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We derive a simple analytical line integral expression for the relaxation volume tensor of an ar-
bitrary interconnected dislocation network. This quantity determines the magnitude of dislocation
contribution to the dimensional changes and volumetric swelling of a material, and highlights the
fundamental dual role of dislocations as sources of internal strain as well as carriers of plastic defor-
mation. To illustrate applications of the method, we compute the relaxation volume of a stacking
fault tetrahedron, a defect commonly occurring in fcc metals; the volume of an unusual tetrahedral
configuration formed by the (a/2)(111) and a(001) dislocations in a bce metal; and estimate the
relative contribution of extended dislocations to the volume relaxation of heavily irradiated tungsten.

I. INTRODUCTION

A material exposed to neutron or ion irradiation
changes its volume [1-4] and, in some cases, its
anisotropic spatial dimensions [5]. If the exposure of the
material to a flux of energetic particles is low and the de-
fects produced by irradiation can be treated as a dilute
gas of localised centres of lattice distortion [6], the de-
gree of volumetric expansion or contraction [1, 7-9] can
be estimated from the relaxation volumes of individual
defects [10-13]. These volumes can now be accurately
computed using ab initio methods [14-18].

However, a conceptual difficulty arises if the exposure
to neutron or ion irradiation exceeds approximately 0.1
dpa [19, 20]. In this high exposure limit, defects form
complex dense microstructures [21], with vacancies at
elevated temperatures coalescing into mesoscopic voids
[1-4]. The self-interstitial defects cluster into dislocation
loops, which then form rafts [22-24], agglomerate into
larger loops [22, 25], and eventually evolve into an inter-
connected network of dislocation lines [19, 20].

The relaxation volume of a macroscopic void can be
evaluated from its surface stress or surface free energy
[12]. In the absence of internal pressure from helium
or hydrogen gas filling the void, the relaxation volume
of a void is negative. As a result, vacancies and voids
distributed in a material produce negative lattice strain,
readily observed using X-ray diffraction [8, 9, 12, 20].
At the same time, it is well known that materials swell,
i.e. increase their macroscopic volume, as a result of
exposure to irradiation [1-3]. In the limit of low radia-
tion exposure, this can be readily explained by the fact
the relaxation volumes of self-interstitial defects, pro-
duced simultaneously with vacancies during irradiation,
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are positive and significantly larger than the (negative)
relaxation volumes of vacancies [17, 18]. But in the limit
of relatively high exposure to irradiation this argument
no longer applies, since the majority of self-interstitial
atom defects now agglomerate into large dislocation loops
and an extended network of interconnected dislocations
[19, 20], effectively making them a part of the regular
crystal lattice, and hence barely detectable by electron
microscopy or X-ray diffuse scattering. In fcc metals, va-
cancies form stacking fault tetrahedra [26-29], which are
dislocation configurations.

Extensive dislocation networks also form during severe
plastic deformation of materials, especially during rapid
deformation [30-32], where the atomic processes resemble
those occurring in high-energy collision cascades initiated
by the incident high-energy ions or neutrons [33, 34].

To relate the complexity of dislocation structures and
dislocation networks to the macroscopic dimensional
changes that they produce, and enable including dislo-
cations in the finite-element model formalism for the nu-
merical treatment of dimensional changes and radiation
swelling of nuclear fusion reactor components [10, 13],
we propose a method for computing relaxation volume
tensors and relaxation volumes of arbitrary dislocation
configurations, and show how to evaluate the degree of
volumetric expansion in a material containing an inter-
connected network of dislocation lines.

II. RELAXATION VOLUME OF AN ISOLATED
DEFECT OR A DISLOCATION LOOP

We start by revisiting the concept of relaxation volume
in linear elasticity theory, casting it into a framework
coherent with the established eigenstrain [35] and dipole
tensor [6] formalisms, and treating it from the perspective
of recent multi-scale applications [10, 13].

Consider a crystal occupying a finite volume in three-
dimensional space, subject to the traction-free surface
boundary conditions. The relaxation volume is defined
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as the change of the volume enclosed by the external
surface of the crystal, caused by the strain inside it [6, 36].
Hence, the relaxation volume tensor €2 is given by the
surface integral of the displacement field u;(x) over the
volume boundary S with normal vector n;(x), namely

1

Q,; = 5 /s [wi(x)n,;(x) + uj(x)n;(x)] dS. (1)

This quantity is a tensorial measure of the volume change
to first order in displacements [13], with the relaxation
volume 2 given by the trace

Q = TI‘(Q) = Qii7 (2)

where summation over repeated indices is implied, €2;; =
Q11 + Qoo + Q33. Note that only the diagonal elements
of §);; contribute to the relaxation volume, as shear dis-
tortions conserve the volume of the material.

Applying the divergence theorem to (1), we arrive at
[6, 36]

Q@]—/Vm ), (3)

where &;; = 1(u;; + u;;) is the strain tensor, with
subscripts after a comma denoting differentiation (f; =
0f/0x;). The notion of the relaxation volume tensor en-
ables quantifying anisotropic dimensional changes, as its
eigenvalues represent variations of volume in the princi-
pal directions of the tensor.

We are interested in the case where the elastic strain is
originating from the defects inside the crystal. In Mura’s
formalism [35], the defects are described by a spatially-
varying field of eigenstrain 5fj(x), which acts as a source
of elastic deformation. The strain tensor is thereby given
by the sum of two terms

gij(x) = a;’; (x) +¢&7;(x), (4)

where the elastic strain Efjl (x) also includes the effect of
boundary conditions. In the particular case where the
surfaces are free of tractions, the elastic strain tensor
averages to zero over the volume of the material [37, 38].
Consequently, the relaxation volume tensor is given by

the volume integral of the eigenstrain [13]:

e * (x)d3z
QU /‘/E’L]( )d (5)

In applications, it is necessary to express the eigen-
strain in terms of the specific content of defects in the
crystal. For a point x inside the crystal, we can evalu-
ate the eigenstrain from the body force f by using the
elastostatic equilibrium condition o ; = — f;, viz.

