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Unraveling the complexity of non-collinear magnetism in materials with strongly correlated elec-
trons is a considerable task that requires developing and applying state of the art theories and
computational methods. Using the Coury model Hamiltonian, which includes spin and orbital de-
grees of freedom and generalizes the collinear Stoner Hamiltonian, we derive an extension of the
collinear LSDA+U approximation to non-collinear magnetic configurations and explore the mag-
netic ground state of the archetypal spin-orbit correlated oxide UO2. We show that parameterizing a
non-collinear LSDA+U model requires only one parameter U , as opposed to the difference between
the Hubbard and Stoner parameters U −J found in an earlier derivation based on a collinear model
Hamiltonian. To find the magnetic ground state of UO2 in the non-collinear configuration space,
we combine LSDA+U with a spin adiabatic occupation matrix approach, involving the construc-
tion of a magnetic energy surface that follows the adiabatic evolution of the occupation matrix as
a function of the spin canting angle. Our results show that the strong spin-orbit coupling (SOC)
is the key factor stabilizing the so-called 3k spin ordered magnetic ground state of UO2. Using
a relativistic atomic Hamiltonian we find that the SOC strength is colossal, 1.49 eV per uranium
atom, the largest value ever found in relativistic materials. This unusually strong SOC implies
that the spin and orbital degrees of freedom are virtually inseparable. As a result, to derive and
quantify spin-spin interactions it is necessary to adopt the pseudospin picture. By constructing
an extended effective multipolar pseudospin Hamiltonian, we prove the significance of octupolar
and dipole-dipole exchange couplings in establishing the 3k magnetic phase, consistent with the
non-collinear spin arrangement, and associated with the non-canted orbital ordering of uranium f -
orbitals. Importantly, our study reveals that despite the strong spin-lattice interactions in action in
UO2, the cooperative Jahn-Teller instability does not contribute to the onset of the non-collinear 3k
state, which remains the most favorable ground state even in the undistorted cubic lattice. Finally,
we discuss the role of prefactor U in the LSDA+U scheme and provide evidence that the choice of
this parameter has a substantial quantitative influence on the predicted properties of the oxide, in
particular the magnetic exchange interactions and, perhaps trivially, on the band gap: the value of
U computed fully ab initio by the constrained random phase approximation, U=3.46 eV, delivers
a band gap of 2.11 eV in good agreement with experiment, and a balanced account of the other
relevant energy scales.

I. INTRODUCTION

A realistic treatment of magnetic properties by ab ini-
tio methods requires using approaches that do not arti-
ficially constrain the orientation of magnetic moments
to a specific direction. This is achieved by means of
the so-called non-collinear density functional theory ap-
proximation [1, 2]. In the non-collinear approximation,
the direction of the local magnetic moment varies from
point to point in real space, and the fact that mag-
netic non-collinearity does indeed occur in real materi-
als is confirmed by direct experimental observations [3–
6]. Non-collinear spin orderings is particularly evident in
heavy element compounds where it results from strong
spin-orbit coupling effects. Examples include f -electron
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systems [7–9] and 5d transition metal oxides [10, 11].
Fluctuations of magnetic non-collinearity is a factor con-
tributing to electrical and thermal resistivity of alloys [12]
and may offer a clue to understanding electronic and
magnetic phase transitions [13, 14]. It has also been dis-
covered that non-collinear magnetic fluctuations may be
responsible for the observed anomalous thermal conduc-
tivity of uranium dioxide [15], a material of consider-
able technological significance. Indeed, while in metallic
alloys, magnetic fluctuations represent just one of the
types of electronic excitations associated with the elec-
tric and thermal resistivity of the material, in a semi-
conducting oxide like UO2, where thermal conductivity
is dominated by the transport of phonons, the strong
spin-orbit coupling (SOC) linking atomic displacements
with magnetic degrees of freedom provides an additional
and potentially significant channel of dissipation. The
fact that lattice and magnetic degrees of freedom in ura-
nium dioxide are strongly coupled has been confirmed by

mailto:sergei.dudarev@ukaea.uk
mailto:cesare.franchini@univie.ac.at


2

observations of piezo-magnetism [16]. The observations
were modeled phenomenologically, assuming the occur-
rence of direct coupling between atomic displacements
and magnetic moments. On the electronic structure level,
such a coupling stems from the relativistic SOC between
the magnetic moments of uranium ions and their orbital
degrees of freedom, where the relatively weak but still
notable directional character of bonds involving valence
f -orbitals of uranium ions generates inter-atomic forces
that depend on the orientation of magnetic moments.

The fundamental difference between a magnetic metal
and an actinide oxide like UO2 is that while the spin-
orientation-dependent forces in a metal stem from the co-
ordinate dependence of the Heisenberg exchange [17], in
an antiferromagnetic semiconducting actinide oxide the
forces result from a combination of Anderson’s superex-
change [18, 19], the strong correlations between electrons
occupying f -shells of uranium atoms [20], and the rela-
tivistic spin-orbit interaction [21–23] coupling magnetic
configurations to forces acting on the nuclei. In what fol-
lows, we shall focus on exploring the electronic and mag-
netic aspects of the problem using a suitably adapted ab
initio LSDA+U model.

The subtlety of the problem is associated with the fact
that the ab initio approach to the treatment of directional
magnetic degrees of freedom in materials with strongly
correlated electrons requires a non-collinear formulation
of the electronic structure model, which at the same time
must be suitable for the evaluation of the total energy of
the electronic system. A LSDA+U model often applied
to total energy calculations [24] has been derived from
a collinear model Hamiltonian, similar to the Hamiltoni-
ans used earlier by Anisimov et al. [25] and by Kotani
and Yamazaki [20]. It can be readily shown that these
model Hamiltonians are identical to the Hamiltonian of
the collinear Stoner model [26], and hence do not provide
a suitable foundation for the treatment of noncollinear
magnetism. A LSDA+U model that can in principle be
applied to the treatment of non-collinear magnetism was
proposed by Liechtenstein et al. [27]. However the choice
of the double counting term, which has the same form
as in the collinear case, cf. equation (4) of Ref. [27] and
equation (3) of Ref. [26], introduces an element of uncer-
tainty in the total energy part of the analysis.

The choice of the LSDA+U model for the analysis be-
low is stimulated by the extensive application of ab initio
approaches to the simulation of materials with strongly
correlated electrons [28–33]. In what follows, we explore
a generalization of the collinear LSDA+U model [24] to
non-collinear magnetic configuration.

The new development has been stimulated and enabled
by a recent work by Coury et al. [34] who found a way of
transforming, through an exact calculation, the general
four-index matrix form of the second-quantized Hamil-
tonian for interacting electrons, into a simpler form, re-
sembling the Hamiltonian used earlier for the derivation
of simplified versions of the LSDA+U model [24, 25].
The relative simplicity of the Coury Hamiltonian enables

performing a more accurate derivation of the LSDA+U
model suitable for the treatment of non-collinear mag-
netism in materials with strongly correlated electrons,
at the same time providing means for deriving a double
counting term for the total energy calculations.

Below we apply the method to the investigation of elec-
tronic structure and non-collinear magnetism in uranium
dioxide. This oxide, despite the fact that it has been
studied for several decades [8, 35–42], remains a subject
of extensive research as the scope of ab initio methods ex-
pands to include the treatment of defects [43] and their
diffusion [44–46]. It is known that in metals the struc-
ture of defects [47] and atomic diffusion [48] are highly
sensitive to magnetism. The experimental observation
showing the effect of magnetic fluctuations on the ther-
mal conductivity of UO2 [15] suggests that other high-
temperature transport properties may also be affected by
the magnetic degrees of freedom.

