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Summary

Due to the strong rate dependence in their mechanical response, polymers find
widespread use in applications subject to impact loading. However, characteriz-
ing these materials on microsecond time scales has proven challenging. Traditional
experimental techniques rely on satisfying a number of limiting assumptions and
typically do not provide direct measurements of the material parameters. Here, we
propose a novel implementation of the Image-Based Inertial Impact (IBII) test to
extract viscoelastic constitutive parameters on these microsecond time scales using
the stress gauge implementation of the virtual fields method. We validate the exper-
iment using a digital replica approach in which the constitutive parameters are first
extracted on a finite element model of an IBII test on a viscoelastic material. The finite
element data are then used to synthetically deform computer-generated grid images,
which are then polluted with gray-level noise to simulate the images that would be
captured in a real-life experiment. These images are processed identically to a phys-
ical experiment, and the identification is repeated using the full-field displacements
extracted from the computer-generated images to determine the ideal processing
parameters. Parameter identification was found to strongly depend on the processing
parameters used to extract the kinematic fields from full-field images, emphasizing
the need for computational validation before attempting a physical experiment to
extract constitutive parameters. The IBII experimental method was found to be capa-
ble of simultaneously identifying the bulk modulus and the shear modulus along with
their associated time constant.
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full-field measurements, grid method, high strain rate, time domain viscoelasticity, image-based inertial
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1 INTRODUCTION

The mechanical response of polymers typically exhibits a strong time dependence and consequently a strong dependence on
strain rate [1]. Polymers are often subjected to high-rate loading, either in manufacturing, such as during machining, or in their
final applications, such as protective helmets. For engineers to design and evaluate these processes and structures, robust material
models must be developed and their associated constitutive parameters identified.

The time dependence of polymers is traditionally modeled using viscoelasticity [1–3]. To facilitate implementation in numerical
modeling programs, these viscoelastic models commonly represent materials as a system of linear springs and viscous dashes,
the most common examples being the generalized Maxwell or Wiechert model and the Kelvin chain [1,2,4–6]. In these models,
the long-term response is considered to be linear elastic, and the time dependence characterized by a series of stiffnesses, each
associated with a time constant that describes viscous behavior.

A classic technique used to identify the parameters of these viscoelastic models is the creep test, in which a step load is applied
and the evolution of the strain in the specimen is measured over time. In practice, however, a load cannot be applied instantly
and instead has an associated rise time, 𝑡rise. Without detailed knowledge of the stress history, this rise time effectively limits the
minimum identifiable time constant to approximately 10𝑡rise. Additionally, wave propagation within the specimen also prohibits
identification of time constants within the order of a wave transit time. Therefore, creep testing is predominantly limited to time
scales greater than 100 seconds [3].

At shorter time scales, viscoelastic materials are normally characterized in the frequency domain using vibration and wave
propagation based experimental techniques, with two common examples being dynamic mechanical analysis (DMA) and ultra-
sonic characterization, respectively. In a typical DMA test, a viscoelastic specimen is subjected to a sweep of periodic stress
oscillations in a single deformation mode at various subresonant frequencies and temperatures. These experiments identify
viscoelastic properties such as storage and loss modulus as functions of excitation frequency and/or temperature, and the time-
dependent response can be calculated from the frequency domain [7]. In shear testing, DMA experiments are typically limited
by instrumental resonances to direct observation of frequency to a maximum of 101 to 103 Hz, corresponding to a time scale of
10−3 s. However, these frequency ranges are often expanded using assumptions such as time-temperature superposition [3,8,9] or
by carefully designing the test apparatus to target a specific class of materials [10]. For frequencies above the resonant frequency
of the specimen, utrasonic methods are often utilized. In these techniques, the moduli of the material are inferred from the mea-
sured wave speed and known density of the sample material, and the loss tangent is calculated from the attenuation of the wave
amplitude. These ultrasonic techniques provide the ability to measure viscoelastic response at frequencies exceeding 106 Hz,
but a careful experimental design must be utilized to account for energy losses and the acoustic response of the transducer [3].
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Furthermore, these ultrasonic experiments only probe very small strain amplitudes unless high-power ultrasonic loading is used
at resonant frequencies paired with additional metrology, such as full-field quantitative imaging [11–13].

For more general high-rate materials characterization, impact experiments such as Kolsky (split-Hopkinson pressure) bars are
often utilized. Typically Kolsky experiments are limited by the need to attain uniform one-dimensional deformation in a single
deformation mode, as well as the need to suppress inertial effects to achieve stress equilibrium. In particular, the need to verify
force equilibrium makes the characterization of materials at small strains, prior to yield, unreliable [14,15]. Additionally, classical
Kolsky analysis based on stress equilibrium has been found to consistently overestimate the complex modulus of polypropylene,
while a special non-equilibrium implementation was found to identify the complex modulus more accurately [16]. However, these
experiments still provide information in a single deformation mode and are sensitive to bar material and specimen preparation.

With recent improvements in ultra-high-speed (UHS) cameras and quantitative full-field imaging techniques, new meth-
ods have been developed and implemented that utilize full-field deformation measurements to relax many of the assumptions
present in classical mechanical testing [17]. One such method is the image based inertial impact (IBII) test, discussed in detail
in Section2, which leverages the inertial effects and heterogeneous deformation fields, which are typically suppressed in other
dynamic experiments to identify constitutive parameters [18]. The IBII test method has been used in the literature to extract con-
stitutive parameters for a variety of materials with numerous constitutive models. The technique was first validated with isotropic
linear elastic materials [19,20], and used to identify the high-rate elastic properties of a tungsten carbide cermet [20]. Additionally,
IBII experiments have been used to characterize the high-rate behavior of orthotropic fiber reinforced composites [21,22]. Strain
rate dependence has also been investigated for metal plasticity [23,24]. However, to date, rate dependence has been insufficiently
characterized in the elastic regime and strain rates are typically reported as either an average strain rate over the duration of the
experiment or as the maximum strain rate achieved, despite the inherent heterogeneity of the measured strain rate fields. Here,
we utilize the evolving strain rate fields inherent in the IBII method to extract the time-dependent properties of a viscoelastic
material.

In this study, we present the framework for a novel implementation of the IBII test method for the identification of high-rate
viscoelastic constitutive parameters in the time domain. Additionally, we validate the experimental method using a digital replica
approach in which the specimen deformation is simulated using a finite element simulation, and data collection is simulated
through the deformation of computer-generated grid images. Constitutive parameter identification is then validated through
processing the resulting images in the same manner as a physical experiment.
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FIGURE 1 Schematic representations of (a) an IBII experimental setup and (b) the calculation of average in-plane stresses in
an IBII experiment using the stress gauge equations.

