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Highlights1

A Supervised Parallel Optimisation Framework for Metaheuristic Algorithms2

Eugenio J. Muttio,Wulf G. Dettmer,Jac Clarke,Djordje Perić,Zhaoxin Ren,Lloyd Fletcher3

• A novel Supervised Parallel Optimisation (SPO) balances exploration and exploitation of distinct optimisers to solve4

problems with diverse characteristics.5

• The proposed SPO efficiently ensembles four optimisation algorithms (PSO, GA, CMAES, MCS), however, it can be6

easily extended to any optimisation algorithm.7

• The supervised strategy outperforms isolated algorithms, finding reproducible, optimal solutions to a complex path8

finding problem with numerous local minima.9

• The generalised framework of the proposed strategy reduces the necessity of tedious hyperparameter fine tuning of10

independent optimisers by incorporating a reduced number of supervisor’s parameters.11
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Abstract

A Supervised Parallel Optimisation (SPO) is presented. The proposed framework couples different
optimisation algorithms to solve single-objective optimisation problems. The supervision balances
the exploration and exploitation capabilities of the distinct optimisers included, providing a general
framework to solve problems with diverse characteristics. In this work, four optimisation algorithms
are included in the ensemble: Particle Swarm Optimisation (PSO), Genetic Algorithm (GA),
Covariance Matrix Adaption - Evolution Strategy (CMA-ES), and Modified Cuckoo Search (MCS).
A path finding problem with numerous local minima is used to demonstrate the advantage of SPO.
The effectiveness of the approach is compared with that of stand-alone incidences of the integrated
optimisation strategies. The good solution generated by SPO is shown to be generally reproducible,
while isolated algorithms, at best, render good solutions only occasionally.

1. Introduction12

Optimisation is a field in continuous development due to the13

wide range of applications found in science, engineering,14

economics, communication, and many more. In addition, a15

thriving interest in optimisation has been observed in the16

last two decades due to the advances in machine learning,17

where the training stage of most of these methods involve18

searching for an optimal solution. Hence, the optimisa-19

tion field is not static, but actively changing according to20

emerging technology. A traditional optimisation approach21

takes into account the gradient of the objective function22

to determine a possible direction of the solution. How-23

ever, real-life problems are generally discontinuous, non-24

differentiable, discrete, noisy, multimodal, and possibly dy-25

namic. To address these challenges, a range of gradient-free26

strategies referred to as meta-heuristics have emerged since27

the mid-late last century but exponentially increased in the28

last few decades due to their success. In general, a meta-29

heuristic algorithm is characterised by initialising a random30

population of agents which develop through generations to31

find a better position in the solution space. The selection32

process is based on each agent’s fitness (function evalua-33

tion), and, may contain operations like crossover between34

agents, mutation, random walks, etc. Some of the best35

known meta-heuristic algorithms include genetic algorithms36
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(GA) [1], simulated annealing (SA) [2], particle swarm37

optimisation (PSO) [3], CMA evolution strategy (CMA-38

ES) [4], differential evolution (DE) [5], and more recently,39

cuckoo search (CS) [6]. However, the list keeps growing40

since novel strategies and variations of them are being41

developed continuously. Challenges to be addressed include42

the problem dependent suitability and performance of meta-43

heuristic, premature convergence [7–9], local sub-optimal44

solutions and poor reproducibility.45

We argue that a combination of algorithms with different46

performance capabilities is advantageous when dealing with47

problems that involve a complex solution space. The desired48

behaviour includes sufficient exploration, which permits the49

identification of potential regions, and an exploitation capa-50

bility that intensifies the local search. Strategies involving51

operations such as mutation, crossover and random walks52

are known to preserve exploration, whereas algorithms that53

are based on the kinematics of a swarm population are54

excellent for solution refinement. Hybridisation strategies55

merge the algorithmic procedure of two or more established56

optimisers to achieve a more versatile functionality. Com-57

mon hybridisation optimisers include genetic algorithms58

(GA) with particle swarm optimisation (PSO) [10, 11], a59

simulated annealing and PSO hybrid approach [12, 13],60

cuckoo search (CS) inspired by PSO [14–16], a CS-PSO61

hybrid with DE for global search [17], a DE and PSO com-62

bination [18–20], and many more. An alternative strategy63

to combine the special features of algorithms is by running64

them independently but including merging or seeding pro-65

cesses of their populations. Such strategies are commonly66

referred to as Ensemble strategies, see for instance [21–67

26]. A single-optimiser ensemble strategy is introduced in68

[27, 28] by including a behaviour pool. Due to the high69

computational effort required by real-life problems, parallel70

optimisation is undoubtedly needed. Numerous studies on71
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communication in a parallel setting for optimisation are72

