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Abstract—Classical sequential models employed in time-series
prediction rely on learning the mappings from the past to the
future instances by way of a hidden state. The Hidden states
characterise the historical information and encode the required
temporal dependencies. However, most existing sequential
models operate within finite-dimensional Euclidean spaces which
offer limited functionality when employed in modelling physics
relevant data. Alternatively recent work with neural operator
learning within the Fourier space has shown efficient strategies
for parameterising Partial Differential Equations (PDE). In this
work, we propose a novel sequential model, built to handle
Physics relevant data by way of amalgamating the conventional
RNN architecture with that of the Fourier Neural Operators
(FNO). The Fourier-RNN allows for learning the mappings from
the input to the output as well as to the hidden state within
the Fourier space associated with the temporal data. While the
Fourier-RNN performs identical to the FNO when handling
PDE data, it outperforms the FNO and the conventional RNN
when deployed in modelling noisy, non-Markovian data.

Index Terms—Sequential Models, Recurrent Networks, Time
Series, Operator Learning

I. INTRODUCTION

There exists an analogy across how neural networks approx-
imates nonlinear functions and how Fourier series represents
periodic functions. Both represent parametric methods of
estimating the respective functions, neural networks by way
of their weights, and Fourier Series by way of the Fourier co-
efficients. Analogous to the Universal Approximation theorem
[1], which defines a neural network’s capability in modelling
any nonlinearity given an infinitely parameterised network,
a Fourier series can model any periodic function given it
can be expanded into an infinite sums of sines and cosines.
While a neural network parameters are tuned to an optimum
value by way of gradient descent, the optimum coefficients for
the corresponding periodic function is derived using Fourier
Analysis. In practice both the approximation capabilities of
neural networks and Fourier series are limited/truncated by
the limited parameters that we allocate to it.

Thus, when employing neural networks to model nonlinear-
ities with heavy periodic dependence, an integrated approach
that incorporates nonlinear activation across weights learned
in the Fourier space have shown great promise [2] [3]. Even
within the scope of NLP, Fourier transform embedded neural
network approaches have become influential [4]. Taking the
analogy aside these methods have shown considerable perfor-
mance mainly because they shift the learning regime from the

finite dimensional euclidean spaces to that of infinite dimen-
sional spaces using neural operators [5]. As demonstrated in
[2], Neural Operators allow for mapping from one function
space to another function space, allowing it to not be confined
by finite dimensional vector mapping.

Since the introduction of Recurrent Neural Networks
(RNNs) [6], they have been the foundational benchmark for
sequential models handling time-series data. Though they
have undergone extensive development with more advanced
models such as the Gated Recurrent Unit and the Long Short-
Term Memory becoming more dominant in applications, the
fundamental influence of having separate weight matrices to
learn (or unlearn) the hidden state has remained the same
across them [7] [8]. The networks learn not just the forward
mapping from the input to the output, but with the aid of
the hidden state that is fed back to the network in an auto-
regressive manner, it learns the impact the past time instances
has on the future time instances, allowing for exploiting the
temporal dependencies within the data.

Through the course of this work, we explore the impact
of the amalgamation of these two ideas: integrating neural
operator learning within the Fourier space for function map-
ping with dedicated hidden states fed in recurrently exploiting
the temporal dependencies. Though our combined approach,
Fourier-Recurrent Neural Networks (F-RNNs) outperforms
standard RNNs in any scenario, they are only comparable
to the standard FNO approach when solving for Markovian
data as characterised by PDEs. But when they are deployed in
modelling noisy, non-Markovian Physics relevant data, they
outperform both the classical RNNs as well as the FNO in
performance and speed.

II. BACKGROUND

Recent research developments within modelling time-series
data has been to employ structures that can exploit the se-
quential nature of the data. Initially demonstrated through the
work on the RNN built by Elman [9], the models have quickly
adapted to cover up the flaws within the initial recurrent
models. Additional gates added to the architecture of RNNs
allowed for longer time extrapolation as demonstrated with
the LSTM [8]. Currently given adequate data and training
resources, with the impact of the self-attention utility, Trans-
formers have become the state-of-the-art model used to model
sequential data [10]. Temporal nature of the data is often
observed with periodic, modal behaviour and analysed using