—fi (%), (6)

where Cjjy; is the stiffness tensor. The displacement field
originating from the body force is given by the volume

Cijrig (%) =

integral

u; (X)

/Gij(x - X)) fi(x) &’

g
— [ Ginlox =X\ Copamei () ',

where G;j(x — x’) is the elastic Green’s function of the
infinite body. Note that the above formula is not a solu-
tion to the general boundary-value problem, as boundary
conditions are not accounted for, see Refs. [39, 40] for de-
tail.

If the eigenstrain is associated with a defect localised
in a region near point R in the crystal, the asymptotic
form of the displacement field is found by expanding the
elastic Green function to lowest order in x’ at R,

Ui (%) = —CiptmQUmGije(x — R), (8)

where €, is the relaxation volume tensor given by
Eq. (5). This gives rise to the expression known from
the dipole tensor formalism [6, 11], namely

ui(x) = —PjrGijn(x — R), 9)

where the relaxation volume and elastic dipole tensor P;;
of the defect are related through

Qi5 = SijruiPri (10)
Py = Cijrifi, (11)

and S;;r is the compliance tensor [41]. Owing to the
symmetry properties of the stiffness and compliance ten-
sors [42], both the relaxation volume and elastic dipole
tensors are symmetric. The notion of elastic dipole ten-
sor enables evaluating the energy of interaction between
the defect and an external slowly spatially varying strain
field £;(x) to first order in the size of the defect as
E(x) = —P;je;(x), see [43, 44]. For a detailed analysis
of how elastic dipole tensors, formation [45] and relax-
ation volumes of small isolated defects can be evaluated
from atomistic simulations, we refer an interested reader
to Refs. [11, 12, 15-18, 46, 47].

To relate the relaxation volume tensor of a localised
defect to Mura’s eigenstrain, we define the density of re-
laxation volumes of defects [10] similarly to the notion of
charge density in electrodynamics, see e.g. Eq. (28.1) of
Ref. [48],

wi(x) = > Q5(x — Ra), (12)

a

where summation is performed over the positions of in-
dividual defects R,, and §(x) is the Dirac delta func-
tion defined as §(x) = 0 for x # 0 and [ §(x)d®z = 1.
The relaxation volume tensor (5) can now be expressed
as an integral of wy;(x) over the volume of the material
Qu = [, wi(x)d®z. Using (8) and (12), the field of
displacements generated by a spatial distribution of de-
fects can be evaluated as an integral of the density of



relaxation volumes [13, 35]
wi(x) = —/Gij’k(x — X' Citmwim (X) d®z'.  (13)

By comparing the above with Eq. (7), we arrive at the
defect eigenstrain theorem [13], which is the realisation
that the density of relaxation volume tensors is equivalent
to the eigenstrain,

55 (%) = wij(x). (14)

Provided that the spatial distribution of crystal defects
and their relaxation volume tensors are known, the re-
sulting macroscopic stresses can be evaluated using con-
ventional linear elasticity theory [10, 13]. This theorem
highlights the intrinsic multi-scale character of elastic
forces originating from crystal defects.

While the relaxation volume and dipole tensors of
point defects and small defect clusters can be readily ob-
tained from atomistic or density functional theory sim-
ulations [17, 18, 47], it is not immediately clear how to
identify the relaxation volume of dislocation-type defects,
in particular when the dislocations form a complex inter-
connected network. In what follows, we treat the prob-
lem in the linear elasticity approximation and begin by
exploring the relaxation volume produced by an isolated
dislocation loop, a prototypical building block of a gen-
eral dislocation network.

A dislocation curve is defined as the boundary of a
cut surface inside the crystal bulk, where the sides of the
cut are displaced by the Burgers vector b with respect
to each another. As cut surfaces are generally open sur-
faces, dislocation lines cannot have loose ends inside the
crystal. Not accounting for closures along free surfaces or
grain boundaries, dislocation lines must terminate either
at dislocation junctions or by looping back onto them-
selves. In the following, we refer to a dislocation network
containing no loose line segments as closed. Following
the above definition, the density of relaxation volumes
or, equivalently, the eigenstrain of a dislocation loop, is
given by [49]

i (x) = % /S (b:dS; + b;dS) 6 [x — rs(v,w)],  (15)

where

ds,, = (81'5 X 81‘5) dvdw
v ow ),
defines the bounding surface of a dislocation loop in a
parameterised form through the vector function rg(v, w)
[50]. In the linear elasticity approximation, the choice
of a particular shape of the bounding surface rg(v, w) is
immaterial, since strain and stress are unique and contin-
uous functions defined solely by the position of the dislo-
cation line at the perimeter of the bounding surface of the
loop [51]. However, if one treats the underlying discrete
atomic crystal structure of the material, the variations of

the shape of the bounding surface can be detected and
analysed, for example by identifying the extrema of strain
associated with the individual crowdion defects constitut-
ing a dislocation loop [52, 53]. The fact that a perfect
dislocation loop is an assembly of crowdion point defects
explains why, if we neglect the core effects, the volume of
a loop equals the number of defects forming it, multiplied
by the volume of an atom in the crystal lattice. We refer
an interested reader to Ref. [12] for a detailed analysis
of scaling relations for the relaxation volumes of larger
defects, derived from atomistic simulations.

