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Abstract. Sequential numerical methods for integrating initial value problems (IVPs) can be
prohibitively expensive when high numerical accuracy is required over the entire interval of
integration. One remedy is to integrate in a parallel fashion, “predicting” the solution serially
using a cheap (coarse) solver and “correcting” these values using an expensive (fine) solver that
runs in parallel on a number of temporal subintervals. We propose an adaptive time-parallel
algorithm that solves IVPs by modelling the correction term, i.e. the difference between fine
and coarse solutions, using a Gaussian process emulator. This approach compares favourably
with the classic parareal algorithm and has the additional advantage of being able to use
archives of legacy solutions, i.e. solutions from prior runs of the IVP for different initial
conditions, to further accelerate convergence of the method.
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1. Introduction

1.1. Motivation and background

This paper is concerned with the numerical solution of a system of d ∈ N ordinary differential
equations (ODEs) of the form

du

dt
= f

(
t,u(t)

)
over t ∈ [t0, T ], with u(t0) = u0 ∈ Rd, (1.1)

where f : R×Rd → R is a nonlinear function with sufficiently many continuous partial derivatives,
u : [t0, T ]→ Rd is the time-dependent solution, and u0 ∈ Rd is the initial value at t0. We seek
numerical solutions Uj ≈ u(tj) to the initial value problem (IVP) in (1.1) on a pre-defined mesh
t = (t0, . . . , tJ), where tj+1 = tj + ∆T for fixed ∆T = (T − t0)/J .

More specifically, we are concerned with IVPs where: (i) the interval of integration, [t0, T ]; (ii)
the number of mesh points, J + 1; or (iii) the wallclock time to evaluate the vector field, f , is
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so large that the simulation of such numerical solutions takes hours, days, or even weeks using
classical sequential integration methods, e.g. implicit/explicit Runge–Kutta methods (Hairer
et al., 1993). This issue also arises when solving IVPs with spatial or other non-temporal
dependencies in the sense that, even though highly efficient domain decomposition methods exist
(Dolean et al., 2015), the parallel speed-up of such methods on high performance computers
(HPCs) is still constrained by the serial nature of the time-stepping scheme. Therefore, with
the advent of exascale HPCs on the horizon (Mann, 2020), there has been renewed interest in
developing more efficient and robust time-parallel algorithms to reduce wallclock runtimes for
IVP simulations in applications spanning numerical weather prediction (Hamon et al., 2020),
kinematic dynamo modelling (Clarke et al., 2020), and plasma physics (Samaddar et al., 2010,
2019) to name but a few. In this work, we focus on the development of such a time-parallel
method.

To solve (1.1) in parallel, one must overcome the causality principle of time: solutions at later
times depend on solutions at earlier times. In recent years, a growing number of time-parallel
algorithms, whereby one partitions [t0, T ] into J ‘slices’ and attempts to solve J smaller IVPs
using J processors, have been developed to speed-up IVP simulations — see Gander (2015) and
Ong and Schroder (2020) for comprehensive reviews. We take inspiration from the parareal
algorithm (Lions et al., 2001), a multiple shooting-type (or multigrid (Gander and Vandewalle,
2007)) method that uses a predictor-corrector update rule based on two numerical integrators,
one coarse- and one fine-grained in time, to iteratively locate solutions Uk

j to (1.1) in parallel.
At any iteration k ∈ {1, . . . , J} of parareal, the ‘correction’ is given by the residual between fine
and coarse solutions obtained during iteration k − 1 (further details are provided in Section 2).
In a Markovian-like manner, all fine/coarse information about the solution obtained prior to
iteration k − 1 is ignored by the predictor-corrector rule, a feature present in most parareal-type
algorithms and variants (Ait-Ameur et al., 2020; Dai et al., 2013; Elwasif et al., 2011; Maday
and Mula, 2020). Our goal is to demonstrate that such “acquisition” data, i.e. fine and coarse
solution information accumulated up to iteration k, can be exploited using a statistical emulator
in order to simulate a solution in faster wallclock time than parareal. Making use of acquisition
data in parareal is mentioned briefly in the appendix of Maday and Mula (2020), in the context of
spatial domain decomposition and high-order time-stepping, but has yet be investigated further.

In particular, we use a Gaussian process (GP) emulator (O’Hagan, 1978; Rasmussen, 2004) to
rapidly infer the (expensive-to-simulate) multi-fidelity correction term in parareal. The emulator
is trained using fine and coarse acquisition data from all prior iterations, with data from the fine
integrator having been obtained in parallel. Similar to parareal, we derive a predictor-corrector
scheme where the coarse integrator makes rapid low-accuracy predictions about the solutions
which are subsequently refined using a correction, now inferred from the GP emulator. As
well as using the emulator, the difference between this approach and parareal is that the new
correction term is formed of integrated solutions values at the current iteration k, rather than
k − 1. Supposing the fine solver is of sufficient accuracy to exactly solve the IVP, the algorithm
presented in this paper determines numerical solutions Uk

j that converge (assuming the emulator
is sufficiently well trained) toward the exact solutions Uj over a number of refinement iterations
k. This new approach is particularly beneficial if one wishes to fully understand and evaluate
the dynamics of (1.1) by simulating solutions for a range initial values u0 or with different
(bifurcating) input parameters. Firstly, if one can obtain extra parallel speedup, generating such
a sequence of independent simulations becomes more computationally tractable in feasible time.
Secondly, the “legacy” data, i.e. solution information accumulated between independent runs,
can also be used to inform future simulations, avoiding the need to repeat expensive calculations.
Being able to re-use (expensive) acquisition or legacy data to integrate IVPs such as (1.1) in
parallel is not something, to the best of our knowledge, that existing time-parallel algorithms
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currently do.