Fourier transform. Taking account the information distribution
outlined by the Fourier transform, periodic activation functions
have been used within neural networks [11] [12]. They have
also been used as filtering tools to help neural networks learn
higher order features in low-dimensional settings [13]. Prior
research demonstrates that operating within the complex space
across the information processing of neural networks demon-
strates considerable aid in modelling time-series data [14].
Extraction of the Fourier basis functions and embedding within
the recurrent model is not novel and has been demonstrated
to perform better than regular RNNs [15]. Our work builds
upon all of this previous work and differentiates itself from
the Fourier Recurrent Unit (as shown in [15]) as it learns the
desired behaviour through weighted activations of the inputs
in Foudier space rather than via an additive Fourier transform
across the input space.

to be able to extrapolate for longer sequences as shown
space has undergone Keeping in mind the sequential nature
of time series data, often research developments in modelling
efforts have explor been in exploiting the relational context of
the inputs. models that cater to it have built have focussed on
exploiting this

III. FOURIER NEURAL OPERATORS

The FNO approach shown in [2] learns a mapping between
two infinite dimensional spaces from a finite collection of
observed input-output pairs. They achieve this by way of
deploying a Fourier layer, schematically laid out in Figure
1.

Fig. 1. Architecture of the Fourier layer applied within the FNO. It involves
two sets of weight matrices R and W . R learns the behaviour within the
Fourier space while W learns the behaviour within the input Euclidean space.
[2]

FNO is constructed by stacking Fourier layers on top of the
other. Each Fourier layer is composed of two weight matrices:
R and W . R learns the mapping behaviour within the Fourier
space, while W learns the mapping required within the input
Euclidean space. The weight matrix R within the Fourier layer
enables convolution within the Fourier space, allowing the
network to be parameterised directly in it. The output of a
Fourier Layer can be expressed as:

y = σ

(
F−1

(
RF(x)

)
+Wx

)
(1)

where, x is the input, y the output and σ is the nonlinear
activation function. F and F−1 represents the Fourier and
inverse Fourier transform respectively.

Throughout the course of this work, we are interested in
the FNO-2d configuration as demonstrated in [2], where a
2-d Fourier Neural Operator that only convolves in space is
deployed with a recurrent, auto-regressive structure. The FNO
takes in as its input the field values across a 2D grid for an
initial set of time instances along with the grid discretisation
in both dimensions. It outputs a set of later time instances
across the desired grid. The outptut of the FNO are then fed
back in a recurrent, auto-regressive manner to estimate further
field evolution in time.

IV. RECURRENT NEURAL NETWORKS

RNNs are connectionist models that capture the dynamics
of sequences via cycles in the network of nodes [16]. They
allow for modelling sequential data, where the output is not
just dependent on the input at a given state, but may also
depend on the outputs of previous states. They are essentially
feed-forward neural networks augmented by the inclusion of
edges that span adjacent time steps, introducing a notion of
time to the model [16]. This temporal dependency within the
model allows RNNs and its different variants effective tools
in modeling time dependent physics data.

Each RNN is composed of RNN Cells stacked on top of
each other. The architecture of an RNN cell (as implemented
in Pytorch [17]) can be laid out as shown in Figure 2.

Fig. 2. Architecture of an RNN Cell. Each cell is parameterised by two
weight matrices: Wx and Wh. The former learns the mappings of the input
to the output while the latter learns that impact the hidden state has on the
output.

Each cell is composed of two linear weight matrices Wx

and Wh, tasked with learning different behaviours from the
data. Wx is tuned to model the function mapping from the
input onto the output. It learns the impact that input data
at time instance t has on the output at the same instant of
time. The linear transformation characterised by Wh resembles
the hidden state. The hidden state represents the the relevant
information from the past time instances that the model has
already been exposed to. They can hold sufficient information
from an arbitrarily long context window. The functioning of
an a RNN Cell can be expressed as:



ht = Wxxt +Whht−1

yt = σ(ht)
(2)

where, xt represents the input at time instant t, ht−1 the
hidden state at time t− 1, ht the updated hidden state, yt the
output at time instant t and σ the nonlinear activation function.
Biases have been ignored for simplicity. [17]

Each RNN cell takes in two inputs, x and h, passes them
through linear transformations to update the hidden state of
the cell and then through an activation layer to produce the
output. The updated hidden state resides within the cell and
is fed back in for the next input sequence. Unlike Hidden
Markov models, performance of the RNNs are not limited by
just looking into the immediate previous state, as hidden states
can have deeper memory and look further into the past.