The magnetic ground state of defect-free UO2 has been
extensively investigated both experimentally and theo-
retically [8, 35–39, 49]. However, a definitive verdict on
the stability of the 3k magnetic ground state structure
and the form of a low-energy spin excitation Hamilto-
nian suitable, for example, for spin-lattice dynamics sim-
ulations [17, 50, 51], still remains outstanding. Partly,
the difficulty is associated with the fact that an ab ini-
tio treatment of oxide requires exploring the complex-
ity of the energy landscape involving multiple local en-
ergy minima, which impedes applications of conventional
energy minimization algorithms [52]. Also, it is neces-
sary to take into account relativistic effects, giving rise
to large SOC [40] and the emergence of multipolar spin
interactions. Furthermore, it is necessary to determine
the population of uranium f -orbitals, which result in the
formation of orbital magnetic moments on uranium ions
that are twice the magnitude of the spin moment [53]. Fi-
nally, magnetism is intimately linked to distortions of the
underlying crystal structure, manifested in UO2 via the
Jahn-Teller (JT) instabilities [54], and non-collinear spin
arrangement in the form of a 3k-ordered magnetic state.
In this paper, we address the outstanding issues noted
above using a consistent theoretical and methodological
framework, aiming to uncover the ultimate quantum ori-
gin of the magnetic ground state in UO2.

An important aspect of application of LSDA+U mod-
els to ab initio simulations of materials is the proper
choice of values of the Coulomb repulsion and Hund’s
coupling parameters U and J . Owing to the difficulties
inherent in evaluating the magnitude of these interac-
tions, these quantities are generally treated as tunable
parameters, and are chosen according to how well they
reproduce some specific properties such as the band gap,
the equilibrium volume, the magnetic moment or the for-
mation energy [55]. In an attempt to improve the pre-
dictive capacity of LSDA+U models, several approaches
have been proposed that aim to compute U and J with-
out relying on phenomenological considerations [56–59].
Among them, the constrained random phase approxima-
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tion (cRPA) allows one to take into account the effect of
screening of the Coulomb interaction between correlated
electrons and to estimate the magnitude of parameters U
and J in the correlated subspace. The cRPA method has
been successfully applied to a large variety of systems,
and now represents a reliable and computationally viable
method of obtaining accurate values of U and J [60–63].
In the analysis below, we apply this approach to com-
puting U and J in the correlated f -subspace, in this way
providing a solid reference for the values of these pa-
rameters in actinide compounds and allowing for a fully
ab initio-based application of the LSDA+U model. In
particular, the possibility to selectively compute U and
J enables making an estimate of the role played by the
prefactor in the parametrization of the LSDA+U scheme
for predicting properties of non-collinear spin systems.

The manuscript is organized as follows. We start from
deriving a non-collinear magnetic LSDA+U model, giv-
ing equations for the effective correcting one-electron po-
tential and the double counting term, showing that the
relevant formulae require only one parameter U as op-
posed to the difference U − J found in the collinear ver-
sion of the model. We then use cRPA to compute the
value of U and compare the results with the available
data. Subsequently, we address the question of stability
of the non-collinear 3k magnetic structure and, by using
an adiabatic occupation matrix approach, prove that the
3k structure represents the lowest energy configuration
of UO2 even in a perfect cubic lattice. Finally, we per-
form a detailed analysis of effective spin Hamiltonians
and spin-spin interactions, concluding with the assess-
ment of potential applications of the proposed methodol-
ogy to computing high temperature properties, including
simulations of atomic and magnetic dynamics.

II. A NON-COLLINEAR LSDA+U MODEL

The existing collinear LSDA+U model, which aims to
provide an improved description of the electronic struc-
ture of materials characterized by strong electron corre-
lations in spatially localized d and f shells, adds a correc-
tion term to the effective single particle electron poten-
tial [24, 25, 27]

V σjl =
δELSDA+U

δρσlj
=
δELSDA

δρσlj
+(U−J)

[
1

2
δjl − ρσjl

]
, (1)

and a double counting correction to the total electronic
energy [24]

EdcLSDA+U =
(U − J)

2

∑
σ,j,l

ρσjlρ
σ
lj . (2)

The latter is required to take into account the fact that
a simple sum of single particle energies in a system of in-
teracting electrons does not represent the correct contri-
bution to the total energy, see e.g., Eq. (15) and Eq. (16)

of Ref. [64]. In Eq. (1) and Eq. (2), indexes j, l refer to
orbitals associated with a lattice site, and σ is the spin
index.

Eq. (1) and Eq. (2) were derived from a model tight-
binding Hamiltonian [20, 65], where the on-site electron
interaction terms have the form

Ĥ =
U

2

∑
l,l′,σ

n̂l,σn̂l′,−σ +
(U − J)

2

∑
l,l′,l 6=l′,σ

n̂l,σn̂l′,σ. (3)

It can be shown [26, 34] that the above Hamiltonian is
identical to the Hamiltonian of the collinear Stoner model

Ĥ =
U

2

(
N̂2 − N̂

)
− J

4

(
N̂2 − 2N̂

)
− J

4
M̂2, (4)

where N̂σ =
∑
l n̂l,σ, N̂ = N̂↑ + N̂↓ and M̂ = N̂↑ −

N̂↓. Using the procedure outlined in Ref. [24], Eq. (1)
and Eq. (2) can be derived by evaluating the expectation
values of either Eq. (3) or Eq. (4).

Despite the relative success of the LSDA+U
model [29], there are two points in the derivation that
remain elusive. It is unclear to what extent the approxi-
mations associated with Hamiltonian (3) affect the form
of Eq. (1) and Eq. (2), and also how to generalize these
equations to non-collinear magnetic configurations, sig-
nificant to applications [15, 17, 39]. The brief analysis
given below addresses these two points.

First, we note that there is a major term missing in
collinear Hamiltonians (3) and (4). This missing term
has been identified in Ref. [34], and we show below that
this term contributes to the LSDA+U correction, chang-
ing its form. Second, we note that the correction itself
is not invariant in the extended space of spin and or-
bital indexes, a point that can be readily rectified using
a suitable definition of the convolution of the full spin-
and orbital-dependent electron density matrix.

To derive a non-collinear form of the LSDA+U model,
we start by considering a model Hamiltonian, different
from and more general than Eq. (3) or Eq. (4), and ap-
ply it to the parametrization of the LSDA+U equations,
simplifying the full matrix representation of electron in-
teractions. The treatment is based on a recent study by
Coury et al. detailed in Ref. [34]. We find that appli-
cation of the same methodology as what was followed in
Ref. [24], to a more complete Hamiltonian [34], results in
the LSDA+U equations that require only one parameter
U as opposed to the two parameters U and J entering
the formula derived in [24]. The general functional form
of the LSDA+U correction remains the same.

An on-site Hamiltonian, describing interaction be-
tween electrons occupying orbitals i, j, k, l, is given by
a sum of combinations of four creation and annihilation
operators multiplied by a four-index matrix Vij,lk:

Ĥ =
1

2

∑
i,j,k,l

∑
σξ

Vij,lk ĉ
†
i,σ ĉ
†
j,ξ ĉk,ξ ĉl,σ. (5)
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Matrix V has (2l+1)4 elements, which in the case of p
(l=1) electrons amounts to 34=81 elements, and 54=625
elements in the case of d electrons. Symmetry constraints
show that all the elements of Vij,lk can be parameterized
using only two independent constants in the p-electron
case, three constants in the d-electron case, and four in
the f-electron case. In the p-electron cubic harmonic or-
bital case, using an analogy with the theory of isotropic
elasticity [66], where the four-index matrix of elastic con-
stants Cijkl has the same symmetry as Vij,lk, Hamilto-
nian (5) can be written exactly as [34]

Ĥ =
1

2

(
U − J

2

)
: N̂2 : −J

4
: M̂2 : +

J

2

∑
i,j

: (n̂ij)
2 : .

