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Abstract 

The influence of negative plasma triangularity on the n=1 (n is the toroidal mode 

number) tearing mode (TM) stability has been numerically investigated, with results 

compared to that of the positive triangularity counterpart. By matching the safety 

factor profile for a series of toroidal equilibria, several important plasma parameters, 

including the triangularity, the plasma equilibrium pressure, the plasma resistivity as 

well as the toroidal rotation, have been varied. As a key finding, the TM is generally 

more unstable in the negative triangularity plasmas as compared to the positive 

triangularity counterpart. The fundamental reason for this difference is the lack of 

favorable average curvature stabilization in negative triangularity configurations. 

Direct comparison of the Mercier index corroborates this conclusion. The plasma 

toroidal flow generally stabilizes the TM in plasmas with both negative and positive 

triangularities. The flow stabilization is however weaker in the case of negative 

triangularity with finite plasma pressure.  

 

1. Introduction 



The tearing mode (TM) is one of the most important macroscopic 

magnetohydrodynamics (MHD) instabilities, that leads to reconnection of the 

magnetic field lines (near the location of the instability) [1-3], degradation of the 

plasma energy confinement [4-6], and potentially plasma major disruption [7-9]. 

Large magnetic islands, induced by the TM or its neoclassical counterpart, limit the 

plasma equilibrium pressure in terms of the normalized values 2
0 02 /P B  and 

βN=β[%]a[m]B0[T]/Ip[MA], where β is the ratio of the volume averaged plasma 

pressure P
 
to the magnetic pressure, B0 the on-axis toroidal magnetic field 

strength, a the plasma minor radius and Ip the plasma total current. On the other hand, 

it is well known that finite β, in association with the finite pressure gradient across the 

mode rational surface, stabilizes the TM via the favorable average curvature effect 

(the so-called GGJ-effect [10]) in tokamak geometry. As interesting consequences, the 

GGJ-effect can introduce finite frequency to the mode even in a static plasma [11-13]. 

A rotating TM (in an initially static plasma) in turn generates net electromagnetic 

torque and drives plasma flow [12]. Furthermore, the GGJ-effect induced energy 

dissipation was also found responsible for a strong stabilization of the 

resistive-plasma resistive wall mode (RP-RWM) [12]. Finally, as βN approaches the 

so-called no-wall Troyon limit, the plasma equilibrium pressure can be destabilizing 

to the TM, by coupling the instability to the ideal kink mode [12].  

The boundary shape of the plasma poloidal cross-section plays important roles in 

the discharge performance in tokamak fusion devices [14-16]. Conventionally, a 

‘D’-shaped plasma with positive triangularity (PT) has been shown to be favorable for 

reducing the energy transport and increasing the βN limit [17, 18]. Recent experiments, 

however, have shown that a reversed ‘D’-shape with negative triangularity (NT) can 

also help reduce the turbulence-induced energy transport as well and reach a global 



confinement comparable to the H-mode regime of PT-plasmas [19-21]. Absence of 

edge localized modes in NT-plasmas is another advantage [22]. Because of the 

aforementioned (and other) interesting features associated with the NT-configuration, 

operation with reversed ‘D’-shape for the plasma boundary is becoming an attractive 

fusion concept during recent years [22-29].  

In this study, we investigate the effect of negative triangularity of the plasma shape 

on the TM stability through toroidal modeling, and compare with that for the positive 

triangularity counterpart. The NT-effect on tearing mode has so far not been 

systematically investigated in theory and modeling, much less in terms of achieving 

physics understanding which is the primary focus of the present work. A recent study 

[29] has partially considered the NT-effect on the TM, but in the context of reversed 

magnetic shear plasma scenarios (i.e. on the so-called double tearing mode). Our 

results here reveal the key physics difference introduced by the NT-shape, as 

compared to the PT-shape, that affects the TM stability. More specifically, we find 

that the NT-shape substantially reduces the favorable average curvature stabilization, 

leading to a more robust TM instability in tokamak plasmas. As for the toroidal 

modeling tool, we employ the MARS-F code [30] to solve the resistive MHD 

eigenvalue problem without ordering assumptions.   

