t) =
n∑
i=0

n∑
j=0

Bi(s)Bj(t)Pij (3)

Where s and t are the element’s local coordinates, the points Pij are the control points of the
elements, and the Bezier polynomials are the same as defined above by (2). Bezier elements of
order 3 and 5 are represented in Figure-1. Note that for simplicity the elements are shown in 2D
here, but this can be generalised to 3D. The iso-parametric property of Bezier elements means that
the spatial coordinates have the same formulation (3) as any other variable.

(a) (b)

Figure 2:(a) Bi-cubic Bezier element and (b) bi-quintic Bezier element, showing control points.

2.2 Continuity between Bezier curves or elements

Consider two cubic Bezier curves ζ1 and ζ2, with control point [P0, P1, P2, P3] and [Q0, Q1, Q2, Q3]
respectively. The two curves are continuous, or C0-continuous, provided the two control points P3

and Q0 are identical. The curves are smooth, or C1-continuous, provided the vectors [P4, P3] and
[Q0, Q1] are aligned, such that (P3 − P2) = α(Q1 −Q0) for any non-zero positive scalar α. This is
represented by Figure-3, where α has been chosen to be α = 1. This condition is important with
respect to the Bezier formalism of finite elements: the freedom of allowing α 6= 1 means that finite
elements can have different sizes on each side of a node, implying that the derivatives along the
local coordinate are not continuous, only derivatives in real space are (ie. G1 continuity).

In order to achieve C2-continuity, such that the curvature (or second derivative) of the curves
is continuous at the point P3 = Q0, the following rule must be satisfied:

(P1 − P2) + (P3 − P2) = (Q2 −Q1) + (Q0 −Q1) (4)

There is an important implication from this rule for cubic Bezier lines/elements. The C2 continuity
at vertex P3 imposes the choice of P1, such that if the position of P0 is fixed, then the first derivative
value at P0, controlled by P1 is also imposed by the C2-continuity at P3. In other words, C2-
continuity at one vertex uses the control points from another vertex. While this may be acceptable
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Figure 3: C1-continuity between two cubic Bezier curves (top). C2-continuity between two quintic Bezier curves (bottom).

in some simple symmetrical geometries, it greatly diminishes the flexibility of finite elements nodes
to have their own 1st and 2nd derivatives, regardless of neighbouring nodes. This is the main reason
to increase from cubic to quintic finite elements: since quintic curves have 6 control points, each
node has its own set of 3 control points to determine 2nd order derivatives and C2-continuity with
the next curve.

2.3 Nodal formulation of bi-quintic elements

As in [17], it is ideal to use a nodal formulation of the finite elements, and set constraints that will
guarantee C0, C1 and C2 continuity of all variables for any solution of the system to be solved.
To achieve this, we define a vector basis used to locate all control points. In bi-cubic elements, the
node value plus 3 vectors are necessary to define the 4 control points associated to each node. For
bi-quintic elements, the node value plus 8 vectors are required. The nodal formulation, at node P00

in Figure-2b, is defined as
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P00

P10 = P00 + hu00~u00

P01 = P00 + hv00~v00

P11 = P00 + hu00~u00 + hv00~v00 + hw00 ~w00

P20 = P00 + 2hu00~u00 + hi00
~i00 (5)

P02 = P00 + 2hv00~v00 + hj00
~j00

P21 = P00 + 2hu00~u00 + hv00~v00 + hi00
~i00 + 2hw00 ~w00 + hm00 ~m00

P12 = P00 + 2hv00~v00 + hu00~u00 + hj00
~j00 + 2hw00 ~w00 + hn00~n00

P22 = P00 + 2hu00~u00 + 2hv00~v00 + hi00
~i00 + hj00

~j00 + 2hm00 ~m00 + 2hn00~n00 + 4hw00 ~w00 + hk00
~k00

where the vectors ~u00, ~v00, ~w00,~i00, ~j00, ~m00, ~n00, ~k00, and the element sizes hu00, hv00, hw00, hi00, h
j
00,

hm00, hn00, hk00 have been introduced. A representation of this formulation is shown in Figure-4.

(a)

Figure 4:
Nodal formulation of bi-quintic elements, focused on the first node P00 of an element similar to that represented in Figure-2b.

Similar definitions are used for the nodal formulation at nodes P05, P50 and P55, to locate all
control points of an element. It is worth noting that, as will become evident later, the choice of
this particular formulation is not random. For example, point P22 could simply have been defined
as P00 +hk00

~k. However, using this mixture of vectors to represent various points will be essential in
order to define C2-continuity rules. In addition, as will be shown further on, this definition has the
advantage that each vector corresponds to a derivative with respect to the local coordinates (s, t)
of the element.

Using the nodal formulation (5) at the four nodes of an element, all control points (except P00,
P50, P05 and P55) can now be substituted into the Bezier definition of a finite element (3), to write
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F (s, t) as

F (s, t) =
∑
xx

[
FPxxPxx + F uxxh

u
xx~uxx + F vxxh

v
xx~vxx

+ Fwxxh
w
xx ~wxx + F ixxh

i
xx
~ixx + F jxxh

j
xx
~jxx (6)

+ Fmxxh
m
xx ~mxx + Fnxxh

n
xx~nxx + F kxxh

k
xx
~kxx

]
with xx = [00, 05, 50, 55].

where a new set of basis functions FPxx, F uxx, ..., F kxx, has been obtained by factorizing F (s, t)
with respect to each vector. Thus, the vectors ~u, ~v, etc. represent the degrees of freedom that are
used and solved in the system of linearised equations, while the element sizes hu, hv, etc. are fixed
in time, and chosen to ensure C2-continuity between elements, for any values of the vectors ~u, ~v,
etc.

Note that, in this case, the Bezier function F (s, t) is actually a 2D vector, but this can simply
be considered to be two separate functions X(s, t) and Y (s, t), with each set of vectors being actual
scalar degrees of freedom for each function. This is true for any variable ψ of the system to be
evaluated. It is written here as vectors just to simplify the visualisation with the use of plots of 2D
elements like Figure-4.

2.4 C0-, C1- and C2-Continuity Constraints

Finally, constraints must be set on the elements sizes in order to ensure C2-continuity for any set
of node vectors. Rather than simply defining those constraints and showing that C0-, C1- and C2-
continuity is thus satisfied, it is better to start from the continuity requirements, and deduce the
constraints from those. Despite being more lengthy, it will provide a clearer understanding why
each set of constraints is chosen. To describe these constraints, let the 4 Bezier elements ξ11, ξ-11,
ξ1-1, and ξ-1-1 have the common node P00. The control points of the 4 parent elements around node
P00 can be defined, similarly to (5), using the subscripts “11”, “1-1”, “-1-1” and “-11” for each
of the 4 parent elements. Note that, by definition, all elements use the same vectors for the nodal
formulation, but have different element sizes. Hence, on element ξ11, the nodal formulation is
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P10 = P00 + hu11~u

P01 = P00 + hv11~v

P11 = P00 + hu11~u+ hv11~v + hw11 ~w

P20 = P00 + 2hu11~u+ hi11
~i

P02 = P00 + 2hv11~v + hj11
~j (7)

P21 = P00 + 2hu11~u+ hv11~v + hi11
~i+ 2hw11 ~w + hm11 ~m

P12 = P00 + 2hv11~v + hu11~u+ hj11
~j + 2hw11 ~w + hn11~n

P22 = P00 + 2hu11~u+ 2hv11~v + hi11
~i+ hj11

~j

+2hm11 ~m+ 2hn11~n+ 4hw11 ~w + hk11
~k

while on the other three elements, minus subscripts will be used for the corresponding points
and element sizes. For example, point P-21 (on element ξ-11), point P2-1 (on element ξ1-1), and point
P-2-1 (on element ξ-1-1), are defined as

P-21 = P00 + 2hu-11~u+ hv-11~v + hi-11
~i+ 2hw-11 ~w + hm-11 ~m

P2-1 = P00 + 2hu1-1~u+ hv1-1~v + hi1-1
~i+ 2hw1-1 ~w + hm1-1 ~m (8)

P-2-1 = P00 + 2hu-1-1~u+ hv-1-1~v + hi-1-1
~i+ 2hw-1-1 ~w + hm-1-1 ~m

2.5 C0-continuity

C0 continuity requires that, apart from the common node P00, all control points along the element
sides must coincide on both sides of an element, such that vector sizes used to define these common
points must be equal on either sides of an element boundary, namely

hu1-1 = hu11 and hu-1-1 = hu-11

hv-11 = hv11 and hv-1-1 = hv1-1

hi1-1 = hi11 and hi-1-1 = hi-11

hj-11 = hj11 and hj-1-1 = hj1-1

(9)

2.6 C1-continuity

Firstly, considering C1-continuity at the node itself, P00, the requirement, as mentioned above, is
that opposite vectors are aligned, but this is already achieved by the nodal formulation (5), since
we use the same vectors ~u and ~v for all elements. Therefore, the first rules are

hu-11 = −α hu11 with α > 0

hv1-1 = −β hv11 with β > 0
(10)
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Secondly, considering C1-continuity at the points directly adjacent to the node P00, namely the
control points P01, P10, P0-1 and P-10, this requires the alignment of the points

(P11 − P01) = −δ1(P-11 − P01) with δ1 > 0

(P1-1 − P0-1) = −δ2(P-1-1 − P0-1) with δ2 > 0

(P11 − P10) = −δ3(P1-1 − P10) with δ3 > 0

(P-11 − P-10) = −δ4(P-1-1 − P-10) with δ4 > 0

(11)

