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Abstract

A new open source tool for fluid simulation of multi-component plasmas is
presented, based on a flexible software design that is applicable to scientific
simulations in a wide range of fields. This design enables the same code to
be configured at run-time to solve systems of partial differential equations in
1D, 2D or 3D, either for transport (steady-state) or turbulent (time-evolving)
problems, with an arbitrary number of ion and neutral species.

To demonstrate the capabilities of this tool, applications relevant to the
boundary of tokamak plasmas are presented: 1D simulations of diveror plas-
mas evolving equations for all charge states of neon and deuterium; 2D trans-
port simulations of tokamak equilibria in single-null X-point geometry with
plasma ion and neutral atom species; and simulations of the time-dependent
propagation of plasma filaments (blobs).

Hermes-3 is publicly available on Github under the GPL-3 open source
license. The repository includes documentation and a suite of unit, integrated
and convergence tests.
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1. Introduction

An important feature of magnetically confined fusion plasmas in tokamaks
is that they consist of a mixture of different ion species. Computational
studies of fusion plasma phenomena, such as plasma turbulence, have to date
frequently treated plasmas as if they consisted of a single ion species, typically
deuterium due to its use in experiments. In order to make predictions of
phenomena important to the performance and design of the divertor of future
fusion reactors, models must capture the interactions between plasma and
neutral gas species (deuterium and tritium in a reactor), as well as radiation
from impurity species (eg. Be, C, Ne, Ar, W), and pumping of helium “ash”
and other species. In many cases none of these species can be treated as
“trace” but are all coupled, so that all should be considered self-consistently
in the same simulation. For each of these atomic species the density and
dynamics of multiple states may need to be considered, for example the
ground state, multiple ionisation stages, and molecular species. In some cases
it may also be necessary to track metastable states, such as vibrationally
excited states or charged molecules. The result is a potentially large number
of species types which must be solved for, together with a complex set of
reactions between them.

Historically there has been a division in terms of simulation tools and
to an extent also research communities, between multi-fluid transport codes
such as SOLPS [1], UEDGE [2], EDGE2D [3] and BOUT++/trans-neut [4],
which employ simplified models for the cross-field transport (typically diffu-
sive) but evolve many different species, and the turbulence codes including
GBS [5, 6, 7], TOKAM3X [8, 9], (H)ESEL [10], and various models built on
BOUT++ [11, 12, 13] such as Hermes [14] and STORM [15, 16]. These latter
models can solve for the 3D time-varying turbulent transport, but typically
only evolve a single ion species. During the last 5 years, and currently ongo-
ing, are several efforts (e.g. [17, 18, 19]) to develop codes which can solve for
the turbulent transport self consistently with multiple ion and neutral gas
species [20].

If the number of species states to be solved for is relatively small, such
as electrons, ions and a single atomic species as in Hermes-2 [21] and recent
versions of STORM [16], then code can be written for each species. Unfortu-
nately with this design the size of the code (number of lines) grows linearly
with the number of species states, becoming increasingly error prone, diffi-
cult to test, and hard to maintain, as the number of species is increased. The
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authors’ experience with Hermes-2 indicated that this was not a viable path
to multi-species simulations.

Here an open-source multi-fluid plasma simulation tool is presented, along
with the flexible software design which makes the resulting model and soft-
ware complexity manageable. It is built on BOUT++, which provides low-
level data management and operations, and augments this with a reusable
model component system. By doing this we unify 1D tokamak divertor sim-
ulation code SD1D [22] with 2D and 3D transport and turbulence code Her-
mes [14], and enable these tools to be extended towards multiple ion species
simulations that self-consistently include both plasma turbulence and trans-
port (atomic) physics.

In section 2 the numerical methods are described; in section 3 the software
architecture is outlined and compared to prior work; and in section 4 a series
of applications are presented, which demonstrate some of the capabilities of
the new code.

2. Numerical methods

In this section we describe the numerical methods used in Hermes-3 com-
ponents. The architecture described in section 3.2 does not enforce the choice
of numerical method, but this section describes the methods which have been
implemented to date and are used in section 4. The system of PDEs is
solved using the method of lines, in which the time and spatial dimensions
are treated separately: The time integrator simply integrates a set of Or-
dinary Differential Equations (ODEs), and is discussed in section 2.1; the
spatial discretisation is by finite difference methods (section 2.2). Boundary
conditions are discussed in section 2.3.

2.1. Time integration

Hermes-3 is built on the BOUT++ framework [13], and so can make use
of a range of explicit (e.g RK4), fully implicit (e.g. BDF via SUNDIALS [23]),
and implicit-explicit (e.g IMEX-BDF2 and ARKODE via SUNDIALS) meth-
ods. These were implemented with the aim of studying time-dependent prob-
lems, such as the study of Edge Localised Mode (ELM) eruptions [24] or
tokamak edge turbulence [25], where accurate time evolution is required.

Many of the problems of interest for Hermes-3 are steady state: Axisym-
metric tokamak transport solutions, potentially as a starting point for 3D
time-dependent turbulence simulations. To find these steady-state solutions
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efficiently it is desirable to take large timesteps, ideally an infinite timestep,
damping transient oscillations in the system. A dissipative time integration
scheme that is unconditionally stable is therefore desirable. A first order
backward Euler method and preconditioning algorithm similar to that used
in UEDGE [2] has been implemented here. This method is stable for any
timestep provided that the nonlinear solver, (typically a variety of Newton’s
method) iterations converge. In practice this limits the timestep to a finite,
and sometimes quite small, value.

An important ingredient to robustly and efficiently solving the nonlinear
problem at each time step is a good preconditioner: It enables the linear
inner solve to converge with fewer iterations (and so computational cost) for
larger timesteps than would otherwise be possible. Custom preconditioners
developed using a methodology such as physics-based preconditioning [26,
27] can be highly effective, but are challenging in multi-fluid contexts: The
tokamak edge is a highly nonlinear system, with a potentially large number of
species (and so equations), coupled through atomic rates which are typically
tabulated rather than analytic, and which vary by orders of magnitude over
relatively small temperature ranges. The approach used in UEDGE, and
adopted for the Backward Euler solver here, is to use finite differences to
calculate the elements of the system Jacobian, and then use a solver such as
ILU (in serial) to factorise and invert this approximate Jacobian.

