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Abstract 

The neutral ionisation model proposed by R J Groebner et al. (Phys Plasmas 9 

2134 (2002)) to determine the plasma density profile in the H-mode pedestal, 

extended to include charge exchange processes in the pedestal stimulated by 

the ideas of Mahdavi et al. ((Phys Plasmas 10 3984 (2003)). The model is then 

tested against JET H-mode pedestal data, both in a ‘standalone’ version using 

experimental temperature profiles and also by incorporating it in the Europed 

version of EPED. The model is able to predict the density pedestal over a wide 

range of conditions with good accuracy. It is also able to predict the 

experimentally observed isotope effect on the density pedestal that eludes 

simpler neutral ionization models.  

1. Introduction 

Core energy confinement in tokamaks operating in H-mode is 

sensitive to the properties of the associated edge pedestal. 

Specifically, the limiting core temperature profile is believed to be 
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‘stiff’, i.e., determined by marginal stability to ion temperature 

gradient modes [1]. Consequently, it is largely controlled by the 

boundary condition on the temperature at the top of the H-mode 

temperature pedestal. Thus, a reliable model for this pedestal is a 

key requirement for predicting the performance of burning plasma 

designs, such as ITER or the proposed spherical tokamak STEP. 

The EPED model [2] based on the requirement that the pedestal 

plasma pressure profile is stable to both kinetic ballooning modes 

(KBMs) and peeling-ballooning modes [3] is often invoked for this 

purpose. The former is used to set the pressure gradient and the 

latter to provide the width of the pedestal, together yielding the 

pressure at the pedestal top. However, one really needs individual 

models for the profiles of the pedestal ion and electron 

temperatures, 𝑇𝑖 and 𝑇𝑒  , respectively, and the plasma density 

profiles, 𝑛𝑒. There is support from JET for a model for the electron 

temperature profile in the pedestal based on transport due to 

electron temperature gradient (ETG) turbulence [4] but this depends 

strongly on the profile of the parameter 𝜂𝑒 = 𝑑(ln 𝑇𝑒)/𝑑(ln 𝑛𝑒): 

hence one also needs a prescription for the electron density profile 

to complete this model. This has usually been taken as an 

experimental input, but some success has been obtained with a 

theoretically based transport model invoking the source provided by 

ionisation of neutral particles incident from the scrape-off layer 

(SOL), together with a pedestal diffusion coefficient, 𝐷𝑝𝑒𝑑  [5, 6]. This 

could be related to the same ETG turbulence [7] and/or to kinetic 

ballooning modes (KBM) [8].  Finally, to complete the picture one can 

appeal to KBM, a combination of ion temperature gradient (ITG) and 

trapped electron modes (TEM) or ion neoclassical transport (NC) to 

furnish a model for the pedestal ion temperature profile [8]. 

The neutral ionisation model described in Ref.5, which considers the 

ionisation of the incident low energy, Franck-Condon neutrals 

produced by recycling and gas-puffing incident at the separatrix, has 
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been tested against experimental data from DIII-D [5], MAST [9] and 

JET [10]. The enhanced version presented in Ref. 6 includes the 

effects of the incident higher energy, charge-exchange population 

generated in the SOL which penetrate further into the plasma 

column. In this work we use similar ideas to provide a simple model 

for the effect of charge-exchange processes in the pedestal region.  

The ionisation model is described in Section 2, while in Section 3 it is 

used with experimental temperature profiles to compare with JET 

data, which we refer to as the ‘stand-alone’ version. In Section 4 the 

ionisation model is introduced into the EPED model in the Europed 

code to compare with experimental data from JET.  Section 5 

investigates the predictions of the model regarding the isotope 

effect. Section 6 provides a summary and discussion with some 

conclusions. 

 

2.  The ionisation model for the density profile  

2.1. Transport Equations 

In the spirit of Ref. 6, which develops the model in Ref. 5 further, we 

obtain the radial profile of the electron density, 𝑛𝑒(𝑟),   in the H-

mode pedestal region by balancing radial diffusion, with coefficient 

𝐷𝑝𝑒𝑑(𝑟),  against ionisation by both low energy Franck-Condon and 

more energetic charge exchange neutrals, with densities 𝑛𝐹𝐶(𝑟) and 

𝑛𝐶𝑋(𝑟), respectively, themselves being modelled by balancing 

inward convection against ionisation and charge exchange sources 

and sinks.  

We use straight field line coordinates: 𝑟, 𝜃, 𝜑, with Jacobian 𝐽 =

𝑟𝑅2/𝑅0, where  𝑅 is the major radius, its value on the magnetic axis 

being 𝑅0, the ‘minor radius’ co-ordinate  𝑟 is a flux surface label and 

𝜃 and 𝜑 are poloidal and toroidal angles, respectively. In the narrow 
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pedestal region, we introduce the radial co-ordinate, 𝑥 = 𝑟 − 𝑟𝑠𝑒𝑝 , 

where  𝑟𝑠𝑒𝑝 is the radius of the separatrix flux surface, and 𝑟 ≅ 𝑟𝑠𝑒𝑝. 

