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External kink modes, believed to be the drive of the β-limiting Resistive Wall Mode, are strongly
stabilised by the presence of a separatrix. We thus propose a novel mechanism explaining the
appearance of long-wavelength global instabilities in free boundary high-β diverted tokamaks, re-
trieving the experimental observables within a physical framework dramatically simpler than most
of the models employed for the description of such phenomena. It is shown that the magneto-
hydrodynamic stability is worsened by the synergy of β and plasma resistivity, with wall effects
significantly screened in an ideal, i.e. with vanishing resistivity, plasma with separatrix. Stability
can be improved by toroidal flows, depending on the proximity to the resistive marginal bound-
ary. The analysis is performed in tokamak toroidal geometry, and includes averaged curvature and
essential separatrix effects.

Maximising β, the ratio of plasma pressure over ki-
netic pressure, is of crucial importance for an economi-
cally viable tokamak reactor, allowing a larger fraction
of bootstrap current and higher fusion power yield. The
maximum achievable β, however, is limited by the onset
of global macroscopic magnetohydrodynamic (MHD) in-
stabilities. Experimental evidence shows that this macro-
scopic pressure driven activity i) has an external com-
ponent, ii) grows on time scales of the order of tens of
milliseconds [1], iii) rotates slowly compared to the bulk
plasma [2], iv) is stabilised by plasma rotation (even mod-
est in some cases) [2, 3], and v) is triggered when β crosses
a threshold which is smaller than the one predicted by
ideal MHD stability analyses with a close fitting ideal
wall [2].

The general consensus for this β limiting instability in-
vokes a special form of the external kink (XK) mode en-
hanced by β effects as its most likely cause, with the mag-
netic flux diffusion through the resistive wall surrounding
the plasma slowing down the fast growth of the XK [2].
This is known as the Resistive Wall Mode (RWM). Sev-
eral theories have been proposed to explain such MHD
phenomenon, see e.g. [2, 4–8]. Most of those have been
developed in cylindrical geometry, and generally neglect
plasma inertia and pressure effects [6] apart from few
works which account for localised finite β corrections [5].
Only few analyses deal with proper toroidicity [7–10], al-
though using peculiar equilibrium profiles and allowing
mode resonances in the vacuum region.

For the RWM, viewed as a form of an XK, a funda-
mental role is played by the free energy contribution of
the vacuum region. However, although external kinks
are certainly possible in limited toroidal plasmas, extra
care has to be taken when dealing with diverted geome-
tries. With an x-point, the safety factor profile diverges
at the separatrix. This constrains any mode of helicity

m/n > qmin (m and n are the toroidal and poloidal mode
numbers and qmin is the minimum value of the safety fac-
tor) to resonate within the plasma. Therefore, in an ideal
diverted plasma the XK is expected to be suppressed, and
wall effects strongly reduced [11]. In numerical modelling
a cut-off in the simulation domain is often introduced in
order to avoid the edge singularity in q. The choice of
this cut-off is usually such that q at the edge corresponds
to the value of q at 95% of the normalised poloidal flux
(q95). Unfortunately, this introduces a degree of arbi-
trariness since results may depend strongly on the choice
of q95 [12, 13].

Hence, in this Letter a new mechanism, featuring
both internal and external characteristics, which explains
the appearance of low-frequency long-wavelength macro-
scopic instabilities in a high-β diverted tokamak avoiding
the arbitrariness of the choice of the edge q is presented.
This framework retrieves all experimentally observed fea-
tures associated with RWMs phenomena, although being
significantly simpler than most of the models commonly
employed for the interpretation of such dynamics. The
analysis, performed in toroidal geometry within the in-
fernal model framework [14, 15], naturally identifies pres-
sure as the key driving player, with plasma resistivity
both deteriorating stability and allowing the perturba-
tion to have external-like features. Contrarily to the
toroidal derivations of Refs. [7, 8], coupling occurs well
inside the core region far from the innermost resonance
and no modes are allowed to resonate in the vacuum.
Our model accounts also for favourable averaged curva-
ture effects, namely a negative Glasser-Greene-Johnson
(GGJ) interchange parameter [16], and a sheared toroidal
flow. Mode suppression can be achieved with modest ro-
tation values if the resistive plasma is not too far from
its marginal stability boundary.