V. FOURIER-RNNS

Crafting the FNO approach into an RNN we devise the
Fourier-RNN, a sequential model capable of performing op-
erator learning for noisy time series data. We construct the
F-RNNs by replacing the linear transformation matrices in the
RNN with the Fourier layers from the FNO. The architecture
of the F-RNN is drawn out in Figure 3.

Fig. 3. Architecture of an F-RNN Cell. Each cell is parameterised by four
weight matrices. Wx and Rx are trained to map the input to the output in
the input space and Fourier space respectively. Wh and Rh are trained to
optimise the hidden state in the input space and Fourier space respectively.

The Fourier-RNN is now parameterised by 4 weight matri-
ces as compared to two for the RNN and FNO. Both the input
to output mapping as well as the updation of the hidden state
happens within the Fourier operator space. These F-RNN cells
can be stacked one on top of each other to create F-RNNs with
higher expressibility. Mathematically they can be described by
replacing equation 1 within equation 2:

ht = F−1
(
RxF(xt)

)
+Wxxt+

F−1
(
RhF(ht−1)

)
+Whht−1

yt = σ(ht)

Since we have extended the Fourier Neural Operator learn-
ing to the hidden state, it is important that we give adequate
attention to the intitialisation of the hidden state. Taking into
consideration the impact that contextual information has on
a recurrent network [18], the hidden state at t0 has been
modified to accommodate the initial distribution of the field
values repeated up to the hidden size and post-fitted with the
grid discretisations required by the Fourier operators.

As opposed to the standard RNN approaches, the F-RNN
allows for learning within the Fourier space along with the
input space, making it ideal for modelling physics relevant
data where modal behavous is seen across space and time.
Compared to the FNO, F-RNN is a non-Markovian model,
able to account for a longer memory, retaining much more
history within the information. FNOs are Markovian and
depend on the previous time instance to account for all the
required information for predicting the next time iteration.

VI. NUMERICAL EXPERIMENTS

In order to test the efficacy of the F-RNN, we test its
performance in modelling the 2D Wave Equation, and the
Navier-Stokes Equation at two different Kinematic viscosities,
one withi laminar flow and another with turbulent flow. We
compare it against the FNO as described in [2] and against a
Convolutional-RNN (C-RNN). All of the models are trained
and tested for noise-free data scenarios as well as for cases
with varying degrees of noise. For this purpose, we prepare
a synthetic noisy dataset by adding uncorrelated Gaussian
noise to the solution data. Noise is sampled from a uniform
distribution (N ) at mean zero and varying degrees of variance,
where we use the variance as the noise factor (N ). The PDE
data corrupted by noise can be expressed as x̃ = x+N (0, N).
We initialise a normal distribution and the training and test
datasets are augmented by sampling from that distribution.
Here, the noise is added to the normalised input and output
space.

For effective comparison, FNO and F-RNN models are built
with roughly the same number of parameters ( 4.2M) and
undergo the same training regime, trained for 1000 epochs
with the Adam optimizer with an initial learning rate of 0.001,
scheduled to be dropped by a factor of 0.9 every 100 epochs.
The C-RNN is built with relatively less ( 1.5M) parameters.
C-RNNs required a smaller parameter range as larger models
were prone to excessive vanishing gradient problem. Exact
details about the number of parameters, along with training
time for each model for each case can be found in Table I.
Each dataset comprises of a total 1000 simulations, which is
split into 800 for training and 200 for testing. They are fixed
onto data loaders with a batch size of 50 epochs. The loss
and testing metrics are estimated in mean squared errors and
expressed in the unnormalised values. For all of the models,
we have chosen the ReLU activation function except for the
final activation output of the F-RNN and RNN, for which we
have chosen Tanh. For all models a certain number of initial
states (Tin) are fed in to estimate the field at the next time
instance (step=1). Each model outputs the next time instance



TABLE I
PARAMETER RANGE AND AVERAGE TRAINING TIME (IN MINUTES) FOR
EACH MODEL. NS1 REPRESENTS THE NAVIER STOKES EQUATION WITH
ν=1E-3 AND NS1 REPRESENTS THE TURBULENT REGIME WITH ν=1E-5

. Each model was trained on a single Nvidia V100 GPU.