Substituting the formulations of control points from (7,8), and using the identities (9) and (10),
gives

(1− αδ1)hu11~u + (hw11 + δ1h
w
-11)~w = 0

(1− αδ2)hu11~u − (hw1-1 + δ2h
w
-1-1)~w = 0

(1− βδ3)hv11~v + (hw11 + δ3h
w
1-1)~w = 0

(1− βδ4)hv11~v + (hw-11 + δ4h
w
-1-1)~w = 0

Hence, introducing the following constraints on the w element sizes:

hwxx = huxxh
v
xx

with xx = [11, 1-1, -11, -1-1],
(12)

and using again (9) and (10), the above simplifies to give

(1− αδ1)hu11~u + hu11h
v
11(1− αδ1)~w = 0

(1− αδ2)hu11~u − βhu11h
v
11(1− αδ2)~w = 0

(1− βδ3)hv11~v + hu11h
u
11(1− βδ3)~w = 0

(1− βδ4)hv11~v − αhu11h
u
11(1− βδ4)~w = 0

which is trivially satisfied for δ1 = δ2 = α−1 and δ3 = δ4 = β−1. Finally, C1-continuity is ensured
at the points P20, P02, P-20 and P0-2 by aligning the points

(P12 − P02) = −λ1(P-12 − P02) with λ1 > 0

(P1-2 − P0-2) = −λ2(P-1-2 − P0-2) with λ2 > 0

(P21 − P20) = −λ3(P2-1 − P20) with λ3 > 0

(P-21 − P-20) = −λ4(P-2-1 − P-20) with λ4 > 0

(13)

The constraints to be imposed here are

hn-11 = −α hn11 and hn-1-1 = −α hn1-1

hm1-1 = −β hm11 and hm-1-1 = −β hm-11

(14)
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Indeed, as before, substituting points definitions from (7,8), and using the constraints (9), (10),
(12) and (14), gives

hu11(1− αλ1)~u + 2hu11h
v
11(1− αλ1)~w + hn11(1− αλ1)~n = 0

hu11(1− αλ2)~u + −2βhu11h
v
11(1− αλ2)~w + hn1-1(1− αλ2)~n = 0

hv11(1− βλ3)~v + 2hu11h
v
11(1− βλ3)~w + hm11(1− βλ3)~m = 0

hv11(1− βλ4)~v + −2αhu11h
v
11(1− βλ4)~w + hm-11(1− βλ4)~m = 0

which holds for λ1 = λ2 = α−1 and λ3 = λ4 = β−1.

2.7 C2-continuity

As for C1-continuity, the C2-continuity constraints is first considered at the node itself, where the
control points must satisfy the conditions

P00 + P20 − 2P10 = P00 + P-20 − 2P-10

P00 + P02 − 2P01 = P00 + P0-2 − 2P0-1

(15)

which can be expanded, using (7,8) and the C0- and C1-constraints derived above, to give

hi11
~i = hi-1-1

~i

hj11
~j = hj-1-1

~j
(16)

implying that the C0-constraint (9) must be extended to

hi1-1 = hi-11 = hi-1-1 = hi11

hj1-1 = hj-11 = hj-1-1 = hj11

(17)

Now, consider the C2-continuity conditions at the four control points adjacent to P00, namely

P01 + P21 − 2P11 = P01 + P-21 − 2P-11

P0-1 + P2-1 − 2P1-1 = P0-1 + P-2-1 − 2P-1-1

P10 + P12 − 2P11 = P10 + P1-2 − 2P1-1

P-10 + P-12 − 2P-11 = P-10 + P-1-2 − 2P-1-1

(18)

which, once expanded, gives only the remaining terms

hm11 ~m = hm-11 ~m

hm1-1 ~m = hm-1-1 ~m

hn11~n = hn1-1~n

hn-11~n = hn-1-1~n

(19)

Hence, the set of constraints (14) must be extended to

hn-11 = hn-1-1 = −α hn11 = −α hn1-1

hm1-1 = hm-1-1 = −β hm11 = −β hm-11

(20)
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At last, the C2-continuity at the remaining nodes is expressed as

P02 + P22 − 2P12 = P02 + P-22 − 2P-12

P0-2 + P2-2 − 2P1-2 = P0-2 + P-2-2 − 2P-1-2

P20 + P22 − 2P21 = P20 + P2-2 − 2P2-1

P-20 + P-22 − 2P-21 = P-20 + P-2-2 − 2P-2-1

(21)

which, once expanded, gives the remaining terms

hk11
~k = hk-11

~k

hk1-1
~k = hk-1-1

~k

hk11
~k = hk1-1

~k

hk-11
~k = hk-1-1

~k

(22)

Now, this leads to the final constraint on the element size for the ~k vectors:

hkxx = hixxh
j
xx

with xx = [11, 1-1, -11, -1-1],
(23)

Using this rule, together with (17), the above is trivially satisfied.
For convenience, the C2-continuity constraints are summarised here:

hu-1-1 = hu-11 = −α hu1-1 = −α hu11 (24)

hv-1-1 = hv1-1 = −β hv-11 = −β hv11 (25)

hi1-1 = hi11 = hi-1-1 = hi-11 (26)

hj-11 = hj11 = hj-1-1 = hj1-1 (27)

hm1-1 = hm-1-1 = −β hm11 = −β hm-11 (28)

hn-11 = hn-1-1 = −α hn11 = −α hn1-1 (29)

hwxx = huxxh
v
xx (30)

hkxx = hixxh
j
xx (31)

with xx = [11, 1-1, -11, -1-1],

3 Generalised formulation: beyond C2 continuity

The nodal formulation (5), and the element size rules (24-31) can be generalised to provide Bezier
elements of arbitrary odd order n, with C-continuity of order (n−1)/2. This generalisation requires
the definition of a nodal formulation at any odd order n. The order n must be odd such that each
node have the same number of associated control points. Note that continuity of order (n− 1)/2 is
obtained since in a given direction, there are (n+ 1) control points, including the end nodes, hence
(n + 1)/2 control points for each node, one being the value of a variable, and then one for each
derivative, such that (n − 1)/2 derivatives can be controlled. At each node, there are (n + 1)2/4
degrees of freedom.
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3.1 Notation for the derivatives of control points

Before defining the general formulation, it helps to understand the structure of C-continuity re-
quirements.

Notation-1 :
C1-continuity
Let direction x denote the first index of control points Pij, and direction y the second
index. The first derivative, in the direction x, at a border point P0j is defined by

∆1
xP0j = P0j − P1j, for any j. (32)

On the opposite element, it is defined as

∆−1
x P0j = P0j − P-1j, for any j. (33)

Likewise, the first derivative in the y direction is defined by

∆1
yPi0 = Pi0 − Pi1, for any i (34)

and, on the opposite element,

∆−1
y Pi0 = Pi0 − Pi-1, for any i. (35)

The four parent elements of node P00 are C1-continuous provided

∆−1
x P0j = −λ1∆1

xP0j, (36)

∆−1
y Pi0 = −λ2∆1

yPi0, (37)

for any indices i, j in interval [−(n-1)/2, (n-1)/2], and any positive real scalars
λ1, λ2.
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Notation-2 :
C-continuity of order m
The m-th derivative, in direction x, at point P0j, is defined by

∆m
x P0j = ∆m-1

x P0j −∆m-1
x P1j (38)

Just like standard derivatives, it is trivial to demonstrate by induction that this is
equivalent to

∆m
x P0j =

m∑
i=0

(−1)i
(
m

i

)
Pij (39)

Likewise, on the opposite element, the m-th derivative can be written as

∆-m
x P0j =

m∑
i=0

(−1)i
(
m

i

)
P-ij (40)

Similarly, at point Pi0, the m-th derivatives, in direction y, on two opposite elements,
are defined as

∆m
y Pi0 =

m∑
j=0

(−1)j
(
m

j

)
Pij (41)

∆-m
y Pi0 =

m∑
j=0

(−1)j
(
m

j

)
Pi-j (42)

Unlike the C1-continuity requirement (36-37), C-continuity of order m requires
equality of the m-th derivatives on either sides of a node, namely

∆m
x P0j = ∆−m

x P0j, (43)

∆m
y Pi0 = ∆−m

y Pi0, (44)

It is important to note that we use a sub-case version of C-continuity definition. Generic C1-
and C2-continuity definitions can be found in [29, 30] respectively. In this paper, a special case
of these conditions is used. In the most general case, C2-continuity involves both the second, first
and zero derivatives of control points, but in this study, we neglect lower-order derivatives, which is
equivalent to satisfying C-continuity by aligning the control points accordingly. The main advantage
of the more generic continuity definition is that they allow the degrees of freedom to be shifted from
the control points to the polynomial representation of boundaries between elements. One of the
main outcomes of such a generic method is that it allows control points to be “misaligned”, enabling
strong angles between elements at a given node. Such a generic method is, however, beyond the
scope of this paper and could be considered in future studies.

The notation of control point derivatives (39,41), together with the continuity rules (43,44) can
be derived simply by evaluating the derivative of the Bezier formula (3) at s=0 or s=1 (or t=0 and
t=1). This derivation is not detailed here, but its method can be seen in [17] for C1-continuity,
and is identical for higher-order derivatives.
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Now, consider the generic Bezier 1D-derivative identity (39) as a function of the control points.
The ideal nodal formulation to satisfy these conditions is one that automatically simplifies the
derivative at any order. This should be, of course, in both directions i and j. As will become clear
below, the generic formulation is nothing less than a construction similar to mixed 2D-derivatives.

