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In this paper, we summarize our recent work on gyrokinetic applications in electron-
positron and non-neutral plasma. The electrostatic stability of electron-positron plasmas
was investigated in dipole and slab geometry, with and without ion admixture. The
gyrokinetic dispersion relation was derived and, for the slab case, extended to non-neutral
plasmas. Here, we further extend the gyrokinetic formulation to the relativistic regime.

1. Introduction

Natural electron-positron plasmas can be found in many places in the Universe. Nor-
mally, these are highly-energetic locations, such as pulsar magneto-spheres (Spitkovsky
2008) or Poynting-flux dominated astrophysical jets (Lyutikov & Blackman 2001), since
photons with very high energies or very strong electromagnetic fields are needed for
the pair creation. Compact objects, such as pulsars, can provide the energy sufficient
for the pair creation, due to their large masses, extremely fast rotations, and very
strong magnetic fields. Charged particles drifting in such strong inhomogeneous magnetic
fields can provide high-energy gamma radiation via bremsstrahlung. Astro-physical pair
plasmas are normally not ”pure” and contain other species (Pétri 2016), e.g. protons or
iron ions. These plasmas are normally relativistic and may coexist with strong radiation
(Cruz et al. 2021). Charge neutrality of the plasmas surrounding magnetized rotating
compact objects (e. g. pulsars) is often violated Pétri, J. (2009).

Recently, there has been great interest in the production of pair plasmas in a laboratory.
Relativistic pair plasmas with properties similar to the astrophysical ones can be obtained
in laser experiments where pairs are produced via an interaction of laser beams with a gold
target (Chen & Fiuza 2023). In contrast, magnetically-confined pair plasmas (Stoneking
et al. 2020) will employ external sources of positrons and therefore have low temperatures
(few eV). These plasmas are non-relativistic and standard magnetic fusion plasma theory
and numerical tools can readily be applied to them. They can be confined in magnetic
dipole traps or stellarators and are not necessarily quasineutral (since plasmas with an
arbitrary degree of charge neutrality can be confined in an external magnetic field).
A well-established application of laboratory non-neutral plasmas with a large numbers
of positrons Surko & Greaves (2004) is the field of antimatter research which includes
positronium Cassidy & Mills (2007) and antihydrogen Fajans & Surko (2020) production.
An important technique in the antihydrogen creation is the cooling of antiprotons via
interactions with an electron gas Rolston & Gabrielse (1989). Stability of such complex
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many-component plasmas may also be addressed borrowing well-established tools from
the magnetic-confinement research.

Gyrokinetic theory (Brizard & Hahm 2007; Catto 2019) is a reduced description of low-
frequency dynamics in magnetized plasmas. It is a standard model used for turbulence
(Garbet et al. 2010) and energetic-particle driven instabilities (Chen & Zonca 2016) in
magnetic fusion research. Starting around 2009, gyrokinetic theory has also been applied
to astrophysical systems (Schekochihin et al. 2009), such as the solar wind and accretion
disks. A considerable amount of analytical work and dozens of numerical codes exist that
employ gyrokinetic theory in magnetic-fusion and astrophysical-plasma contexts. It seems
promising to apply gyrokinetic theory and numerical tools also for antimatter (electron-
positron) and non-neutral (e. g. electron-antiproton) plasma problems. An extension of
gyrokinetic theory to the relativistic regimes would be desirable for the astrophysical
applications involving compact objects and for the laboratory laser plasmas.

It has been shown (Stenson et al. 2017) that the wave dynamics drastically simplifies
in pair plasmas in the cold-plasma limit. A natural question arises if this strong simpli-
fication still holds in the gyrokinetic regime. Since the confinement theorem (Dubin &
O’Neil 1999) does not apply to quasineutral plasmas, a cylindrical configuration, such as
the Penning trap, is not an option for confinement of plasma containing both positively
and negatively charged particles. Toroidal configurations are required such as dipoles
(Saitoh et al. 2014) or stellarators (Pedersen et al. 2012). Both these options are been
currently pursued in ongoing laboratory projects (Saitoh et al. 2014; Stenson 2019).
Toroidal geometry violates pair-plasma symmetry since the curvature drift direction
depends on sign of the particle charge. This may lead to collective instabilities, as it
has recently been shown for the gyrokinetic regime (Mishchenko et al. 2018a). Naturally,
these collective micro-instabilities can lead to particle and energy turbulent transport
which can be harmful or beneficial depending on the problem at hand. The role of the
magnetic field configuration in pair-plasma stability and resulting confinement is an issue
of practical relevance for the experiments under construction Saitoh et al. (2014); Stenson
(2019). Our recent work on gyrokinetic applications in electron-positron and non-neutral
plasmas includes the following:

(i) The investigation of the electrostatic stability of electron-positron plasmas
(Mishchenko et al. 2018a) in dipole geometry. Here, the kinetic dispersion relation
for sub-bounce-frequency instabilities has been derived and solved. For the zero-
Debye-length case, the stability diagram has been found to exhibit singular behavior.
However, when the Debye length is non-zero, a fluid mode appears resolving the
observed singularity. It has been demonstrated that both the temperature and density
gradients can drive instability.

(ii) The study of the gyrokinetic stability of electron-positron plasmas contaminated by
ion (proton) admixture (Mishchenko et al. 2018b) in slab geometry. The appropriate
dispersion relation has been derived and solved. The ion-temperature-gradient driven
instability, the electron-temperature-gradient driven instability, the universal mode,
and the shear Alfven wave were considered.

(iii) The investigation of the confining properties of dipole and stellarator geometries,
ranging from pure electron plasmas through to quasineutral. We have shown (Kennedy
& Mishchenko 2019) that non-neutral plasmas can be unstable with respect to both
density-gradient- and temperature-gradient-driven instabilities.

(iv) The numerical study of gyrokinetic stability of plasmas in different magnetic geome-
tries (Kennedy et al. 2020). The stability of plasmas has been examined varying
the mass ratio between the positive and negative charge carriers, from conventional
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hydrogen plasmas through to electron–positron plasmas. Stability was studied for
prescribed temperature and density gradients in an axisymmetric tokamak and a non-
axisymmetric quasi-isodynamic stellarator configurations.

(v) The linear gyrokinetic simulations of magnetically confined electron–positron plasmas
have been performed (Kennedy et al. 2018) in the dipole geometry and parameter
regimes likely to be relevant for upcoming laboratory experiments (Stoneking et al.
2020). Our results have demonstrated existence of unstable entropy modes and inter-
change modes in pair plasmas.

The paper is organized as follows. In Sec. 2, we review the non-relativistic gyrokinetic
theory for pair and non-neutral plasmas. In Sec. 3, the relativistic extension is derived.
In Sec. 4, we draw our conclusions.

2. Non-relativistic case

Following Helander (2014) and Helander & Connor (2016), it is convenient to write
the gyrokinetic distribution function in the form:

fa = fa0

(
1− eaφ

Ta

)
+ ga = fa0 + fa1 , fa1 = − eaφ

Ta
fa0 + ga. (2.1)

Here, fa0 is a Maxwellian, a is the species index with a = e corresponding to electrons,
a = p to positrons, and a = i to the ions, ea is the electric charge, fa1 is the perturbed
part of the distribution function, and ga is the non-adiabatic part of fa1. The linearised
gyrokinetic equation in this notation is

iv‖∇‖ga + (ω − ωda)ga =
ea
Ta

J0

(
k⊥v⊥
ωca

) (
ω − ωT∗a

)
(φ− v‖A‖) fa0 (2.2)

with J0 the Bessel function, ω the complex frequency of the mode, ωca the cyclotron
frequency, k⊥ the component of the wave number perpendicular to the ambient magnetic
field, v‖ and v⊥ the parallel and perpendicular velocities, φ the perturbed electrostatic
potential and A‖ the perturbed parallel magnetic potential in the Coulomb gauge. We
consider an unsheared slab geometry with coordinates (x, y, z), a uniform magnetic field
B = Bez pointing in the z-direction and plasma profiles which are non-uniform in the
x-direction. In slab geometry, the drift frequency ωda = 0. Other notations used are

ωT∗a = ω∗a

[
1 + ηa

(
v2

v2tha
− 3

2

)]
, v =

√
v2‖ + v2⊥ , k⊥ =

√
k2x + k2y (2.3)

ω∗a =
kyTa
eaB

d lnna
dx

, ηa =
d lnTa
d lnna

, vtha =

√
2Ta
ma

(2.4)