Evaluating the volume integral (5) for the eigenstrain
(15), we arrive at the relaxation volume tensor of an
isolated dislocation loop, see also equations (27.11) and
(27.12) by Landau and Lifshitz [51],

1
Q;; = 5 (b;A; +bA;), (16)

where A; is the vector area of the loop. The vector area is
defined either as an integral over the bounding surface of
the cut or, through the Stokes theorem, as a line integral
over the boundary I" of the cut [51],

1
Ai = / nz(X) ds = *% €iklTk drla (17)
s 2Jr

where n;(x) is the surface unit normal vector, €;x; is the
Levi-Civita tensor, and r = {r;} is a coordinate of a
point on a dislocation line forming the perimeter of the
dislocation loop. In vector notation, equation (17) is [54]

Azly{rxdr. (18)
2 Jr

This definition is invariant with respect to the choice of
the origin of the Cartesian system of coordinates, since a
translation of the origin by a constant vector ry adds to
(18) a term

;f}roxdrzérox(ﬁdr),

which vanishes for a closed loop since fF dr = 0.

The relaxation volume of a dislocation loop is given
by the trace of (16) and hence equals the scalar product
of the Burgers vector of the loop and its vector area, cf.
Eq. (43) of Ref. [55] and Eq. (12) of Ref. [11]

Q:b-A:%ﬁb-(rxdr):%fr(bxr)-dr. (19)

The relaxation volume of an interstitial loop is positive
(b-A) > 0, whereas the relaxation volume of a vacancy
loop is negative (b - A) < 0. The relaxation volume of
a loop formed by a pure shear-type deformation is equal
to zero (b- A) =0.

The elastic dipole tensor of a dislocation loop can be
readily found from the relaxation volume tensor using
equation (11) as

Pij = CijriAibr. (20)



In the above equation, there is no need to symmetrise the
expression in the right-hand side with respect to ¢ and j
since the symmetry properties of P;; automatically follow
from the symmetry of Cjji;. Similarly, there is no need
to use the symmetrised form (16) in the right-hand side
of the equation.

As a slight digression, we note that the Burgers formula
for the displacement field of a curved dislocation line can
be obtained by substituting (15) into (13)

1 (x) = —Chimnbm /S Gia(x —x)dS;,  (21)

which is equivalent to Eq. (9.3) by Teodosiu [56], Eq. (4-
6) by Anderson, Hirth and Lothe [57], and Eq. (27.10)
by Landau and Lifshitz [51]. In (21), integration is
performed over the bounding surface of a dislocation
loop. The differentiation of the elastic Green’s function
in (21) is performed with respect to coordinate x, namely
Gik1(x—x') = 0G(x—x") /Ox;, and the sign convention
in the definition of the Burgers vector in equation (21)
above is consistent with Refs. [51, 55, 56]. If one adopts
the alternative definition of the Burgers vector used in
Ref. [57], the sign before equation (21) must be amended
from minus to plus. The observed physical quantities,
for example relaxation volumes, are independent of the
Burgers vector sign convention, and the volume of a self-
interstitial dislocation loop is always positive whereas the
volume of a vacancy loop is negative.

A remarkable aspect of equations (15) and (19) is that,
on the one hand, they show that the fundamental origin
of the positive (or negative) volume of a dislocation loop
is associated with the extra (or missing) material at the
bounding surface S of the loop, illustrated by equation
(15) and readily identified in atomistic models [58, 59].
On the other hand, equation (19) shows that the prob-
lem of evaluation of the volume of a dislocation loop can
be conveniently reduced to computing a contour integral
along the dislocation line at the perimeter of a dislocation
loop. This result, replacing the procedure of counting ex-
tra or missing atoms over the surface of a dislocation loop
by a line integration over its perimeter, enables general-
ising the formalism developed above for an isolated loop
to an arbitrary configuration of entangled dislocations.

Equations (16), (19) and (20) show how to evaluate
the relaxation volume and elastic dipole tensors of an
individual dislocation loop. The case of a dislocation
network, featuring complex configurations of dislocation
lines and dislocation junctions, requires a special con-
sideration. The formalism for evaluating the relaxation
volume tensor of a dislocation network is given in the
next section of the paper.

III. RELAXATION VOLUME OF A
DISLOCATION NETWORK

A dislocation network is defined by a set of disloca-
tion junctions connected by dislocation line segments G,

4

with Burgers vectors b(G,,) = b;(G,,). A closed disloca-
tion network can be equivalently represented as a super-
position of closed dislocation contours I', with Burgers
vectors b;(I'y) and area vectors A;(T',) by splitting the
dislocation segments according to the conservation rule
of Burgers vector at junctions, analogous to the Kirch-
hoff law of electric current flow [57]. The dipole tensor
of the network in the linear elasticity approximation is
therefore given by the sum of dipole tensors of the closed
dislocation contours, namely

Pij = Cijtr Y _br(Ta)Al(Ta). (22)

While the above expression shows that the dipole tensor
of a closed dislocation network is unambiguously defined,
it is in practice cumbersome to partition the network into
individual contours. We shall instead reformulate the
problem in terms of dislocation line segments by reversing
the argument.

First, similarly to (17) and (18), we split the area vec-
tors of closed loops I',, into area vectors of their con-
stituent line segments G,

Ai(Fa): Z A?(Gn)v (23)

Gn€ly

where A% (G),) = £A4,(G,) as the line sense of segment
G, may not match that of the loop I'y, leading to the
dipole tensor

Pij: ijklz Z bk(ra)A?(Gn) (24)

This decomposition is exact as integration is a linear op-
eration, with the caveat that the A;(G,) line integrals
are not closed anymore.

Some new line segments were introduced in order to
form the closed loop representation, which are now being
integrated over multiple times. Defining Sy as the set of
line segments being integrated over once and Sy as the
set of line segments being integrated over several times,
Eq. (24) is reordered as

Py= Cyw Y b(Gn)A(Gy)
Gn€Su

(25)
+Ciyr Y Y B(Ta)AF(G),
GrnE€SNTLEM(G,)
where summation over the set
M(Gn) = {Fa | Gn S Fa} (26)

counts all appearances of segment G,, € Sy. We refer to
Fig. 1 for a visual example of the decomposition.

