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We investigated the athermal irradiation-induced swelling and creep in iron subjecting to the
application of external uniaxial stress. We studied this through atomic scale simulations using the
creation-relaxation algorithm. We also calculated the defect relaxation volume density tensors (or
eigenstrain) as a function of external uniaxial stress. Beyond the dose value corresponding to isolated
defects formation, interstitial-type defect clusters form with polarization causing crystal growth in
the direction where tensile stress is applied, and growth in the other two perpendicular directions
when a compressive stress is applied. The microstructure in terms of the concentrations of vacancies,
isolated self-interstitial atoms, Laves phases clusters, and dislocations is not much affected by the
external stress, up to at least ±1 GPa. The main cause of the biased crystal growth is due to the
anisotropic formation of new crystal planes due to coalescence of interstitial defect clusters. Extra
lattice planes form and lead to plastic deformation according to the direction and magnitude of the
external stress.

I. INTRODUCTION

Iron and steels are important materials with a wide
range of domestic and industrial applications. Reduced
activation ferritic-martensitic (RAFM) steels are chosen
as the structural materials of advanced fission and fusion
reactors [1, 2]. RAFM steels have a body-centered cubic
(bcc) crystal structure, which is the same as pure iron.
A main reason for choosing RAFM steels is because they
show less swelling under neutron irradiation compared
to austenitic steels with face-centered cubic (fcc) struc-
ture [3]. Commercial ferritic steels are highly resistant to
swelling even at extreme exposure to irradiation, showing
less than 2% volume change under irradiation at 420◦C
up to 200 DPA [4].

Inside a fission or fusion reactor, nuclear reactions gen-
erate high energy neutrons which can penetrate deep in-
side a reactor component. These neutrons are scattered
by atoms constituting the component, during which they
transfer a fraction of their kinetic energy to the recoiling
atoms. If sufficient energy is transferred, a recoil atom
becomes a ballistic particle in itself, initiating a cascade
of atomic collisions. The total exposure of a material to
irradiation is measured in units of displacement per atom
(DPA) [5], which is the number density of atoms ballisti-
cally displaced by collision cascades. In metals, accumu-
lation of atomic displacements results in the formation of
complex microstructures containing defects, such as self-
interstitial atoms, vacancies, voids, dislocation loops and
dislocation lines [6–12]. The change of microstructure
can degrade both the thermal [13–15] and mechanical
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[16, 17] properties of materials, affecting the lifetime of
components.

Neutron irradiation experiments of RAFM steels up to
70 DPA in a fission reactor at 330-340◦C [18] show irradi-
ation causing hardening and embrittlement, with satura-
tion of these effects occurring at high doses. Dislocation
loops with Burgers vector of a

2 ⟨111⟩ and a⟨100⟩ are com-
monly observed [4, 19], where their relative abundances
depend on the irradiation conditions and alloy composi-
tion. RAFM steel will be used as the first wall material
of the demonstration (DEMO) fusion plants, which are
expected to experience lifetime neutron irradiation doses
between 1 to 10 DPA [20]. Besides, Gilbert et al. [21]
performed neutron transport calculations. Depending on
the design and position of the first wall made of Eurofer,
the rate of damage accumulation can range from 8 to 20
DPA per full power year.

In real operating conditions, components of fission
and fusion plants can be subjected to applied ten-
sile or compressive stresses due to gravity or magnetic
field. Misalignment of components due to human op-
eration or swelling of materials in limited space can
also cause enormous stress to materials. Stress-induced
anisotropic dimensional change is referred as creep [22].
Numerous phenomenological models [23, 24] based on as-
sumed microstructure evolution were proposed to explain
irradiation-induced creep and swelling.

As it is technologically challenging to monitor changes
in materials properties in an extreme radiation environ-
ment in-situ, computer simulations have the potential to
improve our understanding of materials behavior under
irradiation. While state-of-the-art molecular dynamics
(MD) simulations of consecutive collision cascades can
feasibly reach doses of 1 DPA [25, 26], these type of sim-
ulations are computationally intensive. For system sizes
that can accommodate the formation of extended dislo-
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cation microstructure, requiring to the order of a mil-
lion atoms [27], it is prohibitively expensive to conduct
a comprehensive collision cascade study across a param-
eter space with multiple stochastically independent sim-
ulations.

Recent atomic scale simulations adopted the creation-
relaxation algorithm (CRA) [28] which allows examina-
tion of irradiation damage in the order of 1 to 10 DPA.
CRA is a parameter-free and assumption-free algorithm.
In CRA, an atomic displacement is generated in the form
of a Frenkel pair by choosing a random atom and mov-
ing it to an arbitrary position. Then, one can relax the
atomic configuration through minimization of total en-
ergy. This accumulates 1/N DPA, whereN is the number
of atoms in a simulation cell. The microstructure evolves
according to the spatial fluctuation of stresses induced
by defects.