In recent years there has been a surge in interest in the field of probabilistic numerics (Hennig
et al., 2015; Oates and Sullivan, 2019), where “ODE filters” have been developed to solve ODEs
using GP regression techniques. Instead of simulating a numerical solution on the mesh t, as
classical integration methods do, ODE filters return a probability measure over the solution at
any t ∈ [t0, T ] (Bosch et al., 2021; Schober et al., 2019; Tronarp et al., 2019). Such methods
solve sequentially in time, conditioning the GP on acquisition data, i.e. solution and derivative
evaluations, at competitive computational cost (compared to classical methods) (Kersting et al.,
2020; Krämer et al., 2021). However, integrating IVPs with large time intervals or expensive
vector fields using such filters is still a computationally intractable process. As such, our aim
is to fuse aspects of time-parallelism with the Bayesian methods showcased in ODE filters —
something briefly mentioned in Kersting and Hennig (2016) and Pentland et al. (2021), but not
yet explored. Whereas ODE filters use GPs to explicitly model the solution to an IVP, we instead
use them to model the residual between approximate solutions provided by the deterministic
fine and coarse solvers, i.e. the parareal correction. While the method proposed in this paper
does not return a probabilistic solution to (1.1), we believe it contributes to a positive step in
this direction.

In this paper, we present an adaptive time-parallel algorithm that iteratively locates a numerical
solution to an IVP (1.1) using a Gaussian process emulator conditioned on acquisition and legacy
data. The aim is that this algorithm makes more efficient use of the simulation data it generates
and therefore provide additional parallel speed-up compared to parareal, from which it takes
inspiration.

1.2. Contributions and outline

The rest of this paper is outlined as follows. In Section 2 we introduce parareal, providing
an overview of the algorithm and its computational complexity. In Section 3 we present our
algorithm, henceforth referred to as GParareal, in which we describe how the GP emulator,
conditioned on acquisition data obtained in parallel throughout the simulation, is used to
refine coarse numerical solutions to an IVP. Numerical experiments are performed using HPC
facilities in Section 4. We demonstrate good performance of GParareal against parareal in
terms of convergence, wallclock time, and solution accuracy on a number of low-dimensional
ODE problems using just acquisition data. Furthermore, we demonstrate how the GP emulator
enables convergence in cases where the coarse solver is too inaccurate for parareal to converge
and show that GParareal can use legacy simulation data to solve a given system for alternate
initial values even faster, retaining comparable numerical accuracy. We discuss the benefits,
drawbacks, and open questions surrounding GParareal in Section 5.

2. Parareal

Here we briefly recall the parareal algorithm (Lions et al., 2001), first describing the fine- and
coarse-grained numerical solvers it uses, then the algorithm itself, and finally some remarks on
complexity, numerical speed-up, and choice of solvers. For a full mathematical derivation and
exposition of parareal, refer to Gander and Vandewalle (2007). To simplify notation, we describe
parareal for solving a scalar-valued ODE, i.e. f(t,u(t)) := f(t, u(t)) in (1.1), without loss of
generality.
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2.1. The solvers

Denote the parareal approximation of the solution to (1.1) at time tj as Uj ≈ u(tj), j = 0, . . . , J .
To calculate these solutions, parareal uses two one-step1 numerical integrators. The first, referred
to as the fine solver F , is a computationally expensive integrator that propagates an initial
value at tj , over an interval of length ∆T , and returns a solution with high numerical accuracy
at tj+1. In this paper, we assume that F provides sufficient numerical accuracy to solve (1.1) for
the solution to be considered ‘exact’. The objective is to calculate the exact solutions

Uj+1 = F(Uj) for j = 0, . . . , J − 1, where U0 = u0, (2.1)

without running F J times sequentially, as this calculation is assumed to be computationally
intractable. To avoid this, parareal locates iteratively improved approximations Uk

j , where
k = 0, 1, 2, . . . is the iteration number, that converge toward Uj as k increases; note that
Uk
0 = U0 = u0 for all k. To do this, parareal uses a second numerical integrator G, referred to as

the coarse solver. G propagates an initial value at tj over an interval of length ∆T , however, it
has lower numerical accuracy and is computationally inexpensive to run compared to F . This
means that G can be run serially across a number of time slices to provide relatively cheap low
accuracy solutions whilst F is permitted only to run in parallel over multiple slices.

2.2. The algorithm

To begin (iteration k = 0), approximate solutions to (1.1) are calculated sequentially using G, on
a single processor, such that

U0
j+1 = G(U0

j ) j = 0, . . . , J − 1. (2.2)

Following this (iteration k = 1), the fine solver propagates each approximation in (2.2) in
parallel, on J processors, to obtain F(U0

j ) for j = 0, . . . , J − 1. These values are then used in
the predictor-corrector

Uk
j+1 = G(Uk

j )︸ ︷︷ ︸
predict

+F(Uk−1
j )− G(Uk−1

j )︸ ︷︷ ︸
correct

for j = 0, . . . , J − 1. (2.3)