We analyse a circular tokamak plasma of major and mi-
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nor radii R0 and a respectively in the limit of large aspect
ratio (ε = a/R0 � 1). The ordering β = 2µ0p/B

2
0 ∼ ε2

is adopted, where p is the plasma pressure and B0 the
magnetic field strength on the axis. A right handed
straight field line coordinate system (r, ϑ, φ) is intro-
duced with r a flux label with the dimensions of length,
and ϑ (counter-clockwise in the poloidal cross-section)
and φ the poloidal-like and toroidal angles respectively.
The equilibrium magnetic field in the plasma is B =
F∇φ − ∇ψ × ∇ϕ where ψ is the poloidal flux. The
plasma is described by the resistive MHD equations [17]
(we normalise µ0 = 1) whereas the absence of currents in
the vacuum region implies that ∇ ×B = 0. We denote
with ρ and η the mass density and resistivity respec-
tively, both assumed to be constant. The temperature
is taken to be a decreasing function of the radius with
Ti = Te = T .

We adopt a magnetic separatrix so that q → ∞ log-
arithmically at the edge (q is the safety factor) and as-
sume that this divergence is well localised in an infinites-
imally narrow region about the boundary. Far from the
plasma-vacuum boundary region, q is piecewise contin-
uous, constant for 0 < r < r0 (core region) with value
q0 = m/n − δq > 1. We take q0 strictly above unity to
avoid m = n infernal type perturbations developing [15].
For r > r0 (external region) we choose q = q0(r/r0)2,
extending into the vacuum region up to the ideally con-
ducting wall located at r = b (cf. Fig. 1-(a)). The pres-
ence of a separatrix forces any perturbation of helicity
m/n to resonate within the plasma. In order to model
this effect, we constrain the maximum width of the cur-
rent channel r0 so that for a given m and n we impose
(m+ 1)/n < q(a).

A sheared equilibrium toroidal MHD flow u =
R2Ω(r)∇φ is allowed under the assumption of being
sufficiently weak not to induce centrifugal corrections
to equilibrium pressure and mass density profiles [18].
Both pressure and rotation profiles are parametrised by
a Heaviside step-function H (cf. Fig. 1-(b))

p/p0 = H(rp − r), Ω/Ω0 = H(rΩ − r), (1)

with 0 < rp < r0 and r1 < rΩ < r2. Here p0 and Ω0

are the axis values of pressure and rotation respectively.
Without loss of generality we take Ω0 > 0.

Let us fix the toroidal mode number n. In region
0 < r < r0 we allow for toroidicity driven coupling
between a main mode ξm and its satellite harmonics
ξm±1 with ξm±1 ∼ εξm [14, 15]. Higher order harmon-
ics are ignored. Hereafter ξ denotes the perturbation
and any other quantity takes its equilibrium value. In
this region plasma inertia is neglected and it is assumed
that (δq/q)2 ∼ εα. By solving for ξm+1 in the region
0 < r < r0 and imposing smooth matching across r0

and regularity of the sidebands at the magnetic axis, an

r0r1 r2a b

q0

m/n
m+ 1/n

δq

(a)
rp r0 r1rΩr2 a

Ω0

p0

(b)

Figure 1. Safety factor (a), and pressure and toroidal rotation
profiles (b) used in the following analysis. In panel (b), the
units of the y-axis are arbitrary.

equation for ξm is found [15, 19, 20]

[r3Qξ′m]′ − r[(m2 − 1)Q+ DM ]ξm +
α(1 +m)

2
×

× r1+m

r2+2m
0

(
2 +m+ c

m− c

)∫ r0

0

r1+mαξmdr = 0, (2)

where α = −(2R0p
′q2)/B2

0 , Q = (δq/q)
2, DM = α(1 −

1/q2)r/R0, and c = r0ξ
′
m+1(r0)/ξm+1(r0). Note that the

coupling effectively involves only two harmonics, namely
ξm and ξm+1. Toroidal rotation modifications to Q and
DM , as the ones reported in Ref. [18], are neglected due to
the weak flow assumption. If shaping effects are allowed,
DM is modified according to Ref. [19], and the last term
in (2) weakened by an elongation dependent factor [19].

