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ABSTRACT8

A machine-learned spin-lattice interatomic potential (MSLP) for magnetic iron is developed and applied to mesoscopic scale
defects. It is achieved by augmenting a spin-lattice Hamiltonian with a neural network term trained to descriptors representing a
mix of local atomic configuration and magnetic environments. It reproduces the cohesive energy of BCC and FCC phases
with various magnetic states. It predicts the formation energy and complex magnetic structure of point defects in quantitative
agreement with density functional theory (DFT) including the reversal and quenching of magnetic moments near the core
of defects. The Curie temperature is calculated through spin-lattice dynamics showing good computational stability at high
temperature. The potential is applied to study magnetic fluctuations near sizable dislocation loops. The MSLP transcends
current treatments using DFT and molecular dynamics, and surpasses other spin-lattice potentials that only treat near-perfect
crystal cases.

9

Introduction10

The success of density functional theory (DFT)1, 2 has drastically advanced the scientific and technological aspects of materials11

development due to its unprecedented predictive power at a modest computational cost. However, the order O(n3) scalability of12

DFT calculations, where n is the number of electrons, has severely limited the simulation box size and time scale. Machine-13

learned potentials have demonstrated their ability to perform scalable atomic scale simulations with DFT accuracy using only a14

fraction of its computational requirements3. Since the seminal work of Behler and Parrinello4, who introduced the concept of15

invariant descriptors to represent local chemical environment, a range of machine-learned potentials based on kernel methods5, 6
16

and network networks7–10 have been developed and applied to investigate real physical problems.17

Spin-polarized and non-collinear magnetism are well established extensions of DFT for magnetic materials but their results18

are valid only for the electronic ground state. Attempts to mimic magnetic excitation by coupling spin dynamics to constrained19

non-collinear calculations have been made11, 12. However, the limitations of the DFT method on the simulation box size has yet20

to be overcome. In addition the effects of magnetic excitation and their interaction with atomic trajectories are irreconcilable21

within the framework of classical molecular dynamics (MD)13.22

Nevertheless, magnetic effects cannot be ignored in many situations. In magnetic iron, the bcc-fcc and fcc-bcc phase23

transitions at 1185K and 1667K, respectively, are due to the competing phonon and magnon free energies14–18. The softening24

of tetragonal shear modulus C′ near the Curie temperature TC
19, 20 and stability of anomalous ⟨110⟩ dumbbell self-interstitial25

atom (SIA) configurations21–23 are also believed to be magnetically driven. Itinerant ferromagnetism, in the form of increased26

magnitudes of magnetic moment, have been linked to the stability of grain boundaries and intergranular cohesion24.27

Spin-lattice dynamics25 was developed to treat both spin (magnetic) and lattice degrees of freedom within a unified28

framework. Spin-lattice dynamics is a general framework similar to molecular dynamics and applicable to any arbitrary atomic29

scale Hamiltonian. The latest development on the Langevin spin equation of motion26 allows simultaneous treatment of both30

the rotation and longitudinal fluctuations (magnitude) of magnetic moments. In most other studies the magnitudes of magnetic31

moments are assumed to be fixed27–29 or have been performed on a fixed lattice30, 31. Whilst spin-lattice dynamics has been32

used to investigate a variety of microscopic dynamic effects in iron14, 25, 27–29, 32, 33, there is still not a spin-lattice potential33

capable of simultaneously modelling mechanical deformations, magnetic fluctuations and defect properties13.34

The difficulty of developing spin-lattice potentials are two-fold. First, a spin-lattice potential has double the degrees of35

freedoms (6N) of a conventional MD potential (3N), where N is the number of atoms. A substantial amount of extra data is36

required for potential fitting for each extra degree of freedom, drastically expending the representable phase space. Recent37

data-driven techniques can aid in parameter optimisation for such cases33. Second, potentials that adopt the Heisenberg or38



Heisenberg-Landau functional form in various studies23 are shown to be too restrictive to near-perfect crystal cases. A good39

functional form that is applicable to both perfect and defective configurations is yet to be derived.40

Machine-learned potentials for spin-lattice dynamics that go beyond the need of a well defined functional form could be a41

viable solution10, 34. While the number of machine-learned potentials for iron has rapidly increased over the past decade3, 35–37,42

applications including explicit spin degrees of freedoms are very limited. Recently, Nikolov et al.33 produced a machine-learned43

spectral neighbor analysis potential. Since they kept using the Heisenberg functional form, the potential does not consider the44

change of the magnitudes of magnetic moments due to thermal excitation or the change of local atomic environment. Novikov45

et al.38 developed a moment tensor spin-lattice potential that includes longitudinal fluctuation, but they limited their approach46

to collinear configurations near perfect crystal structures. Domina et al.34 extended the spectral-neighbour representation to47

be applicable to non-unit vector fields such as spin. Whilst no dynamics was performed, their approach shows an excellent48

ability to predict the energies of non-collinear states relative to a prototype model of iron for configurations with small atomic49

displacements from the perfect BCC lattice.50

In this work, an alternative approach is taken. We built on a conventional spin-lattice model known to work well near51

equilibrium conditions for BCC iron. Then, an additional neural network term is trained to reduce the error of the conventional52

spin-lattice model near equilibrium and to learn the missing physics as the environment deforms. Such an approach is distinct53

from the method by Nikolov33 which trained a SNAP potential and converted into a spin-lattice model by adding a pairwise54

Heisenberg potential. However, bilinear exchange interactions between different phases of iron are incompatible14 and non-55

Heisenberg exchange interactions become important in defect states23, 39, 40. In the presented work, the magnetic interactions56

are trained to provide complex interactions beyond conventional functional forms.57

We show that our newly developed machine-learned spin-lattice potential (MSLP) is capable of describing the complex58

magnetic states at highly deformed as well as near-perfect configurations. Our MSLP for iron has good quantitative agreement59

with DFT data and good computational stability at high temperature simulations. The calculated TC is also in good agreement60

with experimental value. We also apply the MSLP to study the magnetic effect of mesoscopic scale dislocation loops in iron61

at finite temperature, which cannot be achieved using DFT and MD, or using other available machine-learned spin-lattice62

potentials.63

Results64

Magnetic states in BCC and FCC structures65

Table 1. The equilibrium lattice constant a0, the magnitude of spontaneous magnetic moment |M|, and the relative energy
difference with respect to the BCC ground state ∆E calculated using our machine-learned spin-lattice potential (MSLP) for iron
at non-magnetic (NM), ferromagnetic (FM), single layer antiferromagnetic (SL-AFM), and double layer antiferromagnetic
(DL-AFM) states in BCC and FCC structures. DFT calculations using VASP and OpenMX are shown for comparison. Details
are in Supplementary Materials.