2 THE IMAGE BASED INERTIAL IMPACT TEST

In an IBII experiment, presented schematically in Figure 1(a), the impact of a projectile on a waveguide is used to impart a
plane-stress wave in a thin plate specimen bonded edge-on to the waveguide. The propagation and interactions of the stress wave
with the specimen boundaries generate a heterogeneous deformation field in the material. To measure these deformations, the
specimen is instrumented with an UHS camera and a quantitative full-field imaging method, most commonly the grid method [25].
The measured displacement field is then differentiated in space and time to obtain full-field in-plane strains and accelerations,
and the resulting kinematic fields are input into the virtual fields method (VFM), described in Sections 2.1 and 2.2, to extract
material properties. In contrast to Kolsky bars, which are designed to minimize inertial effects, the use of the VFM in the IBII
test leverages the inertial effects and allows for the use of the measured accelerations as a dynamic load cell. Additionally, while
Kolsky bars require uniform deformation, the accuracy of the VFM improves with increasingly heterogeneous kinematic fields.
Kolsky bars also typically provide only a point measurement in a single deformation mode, but if the impact occurs over only
a portion of the specimen height, the IBII experiment can provide full-field deformation information in compression, tension,
and in-plane shear [26,27].

2.1 The virtual fields method

To obtain constitutive parameters from full-field displacement data, an inverse identification procedure must be applied to the
kinematic fields obtained from an IBII experiment. The VFM is one such method that is based on the principle of virtual work.
The principle of virtual work, derived from the weak form of the equation of motion, is given by:

−∫
𝑉

𝜎𝑖𝑗𝜀
∗
𝑖𝑗𝑑𝑉 + ∫

𝑆

𝑇𝑖𝑢
∗
𝑖 𝑑𝑆 + ∫

𝑉

𝑏𝑖𝑢
∗
𝑖 𝑑𝑉 = ∫

𝑉

𝜌𝑎𝑖𝑢
∗
𝑖 𝑑𝑉 . (1)

Here, the volume integral of the stress, 𝜎𝑖𝑗 contracted with a virtual strain field, 𝜀∗𝑖𝑗 , is the internal virtual work. The external
virtual work is given by the surface integral of the external tractions, 𝑇𝑖, contracted with the virtual displacement field, 𝑢∗𝑖 , added
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to the volume integral of the body forces, 𝑏𝑖, contracted with the virtual displacement field. In IBII experiments, the body forces
are composed only of gravity and have negligible magnitude reducing the external virtual work to ∫𝑆 𝑇𝑖𝑢∗𝑖 𝑑𝑆. The sum of the
internal and external virtual work equals the inertial virtual work given by the specimen density, 𝜌, multiplied by the volume
integral of the acceleration filed, 𝑎𝑖, contracted with the virtual displacement. In these expressions the virtual fields, 𝑢∗ and 𝜀∗, are
related with the strain–displacement relations for the infinitesimal strain tensor, 𝜀𝑖𝑗 =

(

𝑢𝑖,𝑗 + 𝑢𝑗,𝑖
)

∕2. These virtual fields serve
purely as mathematical test functions without any physical meaning. 𝑢∗ can be any continuous and piece-wise differentiable test
function which satisfies the experimental boundary conditions and kinematic admissibility [28]. For an incompressible specimen,
with the exception of 𝜌, all variables in Equation (1) are field variables and functions of space and time. The functional notation
has been omitted here for simplicity.

In an IBII experiment, the quantitative full-field imaging technique allows for time-resolved measurements of in-plane dis-
placements. These displacements can then be differentiated twice in time to obtain 𝑎𝑖 and spatially differentiated to obtain strain.
𝜎𝑖𝑗 cannot be directly measured and can instead be expressed as some function, 𝜎𝑖𝑗 = 𝜎(𝜀𝑖𝑗 , 𝑄)𝑖𝑗 , of strain and the constitutive
parameters, 𝑄. However, due to the limitations of imaging techniques, these measurements for 𝜀𝑖𝑗 and 𝑎𝑖, can only be obtained
on the surface. Therefore, the test must be designed such that the assumptions of 2D plane-stress and uniform kinematic fields
throughout the material thickness are satisfied. In the IBII experiment, these requirements are addressed through impacting a
thin plate specimen along the edge.

The aforementioned two dimensional assumptions, along with an additional assumption of homogeneous material properties
throughout the specimen, allow for Equation (1) to be rewritten in terms of surface integrals,

−∫
𝑆

𝜎
(

𝜀𝑖𝑗 , 𝑄
)

𝑖𝑗 𝜀
∗
𝑖𝑗𝑑𝑆 + ∫

𝑆

𝑇𝑖𝑢
∗
𝑖 𝑑𝑆 = 𝜌∫

𝑆

𝑎𝑖𝑢
∗
𝑖 𝑑𝑆, (2)

across the 2D surface of the specimen. For a material characterized by a linear elastic constitutive model, Equation (2) yields a
linear system of equations that can be directly solved to obtain the constitutive parameters,𝑄. However, for nonlinear constitutive
models where stress cannot be described as an explicit function of strain, such as those describing viscoelasticity, a cost function
must be created and minimized in order to extract the model parameters. The process of generating and solving the cost function
for this case is outlined in Section 2.4.

2.2 Choice of virtual fields: the stress gauge equations

Despite the availability of an infinite number of virtual fields that satisfy the experimental boundary conditions along with the
continuity, differentiability, and kinematic admissibility requirements, the choice of particular virtual fields remains an important
consideration in the design of IBII experiments. A number of potential options for virtual fields in IBII tests have been explored
in the literature including: manually defined polynomial fields [19–22,27,29,30], special optimised virtual fields, algorithmically
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generated to reduce the impact of noise [20,28,29,31]; sensitivity-based virtual fields, computer-generated according to the sensitivity
of stress fields to each constitutive parameter [23,24,32]; and the so-called stress gauge virtual fields that allow the accelerations to
be used as a load cell without assuming the form of the constitutive model [29]. In this work, the stress gauge virtual fields are
selected as a good starting place for multi-parameter viscoelastic parameter identification. Future investigations will study the
impact of the choice of the particular form of the virtual fields on identification accuracy.

The full derivation of the stress gauge equations has been described in detail in literature [22], so it is only briefly recounted
here. The stress gauge approach utilizes virtual displacement fields that yield null virtual strains. This virtual field choice cancels
out the internal virtual work term. Therefore, Equation (2) reduces to:

∫
𝑆

𝑇𝑖𝑢
∗
𝑖 𝑑𝑆 = 𝜌∫

𝑆

𝑎𝑖𝑢
∗
𝑖 𝑑𝑆. (3)

The virtual fields allowing for the calculation of axial and in-plane shear stresses consist of rigid-body translations along the
𝐱1 and 𝐱2 axes, respectively. The specimen is then discretized into a series of vertical slices, as displayed by the red cross section
in Figure 1(b), some distance 𝑥0 from the free surface opposite the impact. Taking the cross product of the traction vector, 𝑇𝑖
with the surface normal vector of the cross section at 𝑥0 gives the normal stress component in the 𝐱1 direction, 𝜎11, as well as
the in-plane shear stress 𝜎12 on the internal cross section 𝑥0. The integral can then be approximated as discrete sums over the
portion of the field of view from 𝐱1 = 0 to 𝑥0. With these substitutions Equation (3) can be evaluated with each virtual field to
yield expressions for the average stresses along the cross section

𝜎11(𝑥0) = 𝜌𝑥0𝑎1
𝑆 . (4a)

𝜎12(𝑥0) = 𝜌𝑥0𝑎2
𝑆 . (4b)

Here, 𝑎𝑖𝑆 represents the average acceleration in the 𝐱𝑖 direction measured over the surface, highlighted in Figure 1(b) in blue,
between the free edge at 𝐱1 = 0 and the cross section at 𝑥0.