Next, recalling that due to the conservation of the
Burgers vector at junctions

D bk(Ta)AF(Gn) = bi(Gn)A(Gr),  (27)
T'a€M(Gy)



(a) oG (b) o)
b(G2) B(Ts) A(T)) = A(Gy) — A(Gy) + A(Gs)
A(T) = A(Gy) — A(Ga) + A(G5)

b(G3) b(I's) A(T3) = A(G3) — A(G5) + A(Gs)

b(G1)
b(G2)
SU = {Gh G27 Gd}
bGy SN = {G1, G5, Ge}
FIG. 1. (a) Example of a closed dislocation network consisting of line segments G; with Burgers vectors b(G;) (arrows).

Triangles indicate line sense. (b) The same network represented as a superposition of closed loops I';. Also given is the relation
between area vectors A(T;) and A(G;). (c) Closed loops are split into their constitutive line segments, which are then grouped
according to whether they appear uniquely or not, into sets Sy and S, respectively. The decomposition is used to prove that

all three representations yield the same dipole tensor.

as well as that the union of unique and non-uniquely
appearing segments contains all the line segments of the
network exactly once, we arrive at the central result:

Pij = Cijrr > bi(Gn) Ai(Gh). (28)
Gn

Comparing Eq. (28) with Eq. (10), we find the relaxation
volume tensor

Qij = B
Gn

the trace of which yields the relaxation volume of the
network

Q= bi(Gn)Ai(Gn). (30)
Gn

Since the evaluation of areas A;(G,) can be reduced to
the line integrals along the dislocations, the dipole tensor,
the relaxation volume tensor, and the relaxation volume
of a closed dislocation network can all be obtained by the
integration over the individual dislocation line segments.

In computational dislocation dynamics codes and post-
processing algorithms for detecting dislocations, disloca-
tion lines are commonly represented by a set of piece-
wise directionally-ordered linear segments [60], satisfying
Kirchhoft’s Burgers vector conservation law at disloca-
tion junctions. Each linear segment C,, is defined by its

Burgers vector bg"), the starting point pgn) and the end

point qz(”). Noting that an element of the vector area

associated with an individual straight segment equals

A i (q<n> n p<n>) « <q<n> _ p<n>) _ %pm) «q™,

we can simplify the expression for the dipole tensor of a
dislocation network (28) as

1 n n n
Py = QCz'jleluva;(C 'pM gl (31)
n

The relaxation volume tensor of a dislocation network
described by straight dislocation line segments is now

1 n n n n
Qi =7 > [bﬁ €jun + b5 )em} pMal, (32)

n

with the corresponding total relaxation volume given by

_1 (n), (n) ,(n)
Q= ieiuvzn:bi Py 9y

1 (1) . (1) 5 () (33)
:§Zb (P xa'"),

where p(™) and q(™) are the coordinates of the start and
end points of straight dislocation segments. For a set of
arbitrary curved dislocation segments used in dislocation
dynamics simulations [49, 60-63], the relaxation volume



can be written as a sum of line integrals along the dislo-
cation segments, linking dislocation junctions

1 n

n (")
1

3 Z /(n)(b(") xr)-dr (34)

1
1 b(n)./
227; (

n)

7w dry

(r x dr),

where the direction of line integration along each curved
segment follows the direction of the corresponding dis-
location, consistent with the law of conservation of the
Burgers vector at the dislocation junctions. Equation
(34) is one of the central results of our study, and for an
individual dislocation loop it reduces to (19).

To show that expression (34) is invariant with respect
to an arbitrary translation of the Cartesian system of
coordinates, we note that such a translation amounts to
adding an extra term

;;b(”) . (ro X /(n) dr>
A (o i)

where rg is the translation vector, and summation over s
is performed over the full arbitrarily curved segments of
the dislocation network linking the dislocation junctions,

with r$” and r{*) being the coordinates of the two junc-
tions at the start and the end of a full segment s. Since
the choice of the start and end points of a full segment
reflects the sense of direction of integration along the seg-
ment, each junction enters the sum in (35) with a plus or
minus sign. This sign rule, depending on whether a seg-
ment enters or leaves the junction, in combination with
the Burgers vector conservation law at the junctions, en-
sures that the various terms cancel each other and the
sum in (35) vanishes, confirming the translational invari-
ance of expression (34).

(35)

IV. PERIODIC BOUNDARY CONDITIONS

In computational studies of complex dislocation net-
works, periodic boundary conditions are commonly em-
ployed to represent systems of much larger size than the
size of the actual simulation cell. While any dislocation
network contained in a periodic cell must also be closed
by definition, the treatment of periodic boundary condi-
tions requires an additional discussion.

First, networks crossing periodic boundaries must be
correctly treated as closed. Depending on the imple-
mentation of periodic boundary conditions, line segments
crossing a periodic cell boundary may be split and dis-
placed by the corresponding periodic cell vector, seem-
ingly appearing as loose ends. In order to avoid errors,

the area vectors must be computed using an unbroken
(unwrapped) representation of the network. This is ei-
ther achieved by computing the distance vector between
any two neighbouring points on a curve modulo the pe-
riodic cell vectors [64], or by explicitly translating the
segments broken by a periodic boundary by the corre-
sponding cell vector.