Here, G is applied sequentially to predict the solution at the next time step, before being corrected
by the residual between coarse and fine values found during the previous iteration (note that
(2.3) cannot be run in parallel). This is a discretised approximation of the Newton–Raphson
method for locating the true roots Uj with initial guess (2.2) (Gander and Vandewalle, 2007).
The final step is to evaluate the stopping criteria

|Uk
j − Uk−1

j | < ε ∀j 6 I, (2.4)

for some pre-defined tolerance ε, stopping once I = J . This criterion is standard for parareal
(Gander and Hairer, 2008; Garrido et al., 2006), however, other criteria such as taking the
average relative error between fine solutions over a time slice (Samaddar et al., 2010, 2019) or
measuring the total energy of the system, could be used instead. Unconverged solution values,
i.e. Uk

j for j > I, are improved in later iterations (k > 1) by initiating further parallel F runs on

each Uk
j , followed by an update using (2.3). The version of parareal implemented in Section 4

1Multi-step numerical integrators have been tested with parareal (Ait-Ameur et al., 2020, 2021). However, they
require multiple initial values to begin integration in each time slice and are not compatible with the proposed
method in Section 3.
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does not iterate over solutions that have already converged, avoiding the waste of computational
resources (Elwasif et al., 2011; Garrido et al., 2006; Pentland et al., 2021). Extending parareal to
the multivariate case in (1.1) is straightforward: see Gander and Vandewalle (2007) for notation
and Pentland et al. (2021) for pseudocode.

2.3. Convergence and complexity

After k iterations, the first k time slices (at minimum) are converged, as the exact initial condition
(u0) has been propagated by F at least k times. Therefore, in the worst case, parareal converges
in k = J iterations, equivalent to calculating (2.1) serially, at an even higher computational cost.
Convergence2 in k � J iterations is necessary if parallel speed-up is to be realised.

Without loss of generality, assume running F over any [tj , tj+1], j ∈ {0, . . . , J − 1}, takes
wallclock time TF (denote time TG similarly for G). Therefore, calculating (2.1) using F serially,
takes approximately Tserial = JTF seconds. Using parareal, the total wallclock time (in the worst
case, excluding any serial overheads) can be approximated by

Tpara ≈ JTG︸︷︷︸
Iteration 0

+
k∑

j=1

(
TF + (J − j)TG

)︸ ︷︷ ︸
Iterations 1 to k

= kTF + (k + 1)

(
J − k

2

)
TG . (2.5)

The approximate parallel speed-up is therefore

Spara ≈
Tserial
Tpara

=

[
k

J
+ (k + 1)

(
1− k

2J

)
TG
TF

]−1
. (2.6)

To maximise (2.6), both the convergence rate k and the ratio TG/TF should be as small as
possible. In practice, however, there is a trade-off between these two quantities as fast G solvers
(with sufficient accuracy to still guarantee convergence) typically require more iterations to
converge, increasing k. An illustration of the computational task scheduling during the first few
iterations of parareal vs. a full serial integration is given in Figure 2.1.

Selecting a fast but accurate coarse solver remains a trial and error process, entirely dependent
on the system being solved. Typically, G is chosen such that it has a coarser temporal resolu-
tion/lower numerical accuracy (Baffico et al., 2002; Farhat and Chandesris, 2003; Samaddar
et al., 2010; Trindade and Pereira, 2006), a coarser spatial resolution (when solving PDEs)
(Ruprecht, 2014; Samaddar et al., 2019), and/or uses simplified model equations (Engblom, 2009;
Legoll et al., 2020; Meng et al., 2020) compared to F . In Section 3, we aim to widen the pool of
choices for G by using a GP emulator to capture variability in the residual F − G and showcase
its effectiveness by demonstrating that GParareal can converge to a solution in cases where
parareal cannot in Section 4.

3. GParareal

In this section, we present our GParareal algorithm, in which a Gaussian process (GP) emulator
is used in the analogue of parareal’s predictor-corrector step. Suppose we seek the same high
resolution numerical solutions to (1.1) as expressed in (2.1), denoted now as Vj instead of Uj .
Furthermore, we denote the iteratively improved approximations in GParareal at iteration k as
V k
j (as before, V k

0 = V0 = u0).

2For parareal to converge, the solvers F and G must satisfy specific mathematical conditions (Bal, 2005; Maday
and Turinici, 2005).
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Figure 2.1 Computational task scheduling during three iterations of parareal as compared with
a full serial integration. The coloured blocks represent the wallclock time any given
processor spends on a task. Coarse runs are shown in yellow, fine runs in blue,
and any idle time in white. The wallclock time is given on the axis at the bottom,
indicating both Tpara and Tserial.

In parareal, the predictor-corrector (2.3) updates the numerical solutions at iteration k using a
correction term based on information calculated during the previous iteration k− 1. We propose
the following refinement rule, again based on a coarse prediction and multi-fidelity correction,
that instead refines solutions using information from the current iteration k, rather than k − 1:

V k
j+1 = F(V k

j ) = (F − G + G)(V k
j ) = (F − G)(V k

j )︸ ︷︷ ︸
correction

+ G(V k
j )︸ ︷︷ ︸

prediction

k > 1, j = 0, . . . , J − 1. (3.1)

Given V k
j is known, the prediction is rapidly calculable, however the correction is not known

explicitly without running F at expensive cost. We propose using a GP emulator to model this
correction term, trained on all previously obtained F and G evaluations. The emulator returns
a Gaussian distribution over (F − G)(V k

j ) from which we can extract an explicit value and carry
out the refinement in (3.1).