With the safety factor given above, the two resonances
q = m/n and q = (m+ 1)/n occur at r1 = r0(m/nq0)1/2

and r2 = r0[(m+ 1)/nq0]1/2 respectively. No mode cou-
pling occurs for r0 < r < a because of the large shear and
the absence of strong pressure gradients (cf. (1)). More-
over, ξm must remain finite at r1 to leading order and has
to vanish at either the ideal wall or infinity. This forces
ξm = 0 in the region r > r1 [3]. We notice that even in
the case ξm ∼ ξm+1, coupling is of higher order. Thus we
envisage that this reduced spectrum is sufficient to cap-
ture the key physical effects. Far from the resonances, ξ`
(` = m,m+ 1) obeys equation [21]

L`ξ` ≡ [r3(`/q−n)2ξ′`]
′− r(`2− 1)(`/q−n)2ξ` = 0, (3)

with general solution ξ` ∝ (r`−1 + Nr−`−1)/(`/q − n)
where N is a constant. This form of ξ` also solves (2)
in region 0 < r < rp and rp < r < r0 with the pressure
profile given by (1) [8, 19].

The asymptotic behaviour of ξm near the resonance r1

is ξm ∝ 1
x ∓∆±,m for x ≷ 0 with x = (r − r1)/r1. The

sideband ξm+1 behaves similarly at r2 with the obvious
replacements x→ (r − r2)/r2 and ∆±,m → ∆±,m+1.

The layer response is obtained by matching the so-
lutions far from and close to the resonance, yielding
`π∆R,` = −[∆−,`+∆+,`]. This is used to express ∆−,` as
function of wall (∆+,`) and layer (∆R,`) responses. Wall
physics is contained in the term ∆+,`, which is obtained
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from the smooth matching of the solution of (3) with the
vacuum one [22, 23]

∆+,` = −1

2
− ` (rs,`/b)

2` + 1 + 1/γτw
(rs,`/b)2` − 1− 1/γτw

, (4)

having employed the thin wall approximation [24], with
τw denoting an effective wall diffusion time, rs,m = r1

and rs,m+1 = r2. Note that ∆+,` remains bounded unless
rs,` → b, and for b→∞ its expression coincides with the
one obtained letting τw finite and γ → 0. This indicates
that the stability limit computed with a resistive wall
conforms to the one with the wall at infinity.

At r1 we assume an ideal response

∆R,m = − ω1

γ − iΩ0
ω1 =

ωAs1n/m√
1 + 2m2/n2

, (5)

where ωA = B0/R0
√
ρ and s1 the magnetic shear at po-

sition r1. Notice that inertia at r1 is enhanced by a
factor ∼

√
2(m/n)2. Note that in our model s1 = 2,

however if δq is sufficiently small, one could approximate
s1 ≈ nδq/m which is more appropriate for a smooth cur-
rent profile.

We let ∆R,m � ∆+,m, i.e. sufficiently small γ,
Ω0 and (r2/b)

2m. Since T (r2) < T (r1), we allow for
plasma resistivity at r2. Equation (3) is augmented by a
Glasser-Greene-Johnson (GGJ)-like term ν [16], that is
(Lm+1− r2s

2ν)ξm+1 = 0 with 0 < ν � 1, and solved far
from r2 via a WKB expansion for small 1/(m + 1) [25].
The resulting expression is joined asymptotically with
the perturbative (in ν) solution of the equation above
about r2. The latter is finally matched with the layer
solution [26]. In the limit of ν sufficiently small, this
yields [16, 27]

∆R,m+1 =
Γ(3/4)

2Γ(5/4)

c
1/2
0 S3/4

m+ 1

(
γ

ωA

)5/4 [
1 +

πν

4M

]
, (6)

where c0 =
√

1 + 2(m+ 1)2/n2/(ns2) with s2 the mag-
netic shear at r2, S = a2ωA/η is the Lundquist number,
Γ is the Gamma function and M = c0(γ/ωA)3/2S1/2. It
is easily shown that with the choice of the safety fac-
tor given above, the tearing stability index of the mode
m+ 1 is negative for an ideal wall at infinity. This guar-
antees that the system is stable against classical tearing
modes [28].