3.2 Generalised nodal formulation of Bezier elements

Definition-1 :
For Bezier elements of any odd polynomial order n, the nodal formulation of control
points Pij is defined as

Pij = hij~u ij +
i∑

k=0

j∑
l=0

(−1)1+i+j+k+l(1 − δkiδlj)
(
i

k

)(
j

l

)
Pkl (45)

where

0 ≤ i < (n+ 1)/2

0 ≤ j < (n+ 1)/2

δab is the Kronecker delta

hij are the sizes of each component of the nodal vectorial basis.

P00 = h00~u 00 := P00

Definition-2 :
The notation of the element sizes for the 4 parent elements of a node are expressed
as hij , h-ij , hi-j and h-i-j , and they are constrained with the following rules

for any j, h-ij is constrained by

h-ij =

−α h
ij for i = 1 and α > 0

hij for i 6= 1
(46)

for any i, hi-j is constrained by

hi-j =

−β h
ij for j = 1 and β > 0

hij for j 6= 1
(47)

Note that Definition-1 is clearly just a mixture of the derivatives (39) in two dimensions. The
Kronecker-delta functions are simply required to remove the re-occurrence of the point Pij. Using
these two definitions, it can be demonstrated that C-continuity is ensured at order (n−1)/2. Before
this can be achieved, some necessary properties of the definitions must first be obtained.

14



3.3 C1- and C2-continuity demonstration

The final proof of C-continuity is done by induction, and therefore C1- and C2-continuity must
first be proven.

Proposition-1 :
The nodal formulation Pij defined in Definition-1, together with the element size
constraints defined in Definition-2, ensures C1-continuity between Bezier elements.

Proof :
Consider C1-continuity in the x direction. C1-continuity at the node P00 itself (ie. at j=0) is trivial,
since expanding the nodal formulation (45) at points P10 and P-10 gives

P10 = P00 + h10~u10 (48)

P-10 = P00 + h-10~u10 (49)

where of course, by definition, the nodal formulation implies that ~u-10 = ~u10. The above can be
rearranged and written as

∆1
xP00 = − h10~u10 (50)

∆−1
x P00 = − h-10~u10 = αh10~u10 = − α∆1

xP00 (51)

where rule (46) of Definition-2 was used. Thus, the C1-continuity rule (36) is satisfied with λ1 = α.
Similarly, at j=1, points P11 and P-11 can be expressed, using (45), as

P11 = h11~u11 − P00 + P01 + P10 = h11~u11 − ∆1
xP00 + P01 (52)

P-11 = h-11~u11 − P00 + P01 + P-10 = − αh11~u11 − ∆−1
x P00 + P01 (53)

where rule (46) of Definition-2 was used. However, C1-continuity at P00 already provides an ex-
pression for ∆−1

x P00 in (51), such that the above can be rearranged as

∆1
xP01 = −h11~u11 + ∆1

xP00 (54)

∆−1
x P01 = + αh11~u11 − α∆1

xP00 (55)

Thus, the C1-continuity rule (36) is satisfied at P01 with λ1 = α.
We now proceed by induction. Assume C1-continuity holds at point P0,(j-1), such that ∆−1

x P0l =

15



−α∆1
xP0l for all l ≤ j − 1. Then, expressing P1j using the nodal formulation (45) gives

P1j = h1j~u1j +
1∑
k=0

j∑
l=0

(−1)j+k+l(1− δk1δlj)
(
j

l

)
Pkl

= h1j~u1j +
j∑
l=0

(−1)j+l
(
j

l

)
P0l +

j∑
l=0

(−1)1+j+l(1− δlj)
(
j

l

)
P1l

= h1j~u1j + P0j +
j−1∑
l=0

(−1)j+l
(
j

l

)
P0l +

j−1∑
l=0

(−1)1+j+l
(
j

l

)
P1l

= h1j~u1j + P0j +
j−1∑
l=0

(−1)j+l
(
j

l

)
(P0l − P1l)

= h1j~u1j + P0j +
j−1∑
l=0

(−1)j+l
(
j

l

)
∆1
xP0l (56)

Similarly, point P-1j is expanded to give

P-1j = h-1j~u1j + P0j +
j−1∑
l=0

(−1)j+l
(
j

l

)
(P0l − P-1l)

= − αh1j~u1j + P0j +
j−1∑
l=0

(−1)j+l∆−1
x P0l (57)

where rule (46) of Definition-2 was used. However, since the sum term in (57) is only up to j − 1,
C1-continuity applies for ∆−1

x P0l by assumption, which can be replaced by −α∆1
xP0l. Therefore,

(56) and (57) can be rearranged to write

∆1
xP0j = −h1j~u1j −

j−1∑
l=0

(−1)j+l
(
j

l

)
∆1
xP0l (58)

∆−1
x P0j = +αh1j~u1j + α

j−1∑
l=0

(−1)j+l
(
j

l

)
∆1
xP0l (59)

In other words, the C1-continuity rule (36) is satisfied at P0j with λ1 = α. Hence, by induction,
since we know that C1-continuity is valid at point P01, it follows that C1-continuity is valid at
all points P0j for j ≤ (n − 1)/2. The demonstration for negative j is almost identical. Likewise,
the above demonstration for C1-continuity in the y direction, at any point Pi0, is also identical,
by swapping indices. This completes the proof, that the nodal formulation of Definition-1 and
Definition-2 satisfies C1-continuity between Bezier elements.

�

Proposition-2 :
The nodal formulation Pij defined in Definition-1, together with the element size
constraints defined in Definition-2, ensures C2-continuity between Bezier elements.

Proof :
As with C1-continuity proof, consider C2-continuity in the x direction. Expand point P20 using the
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nodal formulation (45),

P20 = h20~u20 +
2∑
k=0

(−1)1+k(1− δk2)
(

2
k

)
Pk0

= h20~u20 − P00 + 2P10 (60)

However, the second derivative is defined as ∆2
xP00 = P00 − 2P10 + P20, so that the above can be

rearranged as

∆2
xP00 = h20~u20

Likewise, on the opposite side,

∆−2
x P00 = h-20~u20

= h20~u20

where rule (46) of Definition-2 was used. Thus, ∆2
xP00 = ∆−2

x P00, so that C2-continuity is satisfied
at P00.

Next, we proceed by induction. Assume C2-continuity holds at point P0,(j-1), such that ∆2
xP0l =

∆−2
x P0l for all l ≤ j − 1. Then, expressing P2j using the nodal formulation,

P2j = h2j~u2j +
2∑
k=0

j∑
l=0

(−1)1+j+k+l(1− δk2δlj)
(

2
k

)(
j

l

)
Pkl

= h2j~u2j +
j∑
l=0

(−1)1+j+l
(
j

l

)
P0l + 2

j∑
l=0

(−1)j+l
(
j

l

)
P1l +

j∑
l=0

(−1)1+j+l(1− δlj)
(
j

l

)
P2l

= h2j~u2j − P0j + 2P1j

+
j−1∑
l=0

(−1)1+j+l
(
j

l

)
P0l + 2

j−1∑
l=0

(−1)j+l
(
j

l

)
P1l +

j−1∑
l=0

(−1)1+j+l
(
j

l

)
P2l (61)

which can simply be rearranged as

∆2
xP0j = h2j~u2j +

j−1∑
l=0

(−1)1+j+l
(
j

l

)
(P0l − 2P1l + P2l)

= h2j~u2j +
j−1∑
l=0

(−1)1+j+l
(
j

l

)
∆2
xP0l (62)

Likewise, on the opposite side,

∆−2
x P0j = h-2j~u2j +

j−1∑
l=0

(−1)1+j+l
(
j

l

)
(P0l − 2P-1l + P-2l)

= h2j~u2j +
j−1∑
l=0

(−1)1+j+l
(
j

l

)
∆−2
x P0l (63)

where rule (46) of Definition-2 was used for h-2j = h2j . However, since C2-continuity holds for
l ≤ j − 1, the sum term in (63) is equivalent to the sum term in (62), such that ∆2

xP0j = ∆−2
x P0j.

Hence, by induction, C2-continuity in the x direction is satisfied for all j between 0 and (n− 1)/2.
For negative j, the demonstration is identical. Likewise, in the y direction, the demonstration is
identical, by switching indices.

�
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3.4 C-continuity demonstration

Proposition-3 :
If the Bezier elements are C-continuous at order m, in direction x, then for any
index i such that 1 < i ≤ m, the following identity holds,

Pij − P-ij = − i (α+ 1)(P0j − P1j) (64)

for any index j, and where α is the positive scalar of the C1-continuity rule in the
x direction from (46).