Using CRA, Derlet and Dudarev [28] studied the sat-
uration of defects production in Fe and W. They also
studied the spatial fluctuation of stresses and the spon-
taneous reorganization of microstructure. Tian et al. [29]
and Warwick et al. [30] studied the anisotropic swelling
of zirconium due to the formation of a- and c-type dis-
location loops. Mason et al. [31] explained the negative
lattice strain being detected by spatially resolved X-ray
Laue diffraction in self-ion irradiated tungsten. Using
a combination of CRA and MD, Mason et al. [32] ac-
curately estimated the deuterium retention capacity in
heavily irradiated tungsten. Chartier and Marinica [33]
used the Frenkel Pair Accumulation (FPA) method to
study high dose irradiation damage in bcc iron. FPA is
similar to CRA, but it relaxes the atomic configuration
through dynamic evolution. They observed nucleation of
C15 clusters at the early stage, which can transform into
a
2 ⟨111⟩ and a⟨100⟩ dislocation loops.

Recently, Reali et al. [34] suggested that one can com-
pute the macroscopic stress and strain on the compo-
nent scale using the defect relaxation volume density ten-
sor ω, which can be obtained from atomic scale simu-
lations, such as CRA or MD. They proved analytically
that the relaxation volume density tensor is equivalent to
the eigenstrain ϵ∗ of defects. Since the spatially varying
eigenstrain can be interpreted as a source of an effective
body force [34], one can solve the constitutive equation,
and calculate the dimensional changes, through finite el-
ement method (FEM).

In this work, we adopted the CRA to study the effect of
external uniaxial stress on defect production and crystal
growth in pure iron that realized as irradiation-induced
swelling and creep. Iron is the major component of steels
and has the same crystal structure as RAFM steels. We
will examine the effect quantitatively through calculating
the defect relaxation volume density tensor ω (or eigen-
strain ϵ∗). We will also study the microstructural change
in detail. The anisotropic changes of ω will be explained
through observation of the microstructure evolution and
the deformation of simulation cells.

II. THEORY

A. Simulation setup

We performed our simulations using cells containing
1,024,000 atoms. Each cell contains 80×80×80 bcc unit
cells, with each unit cell containing 2 atoms. The poten-
tial energy of iron atoms is described by the interatomic
potential developed by Ackland et al. [35].
We intended to simulate the condition of a material

subjected to external uniaxial stress. However, a simu-
lation cell with periodic boundary conditions has no free
surface that one can apply external force on. Therefore,
we simulated such condition by deforming the simulation
cells, driving the Virial stress [36] to attain certain val-
ues. This is in principle equivalent to the application of
external uniaxial stress, provided that the Virial stress
equals to the Cauchy stress.
We initialized simulation cells under uniaxial stress by

deforming them gradually through energy minimization
using the conjugate gradient method. The cell vectors
were kept orthogonal. Cells were deformed until the
stress in the z direction equals 0, ±0.00001, ±0.00002,
±0.00005, ±0.0001, ±0.0002, ±0.0005, ±0.001, ±0.01,
±0.02, ±0.05, ±0.1, ±0.2, ±0.5, or ±1 GPa, and stresses
in the x and y directions equal to zero. We use a sign
convention such that positive stress means tensile stress
in the z direction, and negative means compressive.
All simulations were performed using LAMMPS [37].

Irradiation damage was simulated according to the CRA.
Throughout the entire simulation process, simulation cell
vectors are allowed to deform under the constraints of
keeping the initial uniaxial stress unchanged, and of keep-
ing the cell vectors orthogonal. For each uniaxial stress
value, we performed 3 identical simulations using differ-
ent random numbers as seeds for the stochastic process
of choosing random atoms and moving them to random
locations. Data are presented as the average of 3 samples.

B. Creation-relaxation algorithm

We should note the meaning of DPA here is different
from the conventional definition of NRT-DPA by Nor-
gett, Robinson and Torrens [5]. In CRA, the meaning
of DPA is taken literally as it incrementally introduces
damage in the form of Frenkel pairs by displacing ran-
dom atoms to random positions. This is corresponding to
low temperature conditions where diffusion of defects is
inhabited. Albeit the difference of definition, Derlet and
Dudarev [28] and Warwick et al. [30] showed in Fe &
W and Zr, respectively, that the saturation behaviors of
swelling due to accumulation of defects can be obtained
quantitatively through rescaling. Recent ion irradiation
experiment [38] on tungsten also show good quantitative
agreement with CRA prediction.
In the work by Derlet and Dudarev [28], CRA was im-

plemented such that upon displacement of an atom, a
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dose of 1/N dpa is accumulated, where N is the num-
ber of atoms in the simulation cell. Frenkel pairs were
created one by one, and after each creation of a Frenkel
pair the atomic configuration was relaxed through en-
ergy minimization. Subsequent work using CRA [29–32]
showed that creation of multiple Frenkel pairs per relax-
ation step, corresponding to a dose increment of 10−3

DPA per relaxation step or more, can speed up the sim-
ulation and have little effect on the results.