MSLP DFT (VASP) DFT (OpenMX)
a0 |M| ∆E a0 |M| ∆E a0 |M| ∆E

(Å) (µB) (eV/atom) (Å) (µB) (eV/atom) (Å) (µB) (eV/atom)
FM 2.817 2.16 2.831 2.19 2.842 2.25

BCC SL-AFM 2.824 1.54 0.36 2.800 1.34 0.46
NM 2.753 0.00 0.42 2.764 0.00 0.47 2.766 0.00 0.56
DL-AFM 3.470 2.08 0.08 3.466 2.04 0.08 3.476 2.38 0.10

FCC SL-AFM 3.494 0.96 0.16 3.494 1.30 0.12 3.435 2.00 0.13
FM 3.47 1.03 0.15 3.50 1.00 0.16 3.648 2.63 0.12
NM 3.428 0.00 0.18 3.456 0.00 0.16 3.462 0.00 0.25

We investigated an essential feature being necessary for a MSLP for iron, which is the relative stability of various magnetic66

states in BCC and FCC structures. We initialized the ferromagnetic (FM), single-layer antiferromagnetic (SL-AFM), and67

non-magnetic (NM) states in both BCC and FCC structures, and additionally the double-layer antiferromagnetic (DL-AFM)68

state in FCC. We relaxed the simulation box and magnetic moments using conjugate gradient method, but with a small mixing69

step, to ensure the relaxation would stop at local minimum. Table 1 summarizes our results. It shows the equilibrium lattice70

constant a0, the magnitude of spontaneous magnetic moment |M|, and the relative energy difference with respect to the BCC71

ground state ∆E. DFT data calculated using both VASP41–44 and OpenMX45 packages are shown for comparison.72

FM BCC is the most stable state. There is small underestimation of the a0 (-0.5%) and |M| (-1.4%) compared to VASP data.73

The DL-AFM is the lowest energy collinear state in FCC, which is 80 meV/atom higher than the FM BCC phase. The energy74
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Figure 1. Dynamic stability and properties of the machine-learned spin-lattice dynamics potential (MSLP) for iron.
Comparison of instantaneous (a) total energies per atom and (b) lattice parameter per unit cell between 2,000 atom
(10×10×10) and 128,000 atom (40×40×40) simulation cells at 10 K and 100 K. (c) Lattice constants and (d) magnetization
(|M|= |∑i Mi|/N) calculated using our MSLP for iron using a simulation boxes containing 2,000 and 16,000 atoms. Standard
deviation of data are shown as error bars. Details are in Supplementary materials. Subfigures in (c) show snapshots of the
ferromagnetic arrangement of magnetic moments at 10 K and the paramagnetic state at 1300 K.

of other magnetic states are also in quantitative agreement with DFT data. The NM FCC was shown to have free energy lower75

than NM BCC at all temperatures14. Magnetism stabilizes the BCC structure14–18. Our MSLP reproduces this phenomenon.76

In BCC iron, the formation of spontaneous magnetic moment reduces the energy by 0.42 eV/atom. By varying the77

magnitude of magnetic moment, we can plot the Landau-functional-like energy well (Supplementary Materials). The position78

and depth of the minimum for FM state is well reproduced resulting in accurate properties of the FM BCC phase. However, a79

small discrepancy on the profile of the curve compared to DFT data can be observed for small magnetic moments. We note our80

MSLP predicts a different order of stability of the magnetic states in FCC relative to VASP data, where a low spin FM state has81

slightly lower energy than the SL-AFM. On the other hand, DFT data from OpenMX predicts the same order of stability as our82

potential. This highlights the complexity of the potential energy surface of iron where the relative stability of magnetic states is83

in the order of 0.01 eV.84

Our MSLP produced various magnetic states quantitatively as good as the moment tensor spin-lattice potential developed85

recently by Novikov et al.38, which is valid only near-perfect crystal collinear regime.86

Whilst some perfect HCP configurations were included in the database to help smooth the trained potential energy surface,87

we would not expect the current parameterisation to perform well for HCP structures since the data was limited and weakly88

weighted. More details on the comparison of energies, forces, stresses and effective magnetic fields with respect to DFT data89

are in Supplementary Materials.90

Finite temperature properties: lattice constant and Curie temperature91

The main purpose of developing a MSLP is to perform dynamic simulations at finite temperature and observe the time evolution92

of a system. We implemented our MSLP into SPILADY46. It allows spin-lattice dynamics to be performed with longitudinal93
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Table 2. Magnetic moments in the vicinity of a ⟨110⟩ dumbbell self-interstitial atom and vacancy configurations. The core,
compressive and tensile sites refer to the positions defined in the inset of Fig. 2. They are all in unit of Bohr magnetons (µB).
Bulk-like refers to atoms far from the defect core.