found in literature, including the efficiency between proces-73

sors [29], the correlation of variables in objective functions74

[30], parallel architectures [31, 32], among others.75

The objective of this work is the development of a novel76

generalised strategy for real-life optimisation problems. The77

strategy is capable of coupling multiple independent optimi-78

sation algorithms executed in a supervised manner by using79

parallel computation, therefore, it is named Supervised Par-80

allel Optimisation (SPO). A geometric path finding problem81

is employed to demonstrate the main features and capabil-82

ities of the proposed strategy. The objective is to minimise83

the path length subject to avoiding the penetration of any84

of the large number of obstacles. While the implementation85

in this work is based on Python, the algorithmic structure86

described is easily extended to any programming language.87

Although this work includes four optimisers only, Python88

facilitates the inclusion of various meta-heuristics. Hence,89

an established Python multi-objective optimisation library90

(Pymoo) [33] has been utilised to incorporate a genetic91

algorithm (GA), a particle swarm optimisation (PSO) and92

a covariance matrix adaptation evolution strategy (CMA-93

ES). A Python version of the modified cuckoo search (MCS)94

is adapted from [34] due to the outstanding performance95

exhibited. It is important to note that the strategy proposed96

in this article is not meant to compete with any specific evo-97

lutionary optimisation procedure, but is designed to solve98

or, at least, to solve more efficiently large and challenging99

problems.100

This article is organised as follows: The four optimisation101

algorithms included in this ensemble approach are described102

in Section 2, which include PSO, GA, CMA-ES and MCS.103

The proposed supervised parallel optimisation strategy is104

introduced in Section 3, where the general structure and105

the two crucial mechanisms of SPO are fully described. In106

Section 4 the path finding optimisation problem is defined,107

the performance of the proposed methodology is tested,108

and, a comparison exercise is carried out by contrasting109

the results obtained by the included algorithms. Finally,110

conclusions are summarised in Section 5.111

2. Meta-heuristic Algorithms112

2.1. Particle Swarm Optimisation (PSO)113

Particle Swarm Optimisation (PSO) was first introduced114

in [3], and is considered a reference among the so-called115

swarm intelligence methods due to its simplicity and speed.116

This method was inspired by the behaviour of swarming117

creatures in nature, such as bird flocking and fish schooling.118

In PSO, each member of the population, or “particle”,119

has a position that lies within the specified design space120

and represents a potential solution. This position has an121

associated fitness, or “cost”, which is defined by the objec-122

tive function. The population is first initialised randomly,123

providing each particle with a starting position in the design124

space. Then, each particle’s position is updated iteratively125

until a termination criterion is reached, such as a predefined126

maximum number of generations. The swarm converges127

towards the best region of the design space under a simple128

set of influences, including the local memory of its best129

position, the swarm’s knowledge of the global best position130

and the particles inertia. The velocities Vd of the particles131

are updated by132

V
(i)
d = ωV

(i)
d +c1r1(P

(i)
d −X

(i)
d )+c2r2(G

(i)
d −X

(i)
d ) (1)

where Pd is the particle’s local best position, Gd is the133

swarm global best position, Xd is the particle’s current134

position, r1 and r2 are both random scalar coefficients, ω is135

the inertia coefficient, c1 is the local best coefficient and c2136

is the global best coefficient. These weighting coefficients137

can be selected to control the behaviour of the swarm, with138

respect to the previously described set of influences. They139

can be used to enhance the local or global exploitation of140

the algorithm, by increasing c1 and c2 or they can be used141

to encourage exploration within the swarm by increasing ω.142

Following the calculation of the velocity from Equation (1),143

the position Xd of the particles is updated by144

X
(i)
d = X

(i)
d + V

(i)
d (2)