The calculation of a dense Jacobian using finite differences would be
prohibitively slow in most cases: A typical simulation might contain N ≃
105 − 108 evolving quantities, while the Jacobian has N2 elements. For-
tunately the Jacobian is typically sparse, because the finite differences and
other interaction terms are local. This is exploited by using the PETSc color-
ing facilities [28], which are provided with the matrix structure (determined
by the finite difference stencil), and efficiently calculate many Jacobian ma-
trix entries simultaneously. Because each cell only has a fixed number of
neighbours, the cost of evaluating the Jacobian is reduced from scaling like
N2 to approximately linear in N as the grid resolution is increased.

The effectiveness of this time integrator for steady state problems will be
applied to 1D transport problems in section 4.1 (fig 5). For 2D transport in
an axisymmetric tokamak geometry in section 4.2, the CVODE solver [23]
remains competitive and is used for now while extension of the Backward
Euler solver to 2D and 3D domains continues.
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2.2. Finite differencing spatial operators

The models to be shown here make use of conservative finite difference
operators which were implemented in the Hermes code [14] and have been
improved over time and moved into the BOUT++ library. All quantities are
cell centred, and advection operators are written in terms of fluxes between
cells calculated at cell faces. The cross-field operators presently assume that
the grid is orthogonal in the tokamak poloidal plane. This limits the accu-
racy with which strongly shaped divertor geometries can be simulated with
the present code. Non-orthogonal grids which align with wall surfaces can
be generated for Hermes using the BOUT++ grid generator [29], but the
required off-diagonal metric terms have not yet been implemented. Those
terms have long been implemented in UEDGE, and were recently added to
SOLPS [30], where they were found to be essential for fluid neutral mod-
elling on distorted grids, but relatively unimportant when kinetic neutrals
were used. Implementing these terms is a high priority for future improve-
ments to Hermes-3.

Because all quantities are cell centred, in the absence of dissipation zig-
zag modes are likely to develop. In [14] an Added Dissipation [31] artificial
dissipation term was used in advection operators. Here this is replaced with
an HLL type flux splitting method [32], which was developed for 1D tokamak
divertor simulations and is described in [22, 33]. A further improvement made
here is to use the Monotonised Central (MC) slope limiter [34] rather than
MinMod or Fromm limiters. The MC limiter has reduced dissipation while
still being sufficiently dissipative in the cases studied here to maintain smooth
solutions. This has been found to provide a good balance between stability
and performance when using implicit time integration schemes.

To verify the implementation of fluid flow along the magnetic field for
smooth solutions, a set of 1D fluid equations along a magnetic field given in
equation 1 is tested using the Method of Manufactured solutions (MMS). This
testing method has become widely used to verify the correct implementation
of complex sets of equations, in tokamak edge plasma codes [35] including
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BOUT++ [36].
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Error norms as a function of mesh cell spacing are presented in figure 1,
showing convergence towards the manufactured solution on a 1D periodic
domain. Second order convergence is found for both l2 and l∞ error norms,
consistent with the order of accuracy of the numerical methods used.
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Figure 1: Verification of the convergence of a 1D system of fluid equations on a periodic
domain. Showing l2 (Root-Mean-Square) and l∞ (Max) errors for the evolving density
Ni, pressure Pi and momentum NVi.

The intended application of Hermes-3 is to magnetically confined fusion
plasmas, in which flows are typically subsonic. Nevertheless the code must
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be robust to transients, and transitions to supersonic flow can occur in toka-
mak plasmas [37]. Figure 2 shows the results of the standard 1D Sod shock
tube test case [38]. In general good agreement between exact and numerical
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Figure 2: Standard Sod shock tube problem [38] at t = 0.2. A solution with reference
resolution (n = 100 cells) is compared to higher resolutions and their l2 (RMS) errors.
The inset figure shows the shock front in more detail.

solution is found. There are however unphysical overshoot oscillations, and
in the expanded view shown inset in figure 2 it can be seen that the numeri-
cal shock location lags the exact solution, so that the l2 error norm does not
converge to zero. The result is insensitive to time integration method, being
observed with both the default CVODE time integrator and the RK3-SSP
method implemented in BOUT++. This is likely a consequence of Hermes-
3 solving the fluid equations in a non-conservative form: pressure is solved
for rather than total energy, and reconstruction of cell edges is in terms of
primitive variables. We conclude that the methods currently implemented
are suitable and 2nd-order accurate for smooth solutions (figure 1), and re-
main robust but lose accuracy around shocks (figure 2). This is sufficient for
present applications. The modular nature of Hermes-3 allows multiple fluid

7



formulations to be implemented and inter-operate, if a method more suited
to shock capturing is required.

2.3. Boundary conditions

The domain typically solved for in 2D and 3D Hermes-3 tokamak sim-
ulations is an annulus consisting of a region of closed and open magnetic
flux surfaces. An example is discussed in section 4.2 and shown in figure 8.
The hot “core” of the plasma is not modelled because the fluid equations
solved become invalid in that region. Instead a boundary condition must be
imposed at that innermost surface where no boundary physically exists. At
the outer edge of the domain the grid is typically close to, but not aligned
with, the solid vacuum vessel of the tokamak. Boundary conditions for the
thermodynamic variables on both “core” and “wall” boundaries are typically
set to either Dirichlet or Neumann.

The boundary condition on the potential ϕ is a variation on the method
used in the STORM model [16, 15]: A time-evolving boundary condition that
relaxes towards a Neumann boundary. This is implemented in the follow-
ing way: When inverting the Laplacian-type equation for ϕ from vorticity,
the potential is fixed at both core and wall boundaries. If a simple Dirich-
let condition is used then narrow boundary layers typically form close to
the boundaries in which the imposed boundary potential is matched to the
plasma potential. These boundary layers can develop unphysical instabilities.
Instead, at every timestep the value of the boundary condition is adjusted
towards the value inside the domain with a characteristic timescale that is
set by default to 1µs. In this manner the electrostatic potential ϕ evolves
smoothly to solutions that can have different potentials on core and wall
boundaries.

3. Software architecture

Hermes-3 [39, 40] aims to support a wide range of different models, with
an arbitrary number of species and equations. This flexibility presents a
challenge for the software design: A poorly chosen architecture will result
in the code complexity growing rapidly with the model size, so that further
progress becomes increasingly difficult as the model is extended.

There are many domains besides tokamak plasma physics where perfor-
mance is important, and where many different software components have to
interact in complex ways which need to be extended over time as the software
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grows and is applied to new problems. A variety of approaches have been
developed within scientific computing and in other fields. In section 3.1 we
briefly describe some of the approaches that influenced the design of Hermes-
3.