Here, ma is the particle mass, na is the ambient particle density, and the sign convention
is such that ω∗i 6 0, ω∗p 6 0, and ω∗e > 0 for d lnna/dx 6 0. For simplicity, we will
assume kx = 0 and k⊥ = ky throughout the paper. Taking the Fourier transform along
the parallel coordinate, we obtain:

(ω − k‖v‖)ga =
ea
Ta

J0

(
k⊥v⊥
ωca

) (
ω − ωT∗a

)
(φ− v‖A‖) fa0 (2.5)

This equation is trivially solved:

ga =
ω − ωT∗a
ω − k‖v‖

eafa0
Ta

J0 (φ− v‖A‖) . (2.6)
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The gyrokinetic quasineutrality condition and the parallel Ampere’s law are(∑
a

nae
2
a

Ta
+ ε0 k

2
⊥

)
φ =

∑
a

ea

∫
gaJ0d3v , A‖ =

µ0

k2⊥

∑
a

ea

∫
v‖gaJ0d3v . (2.7)

Here, ε0 is the electric permittivity and µ0 is the magnetic permeability of vacuum. For
the electromagnetic dispersion relation, it is convenient to define:

Wna = − 1

navntha

∫
ω − ωT∗a
ω − k‖v‖

J2
0 fa0 v

n
‖ d3v (2.8)

Taking velocity-space integrals, one finds:

Wna = ζa

{(
1− ω∗a

ω

)
ZnaΓ0a +

ω∗aηa
ω

[
3

2
ZnaΓ0a − ZnaΓ∗a − Zn+2,aΓ0a

]}
(2.9)

Here, the following notation is employed:

1

λ2Da
=
e2ana
ε0Ta

,
1

λ2D
=
∑
a

1

λ2Da
, ba = k2⊥ρ

2
a , ρa =

√
maTa
|ea|B

(2.10)

Γ∗a = Γ0a − ba
[
Γ0a − Γ1a

]
, Γ0a = I0(ba)e−ba , Γ1a = I1(ba)e−ba (2.11)

Zna =
1√
π

∞∫
−∞

xne−x
2

dx

x− ζa
, ζa =

ω

k‖vtha
(2.12)

with I0 and I1 denoting the modified Bessel functions of the first kind. The resulting
electromagnetic dispersion relation in slab geometry reads:(

1 + k2⊥λ
2
D +

∑
a

λ2D
λ2Da

W0a

)(
1− 2

∑
a

βa
k2⊥ρ

2
a

W2a

)
(2.13)

+ 2
∑
a

λ2D
λ2Da

W1avtha
∑
a

βa
k2⊥ρ

2
a

W1a

vtha
= 0

Here, βa = µ0naTa/B
2. The electrostatic limit corresponds, as usual, to βa = 0.

This dispersion relation has been solved in Mishchenko et al. (2018b). It was found
that pair plasmas can support the gyrokinetic ITG, ETG and universal instabilities even
in slab geometry if the proton fraction exceeds some threshold. In practice, however,
this threshold is usually quite large, hopefully large enough to keep the proton content
below this value in pair plasma experiments (Pedersen et al. 2012). These results extend
the finding of Helander (2014) that pair plasmas are stable to gyrokinetic modes in the
absence of magnetic curvature to the cases with small to moderate proton contamination.
We find, however, that pure pair plasmas can have temperature-gradient-driven insta-
bilities, if the electron and the positron temperature profiles differ. In reality, however,
such profiles are unlikely in steady state, since the characteristic time of energy exchange
between the species is comparable to the Maxwellisation time. Generalization of the
local dispersion relation to the case of non-neutral plasma is straighforward (Kennedy
& Mishchenko 2019) providing that effects of strong electric field, normally existing in
non-neutral plasmas, can be cast in the form of a simple Doppler shift for the frequency.
The dispersion relation for this shifted frequency coincides with Eq. (2.13).