The paper is organized as follows. Section 2 describes a series of numerical 

plasma equilibria that we construct in full toroidal geometry, that covers plasma 

boundary shapes ranging from negative to positive triangularity. A key feature of 

these equilibria is that the safety factor profile is fixed to be nearly identical while 

varying the plasma triangularity. Section 3 reports detailed modeling results on the 

TM stability as well as discussions on the underlying physics effects associated with 

the GGJ-stabilization and the Shafranov shift. Section 4 summarizes the results.  



 

2. Plasma equilibria  

In this study, we adopt semi-analytic equilibria in toroidal tokamak geometry, without 

referencing to specific devices. These equilibria are constructed for physics 

understanding of the NT-shape on the TM stability, and appropriate constraints on the 

equilibria are employed to facilitate achieving the goal. 

We consider lower single null divertor-like plasmas, with the boundary shape 

specified in the (R, Z) coordinates on the poloidal plane [31] and normalized by the 

plasma major radius R0 (which is assumed to be 3 m) 

    1 cos sinR       
                    

(2.1) 
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where the parameters ε, δ, κ define the inverse aspect ratio of the plasma, the 

triangularity and elongation of the plasma boundary shape. In order to construct a 

lower single null plasma configuration, we specify, b=0.08 and c=0.5. The parameters 

  and κ are fixed at 1/3 and 1.5, respectively, in this study. The key parameter that we 

vary is the boundary triangularity δ. Figure 1(a) shows examples of the constructed 

plasma boundary shape while varying δ from -0.3 to 0.3. As will be reported later, 

choosing this range of δ well covers the physics regime (the GGJ-regime) of interest 

here - the GGJ-effect disappears when δ < -0.3 for the series of equilibria considered.  

An important consideration in studying the TM is the safety factor profile q, which 

is known to strongly affect the mode stability via the radial location of the associated 

rational surfaces as well as the local magnetic shear. In order to eliminate the effect of 

the q-profile on the TM stability while scanning plasma triangularity, we tune the 

plasma current density profile (which is one of the input data of our fixed-boundary 



equilibrium solver [32]) to ensure nearly identical safety factor profiles, as shown in 

Fig. 1(b). Note that the safety factor is the output of the Grad-Shafranov solver here, 

and is numerically self-consistently computed. To avoid the internal kink instability, 

we fixed the on-axis safety factor at q0 = 1.2. The q=2 rational surface, which plays 

important roles in the n=1 TM in this study, is located near s=0.95 where s labels the 

plasma radial coordinate. Note that we also limit the edge safety factor below 3 to 

focus on the m=2/n=1 resonant component (m is the poloidal harmonic number).  

We also scan the normalized plasma pressure by varying the overall amplitude 

while fixing the radial profile of the equilibrium pressure to an analytic form 

P=P0(1-s2)2. For the TM stability in this study, what matter most are the local pressure 

and pressure gradient at the q=2 surface.   

 

Figure 1. The (a) plasma boundary shapes (normalized by the major radius R0), and (b) 

radial profiles of the safety factor q, considered in this study.  

 

3. Modeling results 

We focus on investigating the effect of negative triangularity on the stability of the 

n=1 TM at the q=2 surface. Three plasma equilibrium parameters are of our primary 

concern while scanning the triangularity, i.e., the plasma pressure (βN), resistivity 
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(Lundquist number S), and the plasma toroidal rotation. We start by reporting the 

modeling results for plasmas with vanishing flow. 

Figures 2 and 3 report the MARS-F computed TM growth rate and mode frequency, 

respectively, for a series of equilibria with different triangularity while performing 

scans in 2D parameter space of βN and S. The range for βN is 0–1.77. The upper bound 

here is chosen to be reasonably below the Troyon no-wall limit for the onset of the 

n=1 ideal kink instability. At βN > 1.77, we find that the TM eigenfunction becomes 

more global and starts to resemble that of an ideal kink. The range for the Lundquist 

number S is chosen to be 2×106 – 1010 . This covers the values for the Lundquist 

number in typical tokamak discharges. Note that the Lundquist number is defined as S 

= τR/τA, where τR = μ0a
2/η (η being the plasma resistivity and μ0 vacuum permeability) 

is the resistive decay time of the plasma current and 0 0 0 0/A R B    is the 

toroidal Alfvén time (R0 and a are the plasma major and minor radii, respectively).  