Defect Site MSLP VASP-PAW OpenMX23 VASP-USSP51

Core -0.28 -0.21 -0.30 -0.18
⟨110⟩DB Compressive 1.70 1.66 1.87 1.52

Tensile 2.31 2.37 2.45 2.30
1NN 2.23 2.43 2.53 2.70

Vacancy 2NN 2.08 2.08 2.13 2.41
3NN 2.10 2.21 2.24
Bulk-like 2.11 2.19 2.22 2.52

fluctuations of magnetic moments25, 26, 47 which is a unique feature of the code and a fundamental concept built into the MSLP.94

The initial calculations prove dynamic stability. In spin-lattice dynamics it is important that the potential energy surface is95

smooth and continuous because both atomic forces and effective magnetic fields are derivatives of the Hamiltonian. A small96

abnormality may generate unexpected artefacts such as large forces or magnetic fields that destroy the system. Figure 1a shows97

the total energies of 2,000 and 128,000 atom FM BCC Fe spin-lattice dynamics simulations in NPT ensembles. The magnitude98

of energy fluctuation is inversely proportional to the number of particles. The average energy of both size runs are equivalent99

with no evidence of drift. Figure 1b shows the lattice parameters of the same calculations confirming the consistency of the100

potential with simulation size. Scalability is important since simulations of the order 105 and larger are beyond the current101

capability of DFT studies of metallic systems.102

We examined the change of lattice constants and TC of our MSLP for BCC iron. We created cubic simulation boxes103

containing 2,000 and 16,000 atoms. Fig. 1c shows the lattice constant, which is calculated from the time average of the linear104

dimension of a varying simulation box with pressure set to zero. The lattice constant monotonically increases with a smooth105

slope as temperature increases. It is generally underestimated but comparable to other MD potentials48. The standard deviation,106

which is shown as the error bar, remains small even at high temperature showing good stability of our potential.107

TC is an unique indicator of a spin-lattice potential. BCC iron undergoes ferromagnetic to paramagnetic phase transition at108

1043K49. Fig. 1d shows the calculated magnetization |M|= |∑i Mi|/N. Calculations were performed in a smaller step of 25K109

near the TC. The calculated TC is around 900K, which is in reasonable agreement with experiment.110

We also tried to quench a system from 1000 K, which is in the paramagnetic regime for the parameterisation, to temperatures111

below TC. A ferromagnetic monodomain is recovered. However, since spin-orbit coupling has not been considered in the model,112

there is no magnetic easy axis, so the magnetisation may align along any orientation.113

Upon thermalisation an unexpected and unphysical drop in the magnetisation is observed (T < 100 K). This artifact of114

the current parameterisation arises due to the poor reproduction in the curvature of the magnetisation energy (SM-Fig 4)115

when defect states were included in the training data. As a further consequence, the reduction in the magnitude of the excited116

magnetic moments reduces their interaction strength, reducing correlation at high temperatures and can partially account for the117

underestimation of the Curie temperature. Tailoring the Curie temperature during the fitting process is limited as it is not a118

directly trainable quantity and relates to the curvature of the exchange interactions. Improvements could be made by training119

future models using more complete feature representations such as spectral neighbours for vector fields derived recently by120

Domina et al.34. One may also observe our model produces the classical profile of the magnetisation curve despite careful121

training to accurate quantum mechanical data from DFT calculations. This is due to the mapping of the fluctuation-dissipation122

terms to the Gibbs distribution in the generalised Langevin spin dynamics approach used to evolve our equations of motion26, 47.123

Qunatisation of the vibrational thermodynamics could be considered by using the quantum fluctuation-dissipation relations124

which incorporate Bose-Einstein statistics50.125

Point Defects: Self-interstitial Atom and Vacancy126

DFT calculations show that in highly distorted lattice structures, complex magnetic configurations can be observed. Existing127

spin-lattice potentials14, 25, 33, 38 remain incapable of capturing such phenomena even for point defects. The magnitudes of128

magnetic moments near the defect core can be suppressed or even in reverse alignment with respect to the bulk51. Models that129

only adopt the Heisenberg Hamiltonian cannot produce physically correct point defect migration as the model does not allow130

change of magnitudes of magnetic moments according to the change of local electronic structure23. Additional Landau terms131

in the Hamiltonian which are functions of local environment may be a solution, but correct treatment of itinerant properties132

remain unresolved23.133
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Figure 2. A snapshot of (a) a ⟨110⟩ dumbbell self-interstitial atom configuration and (b) a mono-vacancy in iron at 10K.
Magnitudes of magnetic moments are indicated according to the colour bar. The insets shows the schematic configurations. For
the SIA, the schematic indicates the core (blue), compressive (green) and tensile (red) sites.
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In BCC iron, the most stable SIA configuration is a ⟨110⟩ dumbbell configuration21, 22. Using our MSLP, we performed134

annealing simulations with initial configurations including either a ⟨110⟩ or ⟨111⟩ dumbbell, in a cell with 2001 atoms. The135

cells were initially thermalised to 10K and gradually decreased to 0K for 5ps. Both SIA configurations relaxed to maintain/form136

a ⟨110⟩ dumbbell. We can understand this through nudged elastic band DFT calculations which show no intermediary energy137

barriers across the migration pathway between the ⟨111⟩ and ⟨110⟩ SIA configurations (see Supplementary Materials). A138

⟨111⟩ SIA configuration will inevitably relax to a ⟨110⟩ dumbbell when small perturbations exist. A snapshot of a spin-lattice139

dynamics simulation of the ⟨110⟩ configuration at 10K is shown in Fig. 2a. The magnetic moments were plotted with unit140

magnitude for ease of viewing. Their magnitudes are represented by colour.141

We examined the magnetic configuration in the core of a ⟨110⟩ dumbbell. The magnetic moments in and surrounding the142

core are listed in Table 2. It shows very good agreement in comparison to DFT calculations: VASP with PAW pseudopotentials143

(current work), VASP with ultrasoft pseudopotentials (USPP)51, and OpenMX23. The magnitude of the magnetic moments144

within the defect core are larger than the VASP-PAW data that the potential was trained to, but is similar to those produced by145