Together, Equations (4a) and (4b) make up the stress gauge equations for axial and shear stress. These equations allow for
the calculation of specimen stress averages from measured displacements before assuming a particular form of the constitutive
equations. For linear elasticity, the constitutive parameters can be identified by fitting the average stress–strain curves. How-
ever for viscoelastic and other nonlinear material models, a cost function comparing the stresses obtained through the stress
gauge equations with those predicted by the constitutive model must be generated and minimized. In addition to the previously
mentioned studies utilizing the IBII experiment, this non-parametric method for stress measurement has been used in other
configurations for the characterization of rubbers [33,34], spall strength in concrete [35], and polymeric foams [36]. The particular
procedure used to extract the constitutive parameters using these stress gauge equations is further described in Section 2.4
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FIGURE 2 A schematic Representation of the generalized Maxwell model for viscoelasticity

2.3 Constitutive Model: the Maxwell formulation of the standard solid model

In this investigation, the mechanical response of a viscoelastic material is modeled using the Maxwell formulation of the standard
solid model, also known as the Zener Model [4,37]. In the model, a linear spring with a stiffness tensor, 𝐶𝑖𝑗𝑘𝑙∞ , defines long-term
mechanical response while a Maxwell element in parallel with 𝐶𝑖𝑗𝑘𝑙∞ describes the time-dependent behavior. This Maxwell
element consists of a linear spring with stiffness 𝐶𝑖𝑗𝑘𝑙1 in series with a viscous dash-pot with damping constant 𝜂𝑖𝑗𝑘𝑙1 . A time
constant, 𝜏𝑖𝑗𝑘𝑙1 describes the relaxation of the elemental stiffness and relates the stiffness and damping through 𝜏𝑖𝑗𝑘𝑙1 =

𝐶𝑖𝑗𝑘𝑙1

𝜂𝑖𝑗𝑘𝑙1
. The

standard solid model can be further expanded into the generalized Maxwell model, schematically in Figure 2, to better describe
more general viscoelasticity through the addition of further Maxwell elements in parallel to model the time dependence across
a wider range of time scales [1,2]. Many commercial finite element software packages, such as Abaqus [6], implement their native
viscoelasticity models with this generalized Maxwell model.

To build the cost function and extract constitutive parameters, the stress components 𝜎11 and 𝜎12, must be reconstructed from
measured in-plane strains using the constitutive model. The stress reconstruction is performed using the numerical algorithm
developed by Mun [38],

𝜎𝑖𝑗(𝑡𝑛+1) = 𝐶𝑖𝑗𝑘𝑙0𝜀𝑘𝑙(𝑡𝑛+1) −
𝑀
∑

𝑚=1
𝐶𝑖𝑗𝑘𝑙𝑚

{

𝜀𝑘𝑙(𝑡𝑛) + exp
(

−Δ𝑡
𝜏𝑚

)

[

𝜀𝑘𝑙𝑚(𝑡𝑛) − 𝜀𝑘𝑙(𝑡𝑛)
]

− Δ𝜀𝑘𝑙(𝑡𝑛+1)
[

1 −
𝜏𝑚
Δ𝑡

[

1 − exp
(

−Δ𝑡
𝜏𝑚

)]

]

}

(5a)

𝜀𝑘𝑙𝑚(𝑡𝑛) = 𝜀𝑘𝑙(𝑡𝑛−1) + exp
(

−Δ𝑡
𝜏𝑚

)[

𝜀𝑘𝑙𝑚(𝑡𝑛−1) − 𝜀𝑘𝑙(𝑡𝑛−1)
]

+
Δ𝜀𝑘𝑙(𝑡𝑛)

Δ𝑡

[

Δ𝑡 − 𝜏𝑚
[

1 − exp
(

−Δ𝑡
𝜏𝑚

)]

]

. (5b)

Here, the instantaneous stiffness, 𝐶𝑖𝑗𝑘𝑙0 is defined as 𝐶𝑖𝑗𝑘𝑙0 = 𝐶𝑖𝑗𝑘𝑙∞ +
∑𝑀

𝑚=1 𝐶𝑖𝑗𝑘𝑙𝑚 .the in-plane strain components 𝜀11, 𝜀22,
and 𝜀12 are obtained directly from the measured displacement fields using the strain-displacement relations. The time step 𝑡𝑛
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represents the current time starting at 𝑛 = 1 and 𝑡 = 0 with the next time step given by 𝑡𝑛+1 and the previous by 𝑡𝑛−1, and
Δ𝑡 = 𝑡𝑛+1−𝑡𝑛 = 𝑡𝑛−𝑡𝑛−1. The incremental creep strains are given by 𝜀𝑘𝑙𝑚 with 𝜀𝑘𝑙𝑚 = 0 at 𝑡 = 0, and the time dependent response
of each Maxwell element are summed over the total number of Maxwell elements, 𝑀 , to determine the total time dependent
response of the material.

Calculation of 𝜎11 using Equations 5a and 5b requires out-of-plane strains, 𝜀33. However, an IBII experiment with a single
camera cannot measure the out-of-plane displacements required to obtain the through thickness strains in the same manner as
the in-plane strain. Instead, the plane stress assumption, 𝜎33 = 𝜎13 = 𝜎23 = 0, was used to solve Equation5a for 𝜀33 giving

𝜀33(𝑡𝑛+1) =
𝜎creep(𝑡𝑛+1)

𝐶3333relax(𝑡𝑛+1)
, . (6)

Here, 𝜎creep is the effective out-of-plane creep stress, and 𝐶3333relax is the relaxation of the 𝐶3333 component of the stiffness tensor
over the time increment Δ𝑡. These terms are calculated with

𝜎creep(𝑡𝑛+1) =
𝑀
∑

𝑚=1

[

𝐶3311𝑚𝐵11𝑚 + 𝐶3322𝑚𝐵22𝑚 + 𝐶3333𝑚

[

𝜀33(𝑡𝑛) + exp
(

−Δ𝑡
𝜏𝑚

)

[

𝜀33𝑚(𝑡𝑛) − 𝜀33(𝑡𝑛)
]

]

−𝜀33(𝑡𝑛)
[

1 −
𝜏𝑚
Δ𝑡

(

1 − exp
(

−Δ𝑡
𝜏𝑚

))]

− 𝐶33110𝜀11(𝑡𝑛+1) − 𝐶33220𝜀22(𝑡𝑛+1)