2.2. Genetic Algorithm (GA)145

The Genetic Algorithm (GA) is the most widely used146

and known evolutionary algorithm, taking inspiration from147

the theory of natural selection and evolution by Charles148

Darwin. The algorithm was first introduced in the 1960s149

and 1970s by Professor John Holland of the University of150

Michigan and his collaborators [1]. The essential charac-151

teristics of GA include the representation of individuals152

as chromosomes, the manipulation of these by genetic153

operators, and the selection of the best candidates with154

the aim of converging towards an optimal solution. The155

three main genetic operators include a crossover process156

swapping elements of two chromosomes aiming to converge157

in a subspace; a mutation operation changes parts of one158

individual randomly, which increase the diversity; and a159

selection that allows propagating the best solutions on to160

next generations. A desired behaviour presented in GA is161

that, as the process evolves, multiple offspring can explore162

diverse regions of the search space alleviating premature163

convergence problems. Numerous GA variants have been164

presented since its introduction, focused especially on the165

improvement of the genetic operators.166

2.3. CMA-ES Algorithm167

Evolution strategies (ES) were created in the 1960s and fur-168

ther developed by Rechenberg and Schwefel in the 1970s,169

and are algorithms based on the use of mutation and selec-170

tion mechanisms. In 1996, Hansen and Ostermeier proposed171

a new formulation named covariance matrix adaptation172

evolution strategy (CMA-ES) [4]. CMA-ES is a second-173

order approach to estimating a positive definite matrix174
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within an iterative procedure, proving very useful when175

applied to ill-conditioned objective functions. This leads176

to a similar approximation of the inverse Hessian matrix177

in the classical quasi-Newton optimisation method. This178

method has several desirable invariance properties includ-179

ing order transformation of the objective function and angle180

preserving transformations of the search space, both of181

which imply uniform behaviour on classes of functions.182

In addition, CMA-ES has minimal user control avoiding183

tedious parameter tuning for a specific problem. The al-184

gorithm has been empirically successful and outperformed185

other methods on low-dimensional functions and functions186

that can already be solved with a small number of function187

evaluations. However, as indicated in [35], CMA-ES has188

disadvantages such as premature stagnation when solving189

large-scale optimisation problems.190

2.4. Modified Cuckoo Search (MCS)191

The standard cuckoo search (CS) algorithm was introduced192

in [6], inspired by the brood parasitism of certain cuckoo193

bird species and by the foraging and flight behaviour ex-194

hibited by many animals such as birds and insects. The195

description of CS can be simplified into the following set196

of rules: Each cuckoo lays a single egg at a time and leaves197

it in a random nest, the nests containing the eggs with the198

best fitness values are protected and carried on to the next199

generation. Lastly, as the number of available nests is a fixed200

value, a probability Pa ∈ (0, 1) is introduced to allow for201

the removal of an egg if it is discovered. This allows for a202

fraction of the poorer quality eggs to be removed from nests203

after a generation, making room for new eggs to be laid.204

The simplest approach is to consider that each nest has only205

a single egg, which represents an individual containing a206

position in the design space. This algorithm combines local207

and global random walks, where the latter is carried out by208

the so-called Lévy flights i.e.209

xt+1
i = xti + α⊕ Lévy(λ) (3)

