
UKAEA-CCFE-PR(22)62

Pui-Wai Ma, T.-H. Hubert Chan

A Feedforward Unitary Equivariant
Neural Network



Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/


A Feedforward Unitary Equivariant
Neural Network

Pui-Wai Ma, T.-H. Hubert Chan

This is a preprint of a paper submitted for publication in
Neural Networks





A Feedforward Unitary Equivariant Neural Network

Pui-Wai Maa,∗, T.-H. Hubert Chanb

aUnited Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon , OX14
3DB, United Kingdom

bDepartment of Computer Sciences, The University of Hong Kong, Hong Kong

Abstract

We have devised a new type of feedforward neural network. It is equivari-

ant with respect to unitary operators U(n). The input and output can be

vectors in Cn with arbitrary dimension n. No convolution layer is required

in our implementation. We avoid errors due to truncated higher order terms

in Fourier-like transformation. The implementation of each layer can be

done efficiently using simple calculations. As a proof of concept, we have

given empirical results on the prediction of the dynamics of atomic motion

to demonstrate the practicality of our approach.

Keywords: equivariant neural network, feedforward neural network,

unitary equivariant, rotational equivariant

1. Introduction

Neural Networks (NN) gain popularity in many different areas because of

its universal approximator property (Sonoda and Murata, 2017). In recent

years, equivariant NN (ENN) in different architectures have been applied
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in various areas, such as 3D object recognition (Thomas et al., 2018; Es-

teves et al., 2020), molecule classification (Weiler et al., 2018), interatomic

potential development (Kondor, 2018; Batzner et al., 2022), and medical im-

ages diagnosis (Müller et al., 2021; Winkels and Cohen, 2018; Worrall and

Brostow, 2018).

When NNs are employed to model some physical phenomenon, they

should obey certain physical symmetry rules. For example, if an NN is in-

tended to return some potential function between particles, the output should

be invariant with respect to rotation of input particles’ coordinates. On the

other hand, for a NN predicting particle movements, the output should be

equivariant with respect to rotation, i.e., if a rotation operator is applied to

the input particles’ coordinates, the effect is the same as applying the same

rotation operator to the output.

In some works (Brandstetter et al., 2022), equivariance is achieved through

data augmentation, i.e., additional training data is created by transforming

existing training data (e.g., create additional copies by rotation). However,

if equivariance is implemented in an NN, one can avoid the need of data

augmentation, which reduces the demand on storage and improves sampling

efficiency. This is especially important if one is working on data in continu-

ous space. For example, if input data are points in Euclidean space and the

output is translational and/or rotational equivariance or invariance, it is not

practical to create too many copies of data.

Previous works have achieved equivariance via higher order representa-

tions for intermediate network layers. For example, the implementation of

spherical symmetry, such as S2 or SO(3), can be achieved through a layer
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with kernel performing a 3D convolution with spherical harmonics or Wigner

D-matrices (Thomas et al., 2018; Gerken et al., 2021). This is analogous to

Fourier transforms in linear space. However, these kinds of implementation

are computationally expensive (Cobb et al., 2021).

In physical systems, even though they can in principle be described by

physical rules, analytical methods are not always feasible when the analytic

form (such as the Hamiltonian) is unknown. On the other hand, an NN

consists of many computationally simple components that can operate in

parallel, and hence, they are suitable for large scale complicated simulations,

as long as there is enough training data.

Our contributions: We have designed a new framework for feedforward

neural networks. Specifically, the following aspects are novel.

1. We designed a new type of feedforward neural network. The inputs

and outputs are vectors in Cn. They are equivariant with respect to

unitary operators U(n).

2. In each layer, in additional to a linear combination of vectors from the

previous layer, we have an extra term that is a linear combination of

the normalized vectors as well. This extra term acts like the bias term

in an affine transformation.

3. Each layer has an activation function that acts on vectors in Cn and is

also equivariant with respect to unitary operators.

4. Equivariance is achieved in a feedforward neural network without any

convolution layer.