In our implementation, we created Frenkel pairs corre-
sponding to a dose increment of 10−3 DPA per relaxation
step. In each relaxation step, we first relaxed the atomic
configuration without changing the shape of a simulation
cell. Then, we relaxed the atomic configuration together
with the simulation cell, until the Virial stress attained
the target values. This is to guarantee the numerical sta-
bility in the energy minimization procedure. We repeat
this procedure until all samples reach 3 DPA.

C. Defect relaxation volume density tensor

The concept of eigenstrain ϵ∗ was introduced by Mura
[39]. Eigenstrain is a generic term referring to nonelastic
internal strain. Reali et al. [34] proved analytically that
the defect relaxation volume density tensor ω is equiva-
lent to the eigenstrain due to the existence of defects. In
the absence of other sources of nonelastic strain, one can
write:

ϵ∗ij(x) = ωij(x). (1)

The defect relaxation volume density tensor can be de-
fined as [34]:

ωij(x) =
∑
a

Ωa
ijδ(x−Ra), (2)

where Ωa
ij is the relaxation volume tensor of a defect situ-

ated at Ra. The relaxation volume tensor, together with
the elastic constants, can describe the elastic properties
of a defect in the asymptotic limit far from the defect.
The values of Ωij of various defects can be obtained using
density function theory calculations [40–44] and molecu-
lar statics [45, 46].

Knowing the spatially varying ω(x), one can calculate
the effective body force [34, 47]:

fi(x) = −Cijkl
∂ωkl(x)

∂xj
. (3)

where Cijkl is the elastic stiffness tensor. This body force
can be supplied to a continuum model, such as the finite
element method (FEM), for calculations in the compo-
nent scale.

We should note that component-scale simulations us-
ing FEM describe spatial scales many orders of magni-
tude larger than atomistic simulations. Assuming a com-
ponent having a dimension of 1 m3, if one considers 1 mil-
lion finite elements, the linear dimension of an element is

1 cm, which is much larger than atomic scale simulations
using Å or nm as unit. Consequently, if we are interested
in engineering simulations, we only need certain homog-
enized information for an element without knowing the
details of microstructure. On the other hand, we remain
interested in understanding the changes of macroscopic
properties due to microstructural evolution from a scien-
tific perspective.
Following Mura [39], the total strain is expressed as

the sum of eigenstrain and elastic strain:

ϵij(x) = ϵ∗ij(x) + ϵeij(x). (4)

Assuming linear elasticity, the stress is related to the elas-
tic strain through Hooke’s law:

σij(x) = Cijklϵ
e
kl(x). (5)

Since eigenstrain equals to the relaxation volume density
tensor, one can write the stress:

σij(x) = Cijkl (ϵkl(x)− ωkl(x)) . (6)

Taking the average over the whole simulation cell, the
average stress is

σ̄ij = Cijkl(ϵ̄kl − ω̄kl). (7)

After rearranging terms, one can write

ω̄ij = ϵ̄ij − Sijklσ̄kl, (8)

where Sijkl is the elastic compliance tensor, which is the
inverse of the elastic stiffness tensor Cijkl [48]. In this
work, Cijkl is calculated from the interatomic potential.
The average strain ϵ̄ij can be obtained according to the
change of the simulation cell vectors. The average stress
σ̄kl is the applied stress.

Our applied stress only has one nonzero component in
the z direction. Using the compliance tensor appropriate
for bcc crystal symmetry, the average relaxation volume
density tensor can be simplified to:

ω̄ =

ϵ̄11 − S1133σ̄33 0 0
0 ϵ̄22 − S2233σ̄33 0
0 0 ϵ̄33 − S3333σ̄33

 .

(9)
Using the above expression, we can obtain the values of
ω̄ as a function of uniaxial external stress at different
levels of damage or dose. Such homogenized information
can be applied to continuum models directly due to the
different length scales being considered.

We note that the total defect relaxation volume equals
the total defect formation volume, as the total number
of atoms is conserved. Therefore, the magnitude of vol-
umetric swelling is readily obtained from the trace of ω̄.

D. Crystal growth

We may understand crystal growth under irradiation
through the change of simulation cell vectors [27]. One
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can write the matrix of cell vectors as:

L = (Lx,Ly,Lz) =

 Lxx Lyx Lzx

Lxy Lyy Lzy

Lxz Lyz Lzz

 . (10)

In the case of perfect lattice, this can be separated into
two parts:

L = PN, (11)

where P is the primitive cell vector matrix, and N rep-
resents the repetition of the primitive cell.

For the bcc lattice, the primitive cell vector matrix is

P =
a

2

 −1 1 1
1 −1 1
1 1 −1

 . (12)

By inverting P, one can get

N =

 nxy + nxz nyy + nyz nzy + nzz

nxx + nxz nyx + nyz nzx + nzz

nxx + nxy nyx + nyy nzx + nzy

 , (13)

where nij = Lij/a represents the repetition of primitive
cells in Cartesian coordinates.