where α > 0 controls the step size of a flight and should210

be related to the scales of the problem and the product ⊕211

means entrywise multiplications. A Lévy flight is essentially212

a random walk that is drawn from a Lévy distribution,213

providing a more efficient method to explore the design214

space.215

A CS variant denominated modified cuckoo search (MCS)216

was introduced to improve the performance of the original217

algorithm [34]. A number of modifications were made,218

including a decreasing α coefficient, which enhances ex-219

ploitation as the agents evolves toward a potentially better220

solution and a crossover mechanism between the current221

solutions. MCS has been shown to outperform standard CS222

and exhibits a significantly better convergence rate than PSO223

in many applications.224

3. Supervised Parallel Framework225

3.1. Parallel Supervisor-Worker Structure226

On a multi-processor machine, one of the processors adopts227

the role of the supervisor, while the remaining processors228

take on the role of the workers. The supervisor is in charge229

of initialising each worker with an optimisation algorithm230

predefined by the user, which, in this work, can be a231

combination of PSO, GA, CMA-ES or MCS. Each worker232

starts an isolated optimisation algorithm, i.e. runs a stand-233

alone optimiser in one processor. At the beginning of the234

working process, the population is initialised by a random235

uniform distribution. Whenever each worker completes a236

defined number of generations Ngen, it reports its current237

best solution to the supervisor. This process is asynchronous238

as each optimiser has a different performance speed. When239

the supervisor receives a message from each worker, it starts240

filling a repository of size Nrep with the best solutions241

reported so far. In that sense, the supervisor is continuously242

monitoring and sorting new incoming messages.243

There are two crucial features of this approach, both per-244

formed by the supervisor. The first one is the stopping of a245

worker that is triggered when the supervisor does not ob-246

serve sufficient improvement in the relatively poor solutions247

reported by the same worker. If a stalled worker is detected,248

the supervisor stops the current optimisation process and249

reinitialises the optimisation process on the corresponding250

worker. Then, depending on a given probability, the seeding251

procedure is activated, in which the new algorithm can ini-252

tialise its population with one or more of the best solutions253

collected in the supervisor’s repository. This is an important254

feature because certain algorithms that could not perform255

adequately in the first stage of the optimisation process,256

commonly denominated as the exploration phase, can thus257

benefit from previous solutions obtained by other types of258

workers and focus on that region. Three fundamental steps259

of the process: a) initialisation, b) reporting/stopping and260

c) seeding, are schematically displayed in Figure 1 and are261

further explained in the following sections.262

3.2. Stopping Criteria263

The workers report regularly their best cost and solution264

to the supervisor at each checkpoint (every Ngen genera-265

tions). The supervisor monitors the current solution sent by266

each worker and keeps the history of the previously sent267

solutions. Then, the supervisor can assess if the worker is268

not improving sufficiently and can classify the optimisation269

process as stalled. When this occurs, the supervisor stops270

the worker if it is not one of the Ntopset < Nworkers271

workers, and a new optimisation algorithm is started. The272

overall process stops when Nruns optimisation procedures273

Eugenio J. Muttio et al.: Preprint submitted to Elsevier Page 3 of 11



A Supervised Parallel Optimisation Framework for Metaheuristic Algorithms

a)

S

Initialise
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Initialise
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Initialise
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W
OPT3

Stop

c)

S

Working and
Reporting

W
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Working and
Reporting

W
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Re-initialise

W

OPT4
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Figure 1: Supervised parallel structure and roles of the processors in the proposed strategy. Three stages are depicted: a)
processor initialisation by the supervisor (S), b) workers (W) report their performance to the supervisor (S) and supervisor
stops stalled workers, and, c) the supervisor re-initialises the inactive worker with a new optimiser including a seed from its
repository.

have been completed. The criterion used by the supervisor274

to detect stall can be written as275

εm
εm−Nstall

> 1 − tolerance

⇒ Optimisation has stalled.
(4)

where εm is the m-th cost reported to the supervisor by the276

corresponding worker. The critical number of checkpoints277

reached without sufficient improvement Nstall is calculated278

from279

Nstall = N̄stall

(
ε̄

εm

)p
(5)

where N̄stall is an initial number of stalled solutions al-280

lowed. The exponent p may be chosen as 1, 2 or 3 and281

controls how much longer the workers are allowed to282

explore solutions of more advanced quality. The reference283

cost ε̄ is computed automatically by the performance of the284

initial workers. At the start of the proposed optimisation285

framework, the first workers are considered explorers as the286

initial population is randomly generated, and, it is likely287

that some of them are stalled at Nstall = N̄stall. When this288

happens for theNε̄ time in every optimisation algorithm, the289

reference cost ε̄ is set to the average of the cost εNε̄ among290

the optimisers.291

ε̄ =
1

Nalg

Nalg∑
i=1

εim (6)

where Nalg is the number of different optimisation algo-292

rithms run by the workers.293

To better exemplify this process, consider the case of using294

just one optimisation algorithm and defining Nε̄ = 1, then,295

the reference cost ε̄ is computed when the first worker is296

stalled. If using more than one optimisation algorithm, the297

cost of the stalled workers is stored until reaching Nε̄ to298

compute the optimiser’s average reference. This is particu-299

larly important when considering more than one algorithm,300

as their performance can be significantly dissimilar in the301

exploration phase. When the reference cost ε̄ is established,302

the number of checkpoints allowed will increase as stated by303

Equation (5). Algorithm 1 describes the steps to determine304

if a worker is declared stalled.305

3.3. Seeding Procedure306

During the optimisation procedure, the workers are con-307

stantly sending messages to the supervisor with the current308

best location found. The supervisor receives these messages309

and arranges them according to the cost and stores them in310

a seed repository of size Nrep, taking precaution to avoid311

duplicates of the gathered solutions. The seeding procedure312

can happen only after the first worker has been declared313
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Algorithm 1 Stopping Criteria.