Moreover, in Section 4, we have performed numerical experiments on the

simulation of a physical system using our ENN framework in the scenario
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when the rules governing the system might be unknown.

2. Related works

We compare our framework with previous approaches on equivariant neu-

ral networks.

Kondor and Trivedi (2018) proved analytically that convolutional struc-

ture is a necessary and sufficient condition for equivariance to the action of

a compact group. Therefore, many works designed the architecture of their

NN based on this theorem, where convolution layer is introduced. Cohen

and Welling (2016) introduced group equivariant convolution network. They

used features map functions on discrete group, so it only works with respect

to finite symmetry group.

Cohen et al. (2018) considered convolution NN of spherical images through

Fourier analysis using Wigner D-matrices. Kondor et al. (2018) improved the

implementation using Clebsch-Gordan decomposition, where the NN is op-

erated in Fourier space only. It avoids the need of switching back and forth

between Fourier and real spaces.

Thomas et al. (2018) shows if the input and output of each layer is a finite

set of point in R3 and a vector in a representation of SO(3), one can decom-

pose this into irreducible representation through convolution with spherical

harmonics and Wigner D-matrices. Esteves et al. (2020) implements exact

convolutions on the sphere using spherical harmonics. It maps spherical fea-

tures of a layer to the spherical features of another layers.

Convolution using spherical harmonics is analogous to Fourier transform

in signal processing. In practice, it only preserves the most significant coef-
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ficients. Error is inherently introduced due to truncated higher order terms.

Our newly designed feedforward neural network guarantees equivariance

without any convolution layer. We should note our ENN has structure in

vector form which is different from conventional NN structure in scalar form

that was considered by Kondor and Trivedi (2018). Besides, our implemen-

tation is much simpler than previous works.

Satorras et al. (2021) devised an equivariant graph NN (GNN) with re-

spect to E(n) operators (that include rotation, reflection and translation).

Similar to our approach, it does not contain convolution layer. The input

spatial coordinates are vectors. Due to the construction of a graph NN,

their spatial coordinates are not filtered by activation functions. Their spa-

tial coordinates are updated through averaging with respect to neighbors.

The number of neurons in each layer is restricted to be the same, where our

approach is general enough to allow different numbers of neurons in differ-

ent layers. In addition to the spatial coordinates on which the operators

act, their neural networks contain feature vectors which do not fall under

the equivariant aspect. We will also discuss involving extra features in our

approach below.

3. Theory

3.1. Definition of equivariance

In general, given a function ϕ : X → Y (where the domain X and the

co-domain Y might be different) and a group G, we assume that each element

g ∈ G induces group actions Tg : X → X and T̂g : Y → Y on X and Y ,

respectively. Then, the function ϕ is equivariant under G if for all g ∈ G and
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x ∈ X , the following holds:

ϕ(Tg(x)) = T̂g(ϕ(x)). (1)

Formally, a group action needs to satisfy Tg1g2 = Tg1 ◦ Tg2 for all g1, g2 ∈ G.

Invariant is the special case when for all g ∈ G, the group action T̂g is

the identity function on Y .

In this paper, we consider domains of the form Cn×M , which we interpret

as M points in Cn. We consider the unitary group U(n), where each ele-

ment corresponds a unitary operator on Cn. The unitary group contains the

orthogonal group O(n) (that corresponds to rotations and reflections) and

SO(n) (that corresponds to rotations only).

Given a unitary operator U : Cn → Cn, the group action on M points are

defined by (x(1),x(2), . . . ,x(M)) 7→ (Ux(1),Ux(2), . . . ,Ux(M)).

3.2. Structure of equivariant neural network

We construct a feedforward neural network with L−1 hidden layers. The

input layer is labelled as the 0th layer, and the output layer is the Lth layer.