We shall focus on the n = 1 mode. With the pressure
profile given by (1), the dispersion relation is obtained by
integrating (2) across rp [18, 19], and joining smoothly
at r0 the core and external region solutions for ξm and
ξm+1. This yields to first order in 1/∆R,m

λH +
B

∆R,m
+

A

∆R,m+1 −∆′T
= 0. (7)

λH measures the magnitude of the ideal growth rate and
is well approximated by

λH ≈
(1 +m)β̄2

2ε2
p

(r2/r0)2+2m − 2− δq
1 + δq(r2/r0)2+2m

(
rp
r0

)2+2m

− β̄(1− 1/q2
0)− 2m(m− 1)Q

m− 1 + (m+ 1)(rp/r0)2m
,

with β̄ = 2p0q
2
0/B

2
0 and εp = rp/R0. The quantities A

and B, both positive, are defined as

A =
(m+ 1)β̄2

πε2
p

(1 + δq)2(r2rp/r
2
0)2+2m

[1 + δq(r2/r0)2+2m]2
,

B ≈ 16m3(rp/r1)2m/(πq2
0)

[m− 1 + (m+ 1)(rp/r0)2m]2
,

having neglected the weak dependence upon δq in q2
0B

(this holds if rp/r0 is not too close to unity). It is worth
noticing that for m = 2 the factor q2

0 appearing in the
expression of B above, cancels out with the one contained
in the definition of r1. Finally, ∆′T is written as

π(m+ 1)∆′T =
m+ 1/2− (m+ 3/2)δq(r2/r0)2+2m

1 + δq(r2/r0)2+2m

−∆r,m+1,

which recovers the tearing mode stability index of mode
m+ 1 at r2 for δq sufficiently large. Notice that ∆′T ≤ 0
for δq > 0 in the ideal wall limit, i.e. τw →∞. Thus, in
order to extend the range of applicability of (7), we may
regard ∆′T as a free parameter, letting it vary from −∞
to 0.

With no rotation, the ideal marginal boundary
(∆R,` → ∞) is identified by λH = 0, and corresponds
to the usual ideal-wall β limit. We see that in an ideal
plasma there is no wall influence, neither ideal nor resis-
tive, on the boundary due to the fact that the resonances
of the modes involved occur within the plasma, leading to
an effective screening of the wall effects. This holds true
even if mode coupling is allowed in the region r > r0 with
ξm+1 dominant over ξm. Moreover, the ideal marginal
boundary is very weakly affected by non-vanishing rota-
tion at r2, if the flow is not too large, i.e. if the condition
∆R,` � 1 is fulfilled.

Allowing a tearing response at r2 (∆R,m+1 ∼ γ5/4)
with neither rotation nor GGJ effects, the stability limit
is given by the relation λH/A− 1/∆′T = 0, which occurs
for λH < 0. We call this stability limit the resistive β-
boundary. Stability is increasingly worsened as ∆′T → 0,
pushing the marginal boundary λH/A to −∞, that is the
mode is always unstable. The wall affects this bound-
ary, and its effect becomes more pronounced as r2 ap-
proaches b. This result can be generalised to the ∆′T > 0
case [29], showing that no threshold is present if ν = 0.
The marginal boundaries for the ideal and resistive case
discussed above are shown in Fig. 2 in the βN − δq space
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Figure 2. Ideal and resistive marginal boundaries for the n =
1 mode with a dominant m = 2 component with r0/a = 0.6,
rp/a = 0.35 and εp = rp/R0 with ε = a/R0 = 1/3. The
unstable regions lie above each curve. The wall position of
the stability curve of the resistive mode w/ wall is set at
b/a = 1.05.

with βN = β[%]q(a)/(5ε) (computed in the cylindrical
limit) and β = β̄r2

p/(q0a)2. If ν 6= 0, GGJ effects are
expected to stabilise the resistive mode [16], effectively
introducing an intermediate threshold between the ideal
and resistive ones. We point out that a neoclassical drive
must be added when the analysis is extended to the non-
linear phase.