In Section 3.1, we present the algorithm, giving an explanation of the kernel hyperparameter
optimisation process in Section 3.2 and convergence process in Section 3.3. In Section 3.4, we
detail the computational complexity, remarking that given large enough runtimes for the fine
solver, an iteration of GParareal runs in approximately the same wallclock time as parareal.
Again, to simplify notation, we first detail GParareal for an autonomous scalar-valued ODE,
i.e. f(t,u(t)) := f(u(t)) in (1.1). The extension to the multivariate non-autonomous case is
described in Section 3.5.

3.1. The algorithm

Gaussian process emulator

Before solving (1.1), we define a GP prior (Kennedy and O’Hagan, 2001; Rasmussen, 2004) to
emulate the unknown correction function F − G. This function maps an initial value xj ∈ R at
time tj to the residual difference between F(x) and G(x) at time tj+1. More formally, we define
the GP prior

F − G ∼ GP(m,κ), (3.2)
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with mean function m : R → R and covariance kernel κ : R × R → R. Given some vectors of
initial values, x,x′ ∈ RJ , the corresponding vector of means is denoted µ(x) = (m(xj))j=0,...,J−1
and the covariance matrix K(x,x′) = (κ(xi, x

′
j))i,j=0,...,J−1. The correction term is expected to

be small, depending on the accuracy of both F and G, hence we define a zero-mean process, i.e.
m(xj) = 0. Ideally, the covariance kernel will be chosen based on any prior knowledge of the
solution to (1.1), e.g. regularity/smoothness. If no information is available a priori to simulation,
we are free to select any appropriate kernel. In this work we use the square exponential (SE)
kernel

κ(x, x′) = σ2 exp

(
−(x− x′)2

2`2

)
, for some x, x′ ∈ R. (3.3)

The kernel hyperparameters, denoting the output length scale σ2 and input length scale `2,
are referred to collectively in the vector θ and need to be initialised prior to simulation. The
algorithm proceeds as follows; see Appendix A for pseudocode.

Iteration k = 0

Firstly, run G sequentially from the exact initial value, on a single processor, to locate the coarse
solutions

V 0
j+1 = G(V 0

j ) j = 0, . . . , J − 1. (3.4)

Iteration k = 1

Use F to propagate these values (3.4) on each time slice in parallel, on J processors, to obtain
the following values at tj+1

F(V 0
j ) j = 0, . . . , J − 1. (3.5)

At this stage, we diverge from the parareal method. Given the initially propagated values
x = (V 0

0 , . . . , V
0
J−1)

ᵀ, evaluate F − G using (3.4) and (3.5) such that

y :=
(
(F − G)(xj)

)
j=0,...,J−1. (3.6)

At this point, the inputs x and evaluations y are used to optimise the kernel hyperparameters θ
via maximum likelihood estimation — see Section 3.2. Conditioning the prior (3.2) using the
acquisition data x and y, the GP posterior over (F − G)(x′), where x′ ∈ R is some initial value
in the state space, is given by

(F − G)(x′) | x,y ∼ N
(
µ̂(x′), K̂(x′, x′)

)
, (3.7)

with mean
µ̂(x′) = µ(x′)︸ ︷︷ ︸

=0

+K(x′,x)[K(x,x)]−1
(
y − µ(x)︸︷︷︸

=0

)
and variance

K̂(x′, x′) = K(x′, x′)−K(x′,x)[K(x,x)]−1K(x, x′).

Now we wish to determine refined solutions V 1
j at each mesh point. Given F has been run

once, the exact solution is known up to time t1. Specifically, at t0 we know V 1
0 = V0 and at t1

we know V 1
1 = V1 = F(V 1

0 ). At t2, the exact solution V2 = F(V 1
1 ) is unknown, hence we need to

calculate its value without running F again. To do this, we re-write the exact solution using
(3.1):

V 1
2 = F(V 1

1 ) = (F − G + G)(V 1
1 ) = (F − G)(V 1

1 )︸ ︷︷ ︸
correction

+ G(V 1
1 )︸ ︷︷ ︸

prediction

. (3.8)
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Figure 3.1 Schematic of the first iteration of GParareal. The ‘exact’ solution over [t0, t3] is
shown in black with the first coarse and fine (parallel) runs given in yellow and blue
respectively. Solid bars represent the residual between these solutions (3.6). The
predictions, i.e. the second coarse runs, are shown in red and the corresponding
corrections from the GP emulator are represented by the dashed bars. The refined
solutions (3.12) at the end of the iteration are represented by the red dots.

Both terms in (3.8) are initially unknown, but the prediction can be calculated rapidly at low
computational cost while the correction can be inferred using the GP posterior (3.7) with x′ = V 1

1 .
Therefore, we obtain a Gaussian distribution over the solution

V 1
2 ∼ N

(
µ̂(V 1

1 ) + G(V 1
1 ), K̂(V 1

1 , V
1
1 )
)
, (3.9)

with variance stemming from uncertainty in the GP emulator. Repeating this process to
determine a distribution for the solution at t3 by attempting to propagate the random variable
V 1
2 using G is computationally infeasible for nonlinear IVPs. To tackle this and be able to

propagate V 1
2 , we approximate the distribution by taking its mean value,

V 1
2 = µ̂(V 1

1 ) + G(V 1
1 ). (3.10)

This approximation is a convenient way of minimising computational cost, at the price of ignoring
uncertainty in the GP emulator — see Section 5 for a discussion of possible alternatives.