For the (k + 1)th layer, its input is from the kth layer:

xk ∈ Cn×Mk , (2)

where Mk is the number of vector elements of

xk = {x(1)
k ,x

(2)
k , ...,x

(Mk)
k }. (3)

Each vector element x
(α)
k ∈ Cn is an n-dimensional vector. Similarly, we have

the output

xk+1 ∈ Cn×Mk+1 . (4)

6



We define a variable

yk = xkWk + ekbk. (5)

This definition is different from conventional feedforward NN. First, the xk

is a matrix and is put on the left hand side of the weight parameter. Second,

a new matrix variable ek is introduced. These two changes are crucial steps

to avoid the need to perform convolution.

The weight and bias parameters matrices

Wk ∈ CMk×Mk+1 (6)

bk ∈ CMk×Mk+1 (7)

and

ek =

{
x
(1)
k

||x(1)
k ||

,
x
(2)
k

||x(2)
k ||

, ...,
x
(Mk)
k

||x(Mk)
k ||

}
, (8)

where ||.|| is the norm of an n-dimensional vector. We note yk has the same

dimension of xk+1. Observe that for any unitary operator U , it holds that

||x(α)
k || = ||Ux(α)

k ||. (9)

For all α ∈ {1, 2, ...,Mk}, we can obtain

yk(Uxk) = UxkWk + Uekbk = Uyk(xk), (10)

where U is applied element-wise on each x
(α)
k .

Then, we define an activation function

σk+1(yk) = xk+1. (11)

for the (k+1)th layer. The activation function acts on each vector y
(α)
k ∈ Cn

in element-wise manner.
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We shall find an activation function that satisfies the following:

σk+1(Uyk) = Uσk+1(yk). (12)

This completes the construction of our feedforward equivariant neural net-

work for unitary transformations.

Observe that each layer is equivariant with respect to unitary operators

in the sense of equation (1). The reason is that if we transform the input

xk → Uxk, then its output will undergo the transformation xk+1 → Uxk+1;

in this case, the unitary operator can act element-wise on both the input

and the output spaces. Therefore, when we apply the group action, which

is now the unitary operator U , on the 0th layer input x0, the same operator

will propagate to the final layer output xL. It means if we put x0 → Ux0,

the output will become xL → UxL.

A possible choice of the activation function for each element can be a

softsign function with a small residue, that is

σ(u) =
u

1 + ||u||
+ u× a, (13)

where a is a (small) scalar constant, and u ∈ Cn. The small residue is to

avoid vanishing gradient of Loss function when u is large. We used this

activation function in our numerical experiment.

Alternatively, one may choose the identity function, that is

σ(u) = u, (14)

which in scalar form is a popular choice of activation function for the output

layer. Similarly, ReLu function and Leaky ReLu function in vector forms are

also equivariant with respect to unitary operators.
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3.3. Including local scalar features

We can introduce extra scalar features into our ENN, in addition to vector

elements. The idea is that we will increase the number of coordinates from

n to n+m, and we only consider unitary operations that do not change the

extra m coordinates.

Formally, for each input x
(α)
0 , we assume that it has m corresponding

scalar features which can be written as a vector h
(α)
0 = {h(α)

0,1 , h
(α)
0,2 , ..., h

(α)
0,m},

we can rewrite the input vector element into

x′(α)
0 = {x(α)

0 ,h
(α)
0 } ∈ C(n+m) (15)

and the unit vector

e′
(α)
k = {e(α)k ,1} (16)

where 1 is a vector with m elements and all equal 1. (Observe that in the

actual implementation, we can reduce 1 and the associated weights in the

model to a single scalar bias term.)

The operator can be rewritten in matrix form such that

U ′ =

 U 0

0 I

 (17)

where I is an identity m × m matrix. Plugging them back to equations in

previous subsection, they all hold, provided that the definition of norm can

fulfill, i.e.

||x′(α)
k || = ||U ′x′(α)

k ||. (18)

It essentially means we only apply the group action on part of the input

vectors, and keep the features part of the vectors fixed. Features can be
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anything that are quantifiable, such as color, brightness, contrast, electronic

charge, mass, humidity, level of pollutant, and etc.