The ionisation model described above is represented by the three 

equations: 

∇. (𝐷𝑝𝑒𝑑∇𝑛𝑒) = −𝑛𝑒( 𝑛𝐹𝐶 + 𝑛𝐶𝑋)𝑆𝑖                       (1) 

∇. (𝑉𝐹𝐶𝑛𝐹𝐶) = −𝑛𝑒( 𝑛𝐹𝐶𝑆𝑖 + 𝑛𝐹𝐶𝑆𝐶𝑋)                               (2) 

                ∇. ((𝑉𝐶𝑋𝑛𝐶𝑋)) = −𝑛𝑒 ( 𝑛𝐶𝑋𝑆𝑖 −
1

2
𝑛𝐹𝐶𝑆𝐶𝑋)                     (3) 

Introducing the straight field line co-ordinates and averaging over 

the poloidal angle 𝜃, 

   

𝑑

𝑑𝑥
(𝐷𝑝𝑒𝑑 ∮ 𝑅2|∇𝑟|2𝑑𝜃

𝑑𝑛𝑒

𝑑𝑥
) = −𝑛𝑒 ∮ 𝑅2𝑑𝜃 ( 𝑛𝐹𝐶 + 𝑛𝐶𝑋)𝑆𝑖  (4)   

                     
𝑑

𝑑𝑥
(∮ 𝑅2|∇𝑟|2𝑑𝜃 𝑉𝐹𝐶,𝑟  𝑛𝐹𝐶) = 

−𝑛𝑒 ∮ 𝑅2𝑑𝜃 ( 𝑛𝐹𝐶𝑆𝑖 + 𝑛𝐹𝐶𝑆𝐶𝑋)              (5)    

                      
𝑑

𝑑𝑥
(∮ 𝑅2|∇𝑟|2𝑑𝜃 𝑉𝐶𝑋,𝑟𝑛𝐶𝑋) = 

                                  −𝑛𝑒 ∮ 𝑅2𝑑𝜃 (𝑛𝐶𝑋𝑆𝑖 −
1

2
𝑛𝐹𝐶𝑆𝐶𝑋),              (6)         

where 𝑆𝑖  and 𝑆𝐶𝑋 are the ionisation and charge exchange rates, 

respectively, while 𝑉𝐹𝐶,𝑟  and  𝑉𝐶𝑋,𝑟  are the corresponding radial 

velocities of the two species, each considered to be mono-energetic.  

Thus,  𝑆𝑖 = 𝜎𝑖𝑉𝑡ℎ,𝑒, 𝑆𝐶𝑋 = 𝜎𝐶𝑋𝑉𝑡ℎ,𝑖, where 𝜎𝑖,𝐶𝑋 , are the 

corresponding cross-sections, which will vary with electron and ion 

temperatures, and 𝑉𝑡ℎ,𝑒  and  𝑉𝑡ℎ,𝑖 are the electron and ion thermal 

speeds respectively. For the radial velocities of the neutrals, we 

follow Ref. 6, setting |𝑉𝐹𝐶,𝑟| = √8𝐸𝐹𝐶 𝜋2𝑀𝑖⁄ , with 

𝐸𝐹𝐶~ 3 𝑒𝑉, and  |𝑉𝐶𝑋,𝑟| = √2𝑇𝑖 𝜋𝑀𝑖⁄  (we drop the suffix 𝑟, below). 
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The factor ½ in eqn. (3) represents the fact that the outward flux of 

fast charge exchange neutrals is taken to be lost. The diffusion 

coefficient 𝐷𝑝𝑒𝑑  may have a profile dependence arising from 

dependencies on 𝑇𝑒,𝑖 and 𝑛𝑒; e.g., gyro-Bohm diffusion produces 

𝐷𝑝𝑒𝑑~𝑇𝑒
3/2

/𝐵2𝐿, where 𝐿  is some microscopic length and 𝐵 is the 

magnetic field; alternatively, it may involve resistivity, as occurs for 

resistive interchange modes, leading to 𝐷𝑝𝑒𝑑~𝑛𝑒/𝑇𝑒
1/2

𝐵2. In the 

modelling described later, we suppose it arises from a combination 

of ETG and KBM turbulence. 

A similar set of equations were proposed in the SOL in Ref. 6, while 

those in Ref. 5 follow on neglecting 𝑛𝐶𝑋. 

It is convenient to introduce a flux surface average over poloidal 

angle:   〈𝐴〉 = ∮ 𝑅2𝐴𝑑𝜃 / ∮ 𝑅2𝑑𝜃  . To make the system of equations 

(4)-(6) readily tractable we introduce two form factors: 

𝑓𝐹𝐶 = 〈|∇𝑟|2𝑛𝐹𝐶〉/〈𝑛𝐹𝐶〉〈|∇𝑟|2〉,  𝑓𝐶𝑋 = 〈|∇𝑟|2𝑛𝐶𝑋〉/〈𝑛𝐶𝑋〉〈|∇𝑟|2〉.  (7) 

If the source of the Franck Condon neutrals is localised, say at some 

angle 𝜃0, then 𝑓𝐹𝐶 ≅ 𝑅2(𝜃0)|∇𝑟|2(𝜃0)/〈|∇𝑟|2〉, whereas the charge 

exchange scattering may produce a more isotropic distribution of 

charge exchange neutrals with 𝑓𝐶𝑋 tending to unity. In general, one 

needs a numerical simulation of the neutral processes to evaluate 

these quantities precisely; alternatively, they could be treated as 

fitting parameters. 

2.2. Solution Procedure 

Using the expressions (7), eqn. (5) implies 

              𝑛𝑒𝑆𝑖〈𝑛𝐹𝐶〉 =
|𝑉𝐹𝐶| 𝑓𝐹𝐶

(1+𝑆𝐶𝑋/𝑆𝑖)

𝑑

𝑑𝑥
〈𝑛𝐹𝐶〉,                               (8) 

while combining this result with eqn. (6) yields 

            𝑛𝑒𝑆𝑖〈𝑛𝐶𝑋〉 = |𝑉𝐶𝑋|𝑓𝐶𝑋
𝑑

𝑑𝑥
〈𝑛𝐶𝑋〉 +  

|𝑉𝐹𝐶|𝑓𝐹𝐶𝑆𝐶𝑋

2(𝑆𝑖+𝑆𝐶𝑋)
 

𝑑

𝑑𝑥
〈𝑛𝐹𝐶〉           (9)                         
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Inserting these two results into eqn. (4) and integrating once, we 

obtain 

〈|∇𝑟|2〉𝐷𝑝𝑒𝑑
𝑑𝑛𝑒

𝑑𝑥
= − 

(1+
𝑆𝐶𝑋
2𝑆𝑖

)

(1+
𝑆𝐶𝑋

𝑆𝑖
)

|𝑉𝐹𝐶|𝑓𝐹𝐶〈𝑛𝐹𝐶〉 −|𝑉𝐶𝑋|𝑓𝐶𝑋〈𝑛𝐶𝑋〉 + 𝐶.(10)   

Here 𝐶 = 〈|∇𝑟|2〉𝐷𝑝𝑒𝑑
𝑑𝑛𝑒

𝑑𝑥
|𝑥=−∞  is a constant of integration that is 

determined by the condition that deep into the plasma, both neutral 

densities should vanish. It is to be remarked that in Ref. 5, 𝐶 was 

arbitrarily set to zero, whereas we now allow the more realistic finite 

density gradient inboard of the pedestal. 