(6)

Here, N̂ =
∑
m,σ ĉ

†
m,σ ĉm,σ is the operator of the total

number of electrons on a site, n̂kl =
∑
σ ĉ
†
k,σ ĉl,σ, and

M̂ =
∑
m,ξ,ξ′

ĉ†m,ξσξξ′ ĉm,ξ′

is the total vector magnetic moment operator associated
with the site. In Eq. (6), :: denotes normal ordering
of creation and annihilation operators. The normally
ordered terms in Eq. (6), expressed using conventional
notations, have the form

: N̂2 : = N̂2 − N̂ ,
: M̂2 : = M̂2 − 3N̂ .

: M̂2
z : = M̂2

z − N̂ .
: (n̂kl)

2 : =
∑
σ,ξ

ĉ†k,σ ĉ
†
k,ξ ĉl,ξ ĉl,σ. (7)

The first two terms in Eq. (6) are identical to those en-
tering Eq. (4), with the natural exception that now the
magnetic moment operator is a vector quantity. Most sig-
nificantly, in addition to the terms contained in Eq. (4),
Hamiltonian (6) includes an extra third term, required by
symmetry and absent in Eq. (4). This term is related to
the orbital moment of electrons on a lattice site [34]. In

the collinear approximation, where operator M̂ in Eq. (6)

is replaced by its projection M̂z = N̂↑ − N̂↓ on a quan-
tization axis, and the third term in Eq. (6) is neglected,
Hamiltonian Eq. (6) is identical to Eq. (4). We note that
Hamiltonian (6) is exact in the sense that no procedure of
“directional” averaging is involved in the transformation
from Eq. (5) to Eq. (6).

We now follow the derivation given in Refs. [24, 25]
and deduce the LSDA+U model from Hamiltonian (6).
We identify the terms in Hamiltonian (6) that contain
two creation and two annihilation operators acting on the
same electronic state (m,σ). In the mean-field approx-
imation, these terms provide contribution to the total
energy proportional to n2

m,σ whereas their exact expecta-
tion value is proportional to nm,σ. The LSDA+U model
correction equals the difference between the exact and

mean-field expectation values of these terms, resulting in

ELSDA+U − ELSDA =[
1

2

(
U − J

2

)
− J

4
+
J

2

]∑
m,σ

(
nm,σ − n2

m,σ

)
. (8)

In the above expression, each term in square brackets
corresponds to a respective term in Hamiltonian Eq. (6),
and nmσ is the electron occupation number of an orbital
state m with spin index σ.

We see that the terms in Eq. (8), which contain param-
eter J , cancel each other, and only the term proportional
to parameter U remains. The sum of the first two terms
in square brackets (U − J/2)/2− J/4 = (U − J)/2 gives
the coefficient found in the LSDA+U derivation given
earlier [24], which was based on a collinear model Hamil-
tonian (4). The third term in square brackets in Eq. (8)
stems from the last term in Hamiltonian (6), which is
missing in the Hamiltonians [20, 65] used earlier. The full
cancellation of the terms containing parameter J is per-
haps not surprising, given the original form of the Hub-
bard Hamiltonian [67] that contains no J terms and is
still able to generate a variety of magnetic solutions, orig-
inating solely from strong on-site electron correlations.

A general form of Eq. (8), invariant with respect to the
choice of electronic orbitals and spin quantization axis,
is now:

ELSDA+U − ELSDA =
U

2

[
Trρ− Trρ2

]
=
U

2

∑
m,σ

ρσσmm −
∑

m,σ;m′,σ′

ρσσ
′

mm′ρσ
′σ
m′m

 , (9)

where ρ is the full orbital and spin-dependent one-
electron density matrix.

In the collinear approximation, where the density ma-
trix is assumed to be diagonal with respect to the subset
of its spin indexes ρσσ

′

mm′ = ρσmm′δσσ′ , Eq. (9) is identi-
cal to equation (5) of Ref. [24]. In this limit, the only
difference between equation (5) of Ref. [24] and Eq. (9)
given above is the prefactor that, due to the presence of
the third term in Hamiltonian (6), now equals U/2 as
opposed to (U − J)/2 derived from Hamiltonian (3).

An invariant orbital- and spin-dependent noncollinear
form of LSDA+U (1) and (2) is now:

V σσ
′

jl =
δELSDA+U

δρσσ
′

lj

=
δELSDA

δρσσ
′

lj

+ U

[
1

2
δjlδσσ′ − ρσσ

′

jl

]
,

(10)
and

EdcLSDA+U =
U

2

∑
σ,σ′,j,l

ρσσ
′

jl ρ
σ′σ
lj . (11)

The need to add the double counting term (11) to the to-
tal energy, evaluated using the conventional Kohn-Sham
procedure, stems from the fact that the single-particle
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electron potential (10) depends on the occupancy of elec-

tron orbitals through the term proportional to ρσσ
′

jl . It

is this occupancy-dependent term in Eq. (10) that makes
a simple sum of one-particle energies different from the
total energy given by Eq. (9). The above equations show
that, in addition to correcting the prefactor in the for-
mula, a fully invariant LSDA+U construction requires
convoluting the density matrix over the full set of its or-
bital and spin indexes, a point that was not addressed in
earlier derivations [24, 25, 27].

Similarly to Eq. (8), the terms containing parameter
J also cancel exactly if we perform the above deriva-
tion for the d-electron case [34]. The most direct way
of carrying out the derivation is to start from equation
(22) of Ref. [34] and note that in the d-electron case, all
the terms containing parameter J can be expressed in
terms of a renormalised parameter J − 6∆J , resulting in
Eq. (9) given above, plus small terms proportional to ∆J ,
which together amount to a small fraction of an electron-
volt per atom and are normally neglected in applications
[29]. This suggests that the single-parameter form of the
LSDA+U correction given by Eq. (10) and Eq. (11) re-
mains sufficiently accurate and applicable to d-electron
orbitals, and other types of shells containing correlated
electrons. Parameter U , according to the analysis given
in [28, 60], is an effective quantity, characterizing the
strength of electron-electron interactions, modified by ef-
fects of many-body self-screening. The significance of the
above equations, in addition to the fact that they have
been derived from a more accurate form of the on-site
interaction Hamiltonian, is in that they can be used for
treating non-collinear magnetic configurations.

III. AB INITIO METHODOLOGY

This section details the set of theoretical and method-
ological approaches adopted in this study. All the calcu-
lations were carried out using the Vienna ab initio simu-
lation package (VASP) [68, 69], where the non-collinear
extension of the Dudarev et al. LSDA+U scheme is im-
plemented [70] with the full inclusion of relativistic ef-
fects (e.g., a full self-consistent treatment of spin-orbit
coupling) [71]. A robust energy cut off up to 700 eV
with the convergence precision of 10−6 eV was used in
all the calculations, and the Brillouin zone was sampled
using a 6×6×6 k-point mesh. Atomic positions were op-
timized with the lattice parameters fixed at its observed
value (a=5.469 Å) [72]. In what follows, we explore in
considerable detail (A) the evaluation of interaction pa-
rameters U and J within the cRPA, (B) magnetically
constrained density functional theory (DFT), (C) spin
adiabatic occupation matrix approach to the calculation
of magnetic energy landscape, (D) effective multipolar
pseudospin Hamiltonian and exchange coupling, and (E)
a strategy for estimating the strength of the SOC.