Although at the output layer, we will get outputs x′
L ∈ C(n+m)×ML , the

Loss function can be defined only using part of it. We also need to be

careful that x′
L does not need to have the same unit or meaning as x′

0. For

example, if we considers a system of molecules, we may use positions as the

vector elements, and charges and masses as features. It mean we have vector

inputs in R(3+2)×M0 . Even we have vector outputs R(3+2)×ML , the prediction

can be forces, atomic energy, and a dummy value that does not enter the

Loss function. On the other hand, one can also add dummy input features

to make x′
0 and x′

L become longer vectors.

3.4. Backpropagation

We can derive an algorithm similar to the commonly known backprop-

agation. The essence of backpropagation is to reuse the information of the

gradient of the Loss function with respect to the elements in weight and bias

parameters. First, we define our Loss function:

L = C (T,σL(yL−1)) (19)

where T ∈ Cn×ML is the target data, and C is a non-negative real value

function being differentiable with respect to σL. For convenient, we write a

combined representation of the weight and bias parameters, such that zk =

{Wk,bk}. For each element in zL−1, the derivative

∂L

∂zL−1,pq

= δL−1
∂yL−1

∂zL−1,pq

, (20)

where

δL−1 =
∂C

∂σL

∂σL

∂yL−1

. (21)
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For other layers, in general, we can write

∂L

∂zL−k,pq

= δL−k
∂yL−k

∂zL−k,pq

, (22)

where

δL−k−1 = δL−k
∂yL−k

∂xL−k

∂σL−k

∂yL−k−1

. (23)

This allows us to reuse the information of δL−k in δL−k−1. However, it is

different from the conventional backpropogation, where the whole deriva-

tive of deeper layer is reused. We only use a part of the derivative in our

backpropagation procedure.

3.5. Permutation symmetry

The above construction of ENN has no permutation symmetry yet. We

say that a function ϕ having n inputs achieves permutation symmetry, if for

any permutation π on {1, 2, . . . , n} and any (x1, . . . , xn),

ϕ(x1, . . . , xn) = ϕ(xπ(1), . . . , xπ(n)). (24)

The order and the number of inputs of ϕ are fixed. In some applications,

we may partition the inputs and consider permutations within each part.

For instance, we can partition the inputs into Sa = {1, 2, . . . ,m} and Sb =

{m+1, . . . , n} such that for any permutations πa and πb on the corresponding

parts, permutation symmetry means:

ϕ(x1, . . . , xn) = ϕ(xπa(1), . . . , xπa(m), xπb(m+1), . . . , xπb(n)). (25)

Permutation symmetry should hold in some physical systems. For exam-

ple, if we have a molecular composed of H, C and O atoms, then each input

11



corresponds to an atom and the inputs can be partitioned according to the

type of atom. Then, atoms in each part can be permuted without affecting

the output.

One way to achieve permutation symmetry is to introduce a pre-processing

step in the first layer. Suppose there are N0 input vectors denoted by

(u(ξ) ∈ Cn : ξ ∈ {1, 2, ..., N0}). This step produces M0 vectors via a col-

lection of functions D(α) : Cn×N0 → Cn for each α ∈ {1, 2, ...,M0}. Since our

final neural network achieves equivariance, we require that for any unitary

operator U , the following holds:

UD(α)({u(ξ)}) = D(α)({Uu(ξ)}). (26)

In addition to being equivariant for unitary operators, we describe how

each D(α) also achieves permutation symmetry.

Achieving Permutation Symmetry by Summation. Even though

the functions implemented in a layer can look complicated, the principle

behind them to achieve permutation symmetry is very simple. An example

for ϕ in Equation (25) can be:

ϕ(x1, . . . , xn) =
n∑

i=1

xiw, (27)

where w is some trainable weight. The key observation is that w does not

depend on the index i, which is subject to permutation. Hence, when the

indices i are permuted, the value of the function does not change.