Figure 2 shows that the TM growth rate generally decreases with increasing 

trangularity (from the negative to positive values). In fact with δ0 and sufficiently 

high Lundquist number (S108), stable TM is computed in certain parameter spaces. 

At a given triangularity, the TM growth rate decreases with increasing Lundquist 

number. This is expected since the TM is driven by the plasma resistivity. It is on the 

other hand interesting to observe the different dependence of the mode stability on βN 

between the NT- and PT-plasmas. For a NT-equilibrium (Fig. 2(a-c)), higher plasma 

pressure drives more unstable TM. The trend is however reversed for the 

PT-counterpart (Fig. 2(e-f)). The finite-pressure induced TM stabilization in 

PT-plasmas is associated with the GGJ-effect. The lack of such stabilization in the 

NT-plasmas indicates a weak GGJ-effect – an important finding of this study which 

will be further elaborated later on. 



 

 

Figure 2. Plotted are the growth rate of the mode from negative to positive 

triangularity, while varying the βN and the Lundquist number S. 

The presence of GGJ-stabilization often results in finite mode frequency (even in 

the absence of plasma rotation). This is indeed the case for the PT-plasmas as shown 

in Fig. 3. As δ is progressively increased from the negative to positive values, an 

“island” of finite-frequency region appears in the (βN, S) domain. This “island” 

emerges from the high-S end for plasmas with weak negative triangularity (Fig. 

3(c-d)), and becomes as a prominent feature for PT-plasmas (Fig. 3(e-h)). Presence of 

finite mode frequency is a clear indication of the GGJ-effect on the TM (at 

intermediate finite plasma pressure). Note that the regions with prominent 

frequency-islands also correspond to the “meta-stable” regions for the TM stability 

shown in Fig. 2. Absence of such “islands” for equilibria with strongly negative 

triangularity (Fig. 3(a-b)) indicates lack of GGJ-stabilization independent of the 

plasma pressure and resistivity.   

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3. Plotted are the real frequency of the mode from negative to positive 

triangularity, while varying the βN and the Lundquist number S.  

As direct evidence for the presence or absence of the GGJ-effect, Fig. 4(a-b) shows 

the ideal (DI) and resistive (DR) Mercier indices evaluated at the q=2 surface, for the 

equilibria considered here. These equilibrium quantities are presented in the 2D 

parameter space of (βN, δ). Note that DI=1/4 corresponds to the case of vanishing 

plasma pressure where no GGJ-effect is present for all triangularity values. This 

quantity increases with both βN and δ. We mention that DI exceeding unity 

corresponds to the ideal kink stability limit [33], which has evidently not been 

accessed for our series of equilibria.  

The computed Mercier index DR is of small negative values for the PT-plasmas at 

sufficiently high pressure (Fig. 4(b)). A negative DR is directly associated with the 

GGJ-stabilization, which is proportional to DR [10]. This quantity is however close to 

0 for NT-equilibria, for a large range of βN values. Figure 4(b) thus reveals the reason 

for the robust TM instability computed for the NT-plasmas as reported in Fig. 2.  

Since the Shafranov shift is also known to affect the MHD instability, we evaluate 

this quantity as well for our equilibria, with results plotted in Fig. 4(c). Here, we 

define the Shafranov shift as the radial distance of the magnetic axis (Raxis) with 



respect to the geometrical center (R0) of the plasma. The normalized quantity reported 

in Fig. 4(c) is thus Δ/R0=(Raxis-R0)/R0. Figure 4(c) shows that the plasma pressure 

enhances the Shafranov shift, as expected. More importantly, increasing the plasma 

triangularity (from negative to positive values) results in reduced Shafranov shift. 

Since the Shafranov shift typically stabilizes MHD instabilities (in particular 

ballooning type of modes), the computed destabilization of the TM in the NT-plasmas 

(with large Shafranov shift) is not due to this effect. We thus conclude that the lack of 

the GGJ-stabilization is the main reason for the more unstable TM in NT-plasmas. 

  
Figure 4. The (a) ideal and (b) resistive Mercier index at the q=2 surface, and (c) 

normalized Shafranov shift, while varying the βN and the triangularity δ. 