1: εm ←Worker cost . 1. The worker sends the cost of its best solution

2: εhis.append(εm) . 2. Store cost history per worker

3: while
(

εm
εm−Nstall

< 1 − tolerance
)

do . Verification of stalled worker by Equation 4

4: remove(εhis.first) . 3. Remove the first cost received

5: if ε̄ is set then

6: Nstall ← N̄stall

(
ε̄
εm

)p
. 4. Compute a new number of stalled messages allowed.

7: if Size(εhis) > Nstall then . 5. Verify if a worker is stalled

8: StallWorker← True . Worker is declared stalled

9: Optim.StallCounter += 1 . Stall counter per each optimisation algorithm

10: if (All) Optim.StallCounter > Nε̄ then

11: OptimFlag← True . Check if every optimiser has at least Nε̄ stalled runs

12: if ε̄ not set and OptimFlag is True then

13: ε̄← 1
Nalg

∑Nalg
i=1 εim . Reference by averaging the stalled Nε̄ cost of all optimisers

stalled. In that instant, the supervisor should re-initialise314

a new optimiser to avoid having an inactive worker. The315

optimisation algorithm may be the same as before or not,316

but the population is different, as it may be initialised317

randomly or with a solution (seed) from a previous worker.318

This is advantageous in the following scenario; consider319

an algorithm A that is an excellent explorer in a given320

problem, but it is unable to refine its solution, hence, it321

cannot improve for a certain duration and the supervisor322

decides to stop it. Then, consider an algorithm B that is323

an excellent exploiter but is inefficient during exploration.324

The proposed strategy couples both algorithms by running325

an exploiter algorithmB that has been seeded by an explorer326

algorithm A, maximising the capabilities of both.327

The process has been implemented in a way that not all328

workers are initialised with seeds, thus allowing for the329

preservation of diversity in the general population and330

avoiding over-exploiting the same region of the solution331

space. The probability ν ∈ [0, 1] for seeding as opposed to332

randomly initialising the new population is set by the user.333

Experiments done by the authors suggest that values ν >334

0.9 are disadvantageous as they over-emphasise exploita-335

tion. The number of seeds introduced into the population of336

a worker is given by a uniform distribution and controlled by337

another parameter, denoted by a percentage of the algorithm338

population φ ∈ [0, 1]. This means that not all the workers339

may have the same amount of seeds, which again, helps340

to preserve diversity. The general seeding procedure can be341

seen in Algorithm 2.342

4. Illustrative Example: Path Finding343

Problem344

4.1. Problem Definition345

To test the efficiency of the proposed strategy, a model346

problem is defined as follows. A rectangular domain with347

x ∈ [0, 30] and y ∈ [−15, 15], contains Nc = 48 randomly348

positioned circular obstacles of varying radii as shown in349

Figure 2. The objective of the optimisation problem is to350

compute the shortest path from Point A with (x, y) =351

(0, 0) to Point B with (x, y) = (30, 0), such the path352

does not intersect any of the circular obstacles. The path353

is defined by a sequence of Np points that are connected354

by straight line segments. The points are equally spaced in355

x-direction. Hence, the set of design variables reduces to356

an Np-dimensional array y = y1, y2, ..., yNp that contains357

the y-coordinates of the points. A penalty formulation is358

used to avoid the intersection of the path with any of the359

circles. Hence, denoting the path length and the obstacle360

penetration by, respectively, l(y) and p(y), the cost function361

can be written as362

cost = l(y) + k p(y) (7)

where, in the remainder of this work, the penalty factor is set363

to k = 1. The length of the path is computed from364

l(y) =

Np−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (8)
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Algorithm 2 Seeding Procedure.