We can also express the idea of partitioning the n inputs and consider

permutation symmetry within each part. For example, each part is indexed

by δ (also known as a feature), and an index i having feature δ can be
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represented by viδ = 1 and 0, otherwise. Then, we can consider the following

function:

ϕ(x1, . . . , xn) =
∑
δ

n∑
i=1

xiviδwδ, (28)

where the trainable weights wδ again does not depend on the index i. Observe

that if indices i having the same feature δ are permuted, the value of the

function does not change.

Graph Neural Network Example. Applying the above principles for

permutation symmetry, we may consider adding a layer of GNN to our ENN.

First, we can write a set of scalar functions for node i,

D
(α)
i = v′iα = σ

(∑
j,β,δ

eβijvjδwβδα

)
(29)

where β are features of edge E, δ are features of node V, α are features of

node V′, σ is the activation function, and wβδα is a trainable rank-3 tensor

weight between features β, δ and α. We can see such scalar functions hold

permutation symmetry, and are rotational invariant. However, they are not

in vector equivariant form. We may resolve the issue by devising a set of

equivariant vector functions

D
(α)
i = v′

iα = σ

(∑
j,β,δ

uij

uij

eβijvjδwβδα

)
, (30)

provided that eβij is invariant with respect to the application of group action

on ui and uj, where uij = uj − ui. The vector activation function σ is also

required to be a vector equivariant function.

If we now consider a system of atoms, for atom i, it has N0 neighbors

within a cutoff distance rc. {rj ∈ R3|rij < rc} is the set of positions of
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neighboring atoms of atom i. We may consider each atom as a node. As a

special case, one can put

eβij =

 exp(−η(β)(rij − r
(β)
s )2)fc(rij), if i ̸= j

0, if i = j
(31)

where the interatomic distance between atom i and j is rij = |rij| = |rj − ri|.

The fc is a scalar smooth-out function such that at the cut-off distance

rc, fc(rc) = 0, and is continuous and differentiable up to at least second

derivatives. This is similar to the implementation in SchNet (Schütt et al.,

2018).

We further assume there is only one feature corresponding to δ, where

vj1 = 1, the weight is a Kronecker delta function wβ1α = δβα, and the acti-

vation function is an identity function. Equation 29 becomes:

D
(α)
i ({rj}) =

∑
j,j ̸=i

exp(−η(α)(rij − r(α)s )2)fc(rij), (32)

where α ∈ {1, 2, ...,M0}. The set of hyper-parameters {η(α), r(α)s } are pre-

determined values. Interestingly, this is in the same functional form as sug-

gested by Behler and Parrinello (2007) who mapped the local atomic en-

vironment to a set of atom-centered symmetry functions (or called spatial

descriptors) and used them to develop machine-learned interatomic potential.

Following similar logic, one may devise a set of vector function by aug-

menting above scalar spatial descriptor, such that

D
(α)
i ({rj}) =

∑
j,j ̸=i

rij
rij

exp(−η(α)(rij − r(α)s )2)fc(rij). (33)

It is straightforward to check

UD(α)
i ({rj}) = D

(α)
i ({Urj}), (34)
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which resembles equation 26. The subscribe j here is corresponding to the

superscribe (ξ) of u in equation 26.

We are not going to show any example on this. It is only to show theo-

retically that one can introduce permutation symmetry by adding an extra

layer of properly designed vector form GNN to our ENN.

3.6. Restrictions

Our implementation has strong restriction that the group action on the

input data is the same group action on the output data, and the group action

is restricted to unitary transformation. Therefore, if one applies the unitary

operator on the input data, but the target data does not experience the same

transformation, our method does not apply.

For example, in physical systems, quantities can have odd or even parity

symmetry. Parity transformation P : (x, y, z) 7→ (−x,−y,−z). For quanti-

ties with odd parity symmetry, they will have sign change according to the

parity transformation. Our ENN can be applied to predict these quantities.