The refinement process, applying (3.1) and then approximating its Gaussian distribution by
taking its expectation, is repeated sequentially for later tj , yielding the approximate solutions

V 1
j+1 = µ̂(V 1

j ) + G(V 1
j ) for j = 2, . . . , J − 1. (3.11)

This process is illustrated in Figure 3.1. Finally, we impose stopping criteria (2.4), identifying
which V 1

j for j 6 I have converged. Using the same stopping criteria as parareal will allow us to
compare the performance of both algorithms in Section 4.

Iteration k > 2

If the stopping criteria is not met, i.e. I < J , we can iteratively refine any unconverged solutions
by re-running the previous steps. This means calculating F(V k−1

j ), j = I, . . . , J − 1, in parallel

and generating new evaluations ŷ =
(
(F − G)(V k−1

j )
)ᵀ
j=I,...,J−1, with corresponding inputs

x̂ = (V k−1
I , . . . , V k−1

J−1 )ᵀ. Hyperparameters are then re-optimised and the GP is re-conditioned
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using all prior acquisition data, i.e. x = [x; x̂] and y = [y; ŷ], generating an updated posterior.
The refinement step is then applied such that we obtain

V k
j+1 = µ̂(V k

j ) + G(V k
j ) for j = I + 1, . . . , J − 1. (3.12)

Once I = J , the solution, the number of iterations k taken to converge, and the acquisition data
x and y are returned.

3.2. Kernel hyperparameter optimisation

The hyperparameters θ of the kernel κ will need to be optimised in light of the acquisition
data y (and corresponding inputs x). We optimise each θi ∈ θ such that it maximises its
(log) marginal likelihood (Rasmussen, 2004). To do this, first define h(x) := (F − G)(x) and
h := (h(xj))j=0,...,N−1, where N is the current length of x. Given the evaluations y are noise-free,
the likelihood of obtaining such data is p(y|h,x,θ) = δ(y−h), where δ(·) is the multidimensional
Dirac delta function. The marginal likelihood, given x and θ, is therefore

p(y|x,θ) =

∫
p(y|h,x,θ)︸ ︷︷ ︸

likelihood

p(h|x,θ)︸ ︷︷ ︸
prior

dh =

∫
δ(y − h)N (h|0,K(x,x)) dh = N (y|0,K(x,x)).

(3.13)

Taking the logarithm, we want to locate the maximum a posteriori (MAP) estimate of the
log-marginal likelihood, i.e.

max
θ

[
log p(y|x,θ)

]
= max

θ

[
− 1

2
yTK−1y − 1

2
log |K| − J

2
log 2π

]
. (3.14)

These hyperparameters can be estimated numerically using any gradient-based optimiser at low
computational cost, when compared to the cost of a single F run.

3.3. Convergence

We make the following two remarks on convergence of GParareal:

• In the limit of infinite evaluations, the expected value of the emulator will return the exact
value of F − G. Therefore, the refinement step (3.11) will return the exact value of Vj .

• Similar to the worst-case scenario in parareal, should GParareal fail to locate a solution in
parallel and take k = J iterations to converge, it will return the sequentially calculated
fine solution (at extra computational cost).

Just as parareal does, GParareal calculates a deterministic set of numerical solutions to (1.1)
that converge toward the exact solutions, assuming sufficiently many evaluations of F − G are
collected (or available via a legacy archive). It should also be noted that solutions obtained
with GParareal are deterministic and will not change upon multiple simulations of the algorithm
(unless one uses different sets of legacy data).

3.4. Computational complexity

The computational cost of running an iteration in GParareal is approximately the same as
running one in parareal. The cost of running either solver is identical, recall TG and TF , and
any serial overheads will too be of similar cost. Additional costs for GParareal arise when
(serially) optimising hyperparameters and conditioning the emulator on acquisition/legacy data.
During the kth iteration, approximately kJ evaluations have been collected, hence standard
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GP optimisation costs O(k2J2) per hyperparameter and O(k3J3) to condition the emulator.
We work under the assumption that these serial costs are dwarfed by a single run of the F
solver, considering the optimisation/conditioning wallclock times to be small in comparison.
This assumption is reasonable because if these costs begin to overtake those of an F run, then
the problem being solved probably does not require a time-parallel algorithm in the first place.
Parallel speed-up can therefore be calculated the same way as parareal — recall (2.6) — and
it should be stressed that TF is large, so any reduction in the number of iterations taken until
convergence (k) can result in a large decrease in wallclock time. This means that if GParareal
converges in fewer iterations than parareal for a given IVP, it will locate a solution in faster
wallclock time — see Section 4.

To highlight the effectiveness of GParareal, we implement a standard, cubic complexity,
GP emulator in GParareal. It should therefore be noted that when solving systems of ODEs
(Section 3.5), the serial costs associated with this GP implementation will inevitably increase
(relative to an F run), calling for more efficient, less expensive, emulation methods. These
could make use of more efficient (even parallelisable) matrix inversion or alternatively one could
use a Kalman filter instead — as is done in the ODE filters mentioned previously. One could
even optimise each of the hyperparameters in parallel, thereby making use of the pool of idle
processors. We aim to highlight the effectiveness of using just a basic GP emulator within
GParareal, without incurring the additional “theoretical cost” of implementing more advanced
methods just yet.

3.5. Generalisation to ODE systems

The methodology in Section 3.1 can be generalised to solve systems of d autonomous ODEs.
Accordingly, the correction term we wish to emulate is now vector-valued, F − G : Rd → Rd,
hence we require a vector-valued (or multi-output) GP, rather than a scalar GP.