Proof :
First, consider C1-continuity at point P0j, which implies that

∆−1
x P0j = − α ∆1

xP0j

=⇒ P0j − P-1j = − α(P0j − P1j) (65)

Then, consider C2-continuity at point P0j, so that

∆2
xP0j = ∆−2

x P0j

=⇒ P0j − 2P1j + P2j = P0j − 2P-1j + P-2j

=⇒ P2j − P-2j = 2P1j − 2P-1j

=⇒ P2j − P-2j = 2(P1j − P0j) − 2(P-1j − P0j) (66)

Substituting for (65) into (66) gives

P2j − P-2j = 2(P1j − P0j) + 2 α(P-1j − P0j)

=⇒ P2j − P-2j = −2(α+ 1)(P0j − P1j) (67)

Next, we proceed by induction. Assume that identity (64) holds for all values of i− 1 up to some
i− 1 < m. Then, since C-continuity holds at order i, the following identity can be written,

∆i
xP0j = ∆−i

x P0j

=⇒
i∑

k=0

(−1)k
(
i

k

)
Pkj =

i∑
k=0

(−1)k
(
i

k

)
P-kj

=⇒ (−1)iPij +
i−1∑
k=0

(−1)k
(
i

k

)
Pkj = (−1)iP-ij +

i−1∑
k=0

(−1)k
(
i

k

)
P-kj

=⇒ Pij − P-ij = −(−1)i
i−1∑
k=0

(−1)k
(
i

k

)
(Pkj − P-kj) (68)

However, since the right-hand side sum term only goes up to i − 1, by assumption, we can apply
identity (64), to write (68) as

Pij − P-ij = + (−1)i
i−1∑
k=0

(−1)k
(
i

k

)
k(α+ 1)(P0j − P1j) (69)
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Now, most of the terms in the right-hand side sum term are independent of the summation index
k, so they can simply be extracted from the sum, such that (69) becomes

Pij − P-ij = + (−1)i(α+ 1)(P0j − P1j)
i−1∑
k=0

(−1)k
(
i

k

)
k (70)

The sum term is now close to a known binomial identity [31], which states that

i∑
k=0

(−1)k
(
i

k

)
k = 0

=⇒
i−1∑
k=0

(−1)k
(
i

k

)
k = −(−1)i i (71)

Hence, (70) becomes

Pij − P-ij = − (−1)2ii(α+ 1)(P0j − P1j)

= − i (α+ 1)(P0j − P1j) (72)

By induction, since identity (64) was shown for i = 2, this completes the proof up to i = m.
�

Theorem-1 :
With the nodal formulation of Pij defined in Definition-1, together with the element
size constraints defined in Definition-2, Bezier elements are C-continuous at order
(n− 1)/2 for any value of the vectors ~u ij .

Proof :
This proof is a little intricate, because it contains a proof-by-induction within a proof-by-induction.
Since Proposition-2 already shows that C-continuity holds at order = 2, the first induction is on
the order of the C-continuity, proving that if C-continuity holds for i − 1, then it also does for i.
However, this procedure is also done by induction for the second index j of the point P0j, showing
that if C-continuity of order i holds for P0,(j-1), then it also does for Pij.

Hence, assume that C-continuity holds up to order i−1 for some 2 ≤ i−1 < (n−1)/2. Consider
the C-continuity requirement, in direction x, at order i. Exactly like the above (68), this gives

∆i
xP0j = ∆−i

x P0j

=⇒ Pij − P-ij = −(−1)i
i−1∑
k=0

(−1)k
(
i

k

)
(Pkj − P-kj) (73)

Again, since the right-hand side sum term only goes up to i − 1, by assumption, we can apply
identity (64), to write (73) as

Pij − P-ij = + (−1)i
i−1∑
k=0

(−1)k
(
i

k

)
k(α+ 1)(P0j − P1j) (74)

19



which, as in the demonstration of Proposition-3, gives

Pij − P-ij = − i (α+ 1)(P0j − P1j) (75)

Thus, in order to prove that C-continuity holds at order i, we need to show that the above identity
(75) is true. First, consider Pij − P-ij for j = 0, by expanding using the nodal formulation (45) of
Definition-1,

Pi0 − P-i0 = ~ui0(hi0 − h-i0) +
i∑

k=0

(−1)1+i+k(1− δki)
(
i

k

)
(Pk0 − P-k0)

=
i−1∑
k=0

(−1)1+i+k
(
i

k

)
(Pk0 − P-k0) (76)

where rule (46) of Definition-2 was used for h-i0 = hi0, for any i > 1. Now, since the sum term in
(76) only goes up to i− 1, we can use identity (64) to write it as

Pi0 − P-i0 = −(−1)1+i (α+ 1)(P00 − P10)
i−1∑
k=0

(−1)k
(
i

k

)
k (77)

which, using (71), is simply

Pi0 − P-i0 = (−1)1+2ii (α+ 1)(P00 − P10)

= −i (α+ 1)(P00 − P10) (78)

which demonstrates C-continuity for j = 0. Next, consider j = 1, and expand Pi1 − P-i1 using the
nodal formulation (45) of Definition-1,

Pi1 − P-i1

= (((
((((~ui1(hi1 − h-i1) +

i∑
k=0

1∑
l=0

(−1)i+k+l(1− δkiδl1)
(
i

k

)
(Pkl − P-kl)

=
i∑

k=0

(−1)i+k
(
i

k

)
(Pk0 − P-k0) +

i∑
k=0

(−1)1+i+k(1− δki)
(
i

k

)
(Pk1 − P-k1)

=
i∑

k=0

(−1)i+k
(
i

k

)
(Pk0 − P-k0) +

i−1∑
k=0

(−1)1+i+k
(
i

k

)
(Pk1 − P-k1)

= (Pi0 − P-i0) +
��

���
���

���
���i−1∑

k=0

(−1)i+k
(
i

k

)
(Pk0 − P-k0) +

���
���

���
���

���i−1∑
k=0

(−1)1+i+k
(
i

k

)
(Pk1 − P-k1)

= (Pi0 − P-i0) (79)

where the cancellation of the two sum terms is obvious since (−1)1 = −1 can simply be extracted
from the sum. The cancellation of (hi1 − h-i1) comes from the definition of element sizes (46) for
i > 1. Next, (78) implies that the above can be written as

Pi1 − P-i1 = −i (α+ 1)(P00 − P10) (80)
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which demonstrates C-continuity for j = 1. Now, we proceed by induction. Assume that identity
(75) holds up to some j − 1. Then, expanding Pij − P-ij with the nodal formulation (45) of
Definition-1,

Pij − P-ij

= ((((
(((~uij(hij − h-ij) +

i∑
k=0

j∑
l=0

(−1)1+i+j+k+l(1− δkiδlj)
(
i

k

)(
j

l

)
(Pkl − P-kl)

=
j∑
l=0

(−1)1+j+l(1− δlj)
(
j

l

)
(Pil − P-il) +

i−1∑
k=0

j∑
l=0

(−1)1+i+j+k+l
(
i

k

)(
j

l

)
(Pkl − P-kl)

=
j−1∑
l=0

(−1)1+j+l
(
j

l

)
(Pil − P-il) +

i−1∑
k=0

j∑
l=0

(−1)1+i+j+k+l
(
i

k

)(
j

l

)
(Pkl − P-kl) (81)

Now, by assumption, since the first term only goes up to j−1, identity (75) can be used. Likewise,
by assumption, since we have assumed C-continuity up to i − 1, identity (64) can by used for the
second term. Thus, (81) can be written as

Pij − P-ij

= − (α+ 1)i
j−1∑
l=0

(−1)1+j+l
(
j

l

)
(P0l − P1l)

− (α+ 1)
i−1∑
k=0

j∑
l=0

(−1)1+i+j+k+l
(
i

k

)(
j

l

)
i(P0l − P1l) (82)

Now, the second term is separated to isolate the k-sum as much as possible, such that

Pij − P-ij

= − (α+ 1)i
j−1∑
l=0

(−1)1+j+l
(
j

l

)
(P0l − P1l)

− (α+ 1)i
j∑
l=0

(−1)1+i+j+l
(
j

l

)
(P0l − P1l)

[
i−1∑
k=0

(−1)k
(
i

k

)]
(83)

However, this is also a well known binomial identity, such that

i∑
k=0

(−1)k
(
i

k

)
= 0

=⇒
i−1∑
k=0

(−1)k
(
i

k

)
= −(−1)i
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Hence, (83) can be written as

Pij − P-ij

= − (α+ 1)i
j−1∑
l=0

(−1)1+j+l
(
j

l

)
(P0l − P1l)

+ (α+ 1)i
j∑
l=0

(−1)1+j+l
(
j

l

)
(P0l − P1l)

= −
((((

((((
(((

((((
(((

(α+ 1)i
j−1∑
l=0

(−1)1+j+l
(
j

l

)
(P0l − P1l)

− i (α+ 1)(P0j − P1j) +
((((

((((
(((

((((
(((

(α+ 1)i
j−1∑
l=0

(−1)1+j+l
(
j

l

)
(P0l − P1l)

= − i (α+ 1)(P0j − P1j) (84)

which demonstrates, by induction, that identity (75) holds for all positive j ≤ (n−1)/2. The proof
for all negative j is identical.

Thus, this completes the proof that C-continuity of order i holds if it is assumed at order i− 1,
in the x direction. Therefore, C-continuity holds for all i up to (n − 1)/2, since C-continuity was
shown for i = 2. The same holds for the y-direction, for which an analogue of Proposition-3 can
be obtained in the y-direction, such that the above proof can be repeated, with switched indices,
in the y-direction.

�

3.5 Derivatives identity

Note that the generalised nodal formulation of Definition-1 is very similar to the derivatives def-
inition (39), but in two dimensions. In fact, a notable property of Definition-1 is the following
corollary.

Corollary-1 :
For the nodal formulation of Pij defined in Definition-1, any derivative of order (f, g)
at the element node P00, with f + g > 0, corresponds to the vector ~u fg, namely

∂fs ∂
g
t F (0, 0) = n!

(n− f)!
n!

(n− g)! h
fg~ufg (85)

Proof :
Expanding the Bezier formulation (3) gives

F (s, t) =
n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
si(1− s)n−itj(1− t)m−jPij (86)
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where the polynomial orders have been separated between n and m, because it is important to
distinguish between the two for this derivation, but in reality, m=n. Now, consider the derivative
of order f for the two composites of a Bernstein polynomial,

∂fs

[
si
]

=


i!