1: Pop← RU(PopSize) . Initialise population using a random distribution RU
2: if RepExists then
3: if RandNum < ν then . Verify probability ν of seeding a population
4: MaxSeeds = φ × Pop . Maximum number of seeds constrained by percentage φ
5: SeedsFromRep← random(0, MaxSeeds) . Number of seeds is a random number
6: for pi← 1 to size(SeedsFromRep) do:
7: RandSeed← random(0, RepSize)
8: RandPop← random(0, PopSize)
9: Pop[RandPop]← Repository[RandSeed] . A random particle from the population is replaced by a random

seed from the repository

while the penetration can be evaluated from365

p(y) =

Np−1∑
i=1

Nc∑
j=1

max

(
0, Rj −

√
(Xj − xi)2 + (Yj − yi)2

)
(9)

where, Rj , Xj and Yj represent, respectively, the radii and366

the coordinates of the centre points of the circular obstacles.367

The penetration is illustrated in Figure 3. Recall that the368

coordinates xi are known from the equal spacing of the369

points in x-direction.370

Considering the large number of obstacles shown in Fig-371

ure 2, the model problem described here features numerous372

local minima and allows for experimentation with large373

numbers of design variables. Hence, it is expected that374

stand-alone evolutionary optimisation strategies are likely375

to suffer from premature convergence issues. It can be376

argued that the optimisation process has to address two tasks377

of very different characteristics, firstly the identification378

of the correct gaps between the obstacles and secondly379

the straightening of the several sections of the path. The380

problem is sufficiently complex to represent challenging381

applications and to test the supervised parallel optimisation382

strategy proposed in Section 3.383

4.2. Results and Discussion384

The proposed methodology has been tested for the path385

finding problem described in Section 4.1. The number of386

points defining the path, i. e. the number of design variables387

chosen is 200. The optimisation algorithms included in the388

supervised approach are PSO, GA, CMA-ES and MCS,389

as introduced in Section 2. The recommended parameters,390

detailed in Appendix B, have been used to set up each391

optimiser, i.e. without parameter experimentation phase392

done a priori. In addition, an explorer and exploiter version393

of PSO and MCS are included by adjusting the parameters394

to continuously maintain diversity in the population and395

to perform intensification, respectively. The experiment is396

carried out in a parallel system using 16 processors, hence,397

Figure 2: Path finding problem domain and obstacles im-
posed.

one CPU is reserved for the supervisor and Nworkers =398

15, and a time limit has been imposed to 15 hours of399

computation. The convergence behaviour of the proposed400

methodology has been presented in Figure 4 where all the401

individual convergence plots are superimposed and shown402

in different colours. It can be noticed that a vast number403

of workers with high costs are clustered in the initial404

exploration phase, which are allowed to continue if they are405

able to sufficiently decrease their cost, or, on the contrary,406

they are stopped. After the reference cost ε̄ is defined, the407

workers remain active and intensify the local search. This408

results in a characteristic tree shape in Figure 4 a). Every409

new worker can be initialised by a previous solution, or410

seed, which is indicated on the plot by a black point in the411

centre of each marker. The probability of seeding a worker412

is chosen as ν = 0.5, while the maximum proportion of413

the seeded population is φ = 1.0, i.e. some workers could414

Eugenio J. Muttio et al.: Preprint submitted to Elsevier Page 6 of 11



A Supervised Parallel Optimisation Framework for Metaheuristic Algorithms

rj

Violation
Distance

(xi, yi)
Center - Path

Distance

Figure 3: Definition of the obstacle penetration.