3.1. A brief survey of approaches

Within physical sciences there are a number of codes which have adopted
designs that enable users and developers to develop components or plugins,
and to combine them in novel ways so that the ecosystem becomes increas-
ingly useful as new components are added. An example is LAMMPS [41],
which uses a system of “styles” that define interfaces which users can imple-
ment to modify the simulation behaviour.

In the software industry Entity Component Systems (ECS) are a design
pattern which is commonly used in game development. Those are intended
to describe a set of “Entities” that have defined sets of behaviour and can
interact with each other. This design pattern offers flexibility through com-
position rather than inheritance, and considerable run-time configurability.
A widely used and high-performance implementation of an ECS is EnTT [42].

Task graphs are another widely applicable and powerful approach to
thinking about computations, which focuses on managing the dependencies
between components, so that at a high level the whole calculation is a directed
acyclic graph (DAG). Examples of task-based systems include StarPU [43]
and TaskFlow[44].

An important aspect of all of these approaches is splitting complex models
into simpler components, which interact through standardised interfaces and
not global state. This facilitates testing, in particular unit testing, provides
a powerful way to mitigate the growth of complexity, and helps to maintain
productivity as code becomes larger.

3.2. The design of Hermes-3

The design of Hermes-3 is a combination of the Encapsulate Context [45]
and Command patterns [46]. The main elements are a flexible store or
database, into which values (e.g. spatially dependent fields like densities,
temperatures) can be inserted and later retrieved; and a collection of com-
posable model components that set and use values in the store. The approach
has similarities to data oriented design [47], in which loose coupling between
components is achieved by focusing on defining the data being operated on.
In fusion an example of this approach is the OMFIT framework [48], which
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uses a similar approach to loosely couple data sources, codes and analysis
scripts.

The data in a simulation is physical quantities, such as density and tem-
perature fields, and derived quantities representing terms in the equations
being solved. Hermes-3 stores these quantities in a nested dictionary struc-
ture (a tree), using C++ variant to enable different data types to be stored.
A schema defines a convention for where values are stored, for example
state["species"]["h+"]["density"] is the number density of hydrogen
ions.

Operations on the simulation state are performed by a collection of com-
posable model components, that set and use values in the state. For example
there is a component which evolves an equation for fluid number density, an-
other component which evolves pressure. These components are configured
when they are created, so that the same code is used to evolve every species
that needs that component. Every component can access the whole state, so
some perform calculations for a single species, while others perform calcula-
tions involving multiple species (e.g. collisions, sheath boundary conditions).

An important distinction between this design and one with a shared global
state is that here the state is an object which is passed to components in a
user-defined order. This has two advantages: It controls when state can
be modified, making the flow of the program easier to understand, and it
facilitates unit testing because the inputs to the components can be precisely
specified with no hidden side-channels or large setup/teardown procedures.

Controlling when and how data can be modified is crucial to preventing
errors, such as components being run out of order so that quantities are set
or modified after use. The values being calculated are physical quantities
at the current simulation time, and so logically do not change. It is there-
fore tempting to adopt an immutable (persistent) data structure, such as
the HAMT used in Clojure [49] and available in C++ libraries such as Im-
mer [50]. There are however situations in which components need to modify
fields set by earlier components; an important example is applying boundary
conditions. Rather than copy arrays of data to maintain immutability, the
approach used here is to mark quantities as immutable after they have been
used: A quantity can be modified (e.g. boundary condition applied) only if
that quantity has not already been used in a previous calculation.

The flow of information carried by the state through a sequence of com-
ponents is shown in figure 3. This design restricts when the state can be
modified, limiting the complexity of interactions between components, and
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Component Component Component

transform() transform() transform()

finally() finally() finally()

DoneState

Figure 3: The State of the simulation system is passed through a sequence of Components
in two passes. In the first pass components can modify the state passed to their transform
function; in the second pass the state cannot be modified, but is used to update component
internal states in their finally functions.

making the logic of the program easier to follow. In Hermes-3 each compo-
nent is passed the state twice: The first time the state is mutable, and the
component can insert values into it. After all components have been called
in this way, the state is “frozen”, and passed to each component again but
cannot be modified. In this second pass each component can use the final
state to update its own internal state, such as time derivatives to be passed
to the time integrator. This means that components can depend on each
other’s outputs, including mutual dependencies, but all modifications must
be in the first function (called transform()), and in the second function
(called finally()) all components can assume that the state will not subse-
quently change. This structure could be exploited to enable all component
finally() functions to be run in parallel, but this is not currently done in
Hermes-3.

The design of Hermes-3 enables run-time configuration of the simulation
equations: All of the examples shown in section 4 use the same executable,
despite solving different sets of equations in different numbers of spatial di-
mensions. The overhead of this flexibility appears to be small, but for high
performance scientific simulation codes it is debatable whether run-time con-
figuration is essential: Once the simulation is set up, it is performing the
same set of operations repeatedly, calculating time derivatives given differ-
ent system states. Run-time configuration enables the user (scientist) to
modify the equations without recompiling, but means that some errors are
only caught at runtime, which might have been caught more quickly at com-
pile time. Compile-time configuration of the equations solved might enable
more optimisations, since conditionals can be known and optimised out by
the compiler. Just-In-Time (JIT) compilation might offer the best of both
worlds; since the operations are the same with different data, run-time analy-
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sis of the performance might enable on-the-fly tuning to identify bottlenecks
and optimise throughput.

4. Applications

We now describe some applications of Hermes-3, starting from a 1D trans-
port model (section 4.1); then a 2D transport model in 2D (axisymmetric)
tokamak geometry (section 4.2). Finally we demonstrate time-dependent ca-
pabilities by simulating 2D (drift plane) plasma “blobs” (section 4.3). Appli-
cation of these capabilities to 3D turbulence simulations is relatively straight-
forward, but requires significantly more space to describe adequately and so
will be explored in separate publications.

4.1. 1D transport

We first apply Hermes-3 to a one-dimensional problem: the flow of heat
and particles along a magnetic flux tube which is in contact with a material
surface. The model includes electrons, deuterium ions and neutral deuterium
atoms. One end of the domain is modelled as being in contact with a material
surface, forming a plasma sheath and accelerating ions to the sound speed.
The flow of ions to the surface is “recycled” back into the domain as neutral
atoms, which then undergo charge exchange and ionisation reactions with the
plasma. The other end of the domain has a symmetry (no-flow) boundary
condition, where thermodynamic variables (e.g. densities, pressures) have
zero gradient, and flow velocities are zero. This is a widely used model for
the divertor region of tokamak plasmas, which has several implementations
of varying complexity [51, 52, 53, 54, 55], including the SD1D model [22, 33]
which like Hermes-3 is built on BOUT++ [12].