Second, the simulation box may contain networks that
span the entire periodic box along one or more directions,
regardless of how they are translated. In an unwrapped
representation, such a network appears to contain termi-
nated lines that only become connected if the network is
repeated along the periodic cell directions. The simplest
example of such a network is a pair of dislocation lines,
collinear to one of the periodic cell translation vectors,
with identical Burgers vectors and opposing line sense.
In what follows, we refer to such a network as ezrtended.
Extended networks have well-defined relaxation volumes,
provided that we connect the loose segments in such a
way that the network can be represented by a superpo-
sition of closed loops.

Specifically how should an extended network be closed?
As it turns out, a specific recipe for doing this is im-
material, provided that some simple rules are followed.
Consider a network extended along a periodic translation
vector ¢, containing a set of m curved segments termi-
nating at points R; that are connected through transla-
tions by +c. We introduce a new set of dislocation lines,
the closure, linking the loose ends of line segments in a
manner such that the Burgers vector conservation law is
fulfilled at every junction. Some examples of closure are
shown in Fig. 2. The vector area of the closed network is
invariant with respect to the choice of closure since each
closure segment cancels itself out with its own periodic
image. The most trivial choice of closure is to pick a sin-
gle loose end of a dislocation segment and let all other
ends of loose segments connect to it, keeping the line
sense and Burgers vector unchanged, see Fig. 2 (right).
The contribution of the closure to the relaxation volume
is then given by:

1 — :
Q) — = Sib(l)'</ rxdr—|—/ (r—c)xdr>,
2 Zz:; (i,1) (1,3)

(36)
where integrals over (i, j) signify curve integral starting
at R; and ending at R, and s; is either —1 or 1 depend-
ing on the line sense of the loose segment terminating
at R;. After some manipulation, we arrive at a simple
expression

1 — ,
e = 3 > sib e x (R — Ry)]. (37)
=2

This closure correction needs to be included in the for-
mula for the relaxation volume given by equation (34)
if a dislocation configuration happens to contain loose
ends because of periodicity, to ensure consistency with
the treatment of a fully closed dislocation network. The
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FIG. 2. Three example closures of an extended dislocation network consisting of two dislocation dipoles in a box with periodic
boundary conditions. The network is closed by augmenting the dislocation lines with extra segments, showed by dotted blue
lines, that connect the dislocation line ends, with line sense and Burgers vector chosen in accordance with the Burgers vector
conservation law at junctions. As the closure lines cancel with themselves upon the repetition of the motif along the periodic

cell vector c, all the examples of closure are equivalent.

relaxation volume and dipole tensors are then computed
in exactly the same way as for a closed network. In prac-
tice, we found the term given by (37) to be of comparable
magnitude to the relaxation volume of the network itself,
and as such it cannot be neglected.

V. APPLICATIONS

A. The relaxation volume of a stacking fault
tetrahedron

Stacking fault tetrahedra (SFT), first observed in
quenched gold by Silcox and Hirsch [65], are thought
to form through the condensation of individual vacan-
cies into a platelet that subsequently collapses into a
loop of intrinsic fault [66, 67]. Possible alternative re-
action pathways, leading to the formation of SF'Ts and
likely dominating the dynamics of defects in the meso-
scopic limit, were extensively analyzed and reviewed in
Ref. [68]. The faulted loop is able to transform into an
SE'T by means of dissociation and glide of the dislocation
segments bounding the loop. As these processes do not
involve mass transfer, in the limit where dislocations are
treated as elastic discontinuities and core effects are ne-
glected, the relaxation volume of the SFT configuration
is not expected to change during the transformation. The
individual components of the dipole and relaxation vol-
ume tensors may however change.

Let the faulted Frank loop be of vacancy type with
b = L[IT1]. The loop lies in the plane perpendicular to
the Burgers vector, bounded by dislocations with (110)
line directions and {112} slip planes forming an equilat-
eral triangle with side length [, see Figure 3. We intro-
duce a reaction coordinate A, parameterising the trans-
formation of the faulted loop at A = 1 to an SFT at
A =0, with 1 > A > 0 describing the intermediate stages

of the transformation process. Intermediate configura-
tions are approximated by a tetrahedron truncated at a
height b’ = (1 — A\)h along the direction of b, see Fig-
ure 3 illustrating the notations. Here, h is the height of
a perfect SFT.

Using the parameterisation of the SF'T transformation
detailed in Appendix A, we find the relaxation volume
tensor from expression (32)

a2 |1 A2 A2
Q) =—-2 A2 1 A%, (38)
12162 52
with the relaxation volume Q()\) = Q;; = —al?/4, where

a is the fcc lattice constant. The principal values of the
relaxation volume tensor are

al?

12
indicating that an SFT (A 0) generates isotropic
volume contraction, whereas a Frank dislocation loop
(A 1) gives rise to anisotropic volume contraction.
While the principal values of the relaxation volume ten-
sor vary as functions of A, the total relaxation volume
of the SFT is the same as the relaxation volume of the
Frank loop.

Using the stiffness tensor for a cubic crystal [42][69]

Q (1=X%1-X 14227, (39)

p.v.

Cijr = (c11 — €12 — 2¢44) 8,010k (40)

+ €120;0k1 + caa (Oir0j1 + Sadjn)
we arrive at an expression for the elastic dipole tensor
of an SFT using either equation (11) or equation (31),
namely

al? ci1 + 2c12 2C44/\2 2844)\2
P(}) = BRT) 2c4X° i1+ 2012 204N | (41)
2c44\? 2c4\? 11+ 2c12
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FIG. 3. (a) Arrangement of the faulted Frank loop and stacking fault tetrahedron corner points in the one-eighth of an fcc unit
cell with the edge length of a/2. Points labeled by Greek letters are at midpoints of tetrahedral faces opposite to points labeled
by the respective Roman letters. (b-d) Transformation of the faulted Frank loop to a stacking fault tetrahedron parameterised
by the reaction coordinate A. Burgers vectors are described using the Thompson vector notation.