However, for vector quantities with even parity symmetry, our ENN does not

apply. For example, in classical mechanics, the angular momentum

L = r× p (35)

If we apply the parity transformation, we get r → −r and p → −p, but we

still get

L = −r×−p. (36)

If we use r and p as the input data, we cannot use our ENN to predict L. A

possible solution is to manually apply sign change to target and output data

according to input data.
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For scalar quantities with even parity symmetry, it can be remedied by

converting xk at arbitrary k layers, where xk ∈ Cn×Mk , to invariant scalar

quantities, such as wp = f({xk}), where wp ∈ CMp , and plugging them into

other implementations of neural networks with Mp scalar inputs. An obvious

example is the scalar spatial descriptors for predicting the interatomic poten-

tial energy (Behler and Parrinello, 2007) as mentioned in previous subsection,

where energy has even parity symmetry.

4. Numerical Experiment

When the governing rules of a physical system are unknown, it is hard to

apply any analytical methods to study the evolution of a system. A viable

method nowadays is to adopt certain ML model supplied with a substan-

tial amount of data. After proper training, the model will attain certain

predictive power.

In atomic scale simulations, there are many developments on the inter-

atomic potentials using different ML methods, such as Gaussian process

(Bartók et al., 2010), neural network (Kondor, 2018; Batzner et al., 2022;

Behler and Parrinello, 2007) and moment tensor (Shapeev, 2016). Atomic

positions and atomic energies are used as the input and target data, re-

spectively. The atomic energies are usually obtained from density function

theory (DFT) calculations (Hohenberg and Kohn, 1964; Kohn and Sham,

1965). Atomic forces are then calculated as the derivative of the total energy

(or Hamiltonian). This approach is viable only if energy can be calculated.

Unfortunately, in many observations, energy is not a measurable quantity.

We may ask two questions here. First, can we predict forces directly from
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positions, without the need of knowing energies? This question is not limited

to atomic scale modelling. We can ask similar questions in meteorology and

cosmology. Second, can we predict multiple forces in a single calculation?

In conventional ML interatomic potential, only one force vector is calculated

from a ML machinery. We are going to use our ENN to show the possibility.

4.1. Model and data

We are going to simulate a system of 4-bodies motions governed by a

model Hamiltonian. Our aim is to predict the forces when atoms are locating

at different positions, and simulate the dynamics. We generate data using a

well defined physical model, which allows us to examine the errors.

We adopted a pair-wise Lennard-Jones potential for Argon (Rahman,

1964):

Uij = 4ϵ

((
r0
rij

)12

−
(
r0
rij

)6
)
, (37)

where ϵ/kB = 120 Kelvin, r0 = 3.4Å, and kB is the Boltzmann constant. A

plot of the potential energy is shown in figure 1.

The interatomic potential energy of the system is written as a sum of

pair-wise interaction energies, such that

U =
∑
i,j,i>j

Uij(rij), (38)

where rij = |ri − rj|. The force acting on atom i is

Fi = −∂U

∂ri
. (39)

We generated 100,000 set of positions in three dimensional space. Each set

contains the positions of 4 atoms. The x, y, and z coordinates of each atom
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Figure 1: A plot of the Lennard-Jones potential for Argon according to equation 37.

is generated randomly according to Gaussian distribution with mean equals

zero and standard deviation equals 3Å. Then, we calculate the interatomic

distance of each pair of atoms, if any of them smaller than rmin = 2.8Å,

we discard this set of positions and generate a new one. We repeat this

procedure until no interatomic distance is small than rmin. This is to avoid

the occurrence of very large atomic force due to small separation. We can

readily understand it by inspecting Fig. 1. The energy have a drastic increase

at around 3Å. Atoms can hardly be in such small separation in dynamic

simulations. Using these positions, we can obtain a set of four atomic forces

for each set of positions using the Lennard-Jones potential.

Instead of using the positions as inputs directly, we use the relative posi-

tions as inputs. It means we used

x0 = {r12, r13, r14, r23, r24, r34}. (40)

This takes care of the translational symmetry.
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The target data is simply the atomic forces

T = {F1,F2,F3,F4}. (41)

We rescaled both the input and target data by their standard deviations

before we use them to train a ENN. Data are split, where 60% is for training,

20% is for validation, and 20 % for testing.