A. Constrained random phase approximation

Interaction parameters U and J were computed from
first principles using the constrained random phase ap-
proximation [56]. In the cRPA, the Coulomb repulsion
and Hund’s coupling parameters U and J are derived
from the matrix elements of Uijkl written in terms of
Wannier basis functions representing the correlated sub-
space (in this case, the uranium f states)

Uijkl = lim
ω→0

∫∫
drdr′w∗i (r)w∗j (r′)U(r, r′, ω)wk(r)wl(r

′).

(12)
More precisely, U and J are the average matrix ele-
ments Uijij (intra- and inter-orbital interactions of the
different spins) and Uijji (inter-orbital interactions of the
same spins), respectively. In Eq. (12), U is the partially
screened interaction kernel, which is calculated by solving
the Dyson-like equation

U−1 = V−1 − χr, (13)

where V is the bare (unscreened) interaction kernel and
χr = χ − χt is the polarizability, excluding contribu-
tions from the “target” correlated f subspace, χt. Fol-
lowing this procedure, we have found U cRPA=3.46 eV
and JcRPA=0.3 eV, corresponding to the effective inter-
action parameter U cRPA

eff =3.16 eV. These values are ex-
pectedly smaller than those extracted from experimen-
tal estimates, adopted in previous LSDA+U studies of
UO2 [73]: U=4.5 eV and J=0.54 eV, Ueff=3.96 eV. In
order to verify the role played by the prefactor U/2 en-
tering Eq. (9) in the description of magnetic properties of
UO2, we have tested four different choices of interaction
parameters, namely

1. U=3.16 eV (i.e. U cRPA
eff )

2. U=3.46 eV (i.e. U cRPA)

3. U=3.96 eV (i.e. ‘Expt.’ Ueff)

4. U=4.50 eV (i.e. ‘Expt.’ U)

FIG. 1. Schematic plots of the 〈001〉-AFM, 3k (longitudinal)
and 〈110〉-AFM non-collinear spin configurations considered
in this study.
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B. Magnetically constrained noncollinear DFT+U

To determine the non-collinear magnetic ground state
of UO2, we have minimized the total energy, treat-
ing it as a function of the direction of spin moments
and using the magnetically constrained non-collinear
DFT+U [11, 71, 74]. In particular, we have inspected
spin rotations that transform the system from a char-
acteristic non-collinear 3k state into collinear antiferro-
magnetically (AFM) ordered 〈001〉 and 〈110〉 configura-
tions [39], illustrated in Fig. 1. A non-collinear 3k phase
is described by three independent wave vectors and can
be represented by a combination of three different phases:
one longitudinal and two equivalent transverse configu-
rations. To facilitate the construction of the canted mag-
netic energy landscape, we used the longitudinal 3k or-
dered magnetic structure shown in Fig. 1 as a starting
configuration. The two other ordered AFM configura-
tions, 〈001〉 and 〈110〉, belong to the 1k (one wave-vector)
and 2k (two wave-vectors) categories, respectively.

The 〈001〉–3k–〈110〉 magnetic structure transforma-
tion pathway can be defined by a concerted variation
of angle θ on the four inequivalent uranium sites in the
UO2 magnetic unit cell [see Fig. 2(a) and (c)]. Con-
strained energy minimization as a function of θ along the
transformation pathway is achieved by considering the
energy penalty arising from constraining the direction of
the spin magnetic moment, defined by the formula

E = E0({Mi}) +
∑
i

γ[Mi −M0
i (M

0
i ·Mi)]

2. (14)

Here E0 is the unconstrained DFT total energy, whereas
the second term is a penalty contribution defined as a
non-collinear directional constraint on the direction of lo-
cal moments Mi with respect to an arbitrary set of unit
vectors M0

i on sites i. Mi is the magnetic moment com-
puted by integrating over a Wigner-Seitz cell centered on
atom i (the effective Wigner-Seitz radius is 1.588 Å for
a U ion and 0.82 Å for an O ion). Parameter γ defines
the magnitude of the energy penalty term, where by pro-
gressively increasing γ, functional (14) is driven to con-
vergence towards the DFT total energy [74]. We used the
value γ=10 that guarantees that the expectation value of
the energy penalty term is lower than 10−5 eV.

C. Adiabatic spin occupation matrix approach

A known drawback of DFT+U approaches is the dif-
ficulty associated with finding the lowest energy state of
a strongly correlated magnetic material. In most cases
a DFT+U functional exhibits a multitude of local min-
ima corresponding to a variety of spin and orbital occu-
pancies in the correlated electronic subspace [39, 75–77].
The difficulty with finding a global minimum stems from
the curvature of the energy surface as a function of or-
bital occupations [76]. In standard DFT calculations the

FIG. 2. Schematic view of (a) spin and (b) orbital moments
in a 3k (longitudinal) magnetic unit cell of UO2. Panel (c)
shows the total energy as a function of the canting angle θ
along the 〈001〉-AFM – 3k – 〈110〉-AFM transformation path-
way. Blue and green arrows show the spin and orbital mo-
ments, respectively. The inset explains the definition of the
spin canting angle θ adopted in our analysis.

energy surface is typically convex, but the global mini-
mum might correspond to a physically unreasonable par-
tial fractional orbital occupation, e.g. a metallic state
of the material that in reality is an insulator. DFT+U
corrects this by adding a term that penalizes fractional
occupations, but this correction changes the curvature
of the energy surface from convex to concave, unavoid-
ably giving rise to many local minima [76]. Dorado and
coworkers proposed to address this point by performing
a search involving a large number of self-consistent cal-
culations, each starting from different initial occupation
matrices, and to select the outcome corresponding to the
lowest total energy [75]. This procedure can be acceler-
ated by adiabatically “turning on” the value of parame-
ter U starting from the DFT limit U = 0 and gradually
converging to the true ground state with integral orbital
occupations [76]. The above issue is particularly perti-
nent to non-collinear spin systems, where small rotations
of spin moments could give rise to many local minima,
all lying in a few meV energy range.

Bearing in mind this aspect of energy minimization,
we have combined the occupation matrix approach with
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FIG. 3. Spin quantization axes x, y, and z and the geometry
of the exchange-coupled pair for neighboring U4+ exchange
ions. There are six inequivalent exchange-coupled pairs AB
per a magnetic unit cell.

a gradual adiabatic change of the spin moment direc-
tion, using the magnetically constrained non-collinear
DFT+U functional described in the previous subsec-
tion [11, 71, 74]. Starting from the 3k-type non-collinear
spin ordered state of UO2 [8, 39] shown in Fig. 2(a)
we gradually changed the canting angle θ, moving adi-
abatically from the non-collinear 3k state to the ener-
getically comparable AFM collinearly ordered 〈001〉 and
〈110〉 configurations shown in Fig. 2(c). At each cant-
ing step, we initialized the occupation matrix to the one
obtained at the preceding step and performed fully self-
consistent calculation. In this way, by gradually per-
turbing the wavefunction of the 3k state, we were able to
construct a smooth total energy curve E(θ) as a function
of the canting angle θ, shown in Fig. 2(c). The absence of
cups and sudden jumps guarantees that this energy curve
represents the lowest energy path linking the spin config-
urations considered here and that the 3k state is indeed
the global minimum with respect to spin rotations. Prob-
ing other spin configurations (not shown here) confirmed
this analysis and did result in finding spin configurations
with lower total energies. We note that the orbital mo-
ment mo remains antiparallel to the spin moment ms

everywhere on the transformation pathway, and the mag-
nitudes of both moments are independent of the canting
angle: ms ≈ 1.5 µB and mo ≈ 3.2 µB , see Fig. 2(b) and
(c).