The number of vacancies N, forming the SFT can be
found by dividing its relaxation volume by the volume
of a missing atom in an fec lattice —a®/4, resulting in
N, = [?/a?. The relaxation volume of an SFT, expressed
in terms of the number of vacancies that it contains, is

1
Q= —ZNvas. (42)

For comparison, the relaxation volume of a spherical void
in an fcc metal, containing the same number of vacancies,
is [12]

3\%/? 1 1—v\ sa®
=2 B )22 N2/3
vad <2> ™ (1 + l/> L Nv ) (43)

where s is the surface stress, p is the shear modulus and
v is the Poisson ratio. Equations (42) and (43) suggest
that in the macroscopic limit N, > 1, an SFT exhibits a
much greater degree of elastic relaxation than a void, in
agreement with atomistic simulations [68]. This does not
imply, however, that a void is energetically more stable
than an SFT since, like for point defects [70, 71], it is
often the core energy rather than the elastic energy that
dominates the total self-energy of a defect configuration.

B. (111)/(100) bcc tetrahedron

Collision cascades in body-centered cubic (bcc) met-
als occasionally produce unusually complex dislocation
structures, which are topologically different from the
commonly occurring individual dislocation loops. An ex-
ample of such a topologically unusual dislocation con-
figuration formed in a collision cascade is given in Fig-
ure 10 of Ref. [72]. Similarly to an SFT, the structure
involves four dislocation junctions but, as opposed to an
SFT, now dislocations with two fundamentally different
Burgers vector types are involved in the formation of

this structure. These two Burgers vectors, schematically
noted in Figure 4, are of the (a/2)(111) and a(100) types,
where a is the bcc lattice constant.

Computing the scalar triple products for the six seg-
ments of the bee tetrahedron using the rule (33) produces
values given in the last column of Table III, resulting in
the total relaxation volume of the dislocation structure
in Figure 4

Q=al? (44)

The fact that this quantity is positive suggests that the
dislocation configuration depicted in Figure 4 has the net
interstitial, rather than vacancy, character.

The decomposition of the structure shown in Figure 4
into individual loops highlights the subtlety associated
with the evaluation of the volume of a complex disloca-
tion configuration. Indeed, applying vector calculus and
formula (b - A) for the volume of an individual loop (19),
we find that both (a/2)(111) dislocation loops, shown in
blue, have the interstitial character and the same posi-
tive volumes of aL?. The a(100) loop, shown in red, has
vacancy character, its volume is negative, and is equal
to —aL?. The sum of volumes of the three loops is aL?,
in agreement with the result (44) obtained by a direct
calculation using equation (33), which notably does not
require decomposing a dislocation configuration into in-
dividual loops.

C. An extended network of dislocations produced
by irradiation

Metals exposed to irradiation by highly energetic par-
ticles, such as neutrons in a nuclear reactor, develop mi-
crostructures often involving complex extended disloca-
tion network configurations. Whenever energetic parti-
cles scatter by atoms in the crystal lattice, they may
impart sufficient kinetic energy to ballistically displace
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FIG. 4. (a) Sketch of a tetrahedral defect structure formed by dislocations with (a/2)(111) (blue) and a(100) (red) Burgers
vectors in a bce metal. The configuration resembles a stacking fault tetrahedron, but involves no stacking faults. The topology
of this dislocation configuration is not equivalent to that of a dislocation loop. Coordinates of points A, B, C and D are given
in Table III. (b) Dislocation configuration shown in (a) represented as an equivalent superposition of two (a/2)(111) and one

a(100) loop.

a large number of atoms from their lattice sites. The
displaced atoms eventually recrystallise, leaving behind
defects of both vacancy and interstitial type. With in-
creasing exposure to radiation, the density of radiation
defects becomes large enough for defects to coalesce and
form complex interconnected dislocation networks. The
dislocation network transfers mass through the system
under the influence of irradiation and external stress,
thereby contributing to irradiation-induced creep.

We simulate the formation of an irradiated microstruc-
ture in single-crystal bee tungsten (W) using the molecu-
lar dynamics software package LAMMPs [73] and the em-
pirical interatomic potential developed in Ref. [74]. We
start by initialising a perfect bce lattice in an orthogonal
simulation cell with 220 unit cell repeats along the [100],
[010], and [001] cell vectors, containing over 21.3 million
atoms. Periodic boundary conditions are applied in all
three directions. We introduce 100 simultaneous cascades
by choosing 100 random atoms, with a minimal distance
of 15 A to each other, and assigning each atom a ran-
domly oriented velocity corresponding to the kinetic en-
ergy of 10keV. Following the method commonly used in
atomistic cascade simulation, we use an electronic stop-
ping model for atoms with kinetic energies above 10eV
and an adaptive time step. For atoms with kinetic energy
below the energy corresponding to melting, we apply a
damping term with the time-constant of 15.6 ps to model
electronic losses due to electron-phonon coupling in the
low velocity limit [75]. The system is propagated until
the temperature drops below 100 K, which takes ~10 ps,
at which point velocities are set to zero, and atomic co-
ordinates and box dimensions are relaxed using the Con-
jugate Gradients method. The next round of cascades
is initialised in the now damaged microstructure, and
this process is repeated until the desired radiation dose
is reached.

Using the damage model proposed in Ref. [76], we find
that every new set of cascades increments the radiation

dose ¢ by the amount

0.8T}
2F4N

A¢p = N, =1.67 x 10~ *dpa, (45)

where N, is number of cascades per iteration, Ty ~ 8 keV
is the cascade damage energy, Eq = 90¢€V is the assumed
threshold displacement energy for tungsten, and N is the
total number of atoms in the simulation cell. The dose
is given in the dimensionless units of displacements per
atom (dpa), which is a standard measure of exposure of
materials to radiation used in the field of nuclear materi-
als [76]. The dose of ¢ = 1dpa signifies that on average
every atom in the system has been a part of a Frenkel
pair, consisting of a vacancy and a self-interstitial defect,
suggesting a significant accumulation of radiation defects.
We apply 6000 cascade iterations in order to reach the
dose of 1dpa.