4.2. Learning and errors

The relationship between the input and target data are learned by a ENN,

which has five hidden layers. The number of nodes in each layers counting

from input to output layers are 6, 50, 90, 100, 80, 50, and 4.

The Loss function is defined as

L =
1

Ndata

∑
data

(T− xL)
2, (42)

where Ndata is the number of used data and xL is the output data. The

weight parameters W are initialized according to normalized Xavier method

(Glorot and Bengio, 2010). The bias parameters b are initialized to zeros.

The training of ENN is performed through minimizing the Loss function

with respect to {W,b}. We used the FIRE algorithm (Bitzek et al., 2006).

It is a minimization method commonly used for relaxing atomic structures.

It is similar to the Nesterov momentum method (Nesterov, 1983), and has

fast convergence behavior in practice. We briefly discuss the method and our

adaptation in Appendix.

In Fig. 2, it shows the change of the value of the Loss function calculated

using the training data and validation data. We performed 10 million iter-

ation steps. We can see both of them drop significantly. As expected, the
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Figure 2: The value of Loss function (unitless) calculated using training data and validation

data as a function of iterative steps using FIRE algorithm.

training loss drops more than validation loss. However, we can see both of

them remain dropping. It deems to be not suffering from overfit. We stopped

the iteration as we can observe fluctuations of the training loss.

Using testing data, we can calculate the atomic forces analytically accord-

ing to the Lennard-Jones potential and predict them by our trained ENN. In

Fig. 3, the analytic and predict values are plotted against each others. We

plotted all the x, y, and z components of the data. The root mean square

deviation (RMSD) is 0.00118 eV/Å. As we can observe the training data that

forces is in the order of 0.1 to 1 eV/Å, the average error is in the order of

0.001 eV/Å, the training is fairly satisfactory.

4.3. Dynamic simulations

We are going to use the forces predicted by our trained ENN to drive the

evolution of a system of four Argon atoms using molecular dynamics (MD).
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Figure 3: Each component of the atomic forces calculated analytically using the Lennard-

Jones potential versus the prediction calculated using the trained ENN. They are calcu-

lated using the testing data.

We will also compare it with analytic solutions. We should note our ENN

was not trained to any trajectory of atomic motion. All training data are

static. No history dependent information was involved in the training.

The motion of atoms are governed by the Newton’s equations

dpi

dt
= Fi, (43)

dri
dt

=
pi

mi

, (44)

where the position and momentum of atom i are ri ∈ R3, pi ∈ R3 and the

atomic mass is mi.

Using our trained ENN, we can predict the atomic forces {Fi}. On the

other hand, if the analytic form of a Hamiltonian is know, the atomic force

is

Fi = −∂H
∂ri

(45)
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Figure 4: The root-mean-square-derivation (RMSD) of positions with respect to analytic

solution and prediction by our trained ENN. The RMSD is calculated across 10 samples.

Each sample contains 4 atoms.

where the a Hamiltonian:

H =
∑
i

pi
2

2mi

+ U({ri}). (46)

Without introducing perturbation and dissipation, this dynamic system is a

closed system. Total energy should conserve.

We initialized ten samples. The positions of Argon are initialized at

(3, 0, 0.1), (−3,−0.1, 0), (0.1, 2.5, 0), and (0,−2.5,−0.1), where unit is Å.

Velocities are generated randomly with kinetic energy corresponding to a

temperature of 10 Kelvin. The mass of an Argon atom is 39.948u. We

integrated the Newton’s equation using velocity Verlet algorithm. We used

a time step of 1fs, which is a conventional value for MD simulations.