Despite its relative simplicity this model contains many of the nonlinear-
ities and numerically stiff behaviour which make 2D and 3D plasma simula-
tions challenging, including strong nonlinear heat diffusion, and fast reaction
rates which are sensitive to electron temperature.

The components to be included in the simulation (section 3.2) are speci-
fied in an input text file; the relevant line is shown in listing 1.

1 [hermes]

2 components = (d+, d, e,

3 sheath_boundary, collisions, recycling, reactions,
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4 electron_force_balance, neutral_parallel_diffusion)

Listing 1: Top-level components for 1D hydrogen transport model. Parentheses are used
to group multi-line settings. Full input in examples/1D-recycling of the Hermes-3
repository [39]

The boundary condition at the material surface, implemented by the sheath boundary

component in listing 1, is the multi-ion sheath boundary described in [56].
For the single ion species here this reduces to the standard Bohm-Chodura-
Riemann sheath boundary condition [57]. The collisions component im-
plements collisions between an arbitrary number of charged and neutral
species. Reactions between species are organised into a subsection called
reactions, and are chosen to have names which are readable and follow a
convention for the species labels.

1 [reactions]

2 type = (

3 d + e -> d+ + 2e, # Deuterium ionisation

4 d+ + e -> d, # Deuterium recombination

5 d + d+ -> d+ + d, # Charge exchange

6 )

Listing 2: Reactions contained in the 1D hydrogen transport model

Reaction cross-sections for hydrogen and helium have been taken from the
Amjuel database [58].

Each particle species has components to evolve the density, pressure and
parallel momentum, and a no-flow boundary condition imposed on the up-
stream boundary. To illustrate how Hermes-3 components combine to form
the equations solved, the d+ (deuterium ion) species settings are shown in
listing 3.

1 [d+] # Deuterium ions

2 type = (evolve_density, evolve_pressure, evolve_momentum,

3 noflow_boundary, upstream_density_feedback)

4 charge = 1 # charge

5 AA = 2 # mass [amu]

6 density_upstream = 1e19 # Upstream density [m^-3]

7 recycle_as = d # Species to recycle as

8 recycle_multiplier = 1 # Recycling fraction

Listing 3: Components to model the deuterium ion species
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This implements a set of equations for the density nd+, pressure pd+ =
end+Td+ and parallel velocity v||d+ of the deuterium ions (d+) of mass md+

and charge qd+, given in equation 2. These are in SI units except tempera-
tures in eV.

∂nd+

∂t
= −∇ ·

(
nd+bv||d+

)
+ SPI︸︷︷︸

upstream density feedback

+ nend ⟨σv⟩iz︸ ︷︷ ︸
d + e -> d+ + 2e

−nend+ ⟨σv⟩rc︸ ︷︷ ︸
d+ + e -> d

(2a)

∂pd+
∂t

= −∇ ·
(
pd+bv||d+

)
− 2

3
pd+∇ ·

(
bv||d+

)
+∇ ·

(
κ||d+bb · ∇Td+

)
+ nend ⟨σv⟩iz

[
eTd +

1

2
md

(
v||,d − v||,d+

)2]
︸ ︷︷ ︸

d + e -> d+ + 2e

+ nd+nd ⟨σv⟩cx
[
e (Td − Td+) +

1

2
md

(
v||,d − v||,d+

)2]
︸ ︷︷ ︸

d + d+ -> d+ + d

− nend+ ⟨σv⟩rc eTd+︸ ︷︷ ︸
d+ + e -> d

+ Wd+︸︷︷︸
collisions

(2b)

∂

∂t

(
md+nd+v||d+

)
= −∇ ·

(
nd+v||d+bv||d+

)
− b · ∇pd+ + qd+nd+E||

+ nend ⟨σv⟩iz mdv||d︸ ︷︷ ︸
d + e -> d+ + 2e

−nend+ ⟨σv⟩rcmd+v||d+︸ ︷︷ ︸
d+ + e -> d

(2c)

+ nd+nd ⟨σv⟩cxmd+

(
v||d − v||d+

)︸ ︷︷ ︸
d + d+ -> d+ + d

Fd+︸︷︷︸
collisions

(2d)

Where b ≡ B/B is the unit vector in the direction of the magnetic field B,
and κ||d+ is the parallel heat conduction coefficient that depends on the colli-
sion frequency calculated by the collisions component. For each equation 2
the first line corresponds to the essential transport terms implemented in the
evolve density, evolve momentum and evolve pressure components. Ad-
ditional components, labelled with underbraces in equation 2, add sources
and sinks that modify and couple species together. Details of the full system
of 7 evolving equations are given in Appendix A.

The equations are integrated in time towards a steady state solution us-
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ing the backward Euler method described in section 2.1. The result is shown
in figure 4. The root-mean-square of the time-derivatives of ion density,
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Figure 4: Steady-state solution to system of equations 2 and Appendix A in one dimension.
50MW of power enters a source region on the left, driving plasma-neutral interactions
including ionisation, leaving through the sheath boundary on the right. 100% of the
plasma ions leaving the right boundary are recycled as neutral atoms.

pressure and parallel momentum are shown in figure 5 as a function of the
number of right-hand-side (RHS) evaluations, a measure of the computa-
tional cost. This evaluation count includes those performed as part of the
finite difference Jacobian approximation. This shows a reduction in the time
derivatives of the system by almost six orders of magnitude in 105 RHS
evaluations. For the above system of equations, with 400 grid cells, this
calculation takes approximately 5 minutes on a single core. For comparison
the convergence towards steady state with the Sundials CVODE [23] library
is shown in figure 5. CVODE uses an adaptive order, adaptive timestep
Backward Differentiation Formula (BDF) method, and is highly effective for
time-dependent problems of interest even without preconditioning (e.g. the
plasma blobs application, section 4.3). For this problem only the parallel
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Figure 5: Root-mean-square time derivatives of deuterium density (Nd+), pressure (Pd+)
and momentum (NVd+) as a function of iteration (RHS evaluation). These converge
towards zero as the system approaches steady state. Results are shown for Backward Euler
Newton-Krylov with Jacobian coloring and iLU preconditioning (NK); and the PVODE
time integrator. Figure produced by examples/1D-recycling/plot convergence.py.

heat conduction is preconditioned. Figure 5 shows that the Backwards-Euler
with Jacobian coloring preconditioner method can provide significantly bet-
ter performance for steady-state problems, though it would not be a good
choice for time-dependent simulations, being only first order accurate in time.