In dipole geometry, the linearised gyrokinetic equation becomes

iv‖∇‖ga + (ω − ωda)ga =
ea
Ta

J0

(
k⊥v⊥
ωca

) (
ω − ωT∗a

)
φ fa0 (2.14)
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where now

ωT∗a = ω∗a

[
1 + ηa

(
v2

v2tha
− 3

2

)]
, v =

√
v2‖ + v2⊥ , µ =

mav
2
⊥

2B
(2.15)

ω∗a =
kϕTa
ea

d lnna
dψ

, ηa =
d lnTa
d lnna

, vtha =

√
2Ta
ma

, ωca =
eaB

ma
(2.16)

ωda = k⊥ · vda , vda =
(
mv2‖ + µB

) b×∇B
eaB2

, k⊥ = kψ∇ψ + kϕ∇ϕ. (2.17)

Here, ψ is the poloidal flux and ϕ is the polar (toroidal) angle. We will assume the
drift-kinetic limit, i.e. k⊥vtha/ωca � 1 so J0 ≈ 1.

Expanding the distribution function ga = g
(0)
a + g

(1)
a + . . . in the small parameter

εb = ω/ωb with ωb the bounce frequency, we obtain in the lowest order:

v‖∇‖g(0)a = 0 (2.18)

implying that g
(0)
a coincides with its bounce average, g

(0)
a = g

(0)
a , where the bounce-

average operation is defined as

(. . .) =

∮
(. . .)

dl

v‖

/∮ dl

v‖
. (2.19)

Here, l is the arc length measured along a magnetic field line and the integration is
performed between bounce points for trapped particles, and over the entire closed field
line for passing particles. Applying the bounce average at the next order in εb, we obtain

(ω − ωda)g(0)a = (ω − ωT∗a)
eaφ

Ta
fa0. (2.20)

We assume the temperature and the density profiles of the electrons and the positrons to
be identical, and invoke the Poisson equation for the charge density perturbations, given
by the distribution functions fa1:(∑

a=e,p

nae
2
a

Ta
+ ε0 k

2
⊥

)
φ =

∑
a=e,p

ea

∫
g(0)a d3v. (2.21)

We find that the perturbed electrostatic potential satisfies the equation:(
1 + k2⊥λ

2
D

)
φ =

1

n0

∫
ω2 − ωdωT∗
ω2 − ω2

d

φ f0d3v. (2.22)

Here and in the following, we use the notation ωT∗ ≡ ωT∗e, ω∗ ≡ ω∗e, ωd ≡ ωde, n0 = ne,
T0 ≡ Te, and the Debye length is defined as usual, λD =

√
ε0T0/(2n0e2).

We have solved this equation in Mishchenko et al. (2018a) where the drift-kinetic
stability of a pair plasma confined by a dipole magnetic field has been studied. It has been
found that pair plasmas can be unstable in dipole geometry even for perfectly coinciding
electron and positron profiles, in the absence of any contamination, and for quasineutral
plasmas. The reason for the instability is related to the fact that the curvature drift
depends on the sign of the particle charge which is opposite in the case of the electrons
and positrons. A detailed study of instabilities in dipole pair plasmas has been carried
out in Mishchenko et al. (2018a). In contrast, one needs some violation of the symmetry
between the species for instability in a slab. This symmetry violation can be introduced
either through deviations in the plasma profiles of the electrons and positrons or via
a third contaminating species, as it has been shown in Mishchenko et al. (2018b) and
Kennedy & Mishchenko (2019).
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3. Relativistic plasmas

The relativistic gyrokinetic equation has been derived by Brizard & Chan (1999).

∂fa
∂t

+

(
B∗

B∗‖

∂Hgy

∂p‖
+ c

b×∇Hgy

eaB∗‖

)
· ∇fa −

B∗ · ∇Hgy

B∗‖

∂fa
∂p‖

= 0. (3.1)

Note that the CGS unit system is employed throughout this Section since it is more
convenient than the SI (MKS) in relativistic calculations. To the first order in the per-
turbation amplitude, the gyrokinetic relativistic Hamiltonian is given by the expression:

Hgy = γmac
2 + ea

〈
φ−

p‖

γmac
A‖ −

1

γc

√
2µB

ma
⊥ ·A

〉
(3.2)

with ⊥ the unit vector directed along the gyro-motion of the particle and the gyro-average
operation 〈φ〉 =

∮
φ(R+ ρ)dθ/(2π) defined as usual for the gyro-radius

ρ =
1

ωBa

√
2µB

ma
ζ , ωBa =

eaB

mac
(3.3)

where ζ = (e1 cos θ − e2 sin θ) is the unit vector directed along the gyro-radius rotating
in the fixed basis (e1, e2, b) and ωBa is the rest-mass gyro-frequency. Following Brizard
& Chan (1999), the gyrokinetic relativistic Lorentz factor is