]

(7a)

𝐶3333relax =

[

𝐶33330 − 𝐶3333𝑚

𝑀
∑

𝑚=1

[

1 −
𝜏𝑚
Δ𝑡

(

1 − exp
(

−Δ𝑡
𝜏𝑚

))]

]−1

(7b)

𝐵𝑖𝑗𝑚 =𝜀𝑖𝑗(𝑡𝑛) + exp
(

−Δ𝑡
𝜏𝑚

)

[

𝜀𝑖𝑗𝑚(𝑡𝑛) − 𝜀𝑖𝑗(𝑡𝑛)
]

+
[

𝜀𝑖𝑗(𝑡𝑛+1) − 𝜀𝑖𝑗(𝑡𝑛)
]

[

1 −
𝜏𝑚
Δ𝑡

(

1 − exp
(

−Δ𝑡
𝜏𝑚

))]

(7c)

In this feasibility study, we focus on the simplest case, using an isotropic material where the long-term response is known
and the time dependence is governed by a single Maxwell element with unknown properties. For simplicity and consistency
with the ABAQUS implementation of viscoelasticity, the remainder of this work describes stiffness tensors in terms of bulk
and shear modulus, 𝐾 and 𝐺. These moduli relate to 𝐶𝑖𝑗𝑘𝑙 through the standard relation between isotropic elastic constants,
𝐶𝑖𝑗𝑘𝑙 = 𝐾𝛿𝑖𝑗𝛿𝑘𝑙 +𝐺

(

𝛿𝑖𝑘𝛿𝑘𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 −
2
3
𝛿𝑖𝑗𝛿𝑘𝑙

)

, where 𝛿 is the Kronecker delta. The IBII experimental technique proposed and
analyzed in this investigation is designed to extract the elemental moduli 𝐾1 and 𝐺1 along with their associated time constant
𝜏1 from time-resolved full-field deformation data.
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2.4 Constitutive parameter identification

To identify the constitutive parameters from measured time-resolved full-field deformation information two cost functions, 𝜙𝑖𝑗 ,
are implemented:

𝜙12
(

𝐺1, 𝜏1
)

=
∑

𝑋

∑

𝑡

(

𝜎Model
12 − 𝜎SG

12

)2
, (8a)

𝜙11
(

𝐾1, 𝐺1, 𝜏1
)

=
∑

𝑋

∑

𝑡

(

𝜎Model
11 − 𝜎SG

11

)2
. (8b)

In these functions, the superscripts SG and Model indicate stresses obtained directly using the stress gauge equations in (4), and
from the constitutive model in Equations (5-7) using measured strains and trial constitutive parameters.

The extraction of 𝐺1 independent of 𝐾1 is performed first by minimizing 𝜙12 using the interior-point algorithm in MAT-
LAB’s [39] fmincon function. Here, 𝐺1 and 𝜏1 are allowed to float, and the shear modulus and associated time constant are then
obtained when the trail parameters create a global minimum in 𝜙12. This independent determination of 𝐺1 without 𝐾1 is possible
because the shear response can be calculated without knowledge of bulk deformations or behavior.

However, the inverse does not hold and the shear modulus must be known in order to calculate the volumetric strain from
measurements of only in-plane deformations. In 𝜙11, 𝐺1 is fixed at the values identified from the minimization of 𝜙12 while 𝐾1

and 𝜏1 are allowed to float and are extracted through minimizing 𝜙11 in the same manner as the minimization of 𝜙12. Due to
the coupling of 𝐾1 and 𝐺1 in the calculation of 𝜎Model

11 , final identification of 𝜏1 is performed through the minimization of 𝜙11.
To confirm that cost functions converge on global minima, the procedure is repeated with three distinct sets of initial guesses
within the expected order of magnitude as the constitutive parameters, and the parameters resulting in the minimum values for
𝜙12 and 𝜙11 are the identified constitutive parameter.

3 NUMERICAL VERIFICATION

3.1 Finite element model

A finite element model of the proposed IBII experiment configuration has been developed and implemented in Abaqus Explicit.
Figure 3 presents a schematic representation of the model. The 2D model was constructed assuming plane-stress with an assumed
thickness of 4 mm and the element properties listed in Table 1. Meshing was performed automatically with 4 node reduced
integration (CPS4R [6]) elements and the simulation time step was allowed to float at 0.8𝑡crit where 𝑡crit is the minimum transit
time of a longitudinal wave in an element. Mesh convergence is confirmed when the calculated stress gauge stresses, and the
average stresses output by Abaqus converged at all time steps and 𝐱1-coordinates.
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FIGURE 3 A schematic representation of a finite element model for a half height IBII experiment subjected to a compressive
trapezoidal input pulse.

Finite Element Parameters Long-Term Parameters Maxwell Parameters
Element Size (mm) # Elements Element Type 𝐾∞ (GPa) 𝐺∞ (GPa) 𝐾1ref (GPa) 𝐺1ref (GPa) 𝜏1ref (µs)

0.1 700 × 440 CPS4 2.07 1.18 1.53 0.877 10.0

TABLE 1 Finite element properties and reference constitutive parameters used for a finite element simulation of a material
loosely based on experimental image based inertial release data for PMMA [40] and described by a single element generalized
Maxwell model.

The material is defined by the Maxwell formulation of the standard solid model with the parameters listed in Table 1. The long-
term moduli are based on quasistatic properties measured in image-based inertial release experiments performed on polymethyl
methacrylate (PMMA) [40]. Similarly, the instantaneous response is based on the measured response at �̇� ≈ 102 s-1. These input
parameters are not intended to predictively model PMMA, but are intended to provide a reasonable baseline for constitutive
parameter identification governing the time-dependent mechanical response.

The transmission of the incident stress wave into the specimen is modeled by applying a uniform trapezoidal pressure pulse,
with a maximum amplitude of 𝑃𝑎𝑚𝑝 = 60 MPa, along half the specimen height. The pulse shape is defined by equal rise, dwell,
and fall times, 𝑡rise = 𝑡2 − 𝑡1 = 𝑡dwell = 𝑡3 − 𝑡2 = 𝑡fall = 𝑡4 − 𝑡3 = 10 μs. The pulse is applied with the smooth-step function in
Abaqus approximating the ramps as a smoothly varying cubic function over 𝑡rise and 𝑡fall. Impacting over half of the specimen
height allows for the generation of shear stresses on the same order of magnitude as the axial stresses in an isotropic material.

3.2 Model Verification

To verify the implementation of the stress gauge formulation of the virtual fields method, as well as to check the convergence
of the finite element model, the 𝜎11 and 𝜎12 calculated with the stress gauge equations were compared against those average
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stresses calculated from the output of the finite element simulation. To better visualize the error patterns, a normalized error
‖

‖

‖

‖

Error
(

𝜎SG
𝑖𝑗

)

‖

‖

‖

‖max
=

𝜎SG
𝑖𝑗 − 𝜎FE

𝑖𝑗

max
(

𝜎FE
𝑖𝑗

) × 100. (9)

was calculated. Here, max
(

𝜎FE
𝑖𝑗

)

is the maximum value of the width averaged stress, which is used to normalize the error and
enable comparisons across the range of stress magnitudes. This normalization is indicated by ‖‖max. The superscript FE denotes
a kinematic field that is taken directly from the finite element output.