In an orthogonal cell, we can write

N =

 0 nyy nzz

nxx 0 nzz

nxx nyy 0

 , (14)

where nxx, nyy, nzz is the number of unit cells in the x,
y, and z directions, respectively.
In the case of a purely elastically deformed simulation

cell, the primitive cell vector matrix can be written ap-
proximately according to linear elasticity as:

P′ = (I+ ϵe)P, (15)

where ϵe = Sσ. On the other hand, we can also obtain
the elastically deformed primitive cell from numerical cal-
culations, which include non-linear contributions, where

P′ =
1

2

 ax 0 0
0 ay 0
0 0 az

 ·

 −1 1 1
1 −1 1
1 1 −1

 , (16)

and ax, ay and az are the mean lattice parameters of an
elastically deformed orthogonal unit cell in Cartesian co-
ordinates. The three lattice parameters can be obtained
from the deformed perfect simulation cell. We used this
in our calculations.

When a simulation cell is subjected to irradiation, the
crystal structure evolves. Assuming one can still identify
the dominant crystal structure, we can estimate the num-
ber of repeating cells or planes along x, y, or z direction
from:

N′ = P′−1L′, (17)

where L′ is the matrix of deformed cell vectors. The
change of N′ over the course of irradiation is attributed
to the plastic deformation caused by the accumulation of
defects.

FIG. 1. The average strains of simulation cells subjecting to
external uniaxial stresses. Linear elastic approximations are
also plotted for comparison.

III. RESULTS

A. Change of macroscopic quantities

We will first examine the change of the average strain
ϵ̄ and the average relaxation volume density tensor ω̄ as
a function of irradiation dose in unit of DPA at various
values of uniaxial stress. The ϵ̄ at different conditions can
be calculated from the simulation cell vectors, with refer-
ence to the perfect crystal lattice at 0 DPA and stress-free
conditions.
Fig. 1 shows the ϵ̄ of simulation cells subjected to dif-

ferent stress values at 0 DPA. We also plotted the corre-
sponding linear elastic approximations. We observe that
at stresses even as high as ±1 GPa linear elasticity of-
fers an accurate description of the elastic strain. This
validates the use of Eq. 9 to estimate the ω̄.
The change of ϵ̄ due to the application of external

stress as a function of DPA is shown in Fig. 2. For
visual clarity, we only plotted curves corresponding to
large stress values. Although the starting values of ϵ̄
are different, all components of ϵ̄ increase linearly up to
about 0.01 DPA, and non-linearly to about 0.03 DPA.
Similarly, we can observe the change of ω̄ in Fig. 3.

All components increase linearly up to about 0.01 DPA,
and non-linearly to about 0.03 DPA, regardless of the
applied stress. We note that now all values start from
zero, meaning there are initially no defects in the system.
The linear increment at low dose is due to the generation
of isolated self-interstitial atoms (SIA) and vacancies [28].
We will further verify this point in following sections.
Beyond about 0.01 DPA, the values of ϵ̄ and ω̄ become

stress dependent. For compressive stress in the z direc-
tion, the ϵ̄11, ϵ̄22, ω̄11, and ω̄22 increase, whereas ϵ̄33 and
ω̄33 decrease. For tensile stress, the behavior is the other
way around. According to previous CRA work [27–32],
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FIG. 2. The change of average strains as a function of dose in units of DPA.

beyond about 0.02 DPA, SIAs start clustering, forming
dislocation loops, which is eventually followed by lattice
plane formation.

Since the elastic field of a defect does not need to be
isotropic, external stress σext

ij can affect the energy of a
system containing a defect, where the elastic energy of a
defect subjecting to external field [43] can be written as
Eel = −σext

ij Ωij , where Ωij is the defect relaxation vol-
ume tensor. It means the preferred orientation of defect
clusters is biased by the external stress, which affects the
orientations of subsequently formed lattice planes. By in-
specting the change of ω̄, we expect lattice planes to form
preferentially with respect to the direction and value of
stress. Mason et al. [31] show that in the case of a thin
film, if the x and y dimension are constrained, lattice
planes will form perpendicular to the z direction, which
is similar to the tensile stress condition. We suggest a
similar phenomenon is happening here, where further in-
vestigation will follow.

In Fig. 4, we plotted the ϵ̄ against external uniaxial
stress. We can observe the ϵ̄11 and ϵ̄22 decrease and
ϵ̄33 increase almost linearly with respect to stress. Af-

ter eliminating the linear elastic effect, one can observe
similar behavior of ω̄ in Fig. 5. The main difference is
that all the slopes are less steep. At 0 DPA, it is correctly
observed that all ω̄ = 0.

At low dose below 0.2 DPA, components of ω̄ show
an almost linear relation to the external stress. However,
when dose is larger than 0.2, and when the uniaxial stress
is small, within ±0.1 GPa, we can observe fluctuation of
data. There are two possible reasons. First, the fluctu-
ation means simulation cells deform without preferential
direction. Second, we cannot observe the bias properly
due to insufficient simulations. Both reasons imply the
external stress is not strong enough to affect the change
of microstructure of current simulations.