(i−f)!s
i−f for 0 ≤ f ≤ i

0 for f > i

∂fs

[
(1− s)n−i

]
=


(n−i)!

(n−i−f)!(−1)f (1− s)n−i−f for 0 ≤ f ≤ n− i

0 for f > n− i

Evaluated at s=0, this gives

∂fs

[
si
]∣∣∣∣∣
s=0

=

i! for f = i

0 for f 6= i
(87)

∂fs

[
(1− s)n−i

]∣∣∣∣∣
s=0

=


(n−i)!

(n−i−f)!(−1)f for 0 ≤ f ≤ n− i

0 for f > n− i
(88)

Next, consider the derivative of the factor of two functions of I(s) and J(s), namely,

∂fs

[
IJ
]

=
f∑
a=0

(
f

a

)(
∂ a
s I
)(
∂f−a
s J

)
and substitute the functions with the Bernstein polynomial components, such that I = si and
J = (1− s)n−i. Then

∂fs

[
si(1− s)n−i

]
=

f∑
a=0

(
f

a

)(
∂as
[
si
])(

∂f−a
s

[
(1− s)n−i]) (89)

From (87), it follows that the above is zero at s=0 unless a=i. In addition, since the summation
goes from a=0 to a=f , the above is also zero if i > f . Hence, evaluating (89) at s=0 gives

∂fs

[
si(1− s)n−i

]∣∣∣∣∣
s=0

=


(f
i

)
i!
(
∂f−i
s

[
(1− s)n−i]) for i ≤ f

0 for i > f
(90)

However, from (88), it also follows that the above is zero if f − i > n− i, such that (90) becomes
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[
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]∣∣∣∣∣
s=0

=


(f
i

)
i!(−1)f−i (n−i)!

(n−f)! for i ≤ f ≤ n

0 otherwise
(91)

Now, the Bezier function (86) can be derived with respect to s and t, such that

∂fs ∂
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)(
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]
Pij
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Thus, evaluating at s=0 and t=0, and using (91), the above becomes
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for i ≤ f ≤ n and j ≤ g ≤ m (zero otherwise)

However, since the above is valid only for i ≤ f and j ≤ g, the two sums are valid only up to f and
g respectively, so that (92) simplifies to
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where, of course, the identity (−1)−i = (−1)i was used. Now, note that at i=f and j=g the
summation term in (93) simply gives Pfg. By using the Kronecker delta function, (93) can thus be
written as
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g
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(94)

This completes the proof, since the bracket term is none other than the nodal formulation (45) of
Definition-1, namely

∂fs ∂
g
t F (s, t)
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s=0,t=0

= n!
(n− f)!

m!
(m− g)!h

fg~u fg

�

4 Implementation in the non-linear full-MHD code JOREK

4.1 The JOREK code

The above formulation is implemented in the JOREK code [15–18]. JOREK uses a finite-element
grid in the poloidal plane, with finite Fourier series in the toroidal direction. The finite elements are
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quadrangular Bezier elements using a nodal formulation equivalent to the generalised formulation
in Definition-1 and Definition-2 with polynomials of order 3, and thus C-continuity of order 1 [17].
The Fourier series used in the toroidal direction can be chosen with arbitrary toroidal periodicity,
meaning that with 3 Fourier modes and a toroidal periodicity of 4, the physical toroidal mode
numbers simulated would be n=4,8,12. Typically, when producing linear stability scans, a single
Fourier mode is used, while scanning the toroidal periodicity. For non-linear simulations, multiple
Fourier modes are used, with a periodicity of 1 or 2.

The time discretisation used in JOREK is fully implicit, with a choice between the Crank-
Nicolson or the Gear’s scheme. This implicit method results in a linearised system of equations,
for which a sparse matrix needs to be inverted. This is done either with a direct solve, or using a
pre-conditioned GMRES iterative solver. In practice, the direct solve approach is only used for the
toroidally axisymmetric kinetic equilibrium n=0, while for non-linear cases, the GMRES method
is employed. The GMRES pre-conditioner is equivalent to a Block-Jacobi pre-conditioner, which
is obtained by solving each toroidal harmonic block of the matrix individually (ie. without the
harmonic coupling), which is done in parallel with a direct solve. The direct solves (either for the
pre-conditioner harmonic-blocks, or for the whole system) is done using open-source solvers like
MUMPS [32–34], PASTIX [35, 36] or STRUMPACK [37, 38].

The Weak Formulation method [39] is used for all equations, which are multiplied by a test-
function and integrated over the element surfaces. The test-functions are chosen to be the basis
functions obtained from the nodal formulation, as in (6), or as described in the next section. One
of the main advantages of the weak formulation is that it allows integration by parts of divergence
terms, which allows the removal of all 2nd order derivatives from the system. This was a significant
advantage when using C1-continuous finite-elements in the past, like those implemented in JOREK
[17], since all terms in the equations were guaranteed to be smoothly represented, thus improving
numerical stability.

The physics models of JOREK includes visco-resistive models for both full-MHD and reduced-
MHD [40]. The equations are normalised using two constants: vacuum permeability µ0 , and the
central density ρ0 . This normalisation is similar to the Alfven time normalisation, such that for a
deuterium plasma with central particle density no = 6×1019m−3, a normalized time unit corresponds
to approximately 0.5µs. Note that this is a pseudo-normalisation, where not all variables are
dimensionless in the final formulation. In particular, the magnetic field is not normalised.

4.2 The basis functions

The full formulation of any variable ψ (as well as spatial variables R and Z) on the finite elements,
including the Fourier series, is given by
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ψ(s, t) =
4∑
j=1

n−1
2∑
k=0

n−1
2∑
l=0

N∑
m=0

[
ψkljm Fklj(s, t) hklj eimφ

]
(95)

j : sum on 4 element nodes

k : sum on first vector index

l : sum on second vector index

m : sum on N Fourier modes

Fj,k,l(s, t) : nodal basis functions

hklj : element sizes

φ : toroidal angle

ψkljm : variable values for each degree of freedom

Note, with respect to the generalised formulation (45), the ψkljm values are the equivalent of the
vectorial basis ~u ij , but for any variable ψ, including spatial coordinates. Once the nodal formulation
(45) has been calculated for a given polynomial order n, the basis functions Fjkl of this nodal basis
need to be calculated as the coefficients obtained from the factorization of the Bezier formula (3)
with respect to each ~u ij term. For bi-cubic C1-continuous elements, this is easily done by hand.
For bi-quintic C2-continuous elements, the basis functions and their derivatives with respect to s
and t can be calculated by hand, although this is already tedious. The s- and t-derivatives are
required up to order 2 in the code, which means 5 derivatives in total (plus the absolute value),
for each basis function component. For bi-quintic C2-continuous elements, this gives a total of: 4
nodes, times [(n+ 1)/2]2 basis vectors, times 6 derivatives (including zeroth derivative); hence 216
functions to calculate and include in the code. For elements of order n = 7, there are 384, and for
n = 11, there are 864.

Thus, although the basis functions and their derivatives can be calculated by hand for bi-quintic
elements, at higher order this is not feasible without a considerable risk of human error. It is much
safer to do this analytical calculation numerically, which can be done relatively easily with analytical
algebra libraries like Python’s symbols library, Sympy [41]. Using this library, the Fortran module
of JOREK that includes the basis function formulas is auto-generated for any polynomial order n.

4.3 Gaussian integration

The weak-formulation of JOREK requires integration over each element. This is done using Gaus-
sian quadrature, for which the number of Gaussian integration points (and weights) needs to cor-
respond to the polynomial order of the Bezier elements. Although trivially obtained from Python
libraries like Numpy [42], this also requires the auto-generation of a small module in the JOREK
code (for polynomial orders n > 7), to register these Gaussian integration points and weights.
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4.4 The mesh generators and initial conditions

The JOREK code includes a large variety of mesh generators, adapted to complex magnetic con-
figurations in tokamaks, and with adaptive extensions to arbitrary wall structures [43]. These grid
generators had to be adapted to include higher order polynomials. The alignment of the grids,
along the background magnetic flux surfaces, is done up to second derivatives, which is largely
sufficient for most applications, and thus for polynomial orders n≥7, the derivatives of order ≥ 3
are set to zero. In the future, if higher accuracy is required, for Bezier elements of order n ≥ 7,
these higher-order derivatives could be included in the grid generators.

Initial conditions must be set on the generated grids, before time-evolution is simulated. This
is done by projecting the initial condition on the node coefficients, simply by solving the weak-
formulated system of the equation ψ=ψinit, where ψinit are the known initial values (Right-Hand
Side), and ψ represents the linearised matrix with contributions from all degrees of freedom ψklj,m=0.

4.5 Replacing Root Solvers

Several root-solver routines inside JOREK cannot be used with bi-quintic (or higher-order) ele-
ments. These root-solvers are used to find values along the sides of elements, either to determine
the spatial minima/maxima of an element, or to find the intersections of flux-surfaces along ele-
ment edges, used for flux-aligned grid construction. For example, with bi-cubic elements, finding
the location of a ψ-value along the side of an element simply requires the analytical formula for the
solution of a 3rd order polynomial. Since there are no analytical solution for polynomials of order
5 or higher, locating root values along element sides requires converging algorithms like Newton’s
method. Of course Newton’s method can only be used after first determining the location of min-
ima/maxima along the side of an element; once this is achieved, Newton’s method can be used to
locate roots between consecutive minima/maxima. Note that locating minima/maxima along the
side of a bi-quintic element requires the zero solutions of the derivative of a given variable ψ, thus
a 4th order polynomial. While there exists a formulation for the roots of 4th order polynomials,
since this cannot be done for polynomial orders n≥7, Newton’s method is also used to find these
roots to determine the minima/maxima.