Equations (4) and (10) provide an expression for 𝑛𝐹𝐶(𝑥) in terms of 

𝑛𝑒(𝑥): 

        〈𝑛𝐹𝐶〉 [1 −
|𝑉𝐹𝐶|𝑓𝐹𝐶

|𝑉𝐶𝑋|𝑓𝐶𝑋

(𝑆𝑖+
𝑆𝐶𝑋

2
)

(𝑆𝑖+𝑆𝐶𝑋)
] = −

1

𝑛𝑒𝑆𝑖

𝑑

𝑑𝑥
(〈|𝛻𝑟|2〉𝐷𝑝𝑒𝑑

𝑑𝑛𝑒

𝑑𝑥
)  

                                                 + 
1

|𝑉𝐶𝑋|𝑓𝐶𝑋
𝐷𝑝𝑒𝑑

𝑑𝑛𝑒

𝑑𝑥
−

𝐶

|𝑉𝐶𝑋|𝑓𝐶𝑋〈|𝛻𝑟|2〉
     (11)         

and then 𝑛𝐶𝑋(𝑥) follows from eqn. (9). The electron density profile is 

then given by the third order equation 

              
𝑑

𝑑𝑥
(𝐿2(𝑛𝑒)) =

𝑛𝑒𝑆𝑖

|𝑉𝐹𝐶|
(1 +

𝑆𝐶𝑋

𝑆𝑖
) 𝐿2(𝑛𝑒),                         (12) 

where the non-linear, second order operator 𝐿2(𝑛𝑒) is defined by: 

       [1 −
|𝑉𝐹𝐶|𝑓𝐹𝐶

|𝑉𝐶𝑋|𝑓𝐶𝑋

(𝑆𝑖+
𝑆𝐶𝑋

2
)

(𝑆𝑖+𝑆𝐶𝑋)
] 𝐿2(𝑛𝑒) = −

𝐶

|𝑉𝐶𝑋|𝑓𝐶𝑋
+

                                 
1

|𝑉𝐶𝑋|𝑓𝐶𝑋
𝐷𝑝𝑒𝑑

𝑑𝑛𝑒

𝑑𝑥
−   

1

𝑛𝑒𝑆𝑖

𝑑

𝑑𝑥
(〈|𝛻𝑟|2〉𝐷𝑝𝑒𝑑

𝑑𝑛𝑒

𝑑𝑥
)   (13) 

It may be more convenient to replace this third order equation by an 

iterative solution based on a second order equation. Using eqn. (10) 

to replace 𝑛𝐶𝑋(𝑥) and introducing the solution of eqn. (8) for 𝑛𝐹𝐶(𝑥) 

yielding 
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        〈𝑛𝐹𝐶〉 = 〈𝑛𝐹𝐶(0)〉exp (∫ 𝑑𝑥
𝑛𝑒(𝑆𝑖+𝑆𝐶𝑋)

𝑓𝐹𝐶⌈𝑉𝐹𝐶⌉

𝑥

0
)   ,                       (14) 

eqn. (4) becomes 

       
𝑑

𝑑𝑥
(〈|𝛻𝑟|2〉𝐷𝑝𝑒𝑑

𝑑𝑛𝑒

𝑑𝑥
) = −𝑛𝑒𝑆𝑖 [−𝐷𝑝𝑒𝑑 (

𝑑𝑛𝑒

𝑑𝑥
−

𝑑𝑛𝑒

𝑑𝑥
|𝑥=−∞) +

        (1 −  
|𝑉𝐹𝐶|𝑓𝐹𝐶

|𝑉𝐶𝑋|𝑓𝐶𝑋

(𝑆𝑖+
𝑆𝐶𝑋

2
)

(𝑆𝑖+𝑆𝐶𝑋)
) 〈𝑛𝐹𝐶(0)〉exp (∫ 𝑑𝑥′

𝑛𝑒(𝑥′)(𝑆𝑖+𝑆𝐶𝑋)

𝑓𝐹𝐶⌈𝑉𝐹𝐶⌉

𝑥

0
)]  (15)          

The integral in the last term can be iterated in 𝑛𝑒(𝑥) until one has a 

self-consistent solution of eqn. (15) for 𝑛𝑒(𝑥).  A convenient starting 

point is the solution of eqn. (4) in the absence of 𝑛𝐶𝑋. In this limit, 

eqn. (4) reduces to  

        
𝑑

𝑑𝑥
(〈|𝛻𝑟|2〉𝐷𝑝𝑒𝑑

𝑑𝑛𝑒

𝑑𝑥
) =  𝑛𝑒𝐷𝑝𝑒𝑑

(𝑆𝑖+𝑆𝐶𝑋)

⌈𝑉𝐹𝐶⌉
(

𝑑𝑛𝑒

𝑑𝑥
−

𝑑𝑛𝑒

𝑑𝑥
|𝑥=−∞)   (16)                                            

The presence of  
𝑑𝑛𝑒

𝑑𝑥
|𝑥=−∞ prevents obtaining the analytic solution 

obtained in [5], so this equation must be solved numerically before 

inserting its solution in eqn. (15) to begin the iterative process. 