Figure 4(a) and (b) show the width averaged stress magnitudes output by the finite element simulation as functions of time,
𝑡, and distance from the free edge, 𝑥0. To simulate the temporal resolution of a Shimadzu HPV-X1 UHS camera, 128 frames of
strain and acceleration data were extracted every half microsecond for a simulated frame rate of 2 Mfps and a total experiment
duration of 63.5 µs. The half-height trapezoidal pulse imparts a compressive loading with an amplitude of 𝜎FE

11

𝐱2
= 30 MPa.

As the wave propagates towards the free surface, the stress attenuates and loses its trapezoidal shape due to a combination of
relaxation of the Maxwell moduli and the two-dimensional propagation of the stress wave. When the wave reflects from the free
surface, it propagates back towards the impact edge reloading a portion of the specimen in tension. The shear stress follows a
similar pattern, but with more pronounced spatial dispersion because shear stress is generated at single point on the edge of the
applied pressure pulse.

Figure 4 (c) and (d) present the normalized errors in the calculation of width-averaged stresses using the stress gauge equations
with finite element output acceleration fields. These error plots show an agreement in time and space between the stresses
calculated with the stress gauge equations and those output by the finite element simulation within ±1.5% of max

(

𝜎FE
11

)

and
±1.0% of max

(

𝜎FE
12

)

. However, localized bands of error exist in the calculation of 𝜎SG
𝑖𝑗

𝐱2 , particularly in areas with significant
temporal gradients in the stress magnitude. For example, errors in axial stress are most pronounced during the pulse rise and
unloading closer to the impact edge with 𝜎SG

11

𝐱2 slightly lagging 𝜎FE
11

𝐱2 . These errors likely stem from the reduced temporal
resolution of the output compared to the finite element time step. However, as further investigation demonstrates, these errors
do not significantly impact the identification. Additionally, the less than ±1.5% difference between the stresses from the finite
element model and stress gauge equations indicates convergence of the finite element mesh.

The stresses output by these stress reconstruction algorithms from equations (5) to 7 are compared to those directly output
from the finite element model in the same manner as in 9, and Figure 4 (e) and (f) present the resulting normalized errors.
The errors in stress reconstruction follow a similar pattern to the stress gauge stresses with error concentrated when significant
temporal gradients in stress exist. This agreement suggests that the source is also due to temporal integration issues, resulting in
poor reconstruction at the transitions in the slope of the pulse in this case. This stress reconstruction error is on the same order as
the discretisation error of the simulation, verifying the reconstruction algorithm for use in constitutive parameter identification.



12 Matejunas ET AL

FIGURE 4 𝑥 − 𝑡 diagrams of (a,b) average stress magnitudes output by the finite element simulation, (c,d) normalized errors
in stress calculated with the stress gauge equations using finite element accelerations, and (e,f) normalized errors in the stress
reproduced with the constitutive model from finite element strain outputs.
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𝐺Ident
1 [GPa] Error(𝐺Ident

1 ) [%] 𝐾 Ident
1 [GPa] Error(𝐾 Ident

1 ) [%] 𝜏 Ident1 [µs] Error(𝜏 Ident1 ) [%]

0.888 1.22 1.52 −1.23 9.83 −1.68

TABLE 2 Identified viscoelastic constitutive parameters from finite element kinematic fields.

3.3 Parameter identification from finite element data

To verify the viscoelastic parameter identification procedure, the acceleration and strain fields, output from the model described
in Section 3.1, were extracted every half microsecond for 128 frames. As in Section ??, the sampling rate was selected to match
the temporal resolution of a Shimadzu HPV-X1 UHS camera. These kinematic fields were then used to extract the constitutive
parameters according to the procedure outlined in Section 2, and table 2 presents the identified constitutive parameters alongside
their identification errors. For a given parameter, 𝑄Ref , the error in the identified parameter, 𝑄Ident , is given by

Error (𝑄) = 𝑄Ident −𝑄Ref
𝑄Ref × 100%. (10)

Successful parameter identification was achieved for all three Maxwell parameters with the largest absolute error found in the
extraction of time constant. As discussed in 3.2, the likely source of the parameter identification error from finite element data
are temporal discretisation of the kinematic fields. Additionally, to test the stability of the identification to varying initial guesses,
the identification was performed using 30 randomly generated initial guesses over the interval 0.75𝑄Ref ≤ 𝑄Guess ≤ 1.25𝑄Ref ,
and the identified parameter was extracted from the initial guess producing the smallest value of the cost function. Identification
for all constitutive parameters remained stable with the highest standard deviation of ±0.04% found in the bulk modulus and the
smallest standard deviation found in the extraction of time constant at 0.02%. This consistency suggests that well defined global
minima in the cost functions exist around the reference input parameters.

4 SIMULATION OF EXPERIMENTAL SOURCES OF ERROR

Having verified the constitutive parameter identification method on finite element data, the next step in the experimental design
process is to replicate the additional error resulting from experimental conditions. Major sources of systematic error include
the spatial and temporal resolution of the camera and quantitative imaging technique used, along with with biases imparted by
preprocessing of the obtained kinematic fields and by measurement noise. The random component of error is dominated by the
noise in grey levels of the images captured by the camera.

To quantify the error imparted through the experimental measurement of deformations, we implement a digital replica
approach. In this technique, presented graphically in Figure 5, a computer algorithm is used to generate a synthetic image of a
gridded sample, with a spatial resolution matching that of the camera and grid intended to be used for an experiment. This grid
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𝐼0 𝐴 𝑏 (bits) 𝑝 mm
period

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (pixels) 𝑝px ( pixels
period ) 𝐹𝑟𝑎𝑚𝑒𝑅𝑎𝑡𝑒 (fps) # 𝑜𝑓𝐹𝑟𝑎𝑚𝑒𝑠

0.50 0.25 16 0.90 [400 × 250] 5.00 2.00 × 106 128

TABLE 3 Imaging parameters used in the synthetic image deformation procedure.

image is then synthetically deformed using the time-resolved displacement fields, output by the finite element model described
in Section 3, with the temporal resolution matching the frame rate of the camera. The resulting images are then processed using
the same procedures that would be used to process the images obtained in an experiment, and the constitutive parameters are
extracted. The analysis is repeated while also incrementally adding additional sources of error, including data preprocessing and
grey level noise.

Using the finite element model as a basis for deforming computer-generated images presents clear advantages when compared
to using experimental images since the underlying constitutive parameters are known. This method allows for the input parame-
ters in the constitutive model to be used as a baseline, enabling the quantification of error propagation through the experimental
full-field measurement technique and inverse identification. For further reference, this synthetic image deformation technique
is described extensively in the literature [17,23] for multiple full-field measurement methodologies.