γ =

√
1 +

2µB

mac2
+

(
p‖

mac

)2

, (3.4)

and

B∗ = B + c
p‖

ea
∇× b , B∗‖ = b ·B∗ . (3.5)

We can write:

∂Hgy

∂p‖
=

(
p‖

maγ
− ea
ma

〈A‖〉
γc

)
+

eap‖

m3
ac

3γ3

[
p‖〈A‖〉+

√
2maµB

〈
⊥ ·A

〉]
(3.6)

∇Hgy =

[
mc2 +

ea
γ2mac

(
p‖〈A‖〉+

√
2maµB

〈
⊥ ·A

〉)]
∇γ (3.7)

+ ea

(
∇〈φ〉 −

p‖

γmc
∇〈A‖〉 −

√
2maµB

γmc
∇
〈
⊥ ·A

〉)
, ∇γ =

µ∇B
mc2γ

(3.8)

For the electrostatic waves A = 0. In this case, the linearized relativistic gyrokinetic
equation in slab geometry takes the form:

∂f1a
∂t

+
p‖

maγ
b · ∇f1a = eab · ∇〈φ〉

∂F0a

∂p‖
− cb×∇〈φ〉

B
· ∇F0a (3.9)

For the background, we can choose the Maxwell-Jüttner distribution function describing
the relativistic ideal gas, see (Jüttner 1911; Zenitani 2015; Cercignani & Kremer 2012):

F0a = Na exp

[
− c

Ta

√
p2 +m2

ac
2

]
, Na =

n0a
4πm3

ac
3

[
Ta
mac2

K2

(
mac

2

Ta

)]−1
(3.10)

Here, K2(z) is the modified Bessel function of the second kind which has the asymptotic

K2(z) ≈
√

π

2z
e−z , z � 1 (3.11)
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Using this asymptotic, we can recover the usual Maxwellian distribution function for
Ta � mc2 and p � mc. The Maxwell-Jüttner distribution function neglects the pair
formation and quantum effects but it can be used as an approximation for already created
relativistic electron-positron plasmas. Taking the derivatives, we obtain:

∂F0a

∂p‖
= −

p‖

maγ

F0a

Ta
,
∂F0a

∂µ
= − B

γ

F0a

Ta
, ∇F0a =

[
∇Na
Na

+
γmac

2

Ta

∇Ta
Ta

]
F0a (3.12)

Using these expressions, the relativistic gyrokinetic equation can be written in the form:

∂ga
∂t

+
p‖

maγ
∇‖ga =

eaF0a

Ta

(
∂〈φ〉
∂t
− cTa
eaB

∇F0a × b
F0a

· ∇〈φ〉
)

(3.13)

with the usual definition of the non-adiabatic part of the distribution function ga

fa = F0a

(
1− ea〈φ〉

Ta

)
+ ga = F0a + f1a , f1a = − ea〈φ〉

Ta
F0a + ga. (3.14)

For the plane waves, ga = ĝa exp(iωt− ik · x) and φ = φ̂ exp(iωt− ik · x), we can write:(
ω −

k‖p‖

maγ

)
ĝa =

(
ω − ωT∗a

) eaφ̂
Ta

F0aJ0(k⊥ρ) , ωT∗a =
cTa
eaB

(k × b) · ∇F0a

F0a
(3.15)

with J0(k⊥ρ) being the Bessel function as usual.
Following Brizard & Chan (1999), we write the gyrokinetic Maxwell equations in the

low-frequency limit skipping the displacement current:

− 1

4π
∇2
⊥A

α =
∑
a

ea

∫
d6Zδ3gy

pα

maγc

[
f1a + {S1, F0a}+

eaA

c
{R+ ρ, F0a}

]
(3.16)

S1 =
eaγ

ωBa

θ∫
ψ̃ dθ′ , ψ = φ− p

γmc
·A , {S1, F0a} ≈

ea
mac

∂S1

∂θ

∂F0a

∂µ
(3.17)

with Aα = (φ,A) the perturbed four-potential, pα = (γmac,p) the four-momentum,
d6Z = maB

∗
‖dRdp‖dµdθ, and δ3gy = δ(R+ ρ− x).