The simplest approach is to model each output of F − G independently, whereby we use d
scalar GPs (sharing the same vector-valued inputs in state space) to emulate each output. This
requires initialising d GP emulators, each with their own covariance kernel κi (usually the same
for consistency) and corresponding hyperparameters θi — to be optimised independently using
their own respective observation datasets yi, i = 1, . . . , d. If datasets are large, optimising and
conditioning of these GPs can be run on the idle processors in parallel to reduce the serial
runtime.

The more complex approach is to jointly emulate the outputs of F − G by modelling cross-
covariances between outputs via the method of co-kriging (Cressie, 1993). A number of co-kriging
techniques exist (see Álvarez et al. (2011) for a brief overview), one of which is the linear model
of coregionalisation that models the the joint, block-diagonal, covariance prior using a linear
combination of the separate kernels κi. Prior testing revealed that using this method did not
improve performance enough to justify the added complexity, O(d3k3J3) vs. O(dk3J3) in the
independent setting (results not reported). Some applications may require correlated output
dimensions, hence we note the methodology here for any interested readers.

As a final note, to solve non-autonomous systems of equations, i.e. (1.1), there are two possible
approaches. One way is to include the time variable as an extra input to each of the d scalar
GPs — this requires a more carefully selected covariance kernel. The other way, is to re-write
the d-dimensional non-autonomous system as a system of d+ 1 autonomous equations and solve
as described above — this is the method we use in Section 4.
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4. Numerical experiments

In this section, we present numerical experiments to compare the performance of both GParareal
and parareal on a number of low-dimensional ODE systems, namely the FitzHugh–Nagumo
model and the chaotic Rössler system.

For simplicity, F and G are chosen to be explicit Runge–Kutta (RK) methods of order
p, q ∈ {1, 2, 4} respectively (p > q). Let NF and NG denote the number of time steps each solver
uses over [t0, T ]. All aspects relating to the GP emulator are carried out using the GPstuff

package by Vanhatalo et al. (2013). Each output dimension of F − G is modelled independently
using its own GP and isotropic SE covariance kernel. Note that all experiments are run on up to
40 CPUs3.

4.1. FitzHugh–Nagumo model

In this experiment, we consider the FitzHugh–Nagumo (FHN) model (FitzHugh, 1961; Nagumo
et al., 1962) given by

du1
dt

= c
(
u1 −

u31
3

+ u2
)
,

du2
dt

= −1

c
(u1 − a+ bu2), (4.1)

where we fix parameters (a, b, c) = (0.2, 0.2, 3). We integrate (4.1) over t ∈ [0, 40], dividing the
interval into J = 40 slices, and set the tolerance for both GParareal and parareal to ε = 10−6.
We use solvers G = RK2 and F = RK4 with NG = 160 and NF = 1.6× 108 steps respectively.
Note that the large value of NF is required so that parallel speedup can be realised (as both
algorithms require TG/TF � 1).

In Figure 4.1(a), we solve (4.1) with initial condition u0 = (−1, 1)ᵀ using both algorithms. Ob-
serve that the accuracy of GParareal is of approximately the same order as the solution obtained
using parareal — when comparing both to the serially obtained fine solution (Figure 4.1(b)).
Note, however, that in Figure 4.1(c), GParareal takes six fewer iterations to converge to these
solutions than parareal does. As a result, GParareal locates a solution in a faster wallclock time
than parareal, see Figure 4.1(d), with a speedup of 4.3× vs. the serial solver — almost twice the
2.4× speedup obtained by parareal.

To compare the convergence of both methods more broadly, we solve (4.1) for a range of
initial values. The heatmap in Figure 4.2(a) illustrates how the convergence of parareal is highly
dependent, not just on the solvers in use, but also the initial values at t = 0, taking anywhere
from 10 to 15 iterations to converge. For some initial values, parareal does not converge at all,
with solutions blowing up (returning NaN values) due to the low accuracy of G. In direct contrast,
see Figure 4.2(b), GParareal converges more quickly and more uniformly due to the flexibility
provided by the emulator, taking just five or six iterations to reach tolerance for all the initial
values tested. This demonstrates how using an emulator can enable convergence even when G
has poor accuracy.

Until now, GParareal simulations have been carried out using only acquisition data. In
Figure 4.3, we demonstrate how GParareal can use both acquisition and legacy data to converge
in fewer iterations than without the legacy data. Approximately kJ = 5 × 40 = 200 legacy
data points, obtained solving (4.1) for u0 = (−1, 1)ᵀ, are stored and used to condition the GP
emulator prior to solving (4.1) for alternate initial values u0 = (0.75, 0.25)ᵀ. In Figure 4.3(a), we
can see that convergence takes two fewer iterations with the legacy data than without. Accuracy
of the solutions obtained from these simulations is again shown to be of the order of the parareal
solution in both cases — see Figure 4.3(b). Repeating this experiment with the same legacy data

3MATLAB code for both GParareal and parareal can be found at: https://github.com/kpentland/GParareal.
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(a) (b)

(c) (d)

Figure 4.1 Numerical results obtained solving (4.1) for u0 = (−1, 1)ᵀ. (a) Time-dependent
solutions using the fine solver, GParareal, and parareal — both GParareal and
parareal plotted only at time slice boundaries ti for clarity. (b) The corresponding
absolute errors between solutions from GParareal and parareal vs. the fine solution.
(c) Maximum absolute errors from (2.4) of each algorithm at successive iterations
k until tolerance ε is met. (d) Median wallclock times (taken over 5 runs) of both
algorithms against the number of processors (up to 40). The inset plot displays the
corresponding parallel speedup.
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(a) Parareal (b) GParareal