We note that the dislocation density peaks at 0.2 DPA,
at which point the microstructure contains larger dislo-
cation loop due to the coalescence of smaller loops, at
which point the dislocation network starts forming (we
will discuss the microstructure below). The formation of
dislocation networks reduces the ability of the system to
respond to the external stress, since the energy barrier
of changing the morphology of a dislocation network is
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FIG. 3. The change of average relaxation volume density tensor as a function of dose in units of DPA.

much higher than for individual small loops and other
localized defects.

We can inspect the spatial fluctuation of stress through
the von Mises stress (VMS). VMS is often used in engi-
neering to predict if a material will yield or fracture. The
VMS σvms is relating to the Cauchy stress tensor σij by

σ2
vms =

1

2
[(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2

+6(σ2
23 + σ2

31 + σ2
12)] (18)

The atomic VMS is defined according to the atomic Virial
stress, which allows us to examine the spatial distribution
of VMS.

Fig. 6 shows the spatially average and standard devia-
tion of VMS. We can see there is little difference between
large compressive and tensile stress, and stress-free con-
ditions. On the other hand, we can see that at dose larger
than 0.2 DPA, the ω̄ show clear preferential behavior only
when the absolute value of external stress is larger than
0.5 GPa, at which point its magnitude is comparable to
the VMS. One possible explanation is that in order to
affect the microstructural evolution of a dislocation net-

work as it is forming, external stress needs to be able to
induce an energy change comparable to the energy scale
of the network as a whole, rather than to the energy scale
of individual defects. Consequently, the response of the
system changes for dose larger than 0.2 DPA.

We try to map ω̄ to simple functions. This may help
developing other continuum models, such as FEM. We
assume ω̄11 and ω̄22 are degenerate, i.e. ω̄11 = ω̄22. We
found that we can fit ω̄11 and ω̄33 to simple functions of
dose and external stress. We write:

ω̄11(ϕ, σ̄33) = m1(ϕ) σ̄33 + c1(ϕ)

ω̄33(ϕ, σ̄33) = m3(ϕ) σ̄33 + c3(ϕ),
(19)

where ϕ is the dose. After performing least-squares fit-
ting to all data, we get
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FIG. 4. The average strain as a function of stress at different
doses in units of DPA.

FIG. 5. The average relaxation volume density tensor as a
function of stress at different doses in units of DPA. Dotted
lines are plotted according to fitting functions (Eq. 19).



8

FIG. 6. Spatially average and the standard deviation of the
von Mises stress (VMS) as a function of dose in units of DPA.

m1(ϕ) =
−ϕ

37.57527287 + 51.30537329ϕ
GPa−1

c1(ϕ) =
ϕ

8.50780179 + 92.60261486ϕ

m3(ϕ) =
ϕ

16.73788571 + 24.20713517ϕ
GPa−1

c3(ϕ) =
ϕ

10.03662945 + 90.76207731ϕ
.

(20)

In Fig. 7, we show the corresponding three dimensional
plot of the two fitted functions. Error is shown as a heat-
map projected on the floor.

B. Irradiation-induced swelling and creep

In general, swelling is represented by the change of
volumetric strain

ϵv =
V − V0

V0
, (21)

FIG. 7. The 11 (or 22) and 33 components of the relaxation
volume density tensor fitted as a function of stress and dose.
The error is visualized as a heat-map on the floor.

FIG. 8. The average atomic volume as a function of dose.

where V and V0 are current and initial volume. The ini-
tial volume V0 is the volume of external stress deformed
cell at 0 DPA, not the stress-free cell. We plotted the
change of the average atomic volume and the volumetric
strain as a function of dose in Fig. 8 and 9, respectively.
The swelling rate at different stresses is about 3% at high
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FIG. 9. The volumetric strain as a function of dose. The
swelling at 3 DPA is about 3%.

FIG. 10. The volumetric eigenstrain as a function of dose.

dose, which is compatible with previous works by Derlet
and Dudarev using other interatomic potentials [28].

We can see the atomic volume are not the same at
different stress values, even before irradiation. We may
understand that even in isotropic materials, the elastic
deformation of the volume due to uniaxial external ap-
plied stresses is in general not zero, because

ϵev = Tr(ϵe) = ϵe11 + ϵe22 + ϵe33 =
1− 2ν

E
σapp, (22)

where E is the Young modulus and ν is the Poisson’s
ration. We can observe that for ν < 0.5, when σapp is
positive, the volumetric elastic strain represented by ϵev
should be positive. It is compatible with what we can
see in Fig. 8.