OpenMX. Likewise, for the tensile site the magnetic moments predicted by the MSLP are smaller than VASP-PAW data but146

are comparable to VASP-USSP data. Generally, the magnetic moments are reproduced in quantitative agreement with DFT147

calculations. In the core of the interstitial defect, magnitudes of magnetic moments are approximately 1/10th of bulk and in148

anti-alignment to the bulk. Enhanced magnitudes can be observed on the tensile sites and slightly reduced magnitudes on the149

compressed sites. In additional to the most stable configuration, our MSLP reproduced the correct order of stability of SIA, i.e.150

the formation energy of ⟨110⟩ < tetrahedral < ⟨111⟩ < ⟨100⟩ < octhahedral (see Supplementary Materials).151

Another point defect that we explored is the mono-vacancy (VFe). Annealing simulations were performed using a 1999152

atoms cell containing a single vacancy. Table 2 shows the calculated values of magnetic moments in the vicinity of the defect153

site. Fig. 2b shows a snapshot of the system near the vacancy during dynamics. DFT calculations indicate that the magnetic154

moments directly adjacent to a vacancy are larger. This occurs due to the increased volume to which their moments can relax.155

The magnitude of the magnetic moments in the 1st nearest neighbour (NN) sites are approximately 11%, 14% and 6.7% larger156

for the VASP-PAW, OpenMX and VASP-USSP calculations. The increase is only 5.6% using the MSLP. Conversely, the157

magnetic moments of the 2nd NN to the vacancy have reduced magnitudes. Our potential predicts a reduced magnetic moment158

relative to bulk in line with DFT calculations, but the proportion is diminished. By the 3rd NN sites, the magnetic moments are159

bulk-like in all cases. Our MSLP predicted the correct trend of the changes, but generally gives a smaller value.160

Extended defects: prismatic dislocation loops161

We applied our MSLP to sizable systems that cannot be addressed by DFT. We constructed two simulation cells which are162

pre-relaxed using the Malerba 2010 Fe potential52 through the conjugate gradient implementation in LAMMPS. In the first cell163

we created a square SIA loop with b = a0[001] consisting of 265 atoms in a box containing 128,265 atoms. In the second, a164

circular SIA loop with b = a0
2 [111] was constructed with 261 atoms in a box containing 139,287 atoms. The relaxed prismatic165

dislocation loops identified using the dislocation extraction algorithm (DXA) are shown in Fig. 3(i)a for the ⟨100⟩ loop and166

3(ii)a for the 1
2 ⟨111⟩ loop.167

We chose these dislocation loops as representative examples because both kinds of loop can be experimentally observed168

in α-iron. Iron is known to be anomalous, forming ⟨100⟩-type prismatic edge dislocations at temperatures above 550◦C53, 54
169

despite the isotropic elasticity favoring dislocation loops with smaller Burgers vectors such as 1
2 ⟨111⟩. Analytic linear elasticity170

solution suggests the softening of C′, which is a magnetic effect, accounts for the observation of square ⟨100⟩ loops at high171

temperature55, 56.172

The MSLP offers analysis of magnetic excitation in the vicinity of these extended defects for the first time. As such, we173

performed spin-lattice dynamics calculations in NPT ensembles at both 10K and 800K using the MSLP, evaluating the local174

stress and magnetic configurations of both loop types. Data for the ⟨100⟩ prismatic loop at 10 K are shown in subfigure 3(i)175

whereas the 1
2 ⟨111⟩ loop results are in subfigure 3(ii). For both loop types we present positive and negative isosurfaces of176

the stress field introduced by the defects. Specifically, we evaluated Tr(σ k
i j), where σ k

i j is the Virial stress tensor of atom k177

computed using our MSLP.178

Yellow/blue isosurfaces show the compressed/tensile regions where atoms contribute Tr(σ k
i j)=±0.017 GPa to the stress179

for the ⟨100⟩ loop and Tr(σ k
i j)=±0.024 GPa for the 1

2 ⟨111⟩ loop. (c) and (d) show the contour maps of Tr(σ k
i j) and magnetic180

moment magnitudes on a (100) or (1̄21̄) plane intersecting the centre of the dislocation loops. (e) shows the magnetic moment181

vectors of atoms near the loop superimposed on the contour map. To visually compare the stress and magnetic configuration, we182

present an overlay of the stress isosurface with a snapshot of the non-collinear magnetic moments. The magnetic moments are183

coloured according to their magnitude, with red/orange hues representing oversized moments, blue/dark-green hues for small184

and green moments for bulk-like magnitudes (|M| ≈ 2.0µB). Vector fields of the time averaged moments with the same colour185

scheme are presented in (g) highlighting the magnetic moments in the core region of the dislocation. A strong correlation is186

evident between the local stress and the magnetic moments. Regions under tension, which have a comparatively larger volumes187
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Figure 3. Spin-lattice dynamics simulations performed at 10 K for the (i) ⟨100⟩ and (ii) 1
2 ⟨111⟩ interstitial dislocation loops.

(a) Dislocation identified using the dislocation extraction algorithm (DXA). (b) The compressive and tensile stresses caused by
the dislocations are shown via the isosurface of Tr(σ k

i j), where σ k
i j is the Virial stress tensor of atom k. (c) 2D contour plot of

Tr(σ k
i j) through the (010) or (1̄21̄) plane bisecting the centre of loop. (d) 2D contour plot of the magnetic moment magnitudes

on the same plane as (d). (e) Contour plot of magnetic moment magnitudes overlayed with a sample of the instantaneous
magnetic moment vectors for atoms near the loop. (f) Overlay of magnetic moments near the loop with the stress tensor
isosurface showing relation between compressive (blue) and tensile (yellow) regions with large (red/orange) and small
(blue/green) magnetic moments (see colourbar). (g) Vector field of the magnetic moments near the dislocation loops
highlighting the core of the dislocations with suppressed magnetic moments and the enhanced moments directly adjacent.
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Figure 4. Spin-lattice dynamics simulations performed at 800 K for the (i) ⟨100⟩ and (ii) 1
2 ⟨111⟩ interstitial dislocation loops.