4.1 Synthetic image deformation

For an image based inertial impact test, the data comes in the form of grey-scale images instrumented with a quantitative full-
field imaging pattern. In this work, deformation data was obtained via the grid method. This technique involves printing a
regular rectangular grid pattern on the specimen and measures displacements from the changes in the spatial frequency of the
grid pattern. The experiment is simulated through the deformation of computer-generated grid images according to the finite
element deformations.

The specific details of the synthetic image deformation process have been extensively described in the literature [17,23], so only
a brief discussion is presented here. First, an undeformed image is generated from a two dimensional symmetric sinusoidal gray-
level distribution function with a period equal to the grid pitch, 𝑝. The image is then deformed through the substitution of the 𝐱1
and 𝐱2 pixel coordinates with their deformed locations. These deformations are taken from finite element simulations with the
displacements of the nodes interpolated to the corresponding pixel locations. The parameters of the image, chosen to simulate
images of a 70 mm × 44 mm specimen captured with a Shimadzu HPV-X1 camera, are presented in Table 3. In the table, the
mean gray-level intensity as a fraction of the dynamic is given by 𝐼0 with amplitude 𝐴. The grid pitch on the simulated sample,
𝑝, is measured in mm, and the resulting pitch on the camera sensor, 𝑝𝑝𝑥, is the sampling rate in pixels

period
.
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FIGURE 5 A graphical representation of the process for using a digital replica to determine optimal experimental data process-
ing parameters.
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4.2 gray-level noise addition

In a physical experiment, there will always be a degree of measurement uncertainty due to the nature of digital imaging. For
example, Johnson-Nyquist noise arising from random thermal motion of charge carriers in camera circuitry manifests as Gaus-
sian noise in the measured gray-level intensity of the images [41]. This noise propagates through the identification procedure as
spurious displacements measured through the grid method and results in a possible noise-induced bias and some level of random
error in the identification of the constitutive parameters. In this work, measurement noise is simulated through the addition of a
random gray-level intensity with a Gaussian probability distribution centered on a mean value of 0 with a standard deviation of
±0.4% of the dynamic range applied to each pixel of the image. This average noise magnitude is selected to match the average
noise level of the shimadzu HPV-X1 UHS camera that will be used in upcoming physical experiments. To investigate the effects
of this measurement noise on parameter identification, the following analyses are performed on the noisy images along with the
original synthetic images.

4.3 Displacement measurement with the grid method

For this work, the grid method was chosen as the quantitative imaging technique because it offers superior spatial resolution
compared to the more common digital image correlation (DIC) technique [25,42,43]. In contrast with DIC, the grid method utilizes
a regular periodic grid deposited on the specimen rather than a random speckle pattern [43]. Displacements are then obtained
from analyzing the change in phase in that regular gird. For perfect grids and displacements significantly smaller than one grid
pitch, this relationship between that phase change and the corresponding displacement can be approximated with

𝑢𝑖 = −
𝑝
2𝜋

ΔΦ𝑖. (11)

Here, 𝑝 is the grid pitch, andΔΦ𝑖 represents the phase change in the ith direction. In practice, however, displacements often exceed
one grid pitch, and physical grids often contain defects. These cases require an iterative approach to extracting displacements
from grid deformations and an unwrapping of the grid phase. These mathematical formulae are omitted here for brevity, but are
discussed in detail in Grediac et al.’s review of the grid method [25]. The in-plane strains are then calculated using the infinitesimal
strain-displacement relations, and the in-plane accelerations are obtained by differentiating twice in time.

4.4 Kinematic field preprocessing: edge cropping and extrapolation

In order to utilize the displacement fields extracted with the grid method for inverse constitutive parameter identification, addi-
tional processing must be performed. Similar to how digital image correlation returns erroneous displacement data within a
subset of the edges of the region of interest [44–46], the grid method processing produces corrupted displacement measurements
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within one pitch of the grid edges. Additionally, once the shear strain introduced by the half height impact reaches the edges of
the specimen, the induced rotations can lead to orders of magnitude in error in measured strains at the specimen edges. When
included in the analysis, these inaccurate strain measurements can lead to large errors in the constitutive parameter identification.
Therefore, a correction of the kinematic fields along the specimen edges was implemented.

In previous investigations, simply padding the corrupted data at the edges with those replicated from the closest valid data
point to the grid edges has been sufficient to enable parameter identification [18,45,46]. However, such a simplistic approach was
found to be insufficient for half-height impacts on viscoelastic materials. A simple replication of valid data does not satisfy the
boundary condition of 𝜀12 = 0 on the top and bottom free surfaces resulting in errors in shear stress identification. These small
errors at the edges are then further propagated and amplified in the bulk modulus identification through the calculation of 𝜀33
resulting in poor extraction of 𝐾1. Therefore, a padding scheme that more closely approximates the kinematic field distributions
at the edges must be utilized.

Upon further investigation, it was found that the identification errors caused by corrupted edge data could be reduced by first
cropping the displacement fields over an interval CK ≥ 7 pixels in from all edges of this displacement fields. The cropped data
was then replaced with a quadratic extrapolation of the average displacement gradient 4𝑝 in from the cropped region. However, in
practice measurement noise in the gray-level images necessitates smoothing of the displacement fields in space before calculation
of the strain fields. This smoothing propagates noise through the extrapolated fields, sometimes necessitating larger extrapolation
intervals than the minimum kernel CK = 7 pixels. The next sections discuss the effects of noise and smoothing on the necessary
edge extrapolation.

4.5 Kinematic field preprocessing: spatial smoothing and strain calculation

In a physical experiment, some amount of noise will exist in the grey levels of the images. This grey level noise is amplified by
differentiation when calculating the full-field strains. Therefore, the next step is to spatially smooth the displacement fields prior
to calculating the strain fields, to mitigate the effects of the noise. This Gaussian spatial smoothing is performed over a kernel
SK using the 𝑖𝑚𝑔𝑎𝑢𝑠𝑠𝑓𝑖𝑙𝑡 function in Matlab [39]. The smoothed displacement is then used to calculate strain.

A consequence of the Gaussian smoothing is that displacement noise can be pulled into the extrapolated region if the smooth-
ing kernel is significantly larger than the extrapolation kernel. Additionally, the extrapolated region contains some amount of
systematic error that can be propagated through smoothing into the valid region of displacement measurement. Therefore, an
ideal relationship between CK and SK must be established.

For SK ≥ 15 pixels, the ideal relationship between extrapolation region and smoothing kernel is CK = 1
2
SK. Smaller

extrapolation kernels result in the smoothing kernel propagating noise into the extrapolated region resulting in poor parameter
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identification. When SK < 15 pixels the systematic error resulting from the poor quality edge data dominates and the minimum
extrapolation CK = 7 pixels must still be used.