In this simulation the recycling at the “target” end of the domain was
set to 100%, while there is a no-flow condition on the upstream boundary. A
Proportional-Integral (PI) controller is used to control an upstream particle
source; as the target upstream density is approached, this input source should
go to zero if mass flow is conserved. Figure 6 shows that this does indeed
happen: The source converges towards exponentially towards zero in steady
state.

The 1D simulation described here is a useful tool in its own right, for
studies of plasma dynamics and detachment in magnetised plasmas. The
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Figure 6: Convergence of the density source with RHS evaluation in a 1D simulation with
100% recycling (figure 4) where the true steady state source is zero. Figure produced by
examples/1D-recycling/plot convergence.py.

advantage of the software design used in Hermes-3 (section 3) is that the
same code can extend to more complex models and higher dimensions with
only changes to the input.

4.1.1. Impurity seeding

We now extend the 1D simulation described in section 4.1 to multiple
ion species, by including all ten charge states of neon as separate species.
The simulation now contains 40 evolving fields: The density, pressure and
momentum of all deuterium and neon ion and atomic charge states (13 ion
species in total), and the electron pressure. These species are coupled through
collisions, thermal forces, the parallel electric field, and 32 atomic reactions:
ionisation, 3-body recombination and charge exchange recombination (with
deuterium ions) of each ionisation level of neon; ionisation and charge ex-
change of neutral deuterium atoms to deuterium ions. The modular structure
of the code (section 3.2) enables this to be accomplished relatively straight-
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forwardly by changing the input file.

1 [hermes]

2 components = (d+, d, ne, ne+, ne+2, ne+3, ne+4, ne+5, ne+6,

3 ne+7, ne+8, ne+9, ne+10, e, sheath_boundary,

4 thermal_force, collisions, recycling, reactions,

5 electron_force_balance, neutral_parallel_diffusion)

Listing 4: Top-level components for 1D transport model with neon. Input
examples/1D-neon

There are now many more reactions, but the input remains clear:

1 [reactions]

2 type = (

3 d + e -> d+ + 2e, # Deuterium ionisation

4 d + d+ -> d+ + d, # Charge exchange

5

6 ne + e -> ne+ + 2e, # Neon ionisation

7 ne+ + e -> ne, # Neon+ recombination

8 ne+ + d -> ne + d+, # Neon+ charge exchange recombination

9

10 ...

11 )

Listing 5: Reactions contained in the 1D transport model with neon.

The cross-sections and radiated power from the neon reactions are calculated
using ADAS [59]: scd96 and plt96 for ionisation; acd96 and prb96 for
recombination; ccd89 for charge exchange. These files were converted to
JSON format using atomic++ [60].

Collisions and the thermal forces between species are calculated as de-
scribed in section 4.1. Those Braginskii energy and momentum exchange
rates are approximations which are only strictly valid when heavy ions are
trace impurities. In the simulations shown here the neon concentration is
small (a fraction of a percent). More complete models of collisions in a
multi-ion plasma have been derived [61] and recently generalised [62]. Im-
plementing these models into Hermes-3 is left as future work, but is not
anticipated to present any fundamental difficulty.

Starting from the hydrogen simulation described above (section 4.1), a
simulation with 100% recycling and an initial uniform low concentration of
neon is run to steady state, and shown in figure 7. In this simulation there
is no net flow upstream of the ionisation region, and so thermal forces drive
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neon impurities upstream. The steady-state solution is shown in figure 7. Fu-
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Figure 7: Steady state solution with 100% recycling, evolving all charge states of neon
as separate fluids with their own densities, temperatures and flow velocities. A subset
of species densities (blue lines) are shown on a logarithmic scale. Simulation inputs in
examples/1D-neon of the Hermes-3 repository.

ture applications of this capabilty include simulating impurity-seeded plasma
detachment phenomena.

4.2. 2D (axisymmetric) transport

The same code that is used in a 1D domain in the previous sections can
be applied to 2D tokamak domains with one or two X-points. By introduc-
ing cross-field diffusion of both charged and neutral species, an axisymmet-
ric tokamak transport simulation in the spirit of SOLPS [1], EDGE2D [3]
or UEDGE [2] can be performed, though not yet at a comparable level
of maturity or completeness. To demonstrate the ability of Hermes-3 to
solve axisymmetric transport problems, simulations are performed with deu-
terium ions and neutral atoms. Diffusion coefficients and plasma parameters
are taken from [63, 64]: Spatially constant cross-field diffusion coefficients
for particle transport Dn = 0.15m2/s, electron and ion thermal transport
χe = χi = 4m2/s. In general these coefficients can be functions of location,
and can be different for each species.

The plasma equilibrium is based on a COMPASS-like equilibrium gener-
ated using analytic Grad-Shafranov solutions [65, 66]. The domain simulated
is shown in figure 8, consisting of a narrow annulus around the separatrix
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Figure 8: Axisymmetric tokamak transport simulation of deuterium ions and atoms. Equa-
tions given in Appendix A. Simulation inputs in examples/tokamak/recycling of the
Hermes-3 repository.

(dashed black lines in figure 8) including closed and open field line regions.
The radial boundaries are at normalised psi of 0.9 in the core and in the pri-
vate flux region (PFR), and 1.3 in the Scrape-Off Layer (SOL). The Hypno-
toad tool [29] was used to generate a sequence of grids of increasing resolution
from 16× 24 to 64× 96 (radial × poloidal cells).

As in previous examples, the equations solved are specified as a set of
components:

1 components = (d+, d, e,

2 collisions, sheath_boundary_simple,

3 recycling, sound_speed, reactions,

4 electron_force_balance)

Listing 6: Top-level components for 2D transport model. Full input in
examples/tokamak/recycling of the Hermes-3 repository.
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The deuterium ion species is configured with a set of components representing
the equations solved, given in listing 7

1 [d+]

2 type = (evolve_density, evolve_momentum, evolve_pressure,

3 anomalous_diffusion)

4 anomalous_D = 0.15 # Density diffusion [m^2/s]

5 anomalous_chi = 4 # Thermal diffusion [m^2/s]

6 ...