(a) The compressive and tensile stresses caused by the dislocations are shown via the isosurface of Tr(⟨σ k
i j(t)⟩), where ⟨σ k

i j(t)⟩
is the time averaged Virial stress tensor of atom k. (b) 2D contour plot of Tr(⟨σ k

i j(t)⟩) through the (010) or (1̄21̄) plane
bisecting the centre of loop. (c) 2D contour plot of the magnetic moment magnitudes on the same plane as (b). (d) Sample of
the instantaneous magnetic moments during dynamics of atoms in and near the dislocation loop. (e) Vector field representing
the averaged magnetic moments near the loop.
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per atom, cause magnetic moments to increase relative to their bulk value. On the other hand, regions which are compressed188

result in reduced magnitudes of the magnetic moments. This is most evident in the core of the dislocation line.189

Data pertaining to the ⟨100⟩ and 1
2 ⟨111⟩ prismatic loops at 800 K are presented in subfigures 4(i) and 4(ii), respectively.190

Despite the simulations operating at high temperature on structures far from the training data, the simulations remain stable and191

well behaved. To smooth variations due to thermodynamic perturbations, the isosurfaces presented in (a) represent Tr(⟨σ k
i j(t)⟩),192

where ⟨σ k
i j(t)⟩ is the time averaged Virial stress over the simulation. (b) and (c) present contour maps of the time averaged193

stress (Tr(⟨σ k
i j(t)⟩)) and magnitudes of the magnetic moments on a (100) or (1̄21̄) plane cross section through the dislocation194

loops. Snapshots of the non-collinear magnetic moments in and near the dislocation loops during dynamics at 800 K are shown195

in (d). The magnetic moments near the defects become highly disordered relative to the bulk-like atoms. Importantly, the time196

averaged magnetic moments shown in (e) for the tensile region of the dislocation are already acting paramagnetic despite the197

sample being below the Curie temperature.198

Discussion199

A new machine-learned spin-lattice potential (MSLP) for iron that can simultaneously simulate the mechanical and magnetic200

responses at finite temperature for both near-perfect and highly distorted configurations is developed. It is achieved through201

combining the knowledge of a conventional spin-lattice potential and a neural network term implemented using both local202

atomic and magnetic descriptors. Each magnetic moment is a three dimensional vector, where both the direction and magnitude203

depend on the local atomic environment and can be perturbed by thermal excitation.204

Our MSLP shows near DFT accuracy on perfect crystals and point defect configurations. It produces quantitatively accurate205

predictions of various magnetic states in both BCC and FCC phases. The complex magnetic configurations in the vicinity of206

the core of vacancy and self-interstitial atom configurations, including the magnetic moment reversal and quenching at the core,207

were correctly reproduced. The order of stability of SIA configurations is compatible with DFT, where the ⟨110⟩ dumbbell is208

most stable.209

Spin-lattice dynamics is performed to calculate the Curie temperature, which is in good agreement with experiment49. We210

apply our potential to study the magnetism of mesoscopic scale dislocation loops at finite temperature. Non-collinear magnetic211

moments about prismatic dislocation loops were investigated for the first time. We show moment magnitudes are suppressed in212

regions of compressive stress and are enhanced in regions of tensile stress. This transcends the capability of DFT and MD213

methods, as well as currently available MSLPs for iron. These simulations show good numerical stability at high temperature.214

Whilst the current MSLP is tailored to iron, the framework is flexible and can be applied to a large class of magnetic materials215

and alloys.216

Methods217

Hamiltonian of machine-learned spin-lattice potential218

In many other developments of machine-learned potentials4, 9, 33, 38, the potential energy is defined as the output of a machine-219

learned machinery without any presumptions. The difference in the energy landscape can be up to the order of several eV, whilst220

requiring the accuracy and precision to be within at least 10−3 eV. Smoothness of the energy landscape is also a requirement of221

machine-learned potentials because atomic forces are calculated as the derivative of the potential energy. It necessitates a broad222

coverage of training data, especially near extrema. One can optimize their machine-learned potential by supplying sufficient223

data to cover important parts of the phase space38 or generate massive amount of data in brute-force to cover the whole phase224

space33.225

On the other hand, if one can supply a mean function before performing the learning process, the machine-learned machinery226

can then be used as a correction term. A properly chosen mean function can significantly reduce the amount of training data57.227

We follow this logic and define our spin-lattice Hamiltonian as follows:228

H (R,P,M ) = ∑
i

p2
i

2m
+V (R,M ), (1)

where229

V (R,M ) =V NM(R)+V HL(R,M )+V NN(R,M ). (2)

The Hamiltonian depends on the momenta P = {p1,p2, ...,pN}, atomic positions R = {r1,r2, ...,rN} and magnetic moments230

M = {M1,M2, ...,MN}. The potential energy V contains three terms. The non-magnetic term V NM, which adopts the231

embedded atom method (EAM) functional form, takes care of the non-magnetic contributions. The Heisenberg-Landau (HL)232

term V HL takes care part of the magnetic contribution. The neural network (NN) term V NN takes care of contributions missed233
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in V NM and V HL. We may think of its application as a correction term. The functional form of the first two terms follow234

conventional spin-lattice potentials14, 26 that performs well near perfect crystal, but not in highly deformed configurations.235

The NN term is defined as a sum of local contributions:

V NN =V NN
0 ∑

i
N (x0

i ;{W,b}), (3)

where V NN
0 is a fitting parameter to correct the energy unit. The neural network N is trained by adjusting the weight W and236

bias b parameters. The translation, rotation and permutation invariant atom centred symmetry (ACS) descriptors x0
i of atom i237

are extended to depend on both the local atomic and magnetic environments. This follows the usual assumption that the local238

environment is sufficient to determine the atomic energy6, where a cutoff distance rcut is adopted.239

Details of each term in the Hamiltonian are defined below. The potential energy surface V of our MSLP was trained240

to a large amount of DFT data consisting of energies, forces, stresses and effective fields from 4,601 non-polarised, 5,827241

collinear and 2,245 non-collinear configurations. A more detailed audit of the training data is available in the Supplementary242

Materials (Section 1). The choice of Loss function, training data, training procedure, and final parameters are provided in the243