In fact, within linear (anisotropic) elasticity, we can

FIG. 11. The volumetric strain as a function of stress at
different dose.

rewrite Eq. 21 into

ϵv =
(1 + Tr(ϵ))V p − (1 + Tr(ϵe))V p

(1 + Tr(ϵe))Vp
(23)

where V p is the volume of stress-free unirradiated perfect
lattice cell. One can simplify it into

ϵv =
ωv

1 + Tr(ϵe)
≈ ωv (24)

where ωv = ω̄11 + ω̄22 + ω̄33, which is the volumetric
eigenstrain. One can approximate ϵv ≈ ωv, because ϵv,
ϵev and ωv are in the same order. In linear elasticity, terms
higher than the first order are ignored.
The volumetric eigenstrain corresponds to the plastic

deformation only. It is plotted in Fig. 10. The plastic
strain is also at about 3% at high dose. We can see the
volumetric strain and eigenstrain are very close to each
other as expected.
Both ϵv and ωv are mildly stress dependent. We in-

spect the stress dependent of them in Fig. 11 and 12.
We can see a seemingly linear relation where the swelling
increases as tensile stress increases. Linear fittings were
performed to find the slopes. We should note ωij is calcu-
lated assuming linear elasticity according to Eq. 9. The
values of ωij at ±1 GPa may not be very accurate by
observing Fig. 1. In Fig. 13, it shows the slopes of linear
fittings of Fig. 11 and 12 and other similar data. We can
see the slopes saturate at about 8 × 10−4 GPa−1. The
effect of stress on volumetric swelling exists, but is small.
Regarding irradiation-induced creep, it may be sepa-

rated into two parts from experimental perspective. They
are creep in the absence of swelling and swelling enhanced
creep [22, 24]. In the linear regime, it has been described
by a phenomenological equation:

ϵp/σapp = B0ϕ+Dϵv (25)
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FIG. 12. The volumetric eigenstrain as a function of stress at
different dose.

FIG. 13. The slope of linear fit to the volumetric strain or
eigenstrain versus stress as a function of dose.

where ϵp is the plastic strain, σapp is the applied stress,
B0 is the creep compliance for irradiation creep defor-
mation, and D is the creep-swelling coupling coefficient
for irradiation creep deformation. This equation applies
to cases where the plastic strain increases as the dose
increases, and swelling is comparatively small.

In our simulations, the plastic strain ϵp = ω̄33 and
σapp = σ33. We can separate the eigenstrain ω̄ into two
parts according to above logic, namely the hydrostatic
volumetric swelling ωv and volume conserved creep ω′,
such that

ω′
ij = ω̄ij −

δij
3
ωv. (26)

Using the approximation ϵv ≈ ωv, we can rewrite Eq. 25
into

ω′
33

σapp
+

ωv

3σapp
= B0ϕ+Dωv. (27)

We can see the first and second terms on both sides have
the same physical meaning, respectively. It suggests the
coefficient D = 1/(3σapp), which is not really a coeffi-
cient.
For the coefficient B0, we need to inspect ω′

ij , which
is shown in Fig. 14. The ω′

33 is monotonic increasing or
decreasing according to the sign of external stress. The
ω′
11 and ω′

22 have opposition sign to ω′
33. The external

stress is clearly responsible for creep. However, they are
not linearly increasing or decreasing. They saturate at
high dose limit. Only at low dose below 0.2 DPA, we can
observe near linear behaviour.
We plotted in Fig. 15, the value of ω′

33/σ33 against the
dose ϕ below 0.2 DPA. The slopes of them are essentially
the coefficient B0, which is about 0.3 GPa−1 DPA−1. It
is much larger than 0.5× 10−3 GPa−1 DPA−1 in ferritic
steels [49]. We should note experiment is usually per-
formed at 0.2 to 0.45 of Tm (melting temperature) [22],
which is much higher than the vacancy migration tem-
perature. Therefore, more defects are annihilated in the
process. In our simulations using CRA, they are in the
athermal regime. The diffusion of defects were inhab-
ited. Besides, our simulations are on pure iron. Alloying
and impurity effects are omitted. However, current re-
sults remain a plausible way to examine the underlying
mechanism of swelling and creep due to irradiation.

C. Microstructure evolution

We examined the change of microstructure subjected
to various external uniaxial stresses. We used ovito [50]
to perform analysis and visualization of samples.

First, we analyze the content of point defects. Point
defects were identified by Wigner-Seitz analysis, which
is implemented in ovito. In each Voronoi volume of
the reference lattice site, one can count the number of
atoms corresponding to the displaced configuration. The
reference configuration is the initial defect-free simula-
tion cell at 0 DPA. A Voronoi volume having no atom
is considered as vacancy, while a volume with two atoms
occupancy is considered as an SIA. Voronoi volumes with
three atoms occupancy or higher are rare, so we can safely
discard them.