D. Effective pseudospin Hamiltonian and exchange
interactions

To characterize magnetic properties of a material and
to understand the origin of the specific spin ordered con-
figuration that it adopts, it is necessary to quantify the
dominant spin-spin interactions. For systems conserv-
ing the total spin moment, magnetic coupling parame-
ters can be analyzed in terms of an effective Heisenberg

spin Hamiltonian involving conventional spin operators.
In materials with strong spin-orbit coupling spin mo-
ments are not conserved and it is more appropriate to use
pseudospin operators and pseudospin Hamiltonian [78]
that are suitable for the treatment of multipolar interac-
tions [79–81],

Within the pseudospin picture, spin and orbital de-
grees of freedom are not separated, and the operator
set is formed by a unit multipole (tensor) operator

TQK (J) [23, 82, 83] (here J is the angular moment, K
the rank and Q = −K, ...,K), and in the most general
form a multipolar exchange Hamiltonian can be written
as [23, 83]

H =
∑
ij

∑
KQ

C
QiQj

KiKj
TQi

Ki
T
Qj

Kj
, (15)

where i,j are the site indexes, C
QiQj

KiKj
are the cou-

pling constants describing how the energy of the system
changes as a result of variation of the two multipole mo-

ments TQi

Ki
and T

Qj

Kj
.

UO2 adopts non-collinear 3k ordered magnetic con-
figuration and the two-electrons (f2) ground state of a
uranium ion is a Γ5 triplet corresponding to the effec-
tive spin (pseudospin) S̃ = 1 [21]. The Γ5 ground state
is associated with cooperative quadrupolar interactions
that cannot be accounted for using a S = 1/2 Heisen-
berg model [9, 21, 23, 49, 84], but can be modeled by
means of a suitable pseudospin Hamiltonian.

To compute spin-spin interactions in UO2, we adopt
the multipolar spin Hamiltonian derived by Mironov
et al. [21], describing the superexchange interaction of
neighboring U4+ ions in the 5f2 configuration. The gen-
eral form of the Mironov Hamiltonian reads

H = A0 +H1 +H2 +H3 +H4, (16)

where A0 is a spin-independent parameter, whereas the
remaining terms accounts for various types of spin in-
teractions, which can be written using conventional spin
variables as

H1 = D[(SzA)2 + (SzB)2]

+ E[(SxA)2 − (SyA)2 + (SxB)2 − (SyB)2]

(17)

H2 = JxS
x
AS

x
B + JyS

y
AS

y
B + JzS

z
AS

z
B, (18)

H3 = j1S
x
AS

x
B[(SzA)2 + (SzB)2] + 2j1S

y
AS

y
BS

z
AS

z
B

+ j2S
y
AS

y
B[(SzA)2 + (SzB)2] + 2j2S

x
AS

x
BS

z
AS

z
B

(19)

H4 = q1O
(1)
A O

(1)
B + q2O

(2)
A O

(2)
B + q3O

(3)
A O

(3)
B

+ q4[O
(1)
A O

(2)
B +O

(2)
A O

(1)
B ].

(20)

Here, H1 is a single-spin term, quadratic in the spin com-
ponents and accounting for the zero field splitting (ZFS)
dipolar interactions; the ZFS parameters D and E de-
scribe the axial and transversal components of magnetic
dipole-dipole (DD) interaction, respectively. H2 is bilin-
ear in spins (and isotropic under rotations) and describes
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spin exchange interactions (sometimes called the Heisen-
berg exchange), parameterized by Jx, Jy and Jz. The
term H3 describes four-spin exchange interactions with
j as the corresponding coupling constant. Finally, H4

accounts for biquadratic quadrupole-quadrupole (QQ)

interactions, where O
(n)
A,B are the components of the

quadrupole operator, specifically:

O
(1)
k = (Szk)2 − S(S + 1)/3 (21)

O
(2)
k = (Sxk )2 − (Syk)2 (22)

O
(3)
k = SxkS

y
k + SykS

x
k , (23)

where k =A, B. Labels A and B refer to the interacting
nearest neighbour Uranium ions, see Fig. 3 for details.
There are four inequivalent sites in a magnetic unit cell
of UO2 [U1–U4, see Fig. 2(a)] producing six inequiva-
lent nearest neighbor AB pairs: A=U1, B=U2; A=U1,
B=U3; A=U1, B=U4; A=U2, B=U3; A=U2, B=U4;
A=U3, B=U4. SA and SB are the two spins forming
a distinct inequivalent AB pair, and x, y, and z are the
local quantization axes illustrated in Fig. 3. Cartesian
components of spins SA and SB in the local quantiza-
tion axis representation are given in the Supplementary
Materials [85].

The ab initio evaluation of the above superexchange
parameters is a difficult task [22, 23]. First, we would
like to note that depending on a specific definition of
the tensor operators, slightly different forms of superex-
change coupling can be found in literature [9, 21, 23, 84],
impeding accurate quantitative comparison with existing
data.

In the formulation of the effective pseudospin Hamil-
tonian we have followed the procedure by Mironov [21].
To estimate the magnitude of effective magnetic inter-
actions, Mironov et al. used a second-order perturba-
tion approach, using free-ion and cubic crystal-field pa-
rameters and limiting the interaction to the two nearest-
neighbor U atoms only. In our analysis, we estimate the
dominant exchange couplings by means of a controlled
fitting procedure, involving the mapping of ∆E(θ) onto
DFT+U+SOC total energies to Eq. (16). To achieve
this, we have rewritten the four terms entering Eq. (16)
as functions of the canting angle θ, replacing components
of spins by their explicit expressions in terms of local
Cartesian components and arriving at the total magnetic
energy expressed as a function of θ. After some algebra,
we find that ∆E(θ) has the form

∆E(θ) = B0 +B1 cos(θ) +B2 cos(2θ) +B3 cos(3θ)

+B4 cos(4θ) + C1 sin(θ) + C2 sin(2θ) + C4 sin(4θ),

(24)

where the coefficients are given in terms of the eleven
superexchange parameters entering the Mironov Hamil-

tonian (D, E, Jx, Jy, Jz, j1, j2, q1, q2, q3, and q4):

B0 = 6D + 3/2Jx + 3/2Jy + 3Jz + 3j1 + 3j2

+ 3q1 + 3/2q2 + 3q4 − 2q1S + (4D − 2E

− 2j1 − 2j2 − 3/2Jx − 5/2Jy + 2Jz

+ 14/3q1 − 4q2 − 4q3 − q4)S2 + 2/3q4S
3

+ 1/24(11q1 + 42q2 + 33q3 + 4q4

− 42j1 − 42j2)S4

(25)

B1 = (4D + 2Jz + 2j1 + 2j2 + 4q1 + 2q4)S

− 4/3q1S
2 − (j1 + j2 − 5/3q1 + 3q4)S3

(26)

B2 = (2E − 1/2Jx + 1/2Jy + q4)S2 − 2/3q4S
3

+ (j1 + j2 + 1/2q1 − q2 + 3/2q3 − 2/3q4)S4

(27)

B3 = (j1 + j2 + q1 + 3q4)S3 (28)

B4 = 1/8(6j1 + 6j2 + 3q1 − 6q2 + 9q3 + 4q4)S4 (29)

C1 = (4D + 2j1 + 2j2 + 2Jz + 4q1 + 2q4)
√

2S

− 4
√

2/3q1S
2 +
√

2/6(q1 − 15j1 − 15j2)S3

(30)

C2 = (−4E + Jx − Jy − 2q4)
√

2S2

+ 4
√

2/3q4S
3 +
√

2/3q4S
4

(31)

C4 =
√

2/2q4S
4. (32)

E. Calculation of the spin-orbit coupling strength

We conclude the methodological section with an esti-
mate of the strength of SOC in UO2. To produce this
estimate, we relate the relativistic total energies obtained
from first principles calculations to the relativistic atomic
Hamiltonian for f orbitals:

HSOC = λ L · S, (33)

where λ defines the SOC strength. By using the 14 f
(l = 3) spinors as a basis in the following order: |xyz, ↑
〉, |x(5x2 − 3r2), ↑〉, |y(5y2 − 3r2), ↑〉, |z(5z2 − 3r2), ↑〉,
|x(y2−z2), ↑〉, |y(z2−x2), ↑〉, |z(x2−y2), ↑〉 (and the cor-
responding ↑⇒↓ spinors), the atomic Hamiltonian HSOC

can be written as a (14×14) matrix, see Eq. (34) be-
low [86].