Supplementary Materials. In short, we developed a non-magnetic potential V NM, followed by fitting parameters in V HL and244

V NN. Finally, we optimized the whole potential V . One may consider V NM and V HL are used to construct a temporary mean245

function. On the contrary, each function in the NM and HL terms may be considered as a descriptor. As such, we can treat the246

V as a special kind of machine-learned machinery that flexibly combines the known and unknown physics when trained to good247

quality data.248

The Non-Magnetic term249

The Hamiltonian being adopted contains several terms, the non-magnetic term is chosen to have the same functional form of
the embedded atom method (EAM)58, 59:

V NM(R) = ∑
i

F(ρi)+
1
2 ∑

i, j
Vi j(ri j). (4)

F(ρi) is a many-body term depending on the effective electron density ρi. Vi j is a pairwise potential depending on ri j = |ri−r j|,250

which is the distance between atom i and j. The many-body term follows the functional form proposed by Mendelev60 and251

Ackland61:252

F [ρi] =−
√

ρi +φρ
2
i , (5)

where φ is a fitting parameter. The effective electron density ρi is defined as a sum of the square of a pairwise function ti j which
has the physical meaning corresponding to the hopping integral in tight binding model14:

ρi = ∑
j∈{k|rik<rcut}

t2
i j, (6)

and

ti j(ri j) =
Nt

∑
n

tn(rt
n − ri j)

3
Θ(rt

n − ri j), (7)

where tn are fitting parameters, rt
n are knot points, and Θ is Heaviside function. The pairwise potential Vi j is split into three253

parts:254

Vi j =


V ZBL(ri j), if ri j ≤ r1,

V it(ri j), if r1 < ri j < r2,
NV

∑
n

Vn(rV
n − ri j)

3
Θ(rV

n − ri j), if ri j ≥ r2,

(8)

where r1 = 1.3Å and r2 = 1.8Å. The short-range part is ZBL potential62. The middle-range part is a 5th order polynomial which255

ensures the function Vi j being continuous up to second derivatives at r1 and r2. The longer-range part is a cubic spline, where Vn256

are fitting parameters and rV
n are knot points. Numerical values of fitting parameters are mentioned in Supplementary Materials.257
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The Heisenberg-Landau term258

The Heisenberg-Landau term is a sum of a Heisenberg term V H and a Landau term V L, such that

V HL(R,M ) =V H(R,M )+V L(R,M ). (9)

Conventional Heisenberg Hamiltonian assumes localised electron model with fixed magnitudes of magnetic moments or259

spins25, 27, 33, 63. However, even for perfect crystalline configurations it has been observed that the adiabatic magnetic exchange-260

energy hypersurface parameterized by the bilinear Heisenberg Hamiltonian is insufficient64–67. An accurate representation261

necessitates longitudinal fluctuations to be considered26, 66, 68, due to the itinerant nature of electrons. First, we write the262

Heisenberg Hamiltonian in a form that allows the change of magnitude23, 69:263

V H =−1
2 ∑

i j
Ji j(ri j)Mi ·M j. (10)

The pairwise exchange coupling parameter Ji j can be calculated through DFT according to the magnetic force theorem
(MFT)70. We adopt a 5th order polynomial here that fits well to perfect BCC cases14:

J(ri j) = J0

(
1−

ri j

rcut

)5

Θ(rcut − ri j). (11)

Second, the Heisenberg term can be improved by introducing higher order terms that describe longitudinal fluctua-
tions23, 26, 68, 71. By using a Landau expansion, we introduce self-energy terms which create an energy well for a finite magnetic
moment such that a spontaneous moment is formed and whose length can be variably controlled. We write the Landau term:

V L = ∑
i

(
A(ρi)M2

i +B(ρi)M4
i +CM6

i

)
. (12)

One can find more details regarding the philosophy of the Landau coefficients and how one may extract them directly from264

DFT calculations in Ref.14, 23. Here, we simply treat them as fitting parameters. We assume an underlying quadratic polynomial265

functional form for both A and B coefficients, parameterised with respect to ρi used in the EAM potential (Eqn. 6):266

A(ρi) = a0 +a1ρi +a2ρ
2
i , (13)

B(ρi) = b0 +b1ρi +b2ρ
2
i . (14)

The coefficient for the 6th order term is independent of the local environment and serves to prevent a divergence in the267

Landau energy well. It has been shown that such functional form is sufficient for strained on-lattice configurations, but268

is insufficient when lattice distortions are introduced23. Further, DFT calculations have shown the magnitude of Landau269

coefficients in the core of defects can change by several orders of magnitude due to the suppression of the magnetic moments23.270

As such, these terms provide an initial approximation. The neural network term serves as a necessary adjustment allowing the271

potential to move away from near-perfect crystal.272

It is necessary to note that the inclusion of self-interactions terms is not solely sufficient to include longitudinal fluctuations273

in a spin-lattice dynamics model when using Langevin dynamics. One cannot use the stochastic Landau-Lifshitz equations to274

evolve the system, as is typically employed in most available codes, since the magnitudes of magnetic moments are assumed275

constant. Instead, the fluctuation-dissipation relations must be re-derived from the Fokker-Planck equation to correctly account276

for the longitudinal fluctuations. A generalised Langevin spin dynamics approach and an expression for the dynamic spin277

temperature have been derived in Ref. 26 valid for any spin Hamiltonian with longitudinal fluctuations.278

The neural network term279

Conventional spin-lattice potentials are insufficient to reproduce the relative stability of BCC and FCC phases. The magnetic280

force theorem reveals the exchange coupling parameter Ji j has completely different functional form for each crystal struc-281

tures14, 23. Previous work14 defined two different set of Ji j and Landau coefficients for each phase, such that the phase must be282

labelled a priori, allowing free energy differences between the BCC and FCC phase to be extracted. It means such approach283

cannot be applied to arbitrary systems. A possible alternative is to calculate the Ji j and Landau coefficients by DFT on the spot,284

but it is not feasible for large-scale atomic scale simulation. Besides, calculation of atomic Landau coefficient requires knowing285

the atomic energy, which is not a well defined quantity in most DFT implementations.286