The resulting atomic configurations are analysed and
their dislocation content determined using the Disloca-
tion Extraction Algorithm (DXA) [77] implemented in
the OVITO software [78]. The algorithm is able to iden-
tify the dislocation line sense, its Burgers vector, the line
coordinates, and the topology of the dislocation network.
Because the irradiated microstructure is vacancy-rich as
a large number of self-interstitial atom defects have coa-
lesced into dislocations loops and the dislocation network
[19], some dislocation curves identified by the DXA are
disjoint and have loose ends. To ensure that all the net-
works are closed, we restore the dislocation connectivity
by iterating over loose ends in the network and connect-
ing them to other loose ends in the neighbourhood.

Snapshots of the dislocation network formed at various
doses are shown in Figure 5. At low doses, the intersti-
tial defects produced by cascades form small spatially
dispersed dislocation loops with (a/2)(111) and a({100)
Burgers vectors. As the dose increases, the interstitial
loops grow and coalesce, joining together to form more
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FIG. 5. Dislocation networks extracted from simulated microstructure of irradiated tungsten, showed in an unwrapped rep-
resentation. In this example, the dislocation microstructure is found to evolve from dispersed loops at low dose, to extended
dislocation networks at intermediate dose, to a large closed interstitial loop at high dose. Networks with net interstitial and
vacancy content are colored red and blue, respectively. Structures (d) and (e) contain extended networks, shown periodically
repeated along z-direction (gray lines), with segment end points marked by black dots. Dislocations of (a/2)(111) and a(100)

type are drawn with solid and dotted lines, respectively.

complex loops, which eventually merge to form an ex-
tended network. At a higher dose (¢ ~ 1dpa) the net-
work breaks apart, leaving behind a large interstitial loop
of around 60 nm diameter. We note that the entirety of
the simulation box is now filled with homogeneously dis-
tributed vacancy clusters, saturating to the total vacancy
content of 0.34 % over the course of irradiation, see Fig-
ure 6¢. Around 90 % of vacancy content is in the form
of mono-vacancies, with the remainder constituting sub-
nanometer sized vacancy clusters. The vacancy content
was determined using the isosurface method presented in
[79].

In Figure 6a, we compare the change of volume of the
simulation cell with the total relaxation volume of the
dislocation network computed using expressions (34) and
(36). The volume change is given in the units of bcc
atomic volume €y = a®/2. In the dynamic steady state
of the material forming in the high dose limit [19, 20],
the total box volume has increased by AV/Vy = 46 x
103/(2 x 220%) = 0.22%. We note that the relaxation
volume of the dislocation network is at times higher than

the total volume change of the simulation cell. This is
not a contradiction, as each of the many monovacancies
contributes the negative amount of QY25 & = —0.367Q
to the total relaxation volume of the system [12, 17]. For
the saturated vacancy concentration of 0.34 %, we obtain
the total relaxation volume of all the vacancies (2}3f
—26.6x103 Qp, suggesting that the sum of the dislocation
and vacancy relaxation volumes is always smaller than
the simulation cell volume change. The margin of error
stems from neglecting the non-linear relaxation volume
effects [74] associated for example with the core regions
of dislocations.

The relaxation volume of the dislocation network ex-
hibits a discontinuity at 0.3 dpa where it sharply drops
by AQ = —48.2 x 103Qy. This drop can be entirely
attributed to its transformation into an extended net-
work. As seen in Figure 6b, the dislocation network first
becomes simultaneously extended along the z and y di-
rections at 0.26 dpa. Shortly after, at 0.30 dpa, the net-
work reorganises itself to being only extended in the x
direction. During this process, it loses over half of its
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FIG. 6. (a) The relaxation volume of the dislocation network and the total change of volume of the simulation cell, expressed
in the units of atomic volume o, shown as a function of dose. (b) Plot showing if the dislocation network is extended or not as
a function of dose. The discontinuity in the computed relaxation volume occurs shortly after the dislocation network becomes
extended, suggesting that the change of the relaxation volume is associated with the change in the topology of the network.
(¢) Vacancy concentration, in the units of vacancies per lattice site, shown as a function of dose.

relaxation volume. Because the number of atoms in the
system is conserved, such a process can only occur if the
crystal lattice simultaneously undergoes a plastic trans-
formation that increases the number of lattice sites by
an equal amount — this is possible because many lattice
sites in the simulation cell are unoccupied, populated by
vacancies. As the simulation cell volume does not ex-
hibit a discontinuity, the drop in the relaxation volume
of the dislocation network must be fully counteracted by
the volume change arising from a corresponding plastic
deformation of the cell as a whole.

To illustrate this point, we estimate the change in the
number of lattice sites in the simulation cell. Given ma-
trix A, where the j-th column is the j-th simulation cell
vector, and matrix B, where the j-th column is the j-th
primitive lattice vector, preserving the continuity across
periodic boundary conditions requires that

A = BN, (46)
where NN is a 3x3 matrix of integers. Note that
Nlattice = Mmotit det(N) is the number of lattice sites,
where npyotir = 1 for the primitive bce unit cell. For
a bcc crystal, B takes on the form

“ -1 1 1
B=- 1 -1 1 (47)
21 1 1 -1

For the simulation cell given here before irradiation,
A;; = 220ad;;, and therefore N;; = 220(1 — d;;).