Let us now assume that λH < 0, i.e. we analyse an
ideally stable situation, and allow for a toroidal flow of
the form given by (1). Since we are mostly interested in
the marginal stability boundaries, we consider the case
of wall at infinity (b → ∞). We identify two roots: one
which rotates with frequency close to Ω0 (fast-frequency
root), and the other with |γ| � Ω0 (low-frequency root).
In the former case we write γ = iΩ0 + δ with |δ| � Ω0,
and substitute into (7). It is immediate to see that if |λH |
and ∆R,m+1 are sufficiently large, i.e. large Lundquist
number, then Re(δ) < 0.

The low-frequency root is analysed recasting equation
(7) by means of (5) as

∆R,m+1 = A
|λH |+ iBΩ0/ω1

|λH |2 +B2(Ω0/ω1)2
+ ∆′T ,

which is valid far from the ideal boundary, having ap-
proximated γ − iΩ ≈ −iΩ [9]. Using (6) in the limit of
ν/M small and far from the resistive β-boundary, we get

Re(γ) = γT

[
1− πν

5c0S1/2

(
γT
ωA

)−3/2
]

(8)

with the characteristic growth rate given by

γT
ωA

= S−3/5

[
Ĉ0
m+ 1

c
1/2
0

(
A|λH |

|λH |2 + Ω2
∗

+ ∆′T

)]4/5

,

Figure 3. Contours of the critical rotation required to stabilise
the resistive mode with the same parameters of Fig. 2 apart
from b → ∞ here. The ideal instability region lies above
the solid curve, and the purely resistive mode is stable below
the dashed one. Region I is ideally stable-resistive unstable.
Region II is stable thanks to GGJ effects (here we take ν∗ =

10×β5/6). Equation (9) holds between regions I and II, below
the A/|λH |+∆′T−ν∗ ≈ 1 level denoted by the dot-dashed line.
The colours in this region indicate the required rotation for
marginal resistive MHD stability. Smaller rotation frequency
may be needed for smaller values of s1.

where Ω2
∗ = B2(Ω0/ω1)2 and Ĉ0 = 2Γ(5/4)/Γ(3/4). This

root grows on slow time scales, of the order of tens of mil-
liseconds with ωA of the order of megahertz. The S−3/5

dependence of γT also makes the rotation frequency of
the mode small compared to the one of the bulk plasma.
Core plasma rotation provides a stabilising effect and its
critical value obtained from (8) reads

Ω0

ω1
=
|λH |
B

√
A/|λH |
ν∗ −∆′T

− 1 (9)

with ν∗ ≈ 0.41×ν5/6(s2S)1/3/(m+ 1)4/3. Without rota-
tion, the stability boundary of the resistive mode modi-
fied by GGJ effects at r2 is identified by A/|λH | − ν∗ +
∆′T = 0. Close to this boundary, the rotation values
needed to stabilise the mode can be of the order of few
percent of the Alfvén frequency as shown in Fig. 3 (a
linear dependence of ν upon β is chosen).

As ν∗ is increased, the marginal curve approaches the
ideal one (λH = 0) and the eigenfunction ξm+1 changes
its parity from tearing to kink-like. If ∆′T > 0, the
marginal stability curve can be expressed in a form sim-
ilar to (7) replacing A → Â > 0. Thus, stabilisation
occurs at larger values of ν∗, i.e. for smaller resistivity,
leading us to infer a kink structure for the the marginal
ξm+1. Moderate plasma shaping can be expected to im-
prove stability due a modification of DM and ν and mode
coupling weakening [19, 30].

Similar conclusions can be drawn on internally non-
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resonant cases with q0 > m/n, as long as r0/b re-
mains small enough, for which lower β limits are envis-
aged due to a weakening of field line bending stabilis-
ing terms [19, 31]. For broader current profiles, the ab-
sence of the internal m/n resonance can lead to more
pronounced wall effects on the stability.

In summary, we developed a simple model apt to de-
scribe macroscopic β-driven instabilities in a diverted
tokamak. It predicts a slow growing, slow rotating mode
driven unstable below the ideal-wall β limit by plasma re-
sistivity. Stability is improved by the synergy of sheared
toroidal rotation and GGJ effects, the former of the or-
der of few percent of the Alfvén speed. We found that
wall effects in an ideal plasma are screened by internal
resonances, ruling out ideal external kinks as a possible
drive of mode instability.
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