We calculated the RMSD of the positions of atoms. It is defined as

RMSD({ri}) =
√

1

NsNat

∑
samples,atoms

(rai − rpi )
2 (47)
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Figure 5: The x component of the position of atom 1 in sample 1. Analytic solution and

prediction are shown.

where Ns = 10 is the number of sample, Nat = 4 is the number atoms in a

sample, rai is the position of atom i calculated according to analytic solution,

and rpi is the position calculated using forces predicted by ENN.

In Fig. 4, it show the RMSD of positions as a function of MD steps. As

expected, they deviate more and more as a function of steps, because the

error is accumulating throughout the simulation. We may inspect the real

trajectory of an atom in Fig. 5. It shows the x component of atom 1 in

sample 1. We can see the initial 1500 MD steps predictions are fairly good,

and up to 4000 MD steps are acceptable. Our ENN shows certain predictive

power, and the predictions are three dimensional vectors.

We calculated the RMSD of the system energies. It is defined as

RMSD(E) =

√
1

Ns

∑
samples

(Ea − Ep)2 (48)

where Ea and Ep are the total energy calculated using equation 46. The
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Figure 6: The RMSD of energy calculated using the positions calculated analytically or

using ENN.

Figure 7: The system energy of sample 1. Analytic solution and prediction are shown.
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potential energy are calculated using the positions of atoms that evolve ac-

cording to forces calculated analytically or by prediction using ENN.

In Fig. 6, it shows the RMSD of energy across ten samples. Again, we

can see deviation accumulating. However, we should know in the training of

ENN, we did not provide any information about energy to the training. If we

look at around 4000 steps, the RMSD is less than about 4× 10−4 eV, which

is about 2 order of magnitude smaller than the system energy. Our results

are encouraging. It shows even if we don’t know the system total energy (or

Hamiltonian), we can still predict forces, which are vectors, using our ENN.

We can also predict multiple forces at the same time.

5. Conclusion

We have designed a new feedfoward ENN for unitary transformation. It

does not involve convolution with higher order representation, such as spher-

ical harmonics and Wigner matrices. Moreover, our model works for vectors

in arbitrary dimensions. Our ENNs can be trained by efficient backprop-

agation and an extra layer of GNN can be added to achieve permutation

symmetry. An example on the dynamics of Argon atoms is given showing

the practicality of our architecture via empirical simulations.
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Appendix A. FIRE minimization algorithm

FIRE (fast inertial relaxation engine) (Bitzek et al., 2006) is a mini-

mization algorithm commonly used in atomic scale simulation for structural

relaxation. We are going to briefly mention the algorithm below and discuss

our adaptation.

Assuming we have a system of atoms governed by the Hamiltonian H,

we may find a configuration with potential energy at local minimum through

following steps.

Step 1: Define parameters Nmin, finc, fdec, αstart, fα, ∆t, ∆tmax, and imax.

Set α = αstart, N = 0, and i = 0.

Step 2: Set the initial positions x and atomic mass m. Initialize velocities

v = 0.
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Step 3: Calculate the atomic forces F = −∇H(x).

Step 4: Put

x(t+∆t) = x(t) + v∆t,

v(t+∆t) = v(t) +
F

m
∆t.

Step 5: Calculate P = F · v.

Step 6: Put N → N + 1 and set

v → (1− α)v + α|v| F
|F|

. (A.1)

Step 7: if P > 0 and N > Nmin, set

∆t → min(∆tfinc,∆tmax)

α → αfα

Step 8: if P ≤ 0, set

∆t → ∆tfdec

v → 0

α → αstart

N → 0

Step 9: Set i → i+ 1. Go to Step 3, or end if i > imax.

In our case, we are minimising the Loss function with respect to the weight

and bias parameters {W,b}. We flattened {W,b} to a column vector and

treat it as x. We also flattened the gradient of the Loss function and treated

it as the negative of F. After some trials and errors, we used a pseudo mass

m = 0.1, ∆t = 0.001, and ∆tmax = 0.01. For other parameters, we follow the

original suggestions (Bitzek et al., 2006), Nmin = 5, finc = 1.1, fdec = 0.5,

αstart = 0.1, and fα = 0.99.
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