For electrostatic perturbations, only the quasineutrality equation has to be solved:

− 1

4π
∇2
⊥φ =

∑
a

ean̄1a −
∑
a

ea

∫
d6Zδ3gy

eaφ̃

Ta
F0a , φ̃ = φ− 〈φ〉 (3.18)

with the perturbed density of the gyro-centers n̄1a =
∫

d6Zδ3gyf1a. In terms of the non-
adiabatic part of the distribution function, the quasineutrality condition reads:

− 1

4π
∇2
⊥φ+

∑
a

ea

∫
d6Zδ3gy

eaφ

Ta
F0a =

∑
a

ea

∫
d6Zδ3gyga (3.19)

For the plane waves, we can write as usual

1

4π
k2⊥φ+

∑
a

e2aφ̂

Ta
n0a =

∑
a

ea

∫
J0gad3p , d3p = 2πmaB

∗
‖dp‖dµ (3.20)

This results in the relativistic dispersion relation for gyrokinetic electrostatic waves:

1 + k2⊥λ
2
D +

∑
a

λ2D
λ2Da

W0a = 0 (3.21)
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with the notation

W0a = − 1

n0a

∫
ω − ωT∗a

ω − k‖p‖/(maγ)
J2
0F0ad3p , λ2Da =

Ta
4πe2an0a

,
1

λ2D
=
∑
a

1

λ2Da
(3.22)

One can easily see that the effect of spatial non-uniformity is proportional to ωT∗a. It
cancels in a pure relativistic pair plasma, similar to the non-relativistic case, providing
the electron and positron profiles are the same and magnetic drifts are absent. One
can see that the resonance structure ω = k‖p‖/(maγ) appearing in the function W0a is
much more complex than in the non-relativistic case (recall that γ depends both on p‖
and the magnetic moment µ). Such integrals involving the Maxwell-Jüttner distribution
cannot simply be expressed through the plasma dispersion function, as they were in the
non-relativistic case. Note that the relativistic generalization of the plasma dispersion
functions has extensively been studied in the weakly-relativistic limit Robinson (1987);
Castejón & Pavlov (2006) for Electron Cyclotron Heating applications.

In the case of inhomogeneous magnetic fields, the relativistic gyrokinetic equation,
resulting from Eq. (3.1) and describing electrostatic waves, takes the form:

∂f1a
∂t

+
p‖

maγ
b · ∇f1a +

c

qBγ

[
p2‖

ma
(∇× b)⊥ + µb×∇B

]
· ∇f1a −

µ

γ
b∗ · ∇B ∂f1a

∂p‖

= eab
∗ · ∇〈φ〉∂F0a

∂p‖
− cb×∇〈φ〉

B
· ∇F0a . (3.23)

Now let us address relativistic gyrokinetic theory in the electromagnetic regime. For
simplicity, we consider slab geometry and neglect the compressional component of the
magnetic field perturbation assuming A ≈ A‖b . In this case, we can write:

∂Hgy

∂p‖
=

p‖

maγ
−

eaA‖

macγ3

(
1 +

2µB

mac2

)
, ∇Hgy = ea〈ψ〉 , ψ = φ−

p‖

macγ
A‖ . (3.24)

In a slab, the electromagnetic relativistic gyrokinetic equation takes the form:

∂f1a
∂t

+
p‖

maγ
b · ∇f1a = ea

(
∂f0
∂p‖

+
cb×∇f0
eaB

)
· ∇
〈
φ−

p‖

macγ
A‖

〉
. (3.25)

The relativistic parallel Ampere’s law reads:

− 1

4π
∇2
⊥A‖ =

∑
a

ea

∫
d6Zδ3gy

p‖

macγ

[
f1a + {S1, F0a}+

eaA‖

c
b · {R+ ρ, F0a}

]
.

(3.26)
Evaluating the Poisson brackets (Brizard & Chan 1999) in a usual way, we obtain:

f1a + {S1, F0a}+
eaA‖

c
b · {R+ ρ, F0a} = f1a +

eaγ

B
ψ̃
∂F0a

∂µ
+
eaA‖

c

∂F0a

∂p‖
. (3.27)

Substituting the partial derivatives of the Maxwell-Jüttner distribution function, com-
puted in Eq. (3.12), results in

eaγ

B
ψ̃
∂F0a

∂µ
+
eaA‖

c

∂F0a

∂p‖
= − eaφ̃

Ta
F0a −

p‖

macγ

ea〈A‖〉
Ta

F0a . (3.28)