start having their entire population seeded. As expected, it415

is less likely that one algorithm remains as the best in the416

entire process, but the best solution can be found by different417

algorithms through each phase, hence, a triangle marker is418

used to identify when an optimiser has been the best at some419

point. Figure 4 b) shows the convergence behaviour over420

time exhibiting that optimisers with exploitation capabilities421

take over and refine the solution after the first 2.5 hours of422

exploration. To maintain diversification, new explorers are423

continuously initialised in the remaining time. The exploiter424

PSO is the most effective optimiser in the corresponding425

refinement region shown in Figure 4 c), while other optimis-426

ers with insufficient improvement are stopped. Figure 4 d)427

illustrates the seeding process, as different optimisers take428

over the best solution. In this specific problem, a GA429

optimiser seeds a MCS while in turn seeds a PSO that refines430

the solution. The latter two optimisers, MCS and PSO, share431

the best solution in the remaining time demonstrating they432

are the most suitable algorithms in SPO for the refinement433

process.434

A comparison exercise has been carried out by considering435

the same optimisers included in the proposed approach,436

however, functioning as stand-alone procedures. The ex-437

plorer and exploiter versions of PSO and MCS are not438

included in this comparison as their performance is very439

poor and does not make sense to run an isolated optimi-440

sation procedure. To perform a fair comparison, the same441

computational effort has been taken into account for the442

stand-alone optimisers by running as many independent443

optimisers as workers used in the proposed approach, i.e.444

as Nworkers = 15, or 15 CPUs, in the supervised approach,445

then, 15 independent runs are carried out for each optimiser.446

This test is performed 10 times with the proposed approach,447

which means that each independent optimiser is run 150448

times. The convergence of the best solution achieved, the449

mean and standard deviation are presented in Figure 5, in450

which the vertical axis is the objective function while the451

horizontal is the computation time, with a maximum of 15452

hours utilising 15 CPUs. It is shown that SPO consistently453

finds the best solution with a higher level of accuracy. Ta-454

ble 1 presents the best solution achieved by each optimiser,455

the mean, worst, standard deviation and median of the 10456

Optimiser Best Mean Worst Std Median

Pymoo PSO 38.2086 98.2314 216.5675 30.2439 97.5021
Pymoo GA 41.3171 65.2243 171.0270 23.3537 56.2161

Pymoo CMAES 171.0815 284.9940 417.0519 52.7251 285.3436
MCS 32.8160 66.8578 108.5957 14.7948 65.4331

SPO 31.4619 34.3488 41.0430 4.3824 31.4748

Table 1
Best, worst, mean, standard deviation and median by stand-
alone optimisers and the proposed SPO.

experiments carried out by the supervised approach, and the457

150 runs by the stand-alone optimisers. Figure 6 presents458

the solution to the problem by the supervised approach and459

the stand-alone optimisers. It can be seen that the solution460

obtained by the proposed approach is clearly more accurate461

than the rest of the algorithms working alone. The fine-462

tuned solution of SPO, which in the last stage was found463

by an exploiter version of PSO, provides straight segments464

in between the obstacles, proving to be a balanced approach465

between exploration and exploitation. Although the closest466

competitor is MCS, its best solution is crossing through an467

obstacle, suggesting that this optimiser has not converged468

in the imposed time constraint, but, it could refine the469

solution if continue working. The poorest behaviour in this470

problem was performed by CMA-ES, which is capable of471

obtaining straight lines, but, the overall path shows large472

jumps between distant regions in the domain. Therefore,473

CMA-ES is well suited to accomplish local refinement, but,474

not capable of performing a satisfactory exploration.475

5. Conclusions476

A supervised parallel optimisation approach is presented.477

This strategy couples established algorithms in a supervisor-478

worker structure. It uses the tools of monitoring, stopping479

and seeding to optimise the use of the available computa-480

tional resources. The supervision effectively combines the481

exploration and exploitation capabilities of the different482

optimisers, providing a generalised framework suited to483

solve problems with diverse characteristics. Provided that484

the optimisation strategies followed by the workers include485

a variety of algorithms, the proposed supervised approach486

makes the success of the optimisation procedure indepen-487

dent of any tuning of hyper parameters, which is otherwise488

generally crucial. The strategy has been applied to a geo-489

metric path finding problem, which features a large number490

of design variables and a multitude of local minima. While491

none of the stand-alone procedure succeeded in finding492

the optimal solution, the proposed supervised strategy is493

capable of finding the minimal path length, which is con-494

structed by straight lines, within the time limit. Thus, it has495

been demonstrated that the proposed supervised strategy is496

superior to the stand-alone algorithms by a large margin. A497

notable application, where the proposed supervised parallel498

optimisation strategy has recently shown promising results,499

is the training of recurrent neural networks, see [36].500
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Figure 4: a) Convergence plot of the proposed strategy, b) convergence behaviour over time, c) refinement region extracted
from convergence plot a), and d) refinement region of convergence over time extracted from b).