However, the form of eqn. (15) obscures how it reduces to the 

equation derived in Ref 5 when charge exchange neutrals are 

omitted from the model. This limit is evident if one derives the 

second order equation for 𝑛𝑒 involving 𝑛𝐶𝑋, rather than  𝑛𝐹𝐶  as in 

eqn. (15): 

        
𝑑

𝑑𝑥
(〈|𝛻𝑟|2〉𝐷𝑝𝑒𝑑

𝑑𝑛𝑒

𝑑𝑥
)  

   = 𝑛𝑒𝑆𝑖 [
(𝑆𝑖+𝑆𝐶𝑋)

(𝑆𝑖+𝑆𝐶𝑋/2)

〈|𝛻𝑟|2〉𝐷𝑝𝑒𝑑

|𝑉𝐹𝐶|𝑓𝐹𝐶

𝑑𝑛𝑒

𝑑𝑥
−

(𝑆𝑖+𝑆𝐶𝑋)

(𝑆𝑖+
𝑆𝐶𝑋

2
)

𝐶

|𝑉𝐹𝐶|𝑓𝐹𝐶
+

                                            (
(𝑆𝑖+𝑆𝐶𝑋)

(𝑆𝑖+𝑆𝐶𝑋/2)

|𝑉𝐶𝑋|𝑓𝐶𝑋

|𝑉𝐹𝐶|𝑓𝐹𝐶
− 1 ) 〈𝑛𝐶𝑋〉]  .  (17) 

Here the charge exchange neutral density, 〈𝑛𝐶𝑋〉, is given in terms of 

〈𝑛𝐹𝐶〉 by the solution of eqn. (9):                  
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〈𝑛𝐶𝑋〉 = 〈𝑛𝐶𝑋(0)〉exp (∫ 𝑑𝑥′ 𝑛𝑒(𝑥 ′)𝑆𝑖

⌈𝑉𝐶𝑋⌉𝑓𝐶𝑋

𝑥

0
) +

|𝑉𝐹𝐶|𝑓𝐹𝐶𝑆𝐶𝑋〈𝑛𝐹𝐶(0)〉

2⌈𝑉𝐶𝑋⌉𝑓𝐶𝑋(𝑆𝑖+𝑆𝐶𝑋−
|𝑉𝐹𝐶|𝑓𝐹𝐶
⌈𝑉𝐶𝑋⌉𝑓𝐶𝑋

𝑆𝑖)
  

          ×  [exp (∫ 𝑑𝑥′ 𝑛𝑒(𝑥 ′)𝑆𝑖

⌈𝑉𝐶𝑋⌉𝑓𝐶𝑋

𝑥

0
) − exp (∫ 𝑑𝑥′𝑛𝑒(𝑥 ′)

(𝑆𝑖+𝑆𝐶𝑋)

|𝑉𝐹𝐶|𝑓𝐹𝐶

𝑥

0
)]    (18)   

 

2.3. Boundary Conditions 

The original set of equations, (1) – (3), form a fourth order system 

requiring four boundary-conditions. Correspondingly, the third-order 

eqn. (12) naturally requires three boundary-conditions, to be added 

to that following from the constant of integration, 𝐶, i.e.,  
𝑑𝑛𝑒

𝑑𝑥
|𝑥=−∞. 

Thus, the separatrix values of the electron density, 𝑛𝑒(0), its radial 

gradient, 
𝑑𝑛𝑒

𝑑𝑥
|𝑥=0 and the Franck-Condon neutrals, 𝑛𝐹𝐶(0),  would 

suffice. Alternatively, one could use eqn. (11) to replace 𝑛𝐹𝐶(0) by 
𝑑2𝑛𝑒

𝑑𝑥2 |𝑥=0, so that all boundary conditions could be expressed in 

terms of 𝑛𝑒. However, it is more appropriate to remain with the 

specification of  𝑛𝐹𝐶(0) or, equivalently, the incident flux at the 

separatrix of such neutrals:  𝛤𝐹𝐶 = 𝑛𝐹𝐶(0)𝑉𝐹𝐶 .  It is of interest that 

the charge exchange density, and hence 𝑛𝐶𝑋(0) specifically, follows 

directly from eqn. (10).  

Reference 6 proposed a simple model for the neutral interactions in 

the scrape-off layer (SOL) to provide the ratio 𝑤 = 𝑛𝐶𝑋(0)/𝑛𝐹𝐶(0), 

rather than considering this as an input to the boundary conditions. 

Furthermore, by considering the SOL region one can also determine 
𝑑𝑛𝑒

𝑑𝑥
|𝑥=0. Thus, the source-free solution for the electron density, 

where radial diffusion with a diffusion coefficient  𝐷𝑆𝑂𝐿  is balanced 

by streaming along the open magnetic field lines on a timescale 𝜏||, 

follows from the equation 

𝐷𝑆𝑂𝐿
𝑑2𝑛𝑒

𝑑𝑥2 = −
𝑛𝑒

𝜏||
.            (19) 



 

9 
 

namely 𝑛𝑒 = 𝑛𝑒(0)exp (−
𝑥

√𝐷𝑆𝑂𝐿𝜏||
). Thus 

𝑑𝑛𝑒

𝑑𝑥
|𝑥=0 = −

𝑛𝑒(0)

√𝐷𝑆𝑂𝐿𝜏||
.                           (20) 

 