4.6 Long-integer matrix solvers

In theory, for a given simulation grid, if higher polynomial Bezier elements are used, the spatial
resolution of the grid can be diminished. However, in practice, particularly when addressing per-
formance and convergence properties of the elements, long-integers (64 bit) may be needed for the
sparse-matrix representation and the solvers. For large non-linear problems, the matrix sent to
direct solvers like PastiX is determined by the grid size, ie. the number of nodes nn, the number
of degrees of freedom per node nd polynomial basis, and the number of variables nv in the physics
system. Indeed, since the GMRES preconditioner is obtained by solving each Fourier harmonic
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individually, the size of these matrices is independent of the number of Fourier modes. Thus, each
matrix size is, at most

m×m = (2 nn nd nv)2 (96)

where the factor 2 comes from the sine and cosine component of each Fourier mode. Of course,
these are sparse matrices, but in practice, they will scale with the square of the number of de-
grees of freedom, n2

d. Since the number of degrees of freedom per node scales as the square of the
polynomial basis order, n2, it means the size of the matrices will scale as n4. In order to enable
simulations with large spatial resolutions and large polynomial basis orders, parts of the JOREK
code required modification to allow for a compressed sparse row (CSR) representation of the matri-
ces using long-integers. Although straight-forward in most instances of the code, this also requires
MPI communications of the matrix to be split into batches, since MPI communication indexing is
restricted to short integers.

5 Testing the JOREK code

5.1 Linear MHD tests

Three linear benchmarks are conducted for core and edge MHD instabilities in toroidal geometry,
using the reduced-MHD model. The first two linear benchmarks are a low-β m=nφ=1 internal
kink mode, and a low-β m=2, nφ=1 tearing-mode (where m is the dominant poloidal mode, and nφ
the toroidal Fourier mode). Both instabilities were studied in previous publications [40], and they
are included here for completeness and clarity. The two equilibria are similar, but differ in safety
q-profile: the internal kink mode has a q-profile in the range [0.7, 1.6], crossing q=1 at ψn=0.5,
while the tearing mode has a q-profile in the range [1.7, 3.9], crossing q=2 at ψn=0.3. The Grad-
Shafranov equilibrium quantities and profiles for these two cases are described in more details in
[40]. Since the equilibria both have circular poloidal cross-sections, polar grids are used.

The first two benchmark cases are run for a scan in resistivity. The kink mode is run with resis-
tivity alone (without viscosity, and without particle or thermal diffusion), while the tearing mode is
run including all diffusions, with µ0=10−8kg.m−1.s−1, D⊥=0.7m2.s−1, and κ⊥=1.7×10−8kg.m−1.s−1.
For simplicity, the resistivity and viscosity are taken to be spatially constant for both cases. Note
that only the toroidal mode nφ=1 is simulated here, such that coupling with higher toroidal modes
is not present in these linear benchmarks.

The third benchmark case is an X-point plasma with peeling-ballooning instabilities. This is an
artificial equilibrium similar to the JET tokamak. It is run using the kinetic stationary background
equilibrium flows (nφ=0), together with a single toroidal harmonic, which is ranged from nφ=1 up
to nφ=20. The equilibrium characteristics, together with the diffusive parameters, are identical to
those described in [44].

Figure-5 show the benchmark of the internal kink mode, the tearing mode, and the X-point
peeling-ballooning modes, for various polynomial orders up to n=7 with C3-continuity (and up
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(a) (b) (c)

(d) (e) (f)

Figure 5:
m=1, nφ=1 internal kink mode benchmark: (a) Poloidal cross-sections of the normalised perturbation of the toroidal current
jφ, and (d) comparison of the growth rates between various polynomial orders, ranging from n=3 to n=9, as a function of
resistivity η.
m=2, nφ=1 low-β tearing mode benchmark: (b) Poloidal cross-sections of the normalised perturbation of the toroidal current
jφ, and (e) comparison of the growth rates between various polynomial orders, ranging from n=3 to n=9, as a function of
resistivity η.
Peeling-ballooning mode benchmark with X-point equilibrium: (c) Poloidal cross-sections of the normalised perturbation of the
toroidal current jφ for the Fourier mode nφ=17, and (f) comparison of the growth rates between various polynomial orders,
ranging from n=3 to n=7, as a function of the toroidal mode number nφ.

to n=9, C4-continuity for the internal kink). Poloidal cross-sections of the main Fourier mode
perturbation are shown for the toroidal current jφ, together with the growth rates of the modes,
plotted as a function of resistivity for the internal kink and tearing mode cases, and as a function
of toroidal mode number for the peeling-ballooning mode. The linear theory in the ideal (low
resistivity) regimes is also plotted, with a η1/3 scaling for the internal kink mode [45], and a η3/5

scaling for the tearing mode [46]. For the peeling-ballooning mode, the poloidal cross-section
pictures the toroidal Fourier mode nφ=17. The benchmarks are, as expected, identical in all cases.
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5.2 Non-linear MHD tests

A simple non-linear simulation is run to test that results are well reproduced at higher polynomial
orders in non-linear regimes. This case is an Edge-Localised-Mode in a discharge from the MAST
tokamak. The particularity of this case, also described in details in [44], is that plasma filaments
are expelled from the edge plasma, travelling at large radial valocities (several km/s) into the far
Scrape-Off Layer. For this benchmark, the C1- and C2-continuous versions are run (ie. with
polynomial orders n=3 and n=5 respectively) and compared after the filaments have crossed the
separatrix. Higher spatial resolution is used for the C1 case than for the C2 case, which is required
to resolve the filaments accurately.

(a) (b)

Figure 6:
(a) Poloidal cross-section picturing the particle density ne during an Edge-Localised-Mode (ELM) in the MAST tokamak,
during which plasma filaments are expelled at several km/s into the Scrape-Off Layer. (b) Particle density profiles across a
filament while it is moving away from the plasma, with a comparison between the C1-continuous (n=3) and C2-continuous
(n=5) finite elements. These radial profiles are taken along the white horizontal line pictured in (a).

Figure-6 shows a poloidal cross-section of the MAST tokamak, as the filaments travel into the
SOL. A radial profile of density is taken across the filament, and compared between the C1 and
C2 runs. Negligible differences are found between the two profiles, which is to be expected due to
the accuracy differences between the two cases, and the resulting effect this may have due to the
non-linear nature of the run. Nevertheless, this benchmark is also extremely positive.

5.3 C-continuity Verification

Verification of C-continuity is done up to polynomial order n=7 (C3-continuous), by comparing
between subsequent polynomial orders of finite elements, at fixed spatial resolution (ie. fixed
element size). This is done by measuring linear profiles across a sharp perturbation of the toroidal
current jφ.

Figure-7 shows the comparison for 2nd and 3rd derivatives between corresponding polynomial
orders for the 1D profiles. This result clearly shows that the discontinuity of derivatives at element
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Figure 7:
(a) Comparison of second derivatives across a sharp perturbation of the toroidal current jφ, between the C1-continuous (n=3)
and C2-continuous (n=5) finite elements. (b) Comparison of third derivatives across a sharp perturbation of the current j,
between the C2-continuous (n=5) and C3-continuous (n=7) finite elements. Note that all cases are done at equal spatial
resolution (ie. elements are the same size in all cases). The plots reveal the discontinuity of the current derivatives (red
curves), which becomes smooth at the relevant C-continuous polynomial order (blue curves).

boundaries (represented by jumps in the red profiles), disappears entirely at the relevant polynomial
order. Figure-8 shows 3D warp surfaces of the corresponding quantities ∂Rjφ and ∂2

Rjφ for the C2-
continuous case, revealing the smoothness of derivatives.

Figure 8:3D warp surfaces of ∂Rjφ (top) and ∂2
Rjφ (bottom).
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5.4 Convergence Tests

One of the main interests of using higher-order polynomials with finite elements is that the local
numerical errors diminish significantly. Convergence of growth rates as a function of spatial grid
resolution is tested for a standard ballooning benchmark, the so-called CBM18 ballooning case,
also described in details in [40]. The grid resolution is scanned homogeneously in the radial and
poloidal directions, scanning from (nflux, ntht)=(54, 180) to (144, 480), where nflux and ntht are the
number of radial (flux surfaces) and poloidal (theta) grid-points, respectively, both of which are
equidistant in real-space for this case. With finite elements, the local error is estimated as E∼hp

[39], where h is the element size, and p = n + 1 is the polynomial order of the finite elements. In
this case, (√nfluxntht)−1 is used as an approximation of the element size h. Note that these tests
evaluate the growth rates of toroidal modes, which are obtained by integrating the mode energies
over the domain (ie. over the elements), hence adding another factor (√nfluxntht)−1 to the error
estimate. Thus, the error of the growth rates should scale with the (p + 1) power of the spatial
resolution, ie. (√nfluxntht)−5 for bi-cubic elements, (√nfluxntht)−7 for bi-quintic elements, etc.