Invoking the expression for ∂F0a/∂p‖ for the last term in Eq. (3.28), we obtain

f1a + {S1, F0a}+
eaA‖

c
b · {R+ ρ, F0a} = f1a −

eaφ̃

Ta
F0a +

ea〈A‖〉
c

∂F0a

∂p‖
. (3.29)
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Integrating by parts, we derive the parallel Ampere’s law for relativistic plasmas:

4πe2a
mac2

∫
d6Zδ3gy

F0a

γ
〈A‖〉 − ∇2

⊥A‖ = 4π
∑
a

j̄1‖a , j̄1‖a = ea

∫
d6Zδ3gy

p‖

macγ
f1a . (3.30)

It is straightforward to combine this equation with the relativistic quasineutrality con-
dition and the gyrokinetic equation in the local limit in order to obtain the relativistic
generalization of the electromagnetic dispersion relation Eq. (2.13).

4. Conclusions

In this paper, we have summarized our recent work on gyrokinetic applications
in electron-positron and non-neutral plasma (Mishchenko et al. 2018b,a; Kennedy &
Mishchenko 2019). The gyrokinetic stability of electron-positron plasmas contaminated
by ion (proton) admixture has been studied by Mishchenko et al. (2018b) in slab
geometry. The appropriate dispersion relation was derived and solved. The destabilization
of ITGs, ETGs, and universal modes at finite ion contamination were considered.
Kennedy & Mishchenko (2019) have shown that drift instabilities can be excited in
non-neutral plasmas. In (Mishchenko et al. 2018a), the electrostatic stability of electron-
positron plasmas has been investigated in the dipole geometry. Linear gyrokinetic
simulations of magnetically confined electron–positron plasmas were performed in dipole
(Kennedy et al. 2020) and stellarator (Kennedy et al. 2018) geometries.

Similarly to the cold plasma case (Stenson et al. 2017), a drastic reduction of the
unstable solutions is found for pure pair plasma also in the gyrokinetic regime. Pure pair
plasmas are gyrokinetically stable for all gradients if the symmetry between the species
is not violated. However, any species asymmetry can drive gyrokinetic instabilities.
The asymmetry can be caused by a contamination (e. g. with protons or other ion
species), plasma non-neutrality, or different electron and positron temperature profiles.
Finally, magnetic curvature can cause gyrokinetic instabilities of pair plasmas, too, since
the magnetic drift depends on the sign of the particle charge which is opposite for
the electrons and positrons. Hence, toroidally-confined pair plasmas (in a dipole or a
stellarator trap) can be turbulent. This turbulence may lead to the self-organization
process such as the inward pinch or zonal flows.

In this paper, the dispersion relation is generalized to the relativistic regime. It is found
that the remarkable pair-plasma stability can be extended to relativistic applications with
the same limitations of a perfect species symmetry and absence of the curvature drifts.
Formally, relativistic modifications of the dispersion relation and other basic equations
(the gyrokinetic and Maxwell equations) are rather moderate. However, the parallel
resonance structure becomes much more complex due to the presence of the relativistic
Lorentz factor which depends both on the parallel momentum p‖ and the magnetic
moment µ. Also, the relativistic ambient distribution function (such as the Maxwell-
Jüttner distribution function) leads to complications since the usual plasma-dispersion-
function formalism cannot be applied. Some analytical progress can be made in the
weak-relativistic limit but the calculations become quickly very cumbersome.

One limitation of this extension is that, following Brizard & Chan (1999), only
the special relativity contributions have been included in this paper. However, for
astrophysical applications in the areas of extreme gravitation, such as surroundings
of black holes, the general relativity must be used. The appropriate extension of the
gyrokinetic theory is being elaborated (Beklemishev, A. & Tessarotto, M. 2004). Another
limitation is in the Maxwell-Jüttner distribution function employed in the paper. It
assumes particle conservation and neglects therefore the pair creation or annihilation
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which are processes inherent to the electron-positron plasmas at the energies or particle
densities high enough. In future, a formulation based on the Dirac equation has
to be developed in order to account for these complications (Uzdensky & Rightley
2014). Finally, radiation and its reaction on plasma particles may play an important
role, for example affecting reconnection dynamics (Uzdensky 2016). Such effects seem
to be out of scope of the regular gyrokinetic theory because of its low-frequency ordering.
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