3.  Model results for the JET pedestal database using 

experimental temperature profiles 

The JET database [11] with more than 1000 fitted pedestal profiles of 

JET plasmas is used to test the model. For the model, we can obtain 

the boundary conditions 𝑛𝑒,𝑠𝑒𝑝 and  
𝑑𝑛𝑒

𝑑𝑥
|𝑥=−∞. 𝜏∥ is assumed to be 

known as well for a given device. We set 〈𝑛𝐹𝐶(0)〉 to a value of 1015 

m-3 and 𝜏|| = 0.001s but note that the results are to some extent 

sensitive to these values. Since we have no good model for the 

poloidal distribution of the neutrals, we set both 𝑓𝐹𝐶  and 𝑓𝐶𝑋 to 1, 

that assumes equal distribution with the poloidal angle. Thus, 𝐷𝑝𝑒𝑑  is 

the only free parameter to be modelled. In this work we have 

implemented the model described in Ref.7, where 𝐷𝑝𝑒𝑑  is 

constructed from three components, the first driven by electron 

temperature gradient (ETG) turbulence is proportional to the 

electron heat transport, the second from neoclassical transport and 

the third driven by kinetic ballooning modes (KBM) is proportional to 

the extent to which the normalized pressure gradient (𝛼) exceeds 

the threshold value for kinetic ballooning modes. The ETG part can 

be calculated from the known heat flux through pedestal and the 

temperature profile using the normal heat conduction equation: 

         𝜒𝑒 =
𝑞𝑒

𝑛𝑒∇𝑇
,               (21) 

where 𝑞𝑒is the heat flux at the pedestal as calculated from the input 

heating power and the plasma geometry. The particle transport from 

ETG is set to be this multiplied by a constant factor (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺.  
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Following Ref. 7, the neoclassical part of 𝐷𝑝𝑒𝑑  is taken for simplicity 

to be 

    𝐷𝑒,𝑁𝐶 =
𝜒𝑒,𝑁𝐶

2
= 0.05 (

𝜌𝑠
2𝑐𝑠

𝑎
)                     (22) 

Finally, again following Ref.7, the KBM part of diffusion coefficient 

𝐷𝑝𝑒𝑑  is assumed to be zero below the KBM stability limit and then 

increase proportionally to (𝛼 − 𝛼𝑐𝑟𝑖𝑡), where 𝛼 is the normalised 

pressure gradient in the pedestal defined in Ref.12 as  

𝛼 =  
2𝜕𝜓𝑉

(2𝜋)2 (
𝑉

2𝜋2𝑅0
)

1/2
𝜇0𝑝′.                     (23) 

Here 𝑉 is the volume enclosed by the flux surface, 𝑅0 is the major 

radius, 𝑝 is the pressure and the derivative, represented by ′ ,  is 

taken with respect to the poloidal flux 𝜓 and 𝛼𝑐𝑟𝑖𝑡 is the stability 

limit of the KBMs. Since KBMs have a wide radial extent, we assume 

that the particle transport from them is not local but covers the 

entire pedestal region. Therefore, instead of a local value of 𝛼, we 

use the average value in the pedestal region. The total 𝐷𝑝𝑒𝑑  from 

KBM is given by the formula: 

     {
𝐶𝐾𝐵𝑀(𝛼 − 𝛼𝑐𝑟𝑖𝑡) ∙ (

𝜌𝑠
2𝑐𝑠

𝑎
) , 𝛼 > 𝛼𝑐𝑟𝑖𝑡

0, 𝛼 < 𝛼𝑐𝑟𝑖𝑡

            (24) 

Using these assumptions, we simulated the entire JET-ILW database 

using the experimental temperature profile to calculate the 

ionisation and charge exchange cross-sections, 𝜎𝑖 and 𝜎𝐶𝑋,  ∇𝑇, 

needed in eqn. (21), and 𝛼 ,needed in eqn. (23) (𝛼 is calculating by 

scaling the value in a known equilibrium by 𝛼 = 𝛼𝑘𝑛𝑜𝑤𝑛(𝑝′/

𝑝𝑘𝑛𝑜𝑤𝑛
′ )(𝐼𝑝,𝑘𝑛𝑜𝑤𝑛/𝐼𝑝)2). Since the major and minor radius changes 

very little in JET experiments, we used the geometric factors (in ∇𝑟) 

from the known equilibrium as well. We call this model “stand-

alone”, as it uses the known temperature to distinguish it from the 
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full Europed modelling where the temperature profile is also 

predicted.  

We test the model with and without the KBM contribution to 𝐷𝑝𝑒𝑑  

and vary (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 . Figure 1 shows the predicted density against 

the experimental density when 𝐶𝐾𝐵𝑀 = 0. It can be seen that, if the 

KBM transport is ignored, the ETG particle transport has to be 

increased to a level ((𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 = 0.5) that is significantly higher 

than is expected for ETG modes [7]. It must be noted that even in 

this case the experimental trend is reproduced (RMSE=20%).  

 

Figure 1. The testing of the standalone pedestal density 

modelling against the experimental pedestal density using the 

ionization model ignoring the KBM transport for two values of 
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(𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.5 (red) and 0.1 (blue). The blue line represents 

the perfect prediction.  

 

The ideal MHD 𝑛 = ∞ ballooning mode limit in JET geometry is at 

about 𝛼 = 3. Taking into account that the KBM limit is generally 

lower than that of the ideal MHD limit and that we are using the 

average value in the pedestal, we use 𝛼crit = 2 in the 𝐷𝐾𝐵𝑀 model, 

expression (22).  Based on the considerations in Ref.7, we choose 

𝐶𝐾𝐵𝑀= 0.3 but recognize that the model is not very sensitive to this 

value, provided it is sufficiently large that the main effect of the KBM 

transport is to force the pedestal pressure gradient to be close to the 

KBM limit.  

Figure 2 shows the model results for two values of ETG particle 

transport, (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.5 and 0.1. When compared to Fig. 1, we 

can see that the (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.5 case is hardly affected, meaning 

that most of those cases were below the KBM limit already. The 

(𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.1 case is strongly affected, matching much better 

with the experimental values. We obtain very good agreement 

between the model and experiment for both cases (the RMSE = 17% 

for (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.1 and the RMSE = 15% for (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.5). 

Increasing 𝐶𝐾𝐵𝑀 further to 1.0 changes the result very little from Fig. 