(a) (b)

Figure 9:
(a) Poloidal cross section of the ballooning perturbations (mode number nφ=20) of the electron temperature Te for the CBM18
test-case used to verify convergence of the error with respect to resolution. (b) Convergence of the error on the growth rates,
for the CBM18 test-case with the ballooning mode number nφ=20, as a function of spatial grid resolution. The error converges
according to the estimate E∼hp [39].

Figure-9a shows the convergence of the growth rate error, as a function of spatial resolution.
The scaling of this convergence is, as expected, dependent on the corresponding p-refinement level
of the finite-elements, as long as the resolution is above a certain minimum (vertical dashed line).
The converged growth rates, used to evaluate the errors in Figure-9, are obtained using the highest
resolution cases available. A least-square fit is done for the expected convergence, such that the
converged growth rate is estimated at “infinite” resolution.
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This CBM18 test case is a representative example of both the advantages and the limitations of
higher-order finite-elements. As can be seen in Figure-9b, below a certain poloidal resolution, the
fine ballooning structure of Figure-9a cannot be resolved properly, and the error starts deviating
from the scaling. Both high radial and poloidal resolution is required to resolve the ballooning fila-
ments, and this requirement increases with the toroidal mode number nφ. Depending on the physics
addressed, higher-order finite-elements may not always be the preferred choice. For example if ad-
dressing turbulence, which requires mode numbers upwards of nφ=40, the high minimal resolution
required may become computationally too expensive when combined with high-order polynomial
elements. Users need to find the balance between the numerical stability of the physics model, the
spatial scale of non-linear structures to be resolved, and the computational cost of simulations. The
highest resolution case with C3-continuity required close to 12,000 cores on the CINECA-Marconi
cluster, due to the memory requirement for solving the larger sparse matrices at higher polynomial
order. However the lowest C3-continuous resolution case required only 192 cores, and still provides
reasonable accuracy. The next subsection provides a more detailed evaluation of the computational
gains versus accuracy.

5.5 Performance Tests

Figure-10a shows the computation time as a function of the polynomial order of the finite elements,
up to n=13 (C6-continuous). As expected, the computation time scales as the square of the number
of degrees of freedom per node (because the matrix dimension scales as ndegrees in both directions),
hence a 4th order scaling with the order of the polynomial basis. Figure-10b shows the computation
time as a function of the error on the growth-rate, corresponding to the CBM18 test-case shown
in Figure-9. The alignment of different orders is very clear, and higher accuracy requires higher
computational cost, as expected. However, the important point to notice here is that at a given
error level, the higher-order finite-element cases are at least as fast, in several cases cheaper in
terms of CPU-hours.

Note that an additional modifications, left for future development, could further reduce the cost
of higher-order finite elements. Firstly, the reduced-MHD model, frequently used in JOREK, uses
separate equations for the variables wφ and jφ. The reason for this is that these variables are them-
selves 2nd order derivatives of other variables, such that solving these separately reduces numerical
errors in C1-continuous elements. With higher C-continuity, these could be removed, reducing the
number of variables from 7 to 5, which would significantly reduce the size of the problem. Sec-
ondly, using localised p-refinement would also result in lower computational costs, while keeping
the desired accuracy where it is needed (for example in the region where ballooning structures are
dominant in Figure-9a). These modifications would however require significant development and
testing, which is beyond the scope of this paper and left for future work.
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(a) (b)

Figure 10:
(a) Scaling of the computation time, at fixed spatial grid resolution, as function of the polynomial basis, up to n=13 (C6-
continuous). The dashed line shows the scaling of n4, which matches the calculations as expected. (b) Computation cost of the
convergence test case from Figure-9, as a function of error. This clearly shows that, between C1- and C2- cases, at equivalent
accuracy, the C2 runs are computationally cheaper.

5.6 Advanced simulation demonstration

Finally, to demonstrate the practical usability of the new finite-element method implemented in
JOREK, a non-linear simulation is run, with multiple Fourier mode numbers nφ=(1,2,3,...,8), for
an Edge-Localised-Mode in ITER. This is done for a 15MA equilibrium, with a pedestal electron
temperature of T pede = 8keV. An advanced grid geometry is used, aligned to the first-wall of
ITER, including the complex Dome geometry below the X-point, based on the grid-patches method
developed in [43]. The simulation is run with conservative physical diffusivity coefficients, since its
purpose is simply to demonstrate numerical feasibility of violent MHD non-linear instabilities. The
resistivity is taken to be 300 times the neoclassical resistivity, and diamagnetic drifts are ignored.
More advanced studies of ITER plasmas, at experimental resistivity and with diamagnetic effects,
are the current focus of other experts in the JOREK team, and are well beyond the scope and
purpose of this paper.

Figure-11 shows the density and electron temperature as ELM filaments are expelled from the
plasma. Fine, well-resolved filamentary structures can be observed reaching the divertor. The
finite-elements are also pictures, in the divertor and X-point region, in Figure-11b. The kinetic
energy of the toroidal modes is pictured in Figure-11c, where the ELM starts with the toroidal
mode number nφ=8, followed by coupling with lower harmonics, as is typical of non-linear ELM
dynamics [47].
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(a) (b) (c)

Figure 11:
ITER simulation with C2-continuous elements, with a wall-aligned grid, including the divertor Dome below the X-point. (a)
Poloidal cross-section of the density, showing filaments traveling radially in the Scrape-Off Layer. (b) Zoom on the divertor
region, showing thin stripes of temperature reaching the divertor target, due to heat conduction from upstream filaments along
magnetic field-lines. (c) Kinetic energies of the ballooning modes as a function of time, where nφ=8 dominates the early phase
of the ELM, followed by non-linear coupling with lower modes in the later phase.

6 Conclusion

6.1 Summary

This paper presents the significant development and generalisation of the finite-element methods
used in the JOREK code. A generalised formulation was developed for a nodal representation of
Bezier elements, which ensures that C-continuity of order (n − 1)/2 is respected, where n is the
order of the polynomial basis of the Bezier elements. Rigorous proof is provided to show that
the definition of our nodal formulation ensures C-continuity. Some details about the key aspects
of the implementation into the code are provided, followed by a series of tests and benchmark
studies. Beyond the fact that the C-continuity of the method is demonstrated numerically, and
that all benchmark tests provide identical results to the previous JOREK version, one of the key
achievements of this study is that, at equivalent numerical precision, having higher-order finite-
elements can be computationally cheaper. As such, it is expected that the C2-continuous version
of the JOREK code, possibly the C3-version, will become the default for all JOREK studies in the
near future.

6.2 Further Work

There are, nevertheless, several areas where improvements can be brought to the JOREK code,
following the implementation of this new method.

The first aspect is that a more generic definition of continuity, as in [29, 30], could be considered
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at least for the C1- and C2-continuous versions. This is far more elaborate than the mathematical
methods presented here, and would require significant code developments. However, there is an
invaluable advantage to such generic methods, because they allow sharp angles between elements at
a given node, which would enable more advanced element constructions, with arbitrary numbers of
elements meeting at a given node, and the construction of triangular element sub-structures. This
great flexibility could prove beneficial in the context of arbitrary grid construction, particularly in
the context of alignment to arbitrary wall structure like in Figure-11.

The second point that could be improved, and of significant impact, would be the elimination
of the two equations for the variables wφ and jφ in the reduced-MHD model. These equations are
simply the identity definitions of wφ = ∇2Φ and jφ = ∇2ψ, where Φ and ψ are the electric and
magnetic potentials respectively. These identities are time-independent, but they are included as
separate equations in the model because this brings improved numerical stability to the model. If
higher-order continuity is available, these equations could be removed, in principle, such that 3rd
and 4th order derivatives of Φ and ψ would then be directly used in the momentum and induction
equations (as opposed to 1st and 2nd derivatives of wφ and jφ at present). This would reduce
the number of equations/variables from 7 to 5 for the standard reduced-MHD model, which would
significantly reduce the overall cost of simulation.

The third aspect concerns boundary conditions for Mach-1 Sheath conditions for boundaries
with incident magnetic field lines. At present, the Sheath boundary conditions are constrained
with the weak-formulation, such that no assumption is made for higher-order derivatives, but the
Mach-1 boundary conditions are enforced by a penalisation method projected onto specific node
degrees of freedom. With higher-order finite-elements, this is done for first-order derivatives, but
not 2nd or higher derivative degrees of freedom. It would be highly desirable to implement this
feature in the code, but numerical difficulties were found in our initial attempts to implement this,
and so this will require further investigation. However, the current version of the code, with Mach-1
boundary conditions applied to the values and first derivatives of the plasma velocity, is numerically
very stable and sufficient for production studies. It is, of course, at least as precise as the previous
version.

The fourth area, where additional development could bring significant flexibility, is the pos-
sibility of having so-called “localised p-refinement”. The degrees of freedom per node on a given
element is entirely independent of other neighbouring elements, such that different polynomial or-
ders could be used on different elements. This would require more advanced developments in the
code, but it is not that complex. It can be viewed in two ways: adding higher p-refinement locally
means increasing the degrees of freedom compared to the one used initially, which may be difficult.
However, approaching the issue from the other direction is very trivial: it simply requires to throw
away unwanted degrees of freedom. The only major difference, in the code, is that different ba-
sis functions would be required for different elements. Nevertheless, this is an appealing route to
explore, and one that is used in many other state-of-the-art modelling tools like Nektar++ [48, 49].

In terms of the mathematical method itself, the existence of such a generalised method for
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triangular Bezier elements would need to be demonstrated. It may also be of interest to address
more generic finite elements than Bezier, like B-splines, and using basis functions other than the
Bernstein polynomials.