MODEL WAVE NS1 NS2 TIME
C-RNN 1079041 1614721 1603201 200

FNO 4203873 4203873 4203553 140
F-RNN 4201665 4201665 4201345 135

at Tin+1, which then is fed back into the network along with
the previous Tin−1 instances to estimate the Tin+2 instance.
The cycle continues until we reach the required time instance
Tout. For testing the performance in a noisy scenario, the input
data is corrupted with noise and its performance is estimated
against the uncorrupted noise-free target data.

For the FNO model, we choose the same architecture as
laid out in [2], where the FNO is constructed by stacking
4 Fourier layers. Each layer has a width of 32 for and is
tuned for upto 16 Fourier modes. The C-RNN has an encoded-
decoder architecture, where the encoded data, obtained by a
series of convolutions is fed into an RNN with 4 hidden layers,
each having a size of 256. The output from the RNN is then
upsampled to the original dimensions via the decoder using
transposed convolutions. The F-RNN consists of two F-RNN
cells stacked on top of each other. The hidden size and the
width of the Fourier layer is kept at 32, and the model learns
upto 16 Fourier modes.

All experiments were performed on a single Nvidia V100
chip.

A. Navier-Stokes Equation

We consider the 2D Navier-Stokes equation for a viscous,
incompressible fluid in vorticity form:

∂w

∂t
+ u.∇w = ν∇2w + f

∇.u = 0
(3)

where, w is the vorticity, a function of the velocity field u:
w = ∇ × u. They span across a 2D field given by x and y,
where both lie within the domain (0, 1). The time domain
for the case is (0, Tout). f is the forcing function, where
f(x, y) = 0.1((sin(2π(x, y))+cos(2π(x, y))). We experiment
with two kinematic viscosities ν, where ν = 10−3 (laminar
flow), 10−5 (turbulent flow). For effective model comparison,
the simulation data for the Navier-Stokes case is taken from
[2], and the reader is encouraged to peruse the work for more
details on the case setup and the numerical solver.

For the case with ν = 10−3, we take in the first 20 time
steps (Tin=20) to the next 20 time steps (Tout=20). While for
that with ν = 10−5, we take in the first 10 time steps (Tin=10)
to the next 10 time steps (Tout=10). For both cases, the step
size is 1.

As shown in Figure 4, it might seem that the performance
of the FNO is rather similar to that of the F-RNN, however

Fig. 4. Comparing the performance of each model for the Navier-Stokes case
with ν = 10−3, where the models take in the first 20 time instances and learn
to map the next 20 time instances. Noise factor is set at 0.1. Actual solution
is shown at the top, followed by the prediction of the F-RNN and that of the
FNO, with the C-RNN at the bottom. The plots shows the network outputs
at time t=21 (initial), time=30 (middle), and time=40 (final).

TABLE II
PERFORMANCE BENCHMARK AT VARIOUS NOISE LEVELS FOR NAVIER

STOKES (ν = 10−3). NOISE FACTOR REPRESENTED AS N .

MODEL N = 0.0 N = 0.05 N = 0.1 N = 0.25
C-RNN 0.4789 0.4785 0.4786 0.4791

FNO 0.000365 0.0006603 0.002565 0.01368
F-RNN 0.0008505 0.0009457 0.001071 0.001499

upon closer inspection we can see that the FNO solution is
grainy and corrupted with noise, while the F-RNN is much
smoother and closer to the solution. The explicit hidden state,
capable of looking longer into the past allows for the F-RNN to
understand the impact the noise has across the data and is able
to adjust for it within the solution. The FNO, being Markovian
and only dependent on the previous state, estimates the noise
to be a feature of the solution and is unable to account for it.
The impact of the Fourier layers within the F-RNN become
clear when compared against the C-RNN methods, which fails
to resolve all the modes of operation and is only able to pick
up certain dominant behaviours. Experimenting with different
noise factors, this is further substantiated with performance
variations as shown in Table II.

Even with the Navier-Stokes case with viscosity ν = 10−5,
we notice that the F-RNN outperforms FNO and the C-
RNN when handling noisy data. Interestingly for this turbulent
Navier-Stokes model, the C-RNN fails at all noise levels,
and the model gets stuck far from convergence. We believe
that within the turbulent regime, the network is unable to
differentiate the noise from the fluid behaviour.