Figure 5: Convergence comparison of the best solution obtained by stand-alone optimisers and the proposed approach. The
mean µ and standard deviation σ of the solutions throughout the 10 experiments is computed using the last result obtained.
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Figure 6: Solution comparison of stand-alone optimisers against the proposed strategy
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Obstacle Location Radius
x y

1 2.50 -5.00 2.00
2 3.50 7.50 2.30
3 2.50 -0.50 1.50
4 6.00 3.00 2.00
5 6.50 -8.00 3.00
6 7.00 6.50 1.50
7 8.00 -2.00 2.50
8 12.00 1.00 1.50
9 14.00 4.00 2.00

10 14.50 -4.00 3.00
11 15.00 10.00 2.50
12 21.00 0.00 2.00
13 22.50 -3.50 1.50
14 23.00 3.00 2.00
15 27.00 -1.00 2.00
16 19.00 5.00 1.50
17 20.00 -5.00 1.00
18 27.00 7.50 3.00
19 25.00 -6.00 1.50
20 17.00 2.50 0.50
21 12.00 8.00 1.50
22 11.00 5.50 0.70
23 20.00 -7.50 2.00
24 11.00 -8.50 1.20

Obstacle Location Radius
x y

25 13.00 -9.00 1.50
26 18.00 -8.00 0.75
27 23.00 10.00 1.50
28 10.00 3.50 0.80
29 20.00 10.00 1.20
30 22.00 7.50 0.80
31 28.00 2.50 0.80
32 17.00 0.00 1.10
33 18.00 -2.50 0.30
34 9.00 -5.00 0.40
35 11.00 -6.50 0.50
36 7.50 10.00 1.50
37 12.00 12.00 0.75
38 10.50 10.00 0.45
39 25.00 -9.00 1.10
40 18.00 7.50 0.50
41 16.00 -9.00 0.60
42 27.00 -6.00 0.80
43 28.00 -8.00 0.90
44 5.00 11.00 0.90
45 2.50 2.50 0.40
46 3.50 4.00 0.40
47 5.00 -3.50 0.40
48 4.00 -2.00 0.40

Table 2
Circular obstacles location and radii defined within the do-
main of the problem.

A. Definition of Obstacles511

The circular obstacles included in the domain of the problem512

are defined by the location of the centre and the radius.513

Table 2 summarises the parameters to define the obsta-514

cles.515

B. Optimiser Hyperparameters516

Suggested SPO and individual hyperparameters utilised in517

the solution of the path finding problem of Section 4. Note518

that for the explorer and exploiter version of PSO and MCS519

optimisers, the strategy incorporates a hyperparameters520
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pool that selects a random parameter value from a given521

range.522

• Supervised Parallel Optimisation523

– Initial number of stalled messages N̄stall: 10524

– Exponent p: 3525

– Stall tolerance: 0.01526

– Stall average Nε̄ per algorithm: 20527

– Number of top workers allowed to continue: 5528

– Seeding probability ν = 0.5529

• Pymoo Genetic Algorithm530

– Population size: 100531

– Number of offsprings: 50532

• Pymoo CMA-ES533

– Population size: 100534

– Initial standard deviation σ: 0.5535

• Pymoo PSO536

– Population size: 25537

– Inertia ω: 0.9538

– Cognitive impact c1: 2.0539

– Social impact c2: 2.0540

– Max velocity rate: 0.2541

– Adaptive ω, c1, c2: True542

• Pymoo PSO V1 Explorer543

– Population size: 25544

– Inertia ω: [0.5 - 0.9]545

– Cognitive impact c1: [2.0 - 3.9]546

– Social impact c2: [0.1 - 2.5]547

– Max velocity rate: 0.2548

– Adaptive ω, c1, c2: False549

• Pymoo PSO V2 Exploiter550

– Population size: 25551

– Inertia ω: [0.1 - 0.6]552

– Cognitive impact c1: [0.2 - 2.0]553

– Social impact c2: [2.0 - 3.9]554

– Max velocity rate: 0.2555

– Adaptive ω, c1, c2: False556

• Modified Cuckoo Search557

– Population size: 100558

– Minimum nests: 25559

– Discard fraction pa: 0.7560

– Max step A: 100561

– Step size power pwr: 0.5562

• Modified Cuckoo Search V1 Explorer563

– Population size: 100564

– Minimum nests: 25565

– Discard fraction pa: [0.5 - 0.9]566

– Max step A: [10 - 1000]567

– Step size power pwr: [0.25 - 0.6]568

• Modified Cuckoo Search V2 Exploiter569

– Population size: 100570

– Minimum nests: 25571

– Discard fraction pa: [0.2 - 0.6]572

– Max step A: [1000 - 1000000]573

– Step size power pwr: [0.5 - 0.9]574
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