After extrapolation and smoothing of the displacement fields, the infinitesimal strains are calculated. The resulting shear
strains are then linearly extrapolated to 0 at the free surfaces to obey the stress-free boundary conditions. Additionally, to suppress
any propagation of amplified strain noise from the valid region into the extrapolated region, the normal strains are linearly
extrapolated according to the average strain gradient measured over the 4𝑝 in from the extrapolated region.

4.6 Kinematic fields preprocessing: temporal smoothing and acceleration calculation

Similarly to how spatial differentiation amplifies displacement noise in the calculation of strain, the temporal differentiation
amplifies the displacement noise when calculating the acceleration fields. So, the raw displacement data are independently
temporally smoothed using the with a kernel of TK frames to reduce the resulting noise in the accelerations. The temporal
smoothing is performed with a third order Savitsky-Golay filter using the sgolayfilt Matlab function [39]. Accelerations are calcu-
lated through a double temporal differentiation of the smoothed displacement field using a centered finite difference algorithm.
The accelerations are then used to calculate the stress gauge stresses using Equations 4 and 4b.

Unlike spatial smoothing, the temporal smoothing kernel and the extrapolation interval are uncoupled. Therefore, the ideal
relationship between CK and TK cannot be logically derived. Instead, CK is determined by the size of the spatial smoothing
kernel to minimize the systematic deviations between stresses calculated from the constitutive model and those calculated with
the stress gauge equations. However, upon the addition of noise, the spatial distribution of accelerations at the edges deviates
further from its true value. This deviation worsens with larger extrapolation kernels and increases the random error in the stress
gauge stresses. At the same time, temporal smoothing can mitigate this random error over time. Therefore, for noisy images,
like those obtained from experiments, larger temporal smoothing kernels may be necessary for larger extrapolation intervals.

5 IDENTIFICATION VERIFICATION USING SYNTHETIC IMAGES

Constitutive parameter identification is performed on the newly conditioned data in the same manner as on the finite data
presented in Section 3. The following sections present an analysis on the systematic error introduced by smoothing of the
displacement data followed by the effects of grey level noise on the identification accuracy.

5.1 Systematic identification error in noise-free images

To investigate the effects of systematic errors introduced by the grid method imaging and data processing on the identification
of viscoelastic constitutive parameters, a parametric study was performed on the noise-free synthetic images from Section 4.1.
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FIGURE 6 Systematic errors in viscoelastic constitutive parameter identification on using noise-free synthetic images. Smooth-
ing kernel pairs resulting in the minimum magnitude of systematic error are called indicated by an open marker symbol.

The kinematic fields were then extracted and conditioned according to the method outlined in Section 4.3 across a parametric
sweep of spatial kernels 0 ≤ SK ≤ 51 pixels with the ideal extrapolation kernel described in Section 4.5 and temporal smoothing
kernels 0 ≤ TK ≤ 31 frames. To prevent the temporal smoothing from propagating erroneous accelerations forward in time,
1
2
TK frames were cropped from the beginning of the kinematic fields, and the last four frames were cropped from the kinematic

fields to minimize errors in the calculation of acceleration from the centered finite different algorithm.
After preprocessing, the kinematic fields were input into the identification algorithm described in Section 2.4 to extract the vis-

coelastic parameters. Recalling from Figure 4 that errors in the stress gauge algorithm are largely concentrated along the impact
edge of the specimen, and that accurate displacement data are lost along the grid edges, the cost functions were only evaluated
over the interval 1.8 mm ≤ 𝑥0 ≤ 61mm. The systematic identification errors, Error−Sys, were calculated using Equation (10).
To reduce errors caused by poor reconstruction of 𝜀33 while remaining representative of an experimental constitutive parameter
identification, 𝐺Ident corresponding to the pair of smoothing parameters resulting in the minimum absolute systematic error was
used to calculate out of plane strains during the minimization of 𝜙11.

Figure 6 presents heat maps of the identification errors for the model parameters as functions of SK and TK, and Table 4
lists these extracted properties along with their associated systematic errors (with no smoothing). Without smoothing, identifi-
cation errors are of comparable, but greater, magnitudes to those identified from finite element kinematic fields. The increase in
identification errors from images compared to those from finite element fields is dominated by the systematic errors in the edge
extrapolation.

Figure 6 demonstrates that both 𝐺1 and 𝜏1 are relatively insensitive to spatial and temporal smoothing in the absence of
camera noise. The maximum identification error in 𝐺Ident

1 was calculated at 4.08% with smoothing kernels SK = 45 pixels and
TK = 0 frames, and the maximum magnitude for 𝜏 Ident1 was calculated to be −2.06% with no smoothing. However, 𝐾1 is
demonstrated to be significantly more sensitive to smoothing than either 𝐺1 or 𝜏1, with the identification converging on the lower



20 Matejunas ET AL

𝐺Ident
1 [GPa] Error−Sys(𝐺

Ident
1 ) [%] 𝐾 Ident

1 [GPa] Error−Sys(𝐾
Ident
1 ) [%] 𝜏 Ident1 [µs] Error−Sys(𝜏

Ident
1 )

0.897 2.25 1.58 2.69 9.79 −2.06

TABLE 4 Identified viscoelastic constitutive parameters and associated systematic errors obtained from noise-free synthetic
images without smoothing.

boundary of 0.75𝐺Ref
1 at a temporal smoothing kernel of TK = 31 frames. For both moduli, identification error increases more

rapidly for SK ≥ 15 pixels, further indicating that systematic identification error is driven by the edge extrapolation algorithm.
For all constitutive parameters, a significant amount of temporal smoothing is required to attain the minimum absolutes

systematic error in the extracted property. However, no pair of smoothing kernels exists in which any two parameters of interest
are minimized, supporting the need for differing smoothing requirements for identification of bulk and shear moduli. Although,
at all locations where the absolute error in both 𝐺1 and 𝐾1 are within the absolute error obtained directly from finite element
fields, ||

|

Error−sys
(

𝜏 Ident1

)

|

|

|

also lies within the absolute finite element error. Therefore, without noise, the time constant can be
reliably extracted at any smoothing kernel from which bulk modulus can also be obtained. Having demonstrated the capability
of an IBII test to extract viscoelastic parameters with in the absence of measurement noise, the next step is to determine the
optimum set of smoothing parameters when a realistic amount of noise is added to the simulated experimental images.