Listing 7: Deuterium ion components for 2D transport model

which is similar to the configuration in 1D simulations given in listing 3,
but adds anomalous cross-field diffusion terms. Reactions between species
are calculated using Amjuel rates [58], comprising ionisation, recombination,
and charge exchange processes as described in section 4.1.

At the inner (core) boundary the deuterium density is fixed to 1×1019m−3;
electron and ion temperatures are set to 75eV. This core boundary therefore
acts as a source of heat and particles. At the target plates a sheath boundary
condition is applied in which the plasma flow goes to the sound speed, with
a recycling fraction of 0.99 so that there is a flux of neutral atoms into the
domain at the target plates. The 1% of ion flux that is not recycled is
balanced in steady state by a diffusion of ions from the core boundary. This
particle flux balance will be used in section 4.2.2 to verify the conservation
of particles in these simulations.

The heat flux along the magnetic field into the target plates is given by
q||e,i = γe,ineTcs with sheath heat transmission factors γe = 4.8 for elec-
trons and γi = 3.5 for ions. The sound speed into the sheath is cs =√
e (Ti + Te) /mi. There are no diffusive fluxes to the outer walls because

zero-gradient boundary conditions are used there. The power into the target
plates should therefore equal the input power through the core boundary,
less the power radiated during atomic processes (primarily ionisation). This
is used in section 4.2.2 to assess conservation of energy.

The full set of equations solved are given in Appendix A.

4.2.1. Evolution to steady state

The system of transport equations is relatively small (e.g. 10,752 vari-
ables for the 32 × 48 mesh) but highly nonlinear and with a wide range of
timescales, making finding steady state solutions challenging. Simple appli-
cation of a nonlinear solver does not converge in most cases of interest, and
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the system must be regularised using a (pseudo-)timestepping approach. As
the system approaches steady state the timestep can be made progressively
larger, usually in an automated manner based on the number of nonlinear
iterations required to converge the previous step. The combination of time
integration method, time step adjustment heuristic, nonlinear solver, inner
linear iterative solver, and preconditioner have many parameters that can
affect performance. The nested methods interact in ways that are problem-
dependent, making general conclusions regarding performance difficult to
draw. For the present 2D problem is has been found that CVODE generally
converges more quicky than Backward Euler, though can be more susceptible
to numerical oscillations that reduce with tightened tolerance.

In general power balance reaches steady-state on a shorter timescale than
the particle balance: The thermal energy content of the system (plasma +
neutrals) is W ≃ 47J, so the energy confinement time is τE ≡ W/Pin ≃
0.24ms. On the other hand the ion particle content is approximately 2×1018,
giving a particle throughput timescale of τp ≃ 45ms. This longer particle
balance timescale becomes increasingly challenging at high recycling fractions
relevant to large fusion devices.

An effective strategy, already used routinely in UEDGE, is progressive
mesh refinement: Starting on the coarsest mesh (16 × 24 here), CVODE is
used with an absolute tolerance of 10−12 and relative tolerance 10−5, tight-
ening the relative tolerance to 10−8 as steady state is approached. These
tolerances can be loosened in some cases, but at the risk of numerical insta-
bility and convergence failure after a number of steps. Once progress has been
made on a coarse mesh, the solution is interpolated onto a higher resolution
mesh (using SciPy’s RegularGridInterpolator [67] over logically rectangular
mesh patches). The simulation is then continued using an increased num-
ber of cores. The refinement process may be repeated. Figure 9 shows the
Root-Mean-Square (RMS) of the time derivatives of the plasma density aver-
aged over the domain, as a function of wall clock time (running on NERSC’s
Perlmutter). For each mesh resolution the simulation was continued after
interpolation, until the Root-Mean-Square time scale exceeded one second,
to minimise the impact of mesh interpolation error on the comparison of
solutions. As the mesh was refined the number of cores used was increased
following a weak scaling. The increase in run time with grid resolution in
figure 9 is primarily driven by the number of iterations required: 3.1 × 106

(16× 24 mesh), 1.2× 107 (32× 48 mesh) and 3.7× 107 (64× 96 mesh). The
time per iteration (RHS evaluation) is 1.7ms, 2.0ms and 4.3ms respectively.
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Extending the Backward Euler method and coloring preconditioner used in
1D simulations (section 4.1) to these 2D simulations is a high priority for
future development, in order to reduce the number of iterations required for
convergence.

4.2.2. Convergence and accuracy

The accuracy of the methods are now assessed by examining the con-
servation properties and convergence of the solution with mesh resolution.
Figure 10 shows the profiles of density and temperature along the outer tar-
get, for each mesh resolution. Low resolution meshes broaden the profiles
of both density and temperature relative to high resolution cases: Numer-
ical dissipation enhances the effective cross-field diffusion. Given the fixed
(Dirichlet) core boundary conditions, this enhanced diffusion increases the
power into the domain at low resolution. It also be seen in figure 10 that
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the meshes do not have a consistent boundary location: Due to boundary
cell locations, as the grid is refined the outer edges of the domain converge
at first order to the specified poloidal flux values. This will limit the global
formal convergence to at best first order unless improvements are made to
the mesh generator.

To assess power and particle balance, table 1 lists the flows of power and
particles into and out of the domain, for each mesh resolution. Power enters

Table 1: Global power and particle balance in 2D transport simulations

16× 24 32× 48 64× 96
Input power [kW] 195.0 174.4 162.4
Power to outer target [kW] 104.6 92.5 85.9
Power to inner target [kW] 75.4 64.9 59.5
Power to atomics [kW] 22.8 19.3 17.6
Power balance error [kW] 7.8 (4.0%) 2.3 (1.3%) 0.59 (0.36%)
Input ion flux [1019/s] 5.31 4.56 4.15
Flux to outer target [1019/s] 278 247 230
Flux to inner target [1019/s] 284 229 204
Recycling fraction [0.99] 0.9909 0.9903 0.9904

the domain through the inner (core) boundary, where Dirichlet boundary
conditions are set on density and temperatures so that power crossing this
boundary depends on the local gradients. The target temperatures in fig-
ure 10 are well above the 5eV typical for detachment, so these simulations
are in attached conditions and most of the power goes to the outer and in-
ner targets. Some power is lost through atomic processes, both to overcome
ionisation potentials and through radiation. Power to atomics includes the
deuterium ionisation potential so this potential energy flux is not included
in the power to outer and inner targets listed in table 1. As noted in sec-
tion 2.2 pressure equations are evolved rather than energy, so that energy
conservation is in general not exact but converges as the mesh is refined.
For comparison, a 1% power balance error has been used as a SOLPS-ITER
convergence criterion [68].