Similar to the work by Derlet and Dudarev [28], we
further identify the isolated and non-isolated SIAs, but
we used a different criteria. We classify an SIA as belong-
ing to a cluster if there is another SIA within a specified
cutoff distance. We used a cutoff of 3.2 Å, which is a
distance between the second and third nearest neighbors
of an atom in the perfect iron bcc lattice. Since Wigner-
Seitz analysis places SIAs on reference lattice sites, which
here are lattice points of the perfect crystal, our results
remain the same for any cutoff distance between a and√
2a, or 2.9 Å and 4.0 Å, respectively.
In the work of Derlet and Dudarev [28], they identified

the isolated SIAs if there is no other atom sitting within
a cutoff of 0.93 of

√
3a/2, which is approximately 2.3 Å
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FIG. 14. The change of average strains minus 1/3 of the volumetric strain as a function of dose in units of DPA.

for bcc iron. However, we should remember that 2 atoms
sit within a Voronoi volume of a reference lattice site, it
only has 1 SIA. It is ambiguous to tell which one is the
SIA, and so the atomic position. If both are considered
as SIA, it is double counting the total number of SIA.
Instead, if we only consider the reference lattice site, we
know the exact location of an SIA.

In Fig. 16, it shows the vacancy and isolated SIA con-
tents. Interestingly, we can see there is little difference
between samples at ±1 GPa and stress-free conditions.
All of them reach a maximum isolated SIA concentration
at around 0.03 DPA. The vacancy and isolated SIA con-
centrations start diverging at around 0.01 DPA, where
larger defect clusters such as dislocation loops and SIA
clusters are forming. At high dose, the vacancy and iso-
lated interstitial contents reach a steady state with con-
centrations of 4.2% and 0.8%, respectively. They are in
quantitative agreement with work by Derlet and Dudarev
[28] using two other interatomic potentials.

Then, we analyzed the Laves phases cluster size. We
identified the Laves phases using the polyhedral template
matching (PTM) method [51]. According to Chartier and

Marinica [33], one could identify the C15 Laves phases
by finding the icosahedral structure. Essentially, C14,
C15 and C36 Laves phases are made of Z12 and Z16
Frank-Kasper clusters. Z12 means icosahedral arrange-
ment with 12 neighboring atoms. Z16 is a similar ar-
rangement but with 16 neighboring atoms. PTM can
only identify icosahedral arrangements, but since C15 is
expected to stabilized in irradiated iron, they argued that
the identification of Z12 is equivalent to C15, where in-
dependent analysis [52] confirmed this. We note that
another method to identify different Laves phases was
developed by Xie et al. [53].

Cluster analysis is used for the analysis of the sizes
of Laves phases clusters. Cluster analysis uses a cutoff
distance similar to the coordination analysis. For any
given particle, they are iteratively added to particular
cluster. Finally, we got the cluster sizes and know which
particle belong to which cluster.

In Fig. 17, we plot the cluster size against the dose in
units of DPA. Counting of clusters is shown as color map.
One can observe a bright spot at around 0.1 DPA, corre-
sponding to the peak quantity. Our results are in qual-
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FIG. 15. The change of strains minus 1/3 of the volumetric
strain divided by the apply stress as a function of dose in
units of DPA.

FIG. 16. Vacancy and isolated self-interstitial at 1, 0 and -1
GPa

itative agreement with work by Chartier and Marinica
[33]. We obtained a larger number of Laves phase clus-
ters, where the sizes of clusters are smaller than results
by Chartier and Marinica. A possible reason is that they
are using a different interatomic potential and working
at finite temperature. Fig. 18 shows the volume concen-
tration of clusters as a function of dose. Similarly, we
see a peak in cluster concentration at around 0.1 DPA,
after which the concentrations drop and eventually reach
steady values. It is because some of the clusters are
transforming into dislocation loops [33]. Interestingly, we
found external stress to have little effect on the cluster
content.

Finally, we analyzed the dislocation density. Disloca-
tion analysis (DXA) [54] being implemented in ovito
is used to identify the length and nature of disloca-
tions. Figure 19 shows the dislocation density for dif-

FIG. 17. Laves phase cluster size distribution as a function
of dose at (top) 1, (middle) 0, and (bottom) -1 GPa.

ferent Burgers vectors. The dislocation content peaks
at around 0.2 to 0.25 DPA, after which it drops grad-
ually. Only dislocations of a

2 ⟨111⟩ and a⟨100⟩ type are
observed, which a

2 ⟨111⟩-type dislocations having signif-
icantly higher content. These observations agree with
similar simulations [28, 33]. The relative formation en-
ergy of a

2 ⟨111⟩ and a⟨100⟩ dislocations and C15 clusters
[55] explains the relative densities as well as the point
at which Laves phases cluster concentration starts to
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FIG. 18. Volume concentration of Laves phase clusters at -
10,000, 0, and 10,000 bars.

drop while dislocation density starts to rise, where Laves
phases clusters nucleate dislocation loops [33, 55].

Again, we do not see any evidence that external uniax-
ial stresses in the range of ±1 GPa affects the dislocation
density and type in comparison to stress-free conditions.