Finally, now that this new method is available in the JOREK code, extensive studies and routine
usability still remains to be demonstrated by the JOREK team, hopefully leading to cheaper, more
precise simulations in the future.

Acknowledgement

This work was performed with the support of the JOREK Team [See https://www.jorek.eu for the
present list of team members].

This work has been carried out within the framework of the EUROfusion Consortium and has
received funding from the Euratom research and training programme 2014-2018 and 2019-2020
under grant agreement No 633053. To obtain further information on the data and models underly-
ing this paper please contact PublicationsManager@ccfe.ac.uk. The views and opinions expressed
herein do not necessarily reflect those of the European Commission or the ITER Organization.

This work has been carried out within the framework of the RCUK Energy Programme [grant
number EP/I501045].

This work was performed using the MARCONI computer at CINECA in Italy, within the
EUROfusion framework.

This work was performed using the Cambridge Service for Data Driven Discovery (CSD3), part
of which is operated by the University of Cambridge Research Computing on behalf of the STFC
DiRAC HPC Facility (www.dirac.ac.uk). The DiRAC component of CSD3 was funded by BEIS
capital funding via STFC capital grants ST/P002307/1 and ST/R002452/1 and STFC operations
grant ST/R00689X/1. DiRAC is part of the National e-Infrastructure

37



References

[1] T. Eich, A. Herrmann, and J. Neuhauser. Phys. Rev. Lett. 91, 195003, 2003.
[2] B Sieglin, M Faitsch, T Eich, A Herrmann, and W Suttrop. Physica Scripta 2017, T170, 2017.
[3] C Ham, A Kirk, S Pamela, and H Wilson. Nature Rev. Phys. 2, 159-167, 2020.
[4] A.W.Leonard. Phys. Plasmas 21, 090501., 2014.
[5] C.Cheng, L Chen, and M S Chance. Ann. Phys. 161, 21, 1985.
[6] A.Dvornova, G. T. A. Huijsmans, S. Sharapov, F. J. Artola Such, P. Puglia, M. Hoelzl,

S. Pamela, A. Fasoli, and D. Testa. Phys. Plasmas 27, 012507., 2020.
[7] M.Fitzgerald, J.Buchanan, R.J.Akers, B.N.Breizman, and S.E.Sharapov. Comp. Phys. Comm.

252, 106773, 2020.
[8] S. D. Pinches, I. T. Chapman, Ph. W. Lauber, H. J. C. Oliver, S. E. Sharapov, K. Shinohara,

and K. Tani. Phys. Plasmas 22, 021807, 2015.
[9] A.H.Boozer. Phys. Plasmas 19, 058101, 2012.

[10] P. C. de Vries, G. Pautasso, D. Humphreys, M. Lehnen, S. Maruyama, J. A. Snipes, A. Vergara,
and L. Zabeo. Fus. Sci. Technol. 69, 471-484, 2016.

[11] M.Lehnen, K.Aleynikova, P.B.Aleynikov, D.J.Campbell, P.Drewelow, N.W.Eidietis,
Yu.Gasparyan, R.S.Granetz, Y.Gribov, N.Hartmann, E.M.Hollmann, and V.A.Izzo et al. J.
Nucl. Mater. 463, 39-48, 2015.

[12] F. J. Artola, K. Lackner, G. T. A. Huijsmans, M. Hoelzl, E. Nardon, , and A. Loarte. Phys.
Plasmas 27, 032501, 2020.

[13] D. Hu, E. Nardon, M. Lehnen, G.T.A. Huijsmans, and D.C. van Vugt. Nucl. Fusion 58, 12,
2018.

[14] V. Bandaru, M. Hoelzl, F. J. Artola, G. Papp, and G. T. A. Huijsmans. Phys. Rev. E 99,
063317, 2019.

[15] M.Hoelzl, G.T.A.Huijsmans, S.J.P.Pamela, M.Becoulet, E.Nardon, F.J.Artola, and B.Nkonga
et al. Nucl. Fusion (submitted); preprint at: https://arxiv.org/abs/2011.09120, 2021.

[16] G.T.A.Huysmans and O.Czarny. Nucl. Fusion 47, 659, 2007.
[17] O.Czarny and G.T.A.Huysmans. J. Computational Phys. 227, 7423, 2008.
[18] JOREK. https://www.jorek.eu/, 2020.
[19] M3D-C1. https://w3.pppl.gov/ nferraro/m3dc1.html, 2020.
[20] S.C.Jardin. J. Comp. Phys. 200-133, 2004.
[21] NIMROD. https://nimrodteam.org/, 2020.
[22] C.R.Sovinec, A.H.Glasser, T.A.Gianakon, D.C.Barnes, R.A.Nebel, S.E.Kruger, D.D.Schnack,

S.J.Plimpton, A.Tarditi, M.S.Chufth, and the NIMROD Team. J Comp. Phys. 195, 355, 2004.
[23] H.Lutjens and JF Luciani. J Comp. Phys. 227, 14, 6944-6966, 2008.
[24] BOUT++. https://boutproject.github.io/, 2020.
[25] B.D.Dudson, M.V.Umansky, X.Q.Xu, P.B.Snyder, and H.R.Wilson. Comp. Phys. Comm. 180,

1467-1480, 2009.

38



[26] Y.Todo and T.Sato. Phys. Plasmas 5 1321, 1998.
[27] Y.Todo, H.L.Berk, and B.N.Breizman. Nucl. Fusion 52 094018, 2012.
[28] A. Konies, S. Briguglio, N. Gorelenkov, T. Feher, M. Isaev, Ph. Lauber, A. Mishchenko, D.A.

Spong, Y. Todo, W.A. Cooper, R. Hatzky, R. Kleiber, M. Borchardt, G. Vlad, A. Biancalani,
and A. Bottino. Nucl. Fusion 58, 12, 2018.

[29] W-H.Du and F.J.M.Schmitt. Computer Aided Design, Butterworth-Heinemann Ltd, 0010-
4485/90/090556-18, 1990.

[30] J.Zheng, G.Wang, and Y.Liang. Computer Aided Geometric Design 9, 321-335, 1992.
[31] Binomial Coefficient Identities. Binomial coefficient identities.

https://en.wikipedia.org/wiki/Binomial˙coefficient.
[32] MUMPS website:. http://mumps.enseeiht.fr/, .
[33] P.R.Amestoy, I.S.Duff, J.Koster, and J.-Y.L’Excellent. SIAM Journal on Matrix Analysis and

Applications 23, 1, 15-41, 2001. doi: 10.1137/S0895479899358194.
[34] P.R.Amestoy, A.Guermouche, J.-Y.L’Excellent, and S.Pralet. Parallel Computing 32, 2, 136-

156, 2006. doi: 10.1016/j.parco.2005.07.004.
[35] P. Henon, P. Ramet, and J. Roman. Parallel Comp. 34 345-362, 2008.
[36] G.Pichon, E.Darve, M.Faverge, P.Ramet, and J.Roman. Journal of Computational Science

27, 255-270, 2018. doi: 10.1016/j.jocs.2018.06.007.
[37] STRUMPACK website:. https://portal.nersc.gov/project/sparse/strumpack/index.html, .
[38] Ieee international parallel and distributed processing symposium (ipdps), pp-897-906.
[39] G. Strang and G. Fix. An analysis of the finite element method. Wellesley-Cambridge Press,

2nd ed., ISBN-10: 0980232708, ISBN-13: 978-0980232707, 2008.
[40] S.J.P.Pamela, A.Bhole, G.T.A.Huijsmans, B.Nkonga, M.Hoelzl, I.Krebs, and E.Strumberger.

Phys. Plasmas 27, 102510, 2020.
[41] Sympy Python library. https://www.sympy.org/en/index.html, .
[42] Numpy Python library. https://numpy.org/doc/stable/contents.html, .
[43] S.Pamela, G.Huijsmans, A.J.Thornton, A.Kirk, S.F.Smith, M.Hoelzl, and T.Eich. Comp.

Phys. Comm. 243, 41-50, 2019.
[44] S. Pamela, G Huysmans, and S Benkadda. Plasma Phys. Contr. Fusion 52, 7, 2010.
[45] R.J. Hastie, T.C. Hender, B.A. Carreras, L.A. Charlton, and J.A. Holmes. Phys. Fluids 30,

1756, 1987.
[46] P.L. Pritchett, Y.C. Lee, and J.F. Drake. Phys. Fluids 23, 1368, 1980.
[47] A.Cathey, M.Hoelzl, K.Lackner, G.Huijsmans, M.Dunne, E.Wolfrum, S.Pamela, F.Orain, and

S.Gunter. Nucl. Fusion 60, 124007, 2020.
[48] C.D.Cantwell, D.Moxey, A.Comerford, A.Bolis, G.Rocco, G.Mengaldo, D.De Grazia,

S.Yakovlev, J-E.Lombard, D.Ekelschot, B.Jordi, H.Xu, Y.Mohamied, C.Eskilsson, B.Nelson,
P.Vos, C.Biotto, R.M.Kirby, and S.J.Sherwin. Computer physics communications, vol. 192,
pp. 205-219, 2015.

39



[49] D.Moxey, C.D.Cantwell, Y.Bao, A.Cassinelli, G.Castiglioni, S.Chun, E.Juda, E.Kazemi,
K.Lackhove, J.Marcon, G.Mengaldo, D.Serson, M.Turner, H.Xu, J.Peiro, R.M.Kirby, and
S.J.Sherwin. Computer physics communications, vol. 249, 107110, 2020.

40