Figure 4.2 Heat maps displaying the number of iterations taken until convergence k of (a)
parareal and (b) GParareal when solving the FitzHugh–Nagumo system (4.1) for
different initial values u0 ∈ [−1.25, 1.25]2. Black boxes indicate where the algorithm
returned a NaN value during simulation.

for a range of initial values we see that convergence is either unchanged or improved in all cases,
see Figure 4.4. It should be noted that conditioning the GP and optimising hyperparameters
using the legacy data comes at extra (serial) computational cost and checks should be made to
ensure the parallel computations, i.e. TF , still dominate all serial parts of the simulation. These
results show that using GParareal (with or without legacy data) we can solve and evaluate the
dynamics of the FHN model in significantly lower wallclock time than parareal.

(a) (b)

Figure 4.3 Numerical simulations solving (4.1) for u(0) = (0.75, 0.25)ᵀ using GParareal with and
without access to legacy data, i.e. data obtained solving (4.1) for u(0) = (−1, 1)ᵀ.
The parareal simulation of the same problem is also shown for comparison. (a)
Maximum absolute errors from (2.4) against iteration number k until tolerance ε
met. (b) Time-dependent errors of the corresponding numerical solutions from each
simulation vs. the fine solution.
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Figure 4.4 Heat map displaying the number of iterations taken until convergence k of GParareal
when solving (4.1) for different initial values u0 ∈ [−1.25, 1.25]2 — this time using
legacy data obtained by solving (4.1) for u0 = (−1, 1)ᵀ.

4.2. Rössler system

Next we solve the Rössler system,

du1
dt

= −u2 − u3,
du2
dt

= u1 + âu2,
du3
dt

= b̂+ u3(u1 − ĉ), (4.2)

with parameters (â, b̂, ĉ) = (0.2, 0.2, 5.7) that cause the system to exhibit chaotic behaviour
(Rössler, 1976). Suppose we wish to integrate (4.2) over t ∈ [0, 340] with initial values u0 =
(0,−6.78, 0.02)ᵀ and solvers G = RK1 and F = RK4. The interval is divided into J = 40 time
slices, NG = 9× 104 coarse steps, and NF = 4.5× 108 fine steps. The tolerance is set to ε = 10−6.

In this experiment, rather than obtaining legacy data by solving (4.2) using alternate initial
values (as we did in Section 4.1), we instead generate such data by integrating over a shorter
time interval. This is particularly useful if we are unsure how long to integrate our system for,
i.e. to reach some long-time equilibrium state or reveal certain dynamics of the system, as is
the case in many real-world dynamical systems. For example, many dynamical systems that
feature random noise may exhibit metastability, in which trajectories spend (a long) time in
certain states (regions of phase space) before transitioning to another state (Grafke et al., 2017;
Legoll et al., 2021). Such rare metastability may not be revealed/observed until the system has
been evolved over a sufficiently large time interval. We propose integrating over a ‘short’ time
interval, assessing the relevant characteristics of the solution obtained, and then integrating over
a longer time interval (using the legacy data) if required. Note that to do this, all parameters in
both simulations must remain the same, with the exception of the time step widths — to ensure
the legacy data is usable in the GP emulator in the longer simulation. Suppose we solve (4.2)
over t ∈ [0, 170], then we need to reduce J , NG , and NF by a factor of two, i.e. use J (2) = J/2,

N
(2)
G = NG/2, and N

(2)
F = NF/2 in the shorter simulation.

The legacy simulation, integrating over [0, 170], takes nine iterations to converge using
GParareal (ten for parareal), giving us approximately kJ (2) = 9× 20 = 180 legacy evaluations of
F −G (results not shown). Integrating (4.2) over the full interval [0, 340], GParareal converges in
four iterations sooner with the legacy data than without — refer to Figure 4.5(c). In Figure 4.5(d)
we can see that using the legacy data attains higher numerical speedup (3×) compared to parareal
(1.6×). In addition we have generated even more acquisition data that can be stored in the
legacy data archive. In Figure 4.5(a) we see the trajectories from each simulation converging
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(a) (b)

(c) (d)

Figure 4.5 Numerical results obtained solving the Rössler system (4.2) over t ∈ [0, 340]. (a)
Phase space solutions using the fine solver, GParareal (with legacy data), and
parareal — both GParareal and parareal plotted only at times t for clarity. (b)
The corresponding absolute errors between solutions from GParareal and parareal
vs. the fine solution. (c) Maximum absolute errors from (2.4) of each algorithm at
successive iterations k until tolerance ε is met. (d) Median wallclock times (taken
over 5 runs) of each simulation against the number of processors (up to 40). The
inset plot displays the corresponding parallel speedup vs. the serial wallclock time.

toward the Rössler attractor and Figure 4.5(b) illustrates GParareal retaining a similar numerical
accuracy to parareal with and without the legacy data. Note the steadily increasing errors for
both algorithms is due to the chaotic nature of the Rössler system.