Particle fluxes are shown in Table 1 as the flux into the domain through
the inner boundary, and the fluxes to inner and outer targets. Due to the
imposed recycling fraction of 0.99, we expect 1% of the flux to the targets to
be lost (pumped), and replaced by a matching flux of ions into the domain
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from the core. The core and target fluxes are therefore used to infer the
recycling fraction in Table 1. If particle balance is achieved then that fraction
should match the 0.99 value set. We find this to be well matched: Particle
conservation is significantly easier to achieve in this system of equations than
energy conservation, and these results demonstrate that all advection and
diffusion operators, recycling and atomic processes, properly conserve particle
fluxes.

4.3. 2D (drift-plane) blobs

We now turn from steady-state transport problems to time-dependent
problems involving an evolving vorticity equation and electrostatic potential
ϕ. The development of this capability towards full 3D turbulence, particu-
larly in the presence of multiple ion species, will be the subject of a future
publication. As an initial step and proof of principle, we present here some
examples of 2D drift-plane simulations of plasma “blobs” or filaments.

The significant lines in the input file which configure this model are shown
in listing 8.

1 [hermes]

2 components = e, vorticity, sheath_closure

3

4 [e] # Electrons

5 type = evolve_density, isothermal

6 charge = -1

7 AA = 1/1836 # Mass of species [amu]

8 temperature = 5 # Temperature in eV

9

10 [sheath_closure]

11 connection_length = 10 # meters

Listing 8: Component configuration for isothermal blob simulation. Full input in
examples/blob2d of the Hermes-3 repository.

These set up components for the electron species density and (isothermal)
temperature, a vorticity equation, and a model for the divergence of parallel
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current due to the sheath closure. This corresponds to model equations

∂ne

∂t
= −∇ ·

(
ne

1

B
b×∇ϕ

)
+ ∇ · 1

e
jsh︸ ︷︷ ︸

sheath closure

(3a)

pe = eneTe︸ ︷︷ ︸
isothermal

(3b)

∂Ω
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)
+∇

(
pe∇× b

B

)
+ ∇ · jsh︸ ︷︷ ︸
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∇ ·
(
min

B2
∇⊥ϕ

)
= Ω (3d)

where ne is the electron density, pe the pressure and Te the (fixed) tem-
perature. The Boussinesq approximation is used here, so the potential ϕ is
calculated from vorticity Ω using equation 3d with a constant mass density
min. The divergence of current density to the sheath is ∇ · jsh = neϕ/L||
where L|| is the connection length (10m here).

The scaling of sheath-connected isothermal plasma blobs with blob size is
a well known test case, which can be derived analytically in the limits of large
blobs where sheath current balances the divergence of diamagnetic current,
and for small blobs where polarisation current balances the divergence of
diamagnetic current (see e.g. [69]). The blob size δ for which the divergence of
polarisation and sheath currents contribute approximately equally is denoted
δ∗.

Simulations are started with a circular Gaussian density perturbation (a
plasma “blob”), whose size perpendicular to the magnetic field and the size
of the simulation domain is varied. Because we are interested in time-varying
solutions to these equations (propagation of plasma blobs), the CVODE time
integrator [23] is used, not the backward Euler method used in section 4.1.
The result is shown in figure 11a, reproducing well known scaling of plasma
blob velocity with blob size [69].

This model extends quite straightforwardly to include hot ion effects and
separate ion and electron temperatures, by modifying the input file to in-
troduce a new species h+ with a separate pressure equation. The vorticity
formulation is implemented such that the polarisation current contribution of
multiple species is included in calculating the electric field; The self-consistent
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Figure 11: Solution to equations 3 in a 2D domain perpendicular to the magnetic field,
starting with a circular cross section density perturbation and driven by magnetic field
curvature. Input and analysis scripts in Hermes-3 repository examples/blob2d.

calculation of the polarisation drift on the ion species density in a multi-ion
species calculation has recently been implemented and is being tested. Fur-
ther examples, tests and applications may be found in the Hermes-3 man-
ual [40] and source code repository [39].

5. Conclusions

Advancing understanding of the physics of the edge of tokamak plasmas
drives the need for increasingly complex models. To address this need a
new open-source plasma simulation tool has been developed that enables re-
searchers to perform complex multi-species plasma simulations by combining
reusable software components. This is achieved by building on the BOUT++
framework of partial differential equation solvers, and defining a flexible yet
robust method of coupling components together within a parallelised high-
performance code.

Applications of this tool to simulations of tokamak plasmas have been
demonstrated: Time dependent simulations of plasma filament/blob propa-
gation and steady-state transport including atomic reactions. Convergence
tests and comparisons to analytic solutions have been carried out, demon-
strating good conservation properties and convergence of the methods. The
public Git repository includes a suite of unit, integrated and Method of
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Manufactured Solutions (MMS) tests that are used routinely to check the
correctness of code changes.

Areas for future development and research have been identified: Extend-
ing the steady state solver implemented using PETSc from 1D transport
problems (section 4.1) to 2D is a high priority, as is benchmarking of Hermes-
3 against other codes for both transport and turbulence applications. These
efforts have begun and will be reported elsewhere once completed.

Hermes-3 is publicly available [39] on Github under a GPL-3 license. To
maximise its utility to the plasma community a set of examples are included,
and a manual [40] provides an introduction for new users.
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[63] K. Hromasová, D. Coster, M. Komm, J. Seidl, D. Tskhakaya, SOLPS-
ITER simulations of the COMPASS tokamak, in: 47th EPS Conference
on Plasma Physics, 2021, p. P5.1028.
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Appendix A. Plasma and neutral atom transport equations

The equations solved in 1D in section 4.1 and in 2D in section 4.2 are
detailed here for completeness. A total of seven spatially varying quantities
are evolved in time: The deuterium ion and atom densities (nd+ and nd);
the flow of ions and atoms parallel to the magnetic field (v||,d+ and v||,d); and
the pressure of the ions, atoms, and electrons (pd+, pd and pe). SI units are
used except temperatures, which are in eV. In a 1D domain (section 4.1) the
anomalous diffusion terms are omitted and all derivatives perpendicular to
the magnetic field are assumed to be zero.