In Fig. 20, we show the microstructural content of
isolated SIAs, vacancies, dislocations and Laves phases
clusters side-by-side. It gives us a better idea of the spa-
tial distribution of defects. Since we found they behave
similarly at different external stress, we only plotted the
stress-free samples. We can observe clearly that the con-
tent of isolated SIAs drops and vacancies increases start-
ing from 0.01 DPA. On the other hand, the Laves phases
cluster is peak at 0.1 DPA, where dislocation is peak
at 0.2 DPA. It is corroborate with the explanation that
Laves phases clusters are transforming into dislocation
loops [33].

According to what we found here, it appears that the
microstructure in relation to isolated SIAs, vacancies,
Laves phases clusters, and dislocations is not affected
by the external uniaxial stress. These defects are not
the main cause of the change and polarization of the ω̄
under external uniaxial stresses.

D. Anisotropic planes formation

The anisotropy of ω̄ is indicative of the polarization of
defects formed during irradiation. As we found the con-
tent of isolated defects to be unaffected by application of
external uniaxial stress, we expect the anisotropy of ω̄ to
be caused by anisotropic crystal growth. The ω̄ of differ-
ent stresses start diverging at around 0.2 DPA, at which
point dislocations start coalescing, forming dislocation
networks and eventually lattice planes [28]. Experimen-
tally [24], the number and size of dislocation loops in
AISI 316 stainless steel under stress have been studied.

FIG. 19. Dislocation density for different burgers vectors at
(top) 1, (middle) 0, and (bottom) -1 GPa.

The loop number density increases in the lattice planes
normal to the applied stress, with a decrease in number
of loop orientations parallel to stress, but the loop size
distributions are not changed by an applied stress. We ar-
gue that the external applied stress leads to a preferential
orientation of plane growth, leading to the anisotropic
changes in ω̄.
To test this hypothesis, we identify and visualize non-

isolated SIAs, see Fig. 21. We can clearly observe that
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FIG. 20. Isolated self-interstitials, vacancies, dislocations, and Laves phases clusters at different irradiation dose.
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FIG. 21. Non-isolated self-interstitial defects forming clusters and extra planes of atoms.
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FIG. 22. Total number of repeating unit cells as a function
dose at (top) 1, (middle) 0, and (bottom) -1 GPa.

when a system is subjected to tensile stress, planes are
forming perpendicular to the uniaxial loading direction.
This finding is corroborated by the CRA simulations by
Mason et al. [31, 32], where it was found that interstitial
planes form normal to the z direction when cell dimen-
sions are constrained in x and y directions to mimic a
scenario where the sample is attached to a fixed sub-
strate. When our samples are subjected to compressive
stress, the orientation of plane growth is less obvious.

We may quantify the changes by assuming the relation
between cell vectors and repetition of unit cells. In Fig.
22, we can observe the change of nxx, nyy and nzz. When
a system is under tensile stress of 1 GPa, the nzz increases
from 80 to slightly higher than 83. We can compare this
with Fig. 21, where we can see about 3 planes are formed.
In the case of compressive stress, we can see nxx and nyy

reach 82, while nzz drops to 78.5. We can understand
planes are forming such that they contribute to growth in
the x and y direction, but diminishing in the z direction.

We may conclude from this data that the anisotropy of
ω̄ under external stress is caused by the stress-dependent
orientation of the formed interstitial planes.

IV. CONCLUSION

We performed simulations of heavily irradiated iron
under uniaxial stress using the creation-relaxation algo-
rithm. Irradiation-induced swelling and creep are dis-
cussed through the change of the defect relaxation vol-
ume density (or eigenstrain). We can observe eigenstrain
of defects showing anisotropic changes when stress is ap-
plied. Such polarization starts occurring at around 0.1 to
0.2 DPA, where self-interstitial forms dislocation loops,
followed by the formation of dislocation networks.

We investigated the microstructure. We found the ap-
plication of external stress to have little effect on the
density of isolated SIAs, vacancies, Laves phases clus-
ters, and dislocations, and vice versa. On the other hand,
the anisotropic changes of ω̄ are due to the anisotropic
growth of interstitial planes driven by the external stress.
Tensile stress leads to a preferential formation of planes
with normals collinear to the loading direction, while
compressive stress leads to a more complex pattern of
planes with normals perpendicular to the loading direc-
tion.

We should note that our results obtained by CRA are
essentially simulating conditions where thermal diffusion
of defects is suppressed, for instance because the tem-
perature is low or by the presence of impurities. They
may be comparable with experiment through rescaling
[28, 30], but the scaling relations are not straightfor-
ward. Quantities obtained from CRA simulations and
experiments can differ by a factor of 10 [31]. We note
that collision cascade simulations with low recoil ener-
gies (∼ 100 eV) can reach defect contents comparable to
CRA [56], hence part of the mismatch can be attributed
to the lack of defect recombination arising from higher-
energy recoils present in realistic irradiation conditions.
However, we can still see quantitative agreement between
simulations and experiments [38], which allows us to infer
the principal mechanisms underlying certain phenomena
at a fraction of the cost of conventional cascade simula-
tions.
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