To overcome the limitation imposed by the functional form, aiming at simulating arbitrary crystal structures, we apply287

machine learning techniques to develop a new potential. We choose artificial neural network (ANN) which abstractions between288
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layers ensure magnetic interactions go beyond the bilinear form of the Heisenberg potential and local fluctuation of the Landau289

potential.290

Behler and Parinello72 and others4, 73 successfully applied the ANN for atomic simulation based on feed-forward multilayer291

perceptrons. It composes of multiple layers of Threshold Logic Units (TLUs). They are fully connected between adjacent292

layers. It is a feed forward ANN in which data provided to the input nodes are transmitted through one or more hidden layers293

until producing an output signal at the final layer. Unlike other architectures such as recurrent NN, cyclical connections between294

layers are not used. When two or more hidden layers are used, it is often referred to as a deep-ANN (DNN)74. We simply call it295

NN in this work.296

In some works of machine-learned potentials for MD3, 35–37 a single machine-learned machinery, such as Gaussian process
or NN, is used to predict the total energy, or more precisely the energy of an atom depending on the local atomic environment.
Instead, we use NN to predict the contribution that cannot be captured by the non-magnetic term and Heisenberg-Landau term.
In addition to the V NM and V HL term, the potential energy contains a NN term:

V NN =V NN
0 ∑

i
N (x0

i ;{W,b}), (15)

where V NN
0 is a fitting parameter to match the scale and unit of the NN contribution to the MSLP Hamiltonian. x0

i ∈ RN0 is a
vector of descriptors with N0 elements being supplied to the input layer of NN. Descriptors are functions depending on the
atomic positions and magnetic moments within a cutoff distance rcut from atom i, representing the local atomic environment.
The NN with n layers is a mapping:

N (x0;{W,b}) = Pn ◦Pn−1 ◦Pn−2 ◦ ...◦P0(x0), (16)

where the operator ◦ represents the composition of functions. Pk is the mathematical description of a perceptron at layer k.
It acts as a mapping from layer k−1 to the adjacent layer indexed k (0 ≤ k ≤ n) which includes the composition of a linear
transformation, followed by a non-linear transformation using a component-wise activation function fk

a:

xk = Pk(xk−1) = fk
a(z

k), (17)

where

zk = Wkxk−1 +bk. (18)

xk ∈ RNk is a vector representation of the input signals from each of the Nk nodes (neurons) in the kth layer of the NN. The297

weight matrix Wk ∈ RNk×Nk−1 controls the strength of the signal transferred from each node in the k−1th layer to each node in298

the kth layer. bk ∈ RNk is a bias vector. The vector zk is an intermediate quantity referred to as the weighted input.299

The activation function acts to abstractify the signals from the kth layer by adding non-linearity (since a linear combination
of linear operations can itself be transformed into a single linear operation). It performs a component-wise operation on the
weighted input zk produced from the linear transformation of xk−1, such that

fk
a(z

k) =
(

fa(zk
0), fa(zk

1), ..., fa(zk
Nk−1

)
)
. (19)

We have chosen to use an unconventional unbounded activation function defined as:300

fa(z) =
z

1+ |z|
+az, (20)

for all TLUs, except the output layer. The functional form of the activation function was chosen since the profile of z/(1+ |z|) is301

qualitatively similar to tanh(z) for small z (approximately linear), but it is computationally cheaper than the hyperbolic tangent.302

Linear twisting is included to help prevent saturation for large values of z, which would result in a vanishing gradient of the303

Loss function, as originally proposed for the tanh function75. The mapping of the final layer performs a linear transformation304

only, that is xn = f n
a (z

n) = zn and produces a scalar output. Therefore, for nth layer the weight and bias terms have dimension305

R1×Nn−1 and R1, respectively.306

The power of ANNs are due to their universality. For instance, a two-layer feed forward ANN with non-linear activation307

functions have been shown to be an universal function approximator. As such, for a given continuous function there exists a308

neural network which can approximate it on a compact set of RN arbitrarily well76. Furthermore, the universal approximator309

theorem has been shown to hold true for unbounded non-linear activation functions77. If linear activation functions were to be310

chosen, a DNN with any number of hidden layers may be represented as a single linear transformation and therefore cannot be311

a universal approximator.312
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Local atomic and magnetic descriptors313

In our MSLP, descriptors are functions representing the 6N coordinate and spin space, where N is the number of atoms. The314

purpose of the NN term is to map descriptors to part of the atomic energy. Since atomic energy is a scalar, descriptors should be315

translational, rotational and permutational invariant. We defined four sets of descriptors. The first set depends only on atomic316

positions. The other three depend on both atomic positions and magnetic moments.317

Our atomic descriptors are based on the G(2) radial basis functions within the Atom Centred Symmetry class of effective
coordinates4, 72. We drop the (2) superscript for brevity and refer to the descriptor as G2 in-text. It has been successfully used
for a variety of materials including water78, 79, aluminium and its alloys80, germanium telluride81 as well as carbon allotropes82.
It is written as:

Gi,h ≜ G(2)
i,h = ∑

j
Gi j,h, (21)

where

Gi j,h = wiw j fc(ri j)exp
(
−η(ri j −Rs)

2) , (22)

and h is a compound index representing a unique triplet of hyperparameters {Rc,Rs,η}. The G2 descriptors are Rs centred318

Gausssians spread according to η . wi and w j are weights which characterise different atomic species and are not uniquely319

defined. Often one maps a unique integer to each element type. Here we define them as the atomic mass (for iron w = 55.847).320

Use of a species weight is advantageous as it enables descriptors to be defined which do not scale with the number of species.321

That is, the length of the input descriptor vector does not change with the number of chemical species.322

The smoothness criterion is satisfied by employing an envelope function which, as well as its first derivative, decays
smoothly to zero at the cutoff radius:

fc(ri j) =

 1
2

(
cos

(
πri j
Rc

)
+1

)
, if ri j ≤ Rc,

0, if ri j > Rc.
(23)