The equations for the deuterium ion species density nd+, parallel velocity
v||,d+ ≡ b · vd+ and pressure pd+ = end+Td+ are:

∂

∂t
nd+ =−∇ ·

[(
bv||,d+ + v⊥,d+

)
nd+

]
+Riz −Rrc (A.1a)

∂

∂t

(
md+nd+v||,d+

)
=−∇ ·

[(
bv||,d+ + v⊥,d+

)
md+nd+v||,d+

]
− b · ∇pd+

+ eE|| +Rcxmd

(
v||,d − v||,d+

)
−Rrcmdv||,d+ +Rizmdv||,d (A.1b)

∂

∂t

(
3

2
pd+

)
=−∇ ·

[(
bv||,d+ + v⊥,d+

) 5
2
pd+

]
+ v||,d+b · ∇pd+

+∇
(
bκ||,d+b · ∇Td+

)
+∇ · (χd+nd+∇⊥Td+)

+
1

2
md (Rcx +Riz)

(
v||,d − v||,d+

)2
+Riz

3

2
eTd −Rrc

3

2
eTd+ +Wd+,e (A.1c)

where b = B/B is the unit vector in the direction of the magnetic field,
and the gradient in the plane perpendicular to the magnetic field is ∇⊥ ≡
∇− bb · ∇. Particle diffusion across the magnetic field is implemented as a
cross-field ion drift velocity v⊥,d+ with diffusion coefficient D:

v⊥,d+ = −D
1

nd+

∇⊥nd+ (A.2)

The charge exchange (CX), ionization (IZ) and recombination (RC) reactions
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between species have rates (events per m3 per second):

Rcx =nd+nd ⟨σv⟩cx (A.3a)

Riz =nend ⟨σv⟩iz (A.3b)

Rrc =nend+ ⟨σv⟩rc (A.3c)

where the Maxwellian-averaged cross sections ⟨σv⟩ are taken from Amjuel [58],
specifically Amjuel reaction H.4 2.1.5 (ionisation), H.4 2.1.8 (recombination)
and H.3 3.1.8 (charge exchange). Hydrogenic charge-exchange reactions are
adjusted for isotope mass, ion and neutral temperatures by calculating an
effective temperature Teff = Tatom/Aatom + Tion/Aion as described in the
Amjuel manual.

There is a transfer of thermal energy to ions from electrons due to colli-
sions, Wd+,e:

Wd+,e = 3νd+,end+
md+

md+ +me

e (Te − Td+) (A.4)

with ion-electron collision frequency νd+,e = νe,d+me/md+.
The electron density ne = nd+ is set by quasineutrality; the electron

parallel velocity v||,e = v||,d+ from assuming that the parallel current is zero
(Note that this is a choice in this particular model, not a general feature of
Hermes-3). The electron pressure equation is:

∂

∂t

(
3

2
pe

)
=−∇ ·

[(
bv||,e + v⊥,d+

) 5
2
pe

]
+ v||,eb · ∇pe

+∇
(
bκ||,eb · ∇Te

)
+∇ · (χeene∇⊥Te)

− Eiz + Erc −Wd+,e (A.5a)

where Eiz and Erc are the energy cost and gain due to ionization and recombi-
nation atomic processes respectively. These are calculated using Amjuel [58],
reactions 2.1.5 and 2.1.8. Ionization always removes energy from the elec-
trons; Recombination may be either a source or sink of electron energy, de-
pending on the temperature and density. Electron force balance is used to
calculate the parallel electric field E|| ≡ b·E and so transfer electron pressure
pe forces to the ions:

eE|| = −b · ∇pe −∇ ·
[
v⊥,d+menev||,e

]
(A.6)

The equations for the neutral deuterium atom density nd, parallel velocity
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v||,d and pressure pd = endTd are:

∂

∂t
nd =−∇ ·

[(
bv||,d + v⊥,d

)
nd

]
−Riz +Rrc (A.7a)

∂

∂t

(
mdndv||,d

)
=−∇ ·

[(
bv||,d + v⊥,d

)
mdndv||,d

]
− b · ∇pd

−Rcxmd

(
v||,d − v||,d+

)
+Rrcmdv||,d+

−Rizmdv||,d (A.7b)

∂

∂t

(
3

2
pd

)
=−∇ ·

[(
bv||,d + v⊥,d

) 5
2
pd

]
+ v||,db · ∇pd

+∇ (κd∇Td) +
1

2
md (Rcx +Rrc)

(
v||,d − v||,d+

)2
−Riz

3

2
eTd +Rrc

3

2
eTd+ (A.7c)

The flow of neutral atoms across the magnetic field, v⊥,d, is derived by bal-
ancing friction forces against pressure gradient [2]:

v⊥,d = − Td

mdνdpd
∇⊥pd (A.8)

The thermal conduction coefficients for each species are:

κ||,d+ = 3.9
pd+

md+νd+
κ||,e = 3.16

pe
meνe

κd =
pd

mdνd
(A.9)

The collision frequencies for each species, νd+, νe and νd, are:

νd+ =νd+,d+ +
me

md+

νe,d+ + nd ⟨σv⟩cx (A.10a)

νe =νe,d+ + νe,e (A.10b)

νd =nd+ ⟨σv⟩cx + nda0
√

2eTd/md (A.10c)

The collision frequency of charged species a on charged species b is given
by [70]:

νa,b =
qaqbnb log Λ (1 +ma/mb)

3π3/2ϵ20m
2
a (v

2
a + v2b )

3/2
(A.11)

with v2a = 2Ta/ma. Neutral-neutral collisions assume a kinetic diameter of
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2.8 × 10−10m (cross-section a0 = 2.5 × 10−19m2), chosen based on typical
values for species considered (2.89 × 10−10m for H2, 2.60 × 10−10m for He,
2.75× 10−10m for Ne [71]).

The Coulomb logarithm is different for electron-electron, ion-ion and
electron-ion species interactions, and is calculated using the NRL formu-
lary [72] (page 34). Converted to SI units with T in eV the Coulomb loga-
rithms are:

log Λe,e =30.4− 0.5 log ne +
5

4
log Te −

√
ϵ+ (log Te − 2)2 /16 (A.12a)

log Λe,i =


31− 0.5 log ne + log Te if Ti

me

mi
< 10Z2

i < Te

30− 0.5 log ne − logZi + 1.5 log Te if Ti
me

mi
< Te < 10Z2

i

23− 0.5 log ni + 1.5 log Ti − log (Z2
i Ai) if Te < Time/mi

10 otherwise

(A.12b)

log Λi,i =29.91− log

[
Z1Z2 (A1 + A2)

A1T2 + A2T1

√
n1Z2

1/T1 + n2Z2
2/T2

]
(A.12c)
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