5. Discussion

In this paper we present an adaptive time-parallel algorithm (GParareal) that iteratively locates
a numerical solution to a system of ODEs. It does so using a predictor-corrector, comprised
of numerical solutions from coarse (G) and fine (F) integrators, however, unlike the classical
parareal algorithm, it uses a Gaussian process (GP) emulator to infer the correction term
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F − G. The numerical experiments reported in Section 4 demonstrate that GParareal performs
favourably compared to parareal, converging in fewer iterations and achieving increased parallel
speedup for a number of low-dimensional ODE systems. We also demonstrate how GParareal
can make use of legacy data, i.e. prior F and G data obtained during a previous simulation of
the same system (using different ICs or a shorter time interval), to pre-train the emulator and
converge even faster — something that existing time-parallel methods do not do.

In Section 4.1, using just the data obtained during simulation (acquisition data), GParareal
achieves an almost two-fold increase in speedup over parareal when solving the FitzHugh-Nagumo
model. Simulating over a range of initial values, GParareal converged in fewer than half the
iterations taken by parareal and, in some cases, managed to converge when the coarse solver was
too poor for parareal. When using legacy data, GParareal was shown to converge in even fewer
iterations. Similar results were illustrated for the Rössler system in Section 4.2 but with legacy
data obtained from a prior simulation over a shorter time interval — beneficial when one does
not know how long to integrate a system for. In all cases, the solutions generated by GParareal
were of a numerical accuracy comparable to those found using parareal.

In its current implementation, GParareal may, however, suffer from the curse of dimensionality
as an increasing number of evaluations will be required to learn F − G sufficiently well when
solving higher-dimensional systems. One option to remedy this is to model F − G using more
sophisticated (non-cubic complexity) emulation techniques. Another way could be to obtain
more acquisition data, i.e. launch more F and G runs using the idle processors during later
iterations, to further train the emulator at no additional computational cost. It should also be
noted that GParareal may not always provide faster convergence using legacy data if such legacy
evaluations of F −G lay ‘far away’, i.e. over one or two input length-scales away, from the initial
values of interest in the current simulation. In this case, GParareal would rely more heavily on
its acquisition data. There is no immediate remedy for such a situation, but using a fallback
parareal correction, as suggested in the next paragraph, could be an option.

In (3.9) we approximate a Gaussian distribution over the exact solution by taking its expected
value, ignoring uncertainty in the GP prediction of F − G. During early iterations, when little
acquisition data may be available, this uncertainty (i.e. the variance) could be large. Ideally, one
would propagate the full uncertainty using the coarse solver to the next time step, however this
is a computationally expensive process when solving nonlinear ODE problems. Instead of taking
the expected value, one could approximate the numerical solution by taking a random sample
from (3.9). A sampling-based solver such as this would return a stochastic solution to the ODE,
much like the stochastic parareal algorithm presented in Pentland et al. (2021). It is unclear
how this algorithm would perform vs. parareal (or even stochastic parareal) however it could
still make use of legacy data following successive independent simulations. Another possible
alternative to approximating (3.9) with the expected value arises if the input initial value is at
least one or two length-scale distances away from any other known input value in our acquired
dataset. In this case we then might expect the GP prediction of the mean in (3.9) to be poor.
In this case, a fallback to the deterministic parareal correction for F − G (see (2.3)) could be
built in as a next best correction to the coarse solution. Among others, these are two alternative
formulations of GParareal that are worth investigating in the future.

Follow-up work will focus on extending GParareal, using some of the methods suggested above,
to solve higher-dimensional systems of ODEs in parallel. In particular, we aim to develop a
truly probabilistic numerical method that can account for the inherent uncertainty in the GP
emulator, returning a probability distribution rather than point estimates over the solution.
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A. Psuedocode for GParareal

Algorithm 1: GParareal

Initialise: Set counters k = I = 0 and define V k
j , V̂ k

j and Ṽ k
j as the refined, coarse, and

fine solutions at the jth mesh point and kth iteration respectively (note
V k
0 = V̂ k

0 = Ṽ k
0 = u0 ∀k). If known, initialise any legacy input data x,

output data y, and hyperparameters θ.
%Calculate approximate initial values at each tj by running G serially.

1 for j = 1 to J do

2 V̂ 0
j = G(V̂ 0

j−1);

3 V 0
j = V̂ 0

j ;

4 end
5 for k = 1 to J do

%Propagate refined solutions (from iteration k − 1) on unconverged

sub-intervals by running F in parallel.

6 for j = I + 1 to J do

7 Ṽ k−1
j = F(V k−1

j−1 );

8 end
9 I = I + 1;

10 V k
I = Ṽ k−1

I for all k ; %copy converged solution at tI to future k.

11 x = append(x, (V k−1
I , . . . , V k−1

J−1 )T) ; %collect new input data.

12 y = append(y, (Ṽ k−1
I+1 − V̂

k−1
I+1 , . . . , Ṽ

k−1
J − V̂ k−1

J )T) ; %collect new output data.

13 θ̂ = GPoptimise(x,y,θ) ; %optimise hyperparameters.

%Propagate refined solution (at iteration k) with G, then correct

using the expected value of the GP prediction (3.7) (this step cannot

be carried out in parallel).

14 for j = I + 1 to J do
15 x? = V k

j−1;

16 V̂ k
j = G(x?);

17 y? = GPpredict(x,y, θ̂, x?) ; %returns Gaussian random variable

18 V k
j = E(y?) + V̂ k

j ;

19 end
%Evaluate the stopping criterion, saving all solutions up to tI.

20 I = max
n∈{I,...,N}

|V k
i − V

k−1
i | < ε ∀i < n;

21 if I = N then
22 return k, V k, X, Y ; %if tolerance met for all time steps, stop.

23 end

24 end

20