We have performed denser scan of the plasma triangularity than that reported in 

Figs. 2 and 3. Figure 5 show two representative examples of the computed TM growth 

rate versus δ. One case (βN=0 and S=108) is chosen from the top-left corner of the 2D 

parameter domain in Fig. 2, where the mode growth rate is too small to be clearly 

compared in the 2D plots. The other case (βN=0.5 and S=2×106) is chosen near the 

bottom-middle region from Fig. 2, where the instability remains relatively strong for 

all triangularity values. Note that we are also comparing two cases here with (βN=0.5) 

and without (βN=0) the GGJ-effect. The presence of the favorable average curvature 

effect evidently results in substantial stabilization of the TM as we increase the 

plasma triangularity from negative to positive values. The slight stabilization (with 

decreasing δ) of the mode for the case of vanishing equilibrium pressure (thus no 



GGJ-stabilization) may be due to the increase of the Shafranov shift as shown in Fig. 

4(c).     

 

Figure 5. The normalized growth rate of the n=1 tearing mode versus the plasma 

boundary triangularity , computed assuming (a) βN=0 and S=108, and (b) βN=0.5 and 

S=2×106. 

As a final study of this work, we consider the negative triangularity effect on the 

TM stability in toroidally rotating plasmas. We consider two flow models, i.e., a 

uniform rotation along the plasma minor radius (Ω=Ω0) and a sheared rotation (Ω=Ω0 

(1-s2)). The modeling results are reported in Fig. 6, again for the two cases of (βN=0, 

S=108) and (βN=0.5, S=2×106) as in Fig. 5. Note that, with the same on-axis rotation 

frequency Ω0, the plasma rotation at the q=2 rational surface is much slower for the 

sheared flow case, as compared to the uniform flow. This motivates our choice of 

larger ranges for Ω0 for sheared flow cases, in particular for the case with finite 

equilibrium pressure as shown in Fig. 6(d,h).  

In general, we find that the plasma toroidal rotation reduces the TM growth rate 

independent of the flow models. For the βN=0 case (Fig. 6(a-b)), the degree of 

stabilization is similar between NT- and PT-plasmas. At finite equilibrium pressure 

(Fig. 6(c-d)), however, the TM growth rate is less affected by plasma rotation for 
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NT-equilibria. In all cases, the mode frequency roughly linearly increases with the 

plasma local rotation frequency at the q=2 surface (Fig. 6(e-h)), as expected.  

  

 

Figure 6. The computed normalized (a-d) growth rate, and (e-h) real frequency of the 

n=1 tearing mode, assuming (a, b, e, f) βN=0 and S=108, and (c, d, g, h) βN=0.5 and 

S=2×106, while varying the plasma toroidal rotation frequency. Assumed are two 

rotation profile models, with (a, c, e, g) a uniform rotation profile Ω=Ω0 along the 

plasma minor radius and (b, d, f, h) a sheared rotation profile Ω=Ω0 (1-s2). 

 

4. Conclusion and discussion 

We have numerically investigated the influence of (negative) plasma triangularity on 

the n=1 TM in this work. By matching the safety factor profile for a series of toroidal 

equilibria, we scan several plasma parameters including the triangularity, the plasma 

equilibrium pressure, the plasma resistivity as well as the toroidal rotation.  

As a key finding, the TM is generally more unstable in the NT-plasmas as 

compared to the PT-counterpart. The fundamental reason for this difference is the lack 

of favorable average curvature stabilization in NT-plasmas, at least for the TM. 

Comparison of the Mercier index corroborates this conclusion. The Shafranov shift, 

which tends to be larger for the NT-equilibria, does not help to stabilize the mode 
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except perhaps for the peculiar case of vanishing equilibrium pressure.  

The plasma toroidal flow generally stabilizes the TM in plasmas with both negative 

and positive triangularities. For the cases of vanishing equilibrium pressure, the 

degree of stabilization is similar between the NT- and PT-plasmas. For finite pressure 

cases, however, we find that the flow stabilization is weaker for the NT-plasma. 

The above findings, in particular the physics understanding revealed by the 

numerical modeling, can be useful for interpreting experimental results in NT-plasmas. 

On the other hand, we point out that not all physics effects have been included in our 

present study, such as the neoclassical effects (NTM) and the non-linear effects, 

effects beyond standard single-fluid MHD model (e.g. anisotropic thermal transport 

effect which we will study in the near future). Some of these effects may also 

significantly affect the TM behavior in negative-triangularity plasmas.  
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