The diagonalization of matrix (34) yields the follow-
ing eigenvalues −λ, −λ, −λ, −λ, −λ, −λ, 3λ/4, 3λ/4,
3λ/4, 3λ/4, 3λ/4, 3λ/4, 3λ/4, 3λ/4. From the eigenval-
ues of the SOC Hamiltonian, it is possible to extract the
contribution to the total energy from the SOC effects,
∆Esoc, by considering either the SOC-induced splitting
( 7

4λ) or the energy contribution arising from the occu-
pied states. We have followed the latter route, as in
this case a suitable mapping can be constructed between
the atomic limit (HSOC) and realistic ab initio calcula-
tions. Specifically, considering that U4+ ions in UO2

are in the 5f2 electronic configuration, the two elec-
trons occupy the lowest two eigenvalues (−λ) resulting
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in ∆Esoc = −2λ. An estimate of ∆Esoc can be ob-
tained from the DFT total energy difference between
a relativistic (with SOC) and a non-relativistic calcu-
lation (no SOC), i.e., ∆Esoc = ESOC − EnoSOC. To
exclude the spurious energy contributions arising from
the difference between electronic ground states, this es-
timate was obtained using the metallic solutions with
U = 0 and the 3k spin ordered configuration (in fact

DFT+U , unlike DFT+U+SOC, delivers a metallic solu-
tion). We should mention that in the metallic solution
without any U the values of the spin and orbital moments
are greatly reduced with respect to the those obtained
for the DFT+U+SOC ground state, specifically ms ≈ 1
µB and mo ≈ 1.5 µB . Within this scheme we find that
∆Esoc = −2.98 eV per uranium ion, corresponding to
λ = −∆Esoc/2=1.49 eV.

HSOC =
λ

4



0 0 0 0 0 0 2i 0 0 0 0 2i 2 0
0 0 3i/2 0 0 it 0 0 0 0 −3/2 0 0 t
0 −3i/2 0 0 it 0 0 0 0 0 3i/2 0 0 it
0 0 0 0 0 0 0 0 3/2 −3i/2 0 t it 0
0 0 −it 0 0 −i/2 0 −2i 0 0 −t 0 0 1/2
0 −it 0 0 i/2 0 0 −2 0 0 −it 0 0 −i/2

−2i 0 0 0 0 0 0 0 −t −it 0 −1/2 i/2 0
0 0 0 0 2i −2 0 0 0 0 0 0 0 −2i
0 0 0 3/2 0 0 −t 0 0 −3i/2 0 0 −it 0
0 0 0 3i/2 0 0 it 0 3i/2 0 0 −it 0 0
0 −3/2 −3i/2 0 −t it 0 0 0 0 0 0 0 0

−2i 0 0 t 0 0 −1/2 0 0 it 0 0 i/2 0
2 0 0 −it 0 0 −i/2 0 it 0 0 −i/2 0 0
0 t −it 0 1/2 i/2 0 2i 0 0 0 0 0 0



, t =
√

15/2

(34)

Further support for this large value of λ comes from an
approximate scaling of the magnitude of SOC at atomic
level, where it is known that the SOC parameter λ is
proportional to Z4, where Z is the atomic number. By
rescaling the SOC strength of iridium (0.5 eV) [87] with
the relative nuclear charge of Ir (ZIr) and U (ZU) we find

λU ≈ λIr(ZU/ZIr)
4 = 0.5 eV × (92/77)4 = 1.02 eV,

confirming the very large value of SOC parameter in ura-
nium.

IV. RESULTS AND DISCUSSION

The strong SOC in UO2 is responsible for the forma-
tion of a Γ5 triplet described by an effective pseudospin
S̃ = 1 [21] state where the spin and orbital moments are
ordered in a 3k magnetic structure [8, 88], see Fig. 2(a)
and (b). Moreover, the various types of (multipolar) su-
perexchange interactions acting in the 3k magnetic con-
figuration are coupled with the cooperative Jahn-Teller
(JT) effect, manifested by a distortion of the oxygen cage
around the U4+ ions [9, 16, 36, 83]. The computational
verification of these experimental observations and their
interpretation on a quantum level is a difficult task due
to a variety of factors: (i) magnetic non-collinearity, (ii)
self-interaction acting in the U-f manifold, and (iii) ex-
istence of multiple local minima in a narrow energy in-
terval [38, 39, 75]. As was noted above, a combination of

fully relativistic and magnetically constrained DFT+U
with adiabatic evolution of the occupation matrix is able
to predict the ground state of UO2 [Fig. 2(c)] and should
help decipher the subtleties of electronic and magnetic
effects in UO2.

To gain insight into the nature of magnetic interac-
tions, we compute the magnetic energy curves similar to
the one shown in Fig. 2, but this time performing the cal-
culations for several different values of prefactor U used
in the DFT+U formalism. The curves shown in Fig. 4
suggest that the non-collinear 3k ordering remains the
lowest energy state for any value of U , but the energy
difference between the 3k phase and the competing AFM
collinear phases 〈001〉 and 〈110〉, illustrated in Fig. 1, de-
pends sensitively on the choice of U . As the value of U
increases, the relative stability of the 3k state decreases,
and it becomes progressively less energetically costly to
rotate the spins. This implies that the value of the mag-
netic exchange interactions is also sensitive to the choice
of U . We shall discuss this later in the section.

The role of parameter U is also reflected in the fun-
damental electronic and magnetic properties of the 3k
ground state. Table I gives values of the spin moment
ms, the orbital moment mo, and the insulating gap Eg
calculated for U=3.16, 3.46, 3.96 and 4.50 eV. While the
moments are only marginally affected by the choice of
U (and all of them compare well with the observed to-
tal moment of 1.74 µB [90]), the band gap varies sig-
nificantly from 1.91 eV to 2.78 eV. The best agreement
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FIG. 4. Total energy as a function of the canting angle θ
computed for several different values of parameter U .

TABLE I. Values of spin (ms), orbital (mo), and total (mt)
moments (in µB units) and the electronic band gap Eg (in
eVs) corresponding to several different values of parameter U
(in eVs). The experimentally observed band gap and the local
total magnetic moment on Uranium ions are ≈ 2.0 eV [89] and
1.74 µB [90], respectively.

U=3.16 U=3.46 U=3.96 U=4.50
ms -1.52 -1.53 -1.54 -1.54
mo 3.18 3.19 3.21 3.22
mt 1.66 1.66 1.67 1.68
Eg 1.91 2.11 2.44 2.78

with experiment (Eg≈2.0 eV [89] ) is found for the rel-
atively small U , in agreement with the first principles
estimate of the Coulomb interaction parameters based
on the cRPA (see Sec. III A), and also in agreement with
the results of the recent fitting analysis [41]. We also
note that even though the value of parameter J in UO2

is not very large, 0.3 eV, its effect on the band gap is
not negligible, and is of the order of 10% (Eg=1.91 eV
for U = U cRPA − JcRPA=3.16 eV and Eg=2.11 eV for
U = U cRPA=3.46 eV, both fairly close to the observed
band gap of approximately 2.0 eV).