2, indicating that at sufficiently high 𝐶𝐾𝐵𝑀 the pedestal 𝛼 is limited 

close to the KBM limit.  
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Figure 2. The testing of the standalone pedestal density modelling 

against the experimental pedestal density using the ionization model 

with KBM transport (𝐶𝐾𝐵𝑀 = 0.3 and 𝛼𝑐𝑟𝑖𝑡 = 2) for two values of 

(𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.5 (red) and 0.1 (blue). The blue line represents the 

perfect prediction. 

 

4. Europed Modelling  

4.1. Implementation in Europed 

Europed is an implementation of the EPED model [2] that includes 

several extensions outlined in Ref.15. The EPED model predicts the 

pedestal plasma profiles given a set of input parameters (plasma 
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shape, toroidal field, plasma current, global 𝛽, pedestal and 

separatrix densities). Most of them can be known in advance of the 

experiment. However, 𝛽, pedestal and separatrix density are not 

necessarily known. The Europed extensions in Ref. 15 tried to predict 

these values by using inputs such as heating power and fuelling rate. 

While the results were encouraging, the model for the density 

pedestal prediction was very specific for JET and most likely does not 

generalize to other tokamaks. Further, it produced the opposite 

dependence on the isotope mass from what was seen in the 

experiment.  

Therefore, in this work it is replaced with the model outlined above. 

In the full model, the density prediction is combined with the EPED 

constraint 𝛥 = 𝑐√𝛽𝑝,𝑝𝑒𝑑, where 𝛥 is the width of the pedestal, c is a 

constant (c = 0.076 in the EPED1 model) and 𝛽𝑝,𝑝𝑒𝑑 is the poloidal 𝛽 

at the top of the pedestal. This constraint is used to calculate the 

temperature pedestal for given 𝛥 and the corresponding density 

pedestal calculated by the ionisation model described above. In 

practice this is implemented by iterating between the calculation of 

density profile using a known temperature profile as in Section 3 and 

calculating the temperature pedestal profile using the EPED 

constraint. Finally, the peeling-ballooning stability calculation is used 

to select the pedestal that is marginally stable as the final prediction. 

In the density model of Europed, we use the same parameters as in 

the stand alone model. We also test the sensitivity of the model 

results to the input parameters. The modelling is done in a similar 

manner to Ref.15, except that we use the new bootstrap current 

model by Redl introduced in Ref.16 that is shown to work better than 

the Sauter model used in Ref.15 at high collisionality, but it was not 

available when the modelling of Ref.15 was done.  

4.2 Europed Results 

We first test the model without the KBM particle transport (i.e., 

𝐶𝐾𝐵𝑀 = 0). Using the value of (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =    0.5, we obtain the 
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result shown in Fig. 3 with RMSE = 20%. The scatter of the data is 

slightly worse than with the standalone model that uses the 

experimental temperature profile.  

 
 
Figure 3. The comparison of the prediction of the pedestal density 

against the experimental pedestal density using the ionization 

model ignoring the KBM transport   and assuming (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  

0.5  for the full Europed modelling (magenta) and standalone 

model with experimental temperature (blue). The blue line 

represents the perfect prediction.  

 

Next, we include the KBM transport and decrease the ETG particle 

transport, which was found to improve the fit in the standalone 

model. We use the following parameters 𝛼𝑐𝑟𝑖𝑡 = 2, 𝐶𝐾𝐵𝑀 =

0.1, (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.2. Unlike in the standalone model, with the full 

Europed model we get a worse match with the experiment, as shown 



 

16 
 

in Fig. 4. In particular, the low experimental values of 𝑛𝑒,𝑝𝑒𝑑 are 

under predicted This is the case, despite the Europed modelling 

being performed with a relatively modest KBM transport 

assumption, compared to what was used with the standalone model.  

 
Figure 4. The comparison of the prediction of the pedestal density 

against the experimental pedestal density using the ionization 

model including the KBM transport with the parameters 𝛼𝑐𝑟𝑖𝑡 =

2, 𝐶𝐾𝐵𝑀 = 0.1,  (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.2 using full Europed (magenta). 

For comparison the standalone predictions with the same 

parameters are shown (blue). The blue line represents the perfect 

prediction.  
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The optimal result is achieved with a very small KBM component of 

the particle transport (𝐶𝐾𝐵𝑀 = 0.05), combined with a relatively 

large ETG component ((𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =    0.5), although the 

improvement over the modelling without any KBM transport is small 

(RMSE = 19%).  

We compare this final model to the model predictions in Ref.15 that 

used a simple neutral penetration model: 

                              𝑛𝑒,𝑝𝑒𝑑 =
2𝑉𝑛

𝜎𝑖𝑉𝑡ℎ,𝑒𝐸𝛥𝑒,𝑝𝑒𝑑
,                                               (25) 

where 𝑉𝑛 is the velocity of the neutrals, 𝐸 is the flux expansion ratio 

between the fuelling location and the midplane and 𝛥𝑒,𝑝𝑒𝑑 is the 

pedestal width, while other quantities are as above. Although in 

Ref.15 𝐸 was found to depend on triangularity, this has little physics 

basis and was only included as it improved the fit with the 

experiment. Nevertheless, we compare the new model results with 

the old model run with 𝐸 = 2.41𝜙−0.2𝛿0.53 (where 𝜙 is the gas 

fuelling rate in units of 1022 electrons/s and 𝛿 is the triangularity).  
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Figure 5. The comparison of the prediction of the pedestal density 

against the experimental pedestal density using the ionization 

model including the KBM transport with the parameters 𝛼𝑐𝑟𝑖𝑡 =

2, 𝐶𝐾𝐵𝑀 = 0.05,  (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.5 using full Europed (magenta 

stars) and the standalone (blue crosses). For comparison the 

predictions using the simple neutral penetration model in Ref.15 

are shown (black dots). The blue line represents the perfect 

prediction.  