The results showcased in Tables II and IV shows that our
approach, F-RNN performs comparatively with FNO when
noise-free or low noise data, but quickly outperforms other



TABLE III
PERFORMANCE BENCHMARK AT VARIOUS NOISE LEVELS FOR NAVIER

STOKES (ν = 10−5). NOISE FACTOR REPRESENTED AS N .

MODEL N = 0.0 N = 0.05 N = 0.1 N = 0.25
C-RNN 2.137 2.137 2.137 2.137

FNO 0.08301 0.08792 0.09808 0.1261
F-RNN 0.097 0.09234 0.09793 0.1089

TABLE IV
PERFORMANCE BENCHMARK AT VARIOUS NOISE LEVELS FOR THE 2D

WAVE EQUATION. NOISE FACTOR REPRESENTED AS N .

MODEL N = 0.0 N = 0.05 N = 0.1 N = 0.25
C-RNN 0.004069 0.004656 0.005564 0.00727

FNO 0.001072 0.001038 0.001116 0.001461
F-RNN 0.0009589 0.001064 0.001021 0.001073

models when the noise factor increases.

B. Wave Equation

Consider the 2D Wave Equation:

∂2u

∂t2
= ν

(
∂2u

∂x2
+

∂2u

∂y2

)
∂u

∂t
= 0 ; t = 0

(4)

where, u is the field value that spans along the x and y
axes, both lying within the domain (−1, 1). The time domain
for the case is (0, 1). The viscosity ν is taken as 1.0. Periodic
boundary conditions are enforced for the problem. The simu-
lation dataset is constructed by varying the initial distribution
of the field value. The initial condition for each simulation is a
Gaussian given by u(x, y) = exp−a((x−b)2+(y−c)2), with a, b
and c are sampled using a Latin Hypercube Sampling [19]. The
solution for the above equation is built by deploying a spectral
solver that uses a leapfrog method for time discretisation and
a Chebyshev spectral method on tensor product grid for the
spatial discretisation.

The case is setup to take in the first 20 time steps (Tin=20)
to the next 30 time steps (Tout=30) with a step size of 1, that
outputs the next time instance.

Figure 5 shows that modelling for 2D wave equation cor-
rupted with a noise factor of 0.25, is a particularly challenging
scenario. F-RNN, C-RNN and FNO fail at modelling the exact
behaviour. F-RNN being a hybrid between the C-RNN and the
FNO, outperforms the latter two models as it extracts the best
performing attributes of them both.

VII. DISCUSSION AND CONCLUSION

Embedding Fourier Layers within an RNN architecture
allows for the construction of a more effective sequential
model capable of handling noisy time series data, especially
physics relevant data where modal behaviour is observed. The
Fourier layers are deployed within the F-RNN to map from

Fig. 5. Comparing the performance of each model for the Wave equation,
where the models take in the first 20 time instances and learn to map the next
30 time instances. Noise factor is set at 0.25. Actual solution is shown at the
top, followed by the prediction of the F-RNN and that of the FNO, with the
C-RNN at the bottom. The plots shows the network outputs at time t=0.14
(initial), time=0.24 (middle), and time=0.34 (final).

Fig. 6. Scatter plot demonstrating the performance of each model at different
noise factors. The y-axis represents the logarithm of the mean squared error
on the test dataset, while the x-axis indicates the noise factor as mentioned
in section VI. The left figure plots for the Navier-Stokes with laminar flow
case, the middle plot represents the Navier-Stokes with turbulent flow case,
while the right figure shows the performance for the 2D wave case.

the input to output space as well as in the updation of the
hidden state. This allows for moving from finite-dimensional
euclidean mapping spaces to that of infinite dimensions by
way of neural operator learning. As can be seen in Figure6,
the performance of the F-RNN is comparable to that of the
FNO in low noise scenarios, but as the noise ramps up, F-
RNN quickly outperforms the FNO model. When compared
against the C-RNN models, F-RNNs are atleast two orders of
magnitude more accurate and is much more efficient in GPU
time consumption. We believe that our approach has significant
value within the surrogate modelling and digital twin space for
physical systems and plan to test out the F-RNN on observed
experimental data as the next step.
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