Next, we examine the quantum mechanism responsible
for the onset of magnetic 3k ordering. We remind the
reader that in a Jahn-Teller-active material with strong
SOC, the Jahn-Teller (JT) instability and exchange inter-
actions are antagonists since the JT effect tends to sta-
bilize states with quenched orbital momentum whereas
SOC tends to maximize the orbital momentum [91]. This
conclusion is generally valid if the crystal field is large,
but in UO2 the strength of SOC is very large (≈ 1.5 eV
according to the estimate above) exceeding the energy
scale of crystal-field excitations (150-180 meV [88]), and

therefore the spin-orbit interaction can be safely consid-
ered as the dominant energy scale and the leading factor
stabilizing the 3k state. To verify this hypothesis, we
have calculated the total energy of 1k, 2k, and 3k mag-
netically ordered states as a function of strength of the
JT effect, switching it on and off. In the on mode we
have adopted the self-consistent value of displacement in
the oxygen cage, 0.003 Å, and examined two values of
SOC, the full SOC strength λ = 1.49 eV and half SOC
strength λ = 0.75 eV. The data, given in Table II, show
that the JT effect has virtually no influence on the rel-
ative energies of magnetic configurations. The energy
landscape and the energy difference between the 3k, 2k
and 1k states remain essentially unchanged. This un-
ambiguously demonstrates that the JT effect is not the
mechanism that drives the system towards the 3k ground
state [92]. In contrast, rescaling the SOC strength to half
the original value (λ = 0.75 eV) causes a huge energy
change favourable for both the 〈001〉-AFM and 〈110〉-
AFM configurations, the latter becoming the most fa-
vorable one by more than 11 meV/f.u. This provides a
clear indication that SOC is the major driving force re-
sponsible for the stabilization of the 3k state; reducing
SOC strength leads to the over-stabilization of collinear
magnetic structures.

TABLE II. Total energies (in meV/f.u.) of the 〈001〉-AFM,
〈110〉-AFM and 3k phases as a function of the Janh-Teller
distortion and the strength of SOC, rescaled to a half of the
self-consistent value λ = 1.49 eV. All the data given in the
table were computed for U=3.46 eV.

JT effect 〈001〉-AFM 3k 〈110〉-AFM
undistorted 3.86 0.00 1.01
JT distorted 3.87 0.00 1.03

SOC strength 〈001〉-AFM 3k 〈110〉-AFM
0.5λ -8.78 0.00 -11.28
λ 3.87 0.00 1.03

To discern how SOC stabilizes the 3k ordering of mo-
ments, we have explored the differences between elec-
tronic and magnetic properties of these three phases.
Surprisingly, there are only marginal changes in the mag-
nitude of spin and orbital moments (see Table III), in the
band structure (see Fig. 5), as well as in the occupation
numbers of states in the f manifold (see Table IV). A
closer inspection of the band structure shows that even
though the overall bonding picture in all the three mag-
netically ordered configurations is almost identical (in-
cluding the size of the band gap), the f -manifold in the
3k phase exhibits larger SOC-induced splitting, which
causes a change in the band topology.

To better understand the significance of this change in
the topology of band structure, in Fig. 6 we plot charge-
density isosurfaces for the occupied f orbitals in the en-
ergy interval (-2, 0) eV, projected onto a (110) plane con-
taining both uranium and oxygen ions. The results show
that the 3k configuration is the only spin arrangement ex-
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TABLE III. Magnetic moments of uranium ions computed for
the 〈001〉-AFM, 〈110〉-AFM and 3k magnetic configurations.
All the values were computed assuming U=3.46 eV.

〈001〉-AFM 〈110〉-AFM 3k
ms -1.55 -1.51 -1.53
mo 3.26 3.24 3.19
mt 1.70 1.73 1.66
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FIG. 5. Band structures of UO2 computed for the 〈001〉-
AFM, 3k and 〈110〉-AFM ordered configurations assuming
U=3.46 eV.

hibiting a visible orbital anisotropy at the uranium sites,
associated with the canted ordering of f orbitals. The
f -orbitals are rotated towards the nearest oxygen sites,
following the same chessboard configuration of the 3k
spin ordering as that shown in Fig. 2(a) and (b). Re-
markably, the effect of SOC, critical to the stabilization
of the 3k phase, is manifested primarily in the shape
of f -orbitals rather than in the total orbital occupation,
as illustrated in Table IV. The energy required to sta-
bilize the 3k state over the 〈001〉-AFM and 〈110〉-AFM
configurations is gained from a SOC-induced rotation of
occupancies of particular orbitals, which follows the rota-
tion of the local spin moments and enables constructive
interaction with the oxygen electronic states.

Having established the DFT+U cRPA+SOC as a suit-
able theory for the ground state electronic properties of
UO2, which highlights the significance of SOC in this
compound, we are now ready to proceed to the analy-
sis of the superexchange spin interaction mechanisms, to
deduce information about the quantum origin of the 3k
state. As we noted in the computational section, this can
be done by fitting the magnetic energy computed using ab
initio methods, to the multipolar Hamiltonian (24). The
presence of eleven parameters in the expression for the
multipolar Hamiltonian clearly poses a well known prob-
lem for the multi-parameter fitting procedure [93]. To
handle this complication, we rely on the work by Mironov
et al. [21] that can be summarized as follows. First, we
note that using the values of parameters evaluated by
Mironov (collected in Table V) in the pseudospin Hamil-
tonian, already leads to an overall fairly good account of
the first principles magnetic energy, as illustrated graphi-

TABLE IV. Eigenvalues of the 14×14 occupation matrix of
the f manifold of uranium ions in UO2 computed for the
〈001〉-AFM, 3k and 〈110〉-AFM spin configurations. All the
values were computed for U=3.46 eV.

〈001〉-AFM 3k 〈110〉-AFM
0.0268 0.0271 0.0273
0.0274 0.0282 0.0275
0.0296 0.0288 0.0296
0.0316 0.0341 0.0333
0.0348 0.0356 0.0359
0.0390 0.0365 0.0362
0.0397 0.0366 0.0375
0.0398 0.0384 0.0391
0.0454 0.0488 0.0477
0.0501 0.0508 0.0513
0.1233 0.1238 0.1238
0.1393 0.1407 0.1404
0.9852 0.9846 0.9846
0.9888 0.9858 0.9860

cally in Fig. 7. Even though the two curves do not match
well, Mironov’s parameters predict the correct minimum,
located at the 3k position, suggesting that all the relevant
magnetic coupling terms are included in the theoretical
scheme. However, Mironov’s parameters deliver a curve
that varies over a significantly narrower energy interval
than the curve derived from the first principles data, and
as a result the relative stability of the 3k state with re-
spect to the collinear 1k and 2k states is underestimated
by about 50%.