 

As can be seen in Fig. 5, the model performs similarly at medium 

densities to the model used in Ref.15 which has an RMSE = 25%, but 

is in better agreement with the experiment, both at high and low 

density.  
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The significant difference between the full Europed prediction 

compared to that of the standalone model is that the fit of the 

predicted to experimental data is significantly worse when the KBM 

transport is included than when it is not. Of course, it must be noted 

here that the model with the fixed 𝛼𝑐𝑟𝑖𝑡 value, regardless of, for 

instance, the role of magnetic shear in the pedestal that has been 

found to affect KBM stability, may be too crude for this model and a 

better result could be obtained by using the ideal MHD, 𝑛 = ∞ 

ballooning mode stability limit as a proxy for KBM stability limit, but 

that is left for future work.  

One explanation for this behaviour of the pedestal density prediction 

is that the KBM constraint is already included in the EPED model 

used in Europed. This leads to a feedback loop in the iteration, where 

the model increases 𝐷𝑝𝑒𝑑  when a particular pedestal exceeds 𝛼𝑐𝑟𝑖𝑡. 

This leads to a lower density pedestal, which is then compensated in 

the model by increasing 𝑇𝑒,𝑝𝑒𝑑 (to keep 𝛽𝑝,𝑝𝑒𝑑 fixed for the given 

temperature pedestal width), which then returns the value of the 

pedestal 𝛼 to above 𝛼𝑐𝑟𝑖𝑡,  and the density is then reduced even 

further.  

This could be avoided in the future development of the model if the 

EPED criteria for the pedestal pressure is replaced by a criterion for 

the temperature profile (e.g., ∇𝑇/𝑇   = constant as used in Ref.13) 

that is independent of the pedestal pressure. Another option is to 

use a stiff ETG turbulence-based model where 𝜒𝐸𝑇𝐺 ∝ (1 − 𝜂𝑒)∇𝑇/𝑇 

[7,14], where 𝜂𝑒 = (∇𝑇/𝑇 )/(∇𝑛𝑒/𝑛𝑒). However, this model may 

suffer the same kind of internal instability as the EPED model as the 

temperature profile depends on the density profile, which in turn 

depends on the density profile. Furthermore, it uniquely defines 

both profiles, which makes the peeling-ballooning constraint 

irrelevant. A possible way to include it would be to make 𝑛𝑒,𝑠𝑒𝑝 the 

free parameter (similarly to 𝛥 in the EPED model) and choose the 
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pedestal profile associated with the value of 𝑛𝑒,𝑠𝑒𝑝 that corresponds 

to marginal stability.  

 

4.3  Sensitivity of the model 

While the model is able predict the experimental behaviour 

remarkably well when using experimental parameters, it still has 

some sensitivity to the input parameters that are not known before 

the experiment; in particular, the separatrix density used for the 

boundary condition for the prediction model can strongly affect the 

pedestal density prediction. Figure 6 shows the dependence of the 

pedestal density prediction on the separatrix density for a sample 

case where the experimental pedestal density was predicted 

accurately. Since the pedestal density prediction is so sensitive to the 

separatrix density, the predictions using this model should be 

integrated with a full scrape-off layer model or at least with a simple 

separatrix density model such as that used in Ref.13, where the 

separatrix density is connected to the neutral pressure at the 

divertor, which in turn can be calculated from the known gas fuelling 

rate, heating power and divertor pumping speed. However, this 

method may not work for a device for which we have no prior data 

(such as ITER), in which case the only option is the full scrape-off 

layer modelling. It must be noted that since the gas fuelling rate can 

be adjusted during the experiment, 𝑛𝑒,𝑠𝑒𝑝 may not have to be fully 

predicted but can be adjusted to a desired value with a feedback 

system to a gas fuelling system. 
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Figure 6. The pedestal density prediction as a function of 

assumed separatrix density using the standalone model with the 

experimental 𝑇𝑒 profile (blue) and the full Europed model (red). 

The star represents the experimental case.  

 

The other parameter in the model that we need to make 

assumptions about, is the Franck-Condon neutral density at the 

separatrix, 〈𝑛𝐹𝐶(0)〉. Figure 7 shows that the model is relatively 

insensitive to this parameter and an order of magnitude change from 

1015𝑚−3 to 1016𝑚−3  in 〈𝑛𝐹𝐶(0)〉 changes the 𝑛𝑒,𝑝𝑒𝑑 prediction only 

by about 20% in the full Europed simulation. We can also see that 

the dependence of 𝑛𝑒,𝑝𝑒𝑑 on 〈𝑛𝐹𝐶(0)〉 is linear in both the 

standalone and Europed models.  
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Figure 7. The pedestal density prediction as a function of 

assumed Franck-Condon neutral density at the separatrix 

〈𝑛𝐹𝐶(0)〉.  

 

5. Isotope effect 

In the JET experiments it has been found that with a similar gas rate 

and heating power, the plasmas with hydrogen have lower pedestal 

density than those with deuterium [17]. In the model presented in 

this paper, the isotope mass enters explicitly only through the 

velocity of the neutral particles (𝑉𝐹𝐶  and 𝑉𝐶𝑋). As both are ∝ 1/√𝑚𝑖, 

they are higher for hydrogen than for deuterium. The ion mass effect 

can be investigated by running Europed with the density prediction 

model and changing only the main ion mass in the simulation for a 

hydrogen plasma (JET-ILW discharge #91554). This result is shown in 
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Fig. 8. As expected, the change of the isotope from hydrogen to 

deuterium while keeping everything else fixed decreases the 

pedestal density prediction. However, the change of the isotope 

mass is not the only thing that changes in the JET experiment. In 

addition, the separatrix density is lower in the hydrogen than in the 

deuterium experiment [17]. As shown in Fig 8. when we use the 

𝑛𝑒,𝑠𝑒𝑝 from the deuterium case that was performed with the same 

power (84796), the predicted 𝑛𝑒,𝑝𝑒𝑑 increases by more than what 

the pure isotope effect causes. Both the deuterium and hydrogen 

cases are well predicted when the experimental 𝑛𝑒,𝑠𝑒𝑝 is used. This is 

because the model is sensitive to 𝑛𝑒,𝑠𝑒𝑝, with the prediction of 𝑛𝑒,𝑝𝑒𝑑 

decreasing with decreasing 𝑛𝑒,𝑠𝑒𝑝. 