In this work we fix Rc making it equals to the cutoff distance of the pair potential rcut. It reduces the number of323

hyperparameters to 2. We used 9 equally spaced G2 descriptors with Rs = 2.0+ x(Rc −2.0)/8 where x = 0,1,2, ...,9. We set324

η = 5 Å−2 to provide a small overlap between the Gaussian basis functions. Often a large number of G2 descriptors (5-200)325

are used varying η from 10−2 to 1 Å−2 with Rs = 0 Å3. We opted to fix the Gaussian width and varying their centering, in326

order to reduce the correlation between the data encoded by each descriptor. Reducing the correlation can also be achieved327

using more advanced orthogonal descriptors such as SOAP6 at the expense of greater computation time per descriptor. Since328

we consider 6N degrees of freedoms, we chose G2 descriptor as it is computationally less demanding.329

The design of the magnetic descriptors is based on the G2 function. Inspired by the Heisenberg and Landau functional
forms, we write three further sets of descriptors. The first set of magnetic descriptors is written as:

GH
i,h = ∑

j
GH

i j,h, (24)

where the 2-body contributions are defined as:

GH
i j,h ≜ Gi j,hMi ·M j. (25)

The scalar product of the magnetic moments ensures the invariant properties are maintained. Smoothness is guaranteed by330

the G2 prefactor which contains the envelope function fc. By reusing the G2 in the magnetic descriptors we reduce the331

computational cost of the descriptor calculations which must be performed for every atom, at every timestep if dynamics is332

to be performed. Each G2 in the Heisenberg-like descriptors may be considered to be surrogate exchange parameters with333

different dependencies on the local environment as set by the chosen hyperparameters.334

Similarly, we defined descriptors inspired by the Landau term up to the 4th order. A 6th order term is provided in the335

classical Landau expression to prevent divergences. As with the Heisenberg-like term, the Landau-like descriptors are built336

from a sum of two body contributions:337

GA
i j,h ≜ Gi j,hM2

i , (26)

GB
i j,h ≜ Gi j,hM4

i . (27)
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Each hidden layer of NN provides successively higher order representations of the exchange interactions beyond the original338

bilinear, quadratic and quartic input interactions.339

We use nine G2 radial basis functions. The input of the NN has a dimension of RN0 , where N0 = 4× 9 = 36. That is,340

nine structural descriptors {G(2)}, nine Heisenberg-like descriptors {GH}, nine Landau-A-like descriptors {GA} and nine341

Landau-B-like descriptors {GB}. Every descriptor has analytical derivatives with respect to both changes in position and342

magnetic moment (see Supplementary Materials). Whilst we opted to use two-body G2 as the basis of our magnetic descriptors,343

the principle is extendable to N-body descriptor representations.344

Fitting Procedure345

Once the database has been constructed, the model parameters can be trained by minimising the Loss function (see Supplemen-346

tary Materials). Each component in the model Hamiltonian is motivated by different physical properties. To reflect this our347

fitting workflow consisted of four distinct stages to allow each term to learn their respective physical behaviours.348

1. First, we introduce the underlying behaviour of metallic bonds for BCC, FCC and HCP iron in the absence on magnetic349

interactions by fitting the parameters of the non-magnetic potential V NM(pNM) to the configurations in the non-magnetic350

database. The non-magnetic parameters are the subset pNM = ({V t},{rt},{tN},{rt},φ). We maintain the parameters of351

the ZBL potential. The coefficients of the interpolation potential V it are not fit but are analytically derived to maintain352

continuity.353

2. Next, the characteristic behaviour of band splitting (i.e. the spontaneous formation of a magnetic moment) and354

their itinerant magnetic interactions are added by fitting the Heisenberg-Landau parameters pHL to bulk-like BCC355

configurations in the magnetic database. During this process pNM are held constant such that the total energy considered356

by the loss function is U →V NM +V MC(pHL). The Heisenberg-Landau parameters are pHL = (J0,{a},{b},c).357

3. Magnetic interactions beyond the parametric constraints of the Heisenberg-Landau formalism are produced by training358

the NN weights and biases pNN = ({W},{b},V0) to all desired observables in the magnetic database. This also introduces359

the magnetic behaviour of the FCC phase into the Hamiltonian. During this stage the total energy is given by the full360

model U →V NM +V HL +V NN(pNN), where the parameters pNM and pHL are fixed.361

4. Finally, we make minor adjustments to the parameter space by enabling all variables p = (pNM,pHL,pNN) to be362

simultaneously adjusted with total energy: U →V NM(pNM)+V HL(pHL)+V NN(pNN). In this stage the maximum step363

size of the minimization algorithm is reduced.364

Once the Loss function has been minimised with respect to the training database its generalisation and stability may be365

validated through dynamic simulations. This is usually performed using MD. However, our model Hamiltonian has coupled366

spin and lattice degrees of freedoms and is designed to incorporate itinerant behaviour. Consequently, in order to evolve with367

time and temperature we may use spin-lattice dynamics to treat atomic and magnetic interactions on equal footing which368

already incorporated both transverse and longitudinal magnetic fluctuations.369

Data Availability370

The data that supports the findings of this study are available from the corresponding author upon reasonable request.371

Code availability372

The spin-lattice dynamics SPILADY code is available under the Apache Licence version 2.0. One can download it from373

https://ccfe.ukaea.uk/resources/spilady/. Version 1.0.1 is suitable for single element simulation of molecular dynamics, spin374

dynamics, spin-lattice dynamics and spin-lattice-electron dynamics46. It is capable of considering the longitudinal fluctuations375

of magnetic moments. The modified SPILADY code developed for this work, which includes the MSLP potential, is available376

upon request from the corresponding author and will be included in the next version release. The potential parameters used in377

the generation of results presented in this work are available in the Supplementary Data (mslp.in). Further details are available378

in the Supplementary Material.379
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