The exchange parameters in Mironov’s model fall into
four different categories, namely (i) single-spin parame-
ters D and E, (ii) bilinear parameters Jx, Jy and Jz, (iii)
parameters describing the four-spin terms j1 and j2 and
(iv) parameters of biquadratic interactions q1, q2, q3, and
q4. The accuracy of Mironov’s approach can be improved
by noting that, according to the calculations by Savrasov
and coworkers, the strength of quadrupolar (QQ) inter-
actions computed by Mironov is underestimated by an
order of magnitude [23]. Following this argument, we
have fitted ∆E(θ) by varying the two largest quadrupo-
lar terms (q1, q2) only, and keeping all the other superex-
change parameters fixed to the original Mironov’s values.
The resulting curve is in excellent agreement with first
principles energies (χ2

R=0.9989, see Fig. 7), and this im-
provement is associated with a very large increase of the
magnitude of the quadrupolar terms, approximately by
an order of magnitude (q1+q2)/2=4.56 meV, see Table V.
However, this is in very good agreement with the earlier
DFT+U data (3.1 meV [23]) and the values extracted
from experimental spin-wave spectra (1.9 meV) [49]. As
expected, the values of q1 and q2 are sensitive to the
choice of parameter U , see TableVI. The strength of the
QQ interaction increases as a function of U , this in partic-
ular applies to the the anisotropic biquadratic interaction
q2. Nevertheless, the resulting values do not depend on
the Jahn-Teller distortions; using the undistorted cubic
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FIG. 6. Charge densities of UO2 in a (110) plane computed for the 〈001〉-AFM, 3k and 〈110〉-AFM spin ordered configurations.
All the three plots were computed assuming that U=3.46 eV.

phase one obtains essentially the the same values of pa-
rameters, further demonstrating the fairly negligible role
played by the JT effect in stabilizing the 3k non-collinear
state.
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FIG. 7. Comparison between the calculated
(DFT+UcRPA+SOC) and fitted (out fit using Mironov’s
parameters) magnetic canting energies ∆E(θ). In our fit
we employed an extension of the Mironov model to all the
U-U interactions and optimized the fit with respect to the
dominant quadrupolar terms q1 and q2, by keeping all the
other terms fixed to the corresponding values obtained by
Mironov [21] (see Table V).

We conclude the discussion of magnetic properties of
UO2 by analyzing the individual contributions of various
types of superexchange mechanisms to the stabilization
of the 3k state. As was noted in the section on com-
putational methods, the total magnetic Hamiltonian is
expressed as the sum of four terms, each corresponding
to a specific type of superexchange interaction: H1 ac-
counts for the DD interaction [Eq. (17)], H2 describes
the bilinear exchange [Eq. (18)], H3 represents the four-
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FIG. 8. Decomposition of the magnetic energy ∆E(θ) into
four components H1 [DD interaction, D & E, Eq. (17)], H2

[bilinear exchange, J ’s, Eq. (17)], H3 [four-spin exchange, j’s,
Eq. (19)], and H4 [quadrupolar, q’s, Eq.( 20]. The right panel
show the difference between the quadrupolar term derived
directly from Mironov’s data and our fitted curve.

spin exchange [Eq. (19)], and finally H4 takes care of
the quadrupolar coupling [Eq. (20)]. The data, summa-
rized in Fig. 8, clearly show that the formation of the
3k state occurs as a result of a concerted action of DD
and octupolar interactions. The contributions of bilinear
exchanges (H2, J ’s) and four spin exchanges (H3, j’s)
are essentially independent of the canting angle, result-
ing in the rather flat curves. On the other hand, DD
interactions have a quadratic-like trend with a marked
minimum at 3k and the fit-corrected quadrupolar term
(the right panel of Fig. 8) not only has a minimum at 3k,
but also correctly describes the energy pathway from the
3k to the 1k and 2k states, following the trend exhibited
by the first principles energies (see Fig. 7).

Based on the above results, we can conclude that the
onset of the 3k state in UO2 is driven, at the quantum
level, by a concerted action of DD and QQ spin inter-
actions. These interactions are active in the undistorted
and JT-distorted crystal lattices, clearly indicating that,
despite the existing coupling between the spin and lattice
degrees of freedom, the JT instabilities do not contribute
to the formation of the non-collinear 3k ordering, which
is present also in the undistorted cubic phase.



13

TABLE V. Magnetic coupling parameters (meV) estimated by Mironov [21] shown together with the fitted values of the
dominant QQ terms obtained by mapping the DFT+UcRPA+SOC energies onto the extended Mironov’s Hamiltonian. χ2

R

serves as an indication of the quality of the fit in terms of the reduced chi-squared test.

D E Jx Jy Jz j1 j2 q1 q2 q3 q4 χ2
R

Mironov [21] −0.57 0.64 1.82 2.74 2.33 −0.04 0.05 0.22 0.32 0.07 −0.02
Fit (QQ) 7.18 1.94 0.9989

TABLE VI. Fitted quadrupolar parameters q1 and q2 (and
their average, in meV) as a function of U .

q1 q2 (q1+q2)/2
U = 3.16 eV 6.55 0.36 3.46
U = 3.46 eV 7.18 1.94 4.56
U = 3.96 eV 7.64 3.77 5.71
U = 4.50 eV 7.81 5.19 6.50

V. SUMMARY AND CONCLUSIONS

In conclusion, in this study we have addressed the is-
sue of parametrization of the LSDA+U approximation
for non-collinear spin systems and explained the origin
of the canted 3k state in UO2 by combining an array
of advanced computational techniques including the con-
strained random phase approximation to compute the
Coulomb repulsion parameter U and the Hund’s cou-
pling parameter J , thus rendering the LSDA+U+SOC
fully ab initio, magnetic constrains to study the depen-
dence of the total energy on the direction of the spin
moment, adiabatic propagation of the occupation matrix
to avoid the multiple minima problem in constructing the
accurate magnetic energy landscape, and two different ef-
fective Hamiltonians to extract from the ab initio data
the value of the spin-orbit interaction λ (achieved using
an atomic-like relativistic Hamiltonian for f orbitals) and
the quadrupole-quadrupole exchange interactions (using
an effective pseudospin Hamiltonian).

The outcome of our study is threefold. First, we have
derived an invariant orbital- and spin-dependent formal-
ism for the LASD+U model for non-collinear spins that
involves a spin and orbital convolution of the density ma-
trix, and have shown that, unlike in collinear LSDA+U ,
the non-collinear LSDA+U potential and double count-
ing correction depend on one parameter U only, and is
independent on Hund’s coupling parameter J . Second,
our data suggest that the spin-orbit interaction param-
eter in UO2 is as large as 1.5 eV, which is among the
largest SOC strengths ever observed in a bulk material,
and this represents the origin of many exotic physical
phenomena emerging from the unusually intricate inter-
play between the spin, charge and orbital degrees of free-
dom, explicated by the formation of a multipolar mag-
netic state associated with tilted orbital ordering in the
f -orbital manifold. Finally, we have uncovered the role
of dipole-dipole and quadrupole-quadrupole spin interac-
tions in the formation of the non-collinear 3k state and

TABLE VII. Summary of parameters controlling the mag-
nitude of the relevant energy scales in UO2: U & J (from
cRPA), the SOC strength parameter λ, the QQ exchange
(from fitting to the spin canting ab initio data) and DD ex-
change (from Mironov [21]).

UcRPA JcRPA λ QQ DD
3.46 eV 0.3 eV 1.49 eV 3.46 meV ≈ 0.6 meV

ruled out Jahn-Teller distortions as a factor in stabiliz-
ing the 3k magnetic ordering. The most relevant energy
scales defining the properties of UO2 are summarized in
Table VII.

Besides elucidating the complexity of exotic physical
scenarios, these results provide a solid reference for future
studies of relativistic non-collinear materials (in partic-
ular 5d transition metal oxides), and open the way to a
quantitatively reliable exploration of technologically rel-
evant aspects of UO2 such as spin and orbital magnetic
dynamics, formation and evolution of structural defects
and their diffusion, which is a topic of significant impor-
tance to applications. From this perspective, the study
represents an example on how an accurate account of fun-
damental microscopic interactions derived from a direct
application of laws of quantum mechanics can provide
an accurate quantitative account of a number of physical
processes and extract values of critical parameters that
can then be used as input for phenomenological schemes
describing macroscopic phenomena such as transport and
dissipation.
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R. Wiesendanger, Science 288, 1805 (2000),
http://science.sciencemag.org/content/288/5472/1805.full.pdf.

[5] H. Ohldag, A. Scholl, F. Nolting, S. Anders, F. U. Hille-
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