Furthermore, to reach the same value of global 𝛽, more heating 

power is required in the hydrogen plasma [17]. This means that with 

the same global 𝛽 the hydrogen plasma will have a larger value of 

𝜒𝐸𝑇𝐺  in the model, and even with a fixed value of the (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺   

ratio, the particle transport in the model increases with increased  

heating power, which in turn leads to a lower predicted 𝑛𝑒,𝑝𝑒𝑑 in 

hydrogen. If the (𝐷𝑒/𝜒𝑒) ratio also increases as suggested by the 

EDGE2D-EIRENE modelling in Ref. 17, this further lowers the 

predictions in hydrogen.  

We ignore the possible increase of the (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺  ratio but use the 

experimental 𝑛𝑒,𝑠𝑒𝑝 and heating power in the modelling of the 

hydrogen plasmas. With these assumptions, the hydrogen cases are 

only slightly over-predicted compared to the deuterium ones. This is 

shown in Fig. 8 for both the standalone and full Europed models. As 

can be seen, both the experimental and predicted 𝑛𝑒,𝑝𝑒𝑑 are lower 

for the hydrogen plasmas than in the deuterium plasmas.  The RMSE 

is 32% for the standalone and 38% for the Europed predictions for 

the hydrogen plasmas. Finally, on doubling (𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺  (black points 
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in Fig. 9) the models predict the hydrogen cases with RMSE = 19% 

(standalone) and 27% (Europed).  

 

Figure 8. Europed predicted density profiles for JET-ILW discharge 

91554 assuming 𝑛𝑒,𝑠𝑒𝑝  from the experiment and hydrogen 

plasma (dashed red),  𝑛𝑒,𝑠𝑒𝑝  from the experiment and deuterium 

plasma (dotted magenta), 𝑛𝑒,𝑠𝑒𝑝   from the equivalent deuterium 

discharge, 84796 and deuterium plasma (blue solid) and the 

profile from the experiment (91554, black dashed, 84796 black 

solid). 
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a)
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b)

 

Figure 9. The predicted pedestal densities using the standalone model 

with experimental temperature profiles (a) and the full Europed 

model (b) for deuterium (red) and hydrogen (blue). The model 

parameters for both isotopes were 𝛼𝑐𝑟𝑖𝑡 = 2, 𝐶𝐾𝐵𝑀 = 0.05,  

(𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  0.5. The hydrogen case is also predicted using 

(𝐷𝑒/𝜒𝑒)𝐸𝑇𝐺 =  1 (black).  

 

6. Conclusions 

We have extended the ionisation model for the density pedestal 

presented in Ref. 5 in two ways: 
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(i) We permit a core density gradient, a more realistic situation, 

which unfortunately prevents a simple analytic solution of 

the resulting second order differential equation as presented 

in Ref.5, so that a numerical solution is required. 

(ii) Stimulated by techniques in Ref. 6 we include a self-

consistent population of charge exchange neutrals. This 

results in a fourth order system of differential equations, 

thus requiring four boundary conditions, which can be taken 

to be the influx of neutrals, the core electron radial density 

gradient and the pedestal electron density and its gradient. 

An analytic integration reduces this to a non-linear third 

order differential equation, but an alternative formulation, 

an iterative solution to a second order equation, is 

described. 

In addition, we have incorporated the density prediction model as a 

standalone model, both using experimental temperature profiles and 

in the Europed approach that predicts both the density and 

temperature pedestals, with the required particle diffusion 

coefficient arising from ETG and KBM turbulence. In testing it against 

the JET-ILW pedestal database, we find: 

(i) The full pedestal modelling with the Europed model for the 

pedestal pressure, reasonable assumptions for the scrape-

off layer neutrals and assuming that the particle transport 

coefficient is tied to the heat transport in the pedestal, can 

predict the pedestal density for JET-ILW to high accuracy 

throughout the pedestal database. Including a strong KBM 

component with the transport increasing rapidly after the 

stability limit is crossed, gives good predictions with the 

standalone model, but leads to too much transport in the 

full Europed model due to the underlying pedestal pressure 

model that keeps the pedestal pressure gradient fixed for a 

given pedestal width.  
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(ii) The density pedestal prediction is sensitive to the boundary 

condition 𝑛𝑒,𝑠𝑒𝑝, which is not an engineering parameter. This 

means that for a full pedestal profile prediction, the model 

needs to be integrated with a scrape-off layer model that 

can predict the value of  𝑛𝑒,𝑠𝑒𝑝. 

(iii) The full model can predict the experimentally observed 

isotope effect in the pedestal density, even though the 

isotope effect on the neutral penetration alone is opposite 

to the observed trend. This is due to the sensitivity of the 

model to 𝑛𝑒,𝑠𝑒𝑝 as well as the decreasing particle transport 

in the pedestal with isotope mass.   

 

To further improve the predictive capability of the model presented 

here requires coupling it with a scrape-off layer model that could 

predict 𝑛𝑒,𝑠𝑒𝑝 using only engineering parameters such as the divertor 

configuration and gas fuelling rate. The model should also be tested 

against experimental data from other devices to determine the 

robustness of the parameters used in it. An alternative to the EPED 

modelling of the temperature profiles would be to use a physics-

based thermal transport model involving, say, electron temperature 

gradient and kinetic ballooning modes, together with ion neoclassical 

transport, thus providing a complete model for predicting pedestal 

characteristics. pedestal   A simpler alternative would be to use stiff 

transport models for electron temperature gradient and kinetic 

ballooning modes for the temperature profiles. 
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