Consider now the same system after it was exposed
to irradiation, leading to an elasto-plastic deformation,
transforming the simulation cell to A’. As the periodic
boundary conditions still apply to the transformed sim-
ulation cell, the continuity condition still applies in a
modified form

A’ =B'N/, (48)

where B’ is the elastically distorted lattice cell and N’
is the integer-valued matrix of cell repeats after plastic
deformation. The change in the number of lattice sites
after elasto-plastic deformation is then given by

Anjagtice = Mmotit [det (N') — det (IN)] . (49)
As the continuity condition still applies, N’ is constrained
to be integer-valued, therefore the smallest possible in-
crease in the number of lattice sites is Anjagtice = 48400,
which is equivalent to the volume increase of the system
by AV = 48.4 x 103€y. This volume change is very
close to the magnitude of the discontinuous change in
the dislocation network volume of AQ = —48.2 x 103 Qg
found numerically at ¢ = 0.3 dpa. This confirms that the
change of volume of the crystal involves a plastic defor-
mation, mediated by a structural reorganisation of the
extended dislocation network. During irradiation at low
temperatures, where vacancies are immobile, this mech-
anism is expected to play a significant role in changing
the dimensions of the crystal.

VI. CONCLUSIONS

The question about the relaxation volume of an ar-
bitrarily complex interconnected network of dislocations
naturally arises in the context of macroscopic analysis of
microstructures of heavily irradiated or heavily deformed
materials if one attempts to evaluate the effect of the
dislocation network on swelling or dimensional changes
[10, 13]. While a formula for the volume of an isolated
dislocation loop is well known [11, 55], generalizing it to
the case of an arbitrary dislocation network has so far
proved elusive. In this study, we derived an analytical
expression for the volume of an arbitrary interconnected
network of dislocations and showed that its volume can
be evaluated using piece-wise line integration along the



arbitrarily curved directionally ordered dislocation lines,
linking the junctions of the network, see Eqns. (33) and
(34). We prove that this analytical expression for the
volume of the network is invariant with respect to the
choice of the Cartesian system of coordinates or the use
of periodic boundary conditions, and illustrate its appli-
cations using several representative examples of complex
dislocation structures.
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Appendix A: Parameterisation of the SFT formation
process

Following Fig. 3, the corners of the one-eighth fcc unit
cell A, B, C, and D define the coordinate system:

A:g@+@
a
B=2(5+2
5 (7 +2) (A1)
= Z (&+9)
D=0,

where a is the fcc lattice constant. Points a, 8, v, and

6 lie at midpoints of the tetrahedral faces opposite the

points A, B, C and D, respectively:
a=B+C+D)/3
B=(C+D+A)/3
vy=(D+A+B)/3
d=(A+B+0C)/3.

(A2)

Tables I-II list the Burgers vectors b(™ | starting points
p(™, and end points q(™) of the piecewise linear segments

12

TABLE I. Parameterisation of the faulted Frank loop (A = 1)
in terms of piecewise linear segments.

start p™ (v/21)

end q'™ (v21)

Burgers vector b (a)

3D = I111] A C
5D = 1[111] C B
8D = L[TT1) B A

TABLE II. Parameterisation of the Frank loop transforming
to the SFT (0 < A < 1) in terms of piecewise linear segments.

start p™ (v21) end q™ (V20)

Burgers vector b™ (a)

88 = 1[011] A C

Sa = L[107) c B

5~ = L[TT0] B A

+8 = 1[101] D+ A\A - D) A

Ba = L[T10] D + A\(C - D) C

ay = L[0T1] D+ A(B - D) B

8D — 1] D+AA-D) D+AC-D)

oD = 1[121) D+AC-D) D+AB-D)

4D = ![i12) D+AB-D) D+AA-D)
constituting the SFT dislocation structure. Note that

the Burgers vectors are given in the Thompson vector
notation, such that

b=6D=D-6=_[I11]. (A3)

wl

The Tables enable a simple computation of the dipole
tensor, the relaxation volume tensor, and the relaxation
volume, following the general expressions (31)-(33).

Appendix B: Parameterisation of a bcc tetrahedron

Fig. 4 shows the schematic structure of a tetrahedral
dislocation structure that can be formed in a bcc metal
by the b = (a/2)(111) and b = a(001) dislocations. In
principle, the dislocation lines forming the edges of a bee
tetrahedron can be curved, see for example Ref. [72], but
for the purpose of illustrating the principle of how to
evaluate the volume of an unusual dislocation structure,
we assume that all the dislocation lines linking the dislo-
cation junctions of the structure are straight. The coor-
dinates of the four junctions shown in Fig. 4 are

(B1)

In these notations, vector DC is collinear with the [100]
crystallographic direction, whereas vector BA is collinear
with the [001] direction. The Burgers vectors of the
six dislocation segments forming the bcc tetrahedron
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TABLE III. Parameterisation of the bcc tetrahedron shown
in Fig. 4 in terms of piecewise linear dislocation segments.

Burgers vector b (a) start p(™ end q™ Q)
[100] A B al?
1117) D A 0
T c A 0
[010] C D 0
nty B C 0
Hith B D 0

shown in Fig. 4, and the vector coordinates of the seg-
ments themselves are given in Table III. A direct exam-
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ination of the dislocation configuration shows that the
Burgers vectors are conserved at junctions, and that the
a(001) dislocations have a pure edge character whereas
the (a/2)(111) dislocations have a mixed character. The
length of the a(001) segments is 2L whereas the length
of the (a/2)(111) segments is v/3L.

The quantities referred to as Q™) in Table III are the
individual terms in equations (33) and (34), computed in
the Cartesian system of coordinates where the positions
of the junctions are given by (B1). On their own, quanti-
ties Q(") are not invariant with respect to the translations
of the system of coordinates, but their sum Q =3%" Q)
is invariant with the respect to such translations.
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