5.2 Noise Sensitivity

To investigate the effects of measurement noise on identified constitutive parameters, the same parametric sweep of smoothing
parameters as in Section 5.1 was repeated on synthetic images polluted with the addition of gray-level noise in the manner
described in Section 4.2. In order to separate the systematic and random contributions of sensor noise, the sweep of parameter
extraction across smoothing parameters was carried out on 30 distinct copies of noise. The identification errors from noisy images
consist of systematic and random components, given by Error+sys

(

𝑄Ident) and Errorran
(

𝑄Ident), respectively. The systematic
component of error is defined as the mean error over the 30 noise copies, the standard deviation gives the random error, and the
total error is given by Errortot

(

𝑄Ident) = |

|

|

Error+sys
(

𝑄Ident)|
|

|

+ 2Errorran
(

𝑄Ident).
Figure 7 presents the systematic (a-c), random (d-f) , and total (g-i) parameter identification errors calculated from the noisy

images. To better compare identification error from noisy images with those obtained using noise-free images, the color scales
are truncated to match those from Figure 6. Extraction of 𝐾 Ident

1 and 𝜏 Ident1 was performed using the mean value of 𝐺Ident
1 obtained

using the smoothing kernels resulting in the minimum Errortot
(

𝐺Ident
1

).
If no noise induced bias was present in the identified parameters, Error+sys would exactly match Error−sys from Figure 6 for

all parameters and smoothing kernels. While the systematic error plots with and without noise appear qualitatively similar, it
is also apparent that image noise induces a bias in parameter identification when the displacement fields are under-smoothed.
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FIGURE 7 Viscoelastic parameter identification errors obtained from a parametric smoothing sweep on noisy synthetic images.
Smoothing kernels with the minimum absolute systematic error for noise free images are marked with an open symbol, the
corresponding closed symbol indicates the lowest systematic error from noisy images, an * marks minimum random error, and
the minimum total error is indicated by an x.

This bias is particularly evident for bulk modulus with Error+sys
(

𝐾 Ident
1

)

≥ 20% when SK < 5 pixels. For smoothing kernels
SK > 5 pixels all parameters exhibit stronger sensitivity to spatial smoothing with noise than without. At smaller smoothing
kernels, 5 pixels ≤ SK ≤ 15 pixels, Error+sys converges towards 0 with increasing spatial smoothing at temporal smoothing
kernelsTK ≤ 21 frames for the three constitutive parameters. This heavy influence of spatial smoothing stems from the temporal
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integration in the constitutive model. Small disturbances in strain lead to step increases or decreases in 𝜎Model
𝑖𝑗 that propagate

through time and result in poor quality identification.
Although some spatial smoothing is required to prevent temporal propagation of errors in the constitutive law, over-smoothing

can also result in poorer identification of constitutive parameters. Systematic error in the identification of 𝐾1 is minimized at
SK = 27 pixelswith noise compared to 35 pixelswithout and the minimum systematic error for 𝜏1 occurs at SK = 7 pixels. Addi-
tionally, both shear modulus and time constant identification become unstable at large spatial smoothing kernels, SK > 37 pixels

oscillating between under-predictions and over-predictions with smoothing kernel changes of only a couple pixels. The absolute
minimum systematic error for 𝐺1 lies at SK = 49 pixels, TK = 21 frames outside the apparent band of stable identification
error. However, observed susceptibility to large spatial smoothing kernels is less a function of the Gaussian smoothing than the
edge extrapolation algorithm.

The influence of edge corrections on identification quality becomes more apparent in the heat maps for Errorran
(

𝑄Ident)

presented in Figure 7 (d-f). When temporally smoothed, the random error behaves as expected and decreases with increasing
kernel sizes, and the minimum random error occurs at TK ≥ 27 frames for all three parameters. Similarly, spatial smoothing
either reduces or maintains the random error with minimal smoothing windows of SK < 15 pixels. However, random error
increases rapidly as the spatial smoothing kernel exceeds 15 pixels and CK increases with it. When SK ≥ 15 pixels and
CK > 7 pixels, some of the increased random error can be mitigated by also increasing temporal smoothing kernels, but the
minimum total error corresponds to a spatial smoothing kernel SK ≤ 15 pixels in both moduli and the time constant. This
dependence on temporal smoothing indicates that errors in the extrapolation of accelerations at the edges, instead of over-
smoothing or poor extrapolations of the strain fields, drive the increase in both systematic and random parameter identification
errors.

Examining the total error plots in Figure 7 (g-i) it is clear that at low spatial smoothing kernels, and therefore extrapolation
regions of CK = 7 pixels, systematic error dominates and small temporal smoothing kernels can be used to identify the consti-
tutive parameters. When SK ≥ 15 pixels and CK > 7 pixels, the random error increases rapidly and larger temporal smoothing
kernels are required to reliably identify constitutive parameters. Random error becomes dominant and identification is unreliable,
with Errortot ≥ 5% for extrapolation kernels CK ≥ 18 pixels for 𝐺1 and CK ≥ 15 pixels for 𝐾1. Additionally, systematic error
dominates in the identification of 𝐾1 for large temporal smoothing kernels leading to failed identification at TK > 23 pixels.

5.3 Parameter extraction from noisy images

Having characterized the effects of noise and smoothing kernels on the error in extraction of constitutive parameters from
simulated noisy images, the final step is to determine a criterion to identify which processing parameters should be used to
extract constitutive properties in a physical experiment. Two logical choices for identification criterion exist. These choices are
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Identification 𝐺Ident
1 Error(𝐺Ident

1 ) 𝐾 Ident
1 Error(𝐾 Ident

1 ) 𝜏 Ident1 [µs] Error(𝜏 Ident1 )
Criterion [GPa] [%] [GPa] [%] [μs] [%]

Minimum Errortot 0.878 ± 0.002 0.13 ± 0.28 1.54 ± 0.01 0.03 ± 0.76 9.88 ± 0.05 −1.25 ± 0.48
Acceptable Region 0.879 ± 0.015 0.20 ± 1.72 1.53 ± 0.04 −0.31 ± 2.40 9.89 ± 0.07 −1.14 ± 0.73

TABLE 5 Identified viscoelastic constitutive parameters and associated identification errors defined by Error
(

𝑄Ident) =
Errorsys+

(

𝑄Ident) ± Errorran
(

𝑄Ident)

the minimum Errortot criterion and the acceptable region criterion. Table 5 presents identified constitutive parameters for both of
these three criteria. In this investigation, the mean value plus or minus the standard deviation value of the extracted constitutive
property over the 30 noise copies at the identified optimum processing kernels yields the identified constitutive parameter. The
identification criteria and their associated optimum smoothing parameters are as follows:

• The minimum Errortot criterion chooses the smoothing parameter resulting in the smallest total identification error,
marked with an "x" on Figure 7 (g-i). Using this method, the optimal processing parameters for extracting 𝐺1 is deter-
mined to be [CK,SK,TK] = [8 pixels, 15 pixels, 27 frames]. The optimal extraction of 𝐾1 and 𝜏1 using the minimum
criterion Errortot occurs with the processing parameters of [CK,SK,TK] = [8 pixels, 15 pixels, 7 frames].

• The acceptable region criterion performs a parametric sweep of processing parameters where Errortot is less than or equal
to some acceptable threshold. Here, we define the maximum acceptable error magnitude as the largest absolute systematic
error obtained from noise-free images without smoothing (recall Table 4) increased to the next integer. In that case, the
acceptable Errortot is 3% determined from Error−sys

(

𝐾 Ident
1

). The acceptable region for the shear modulus includes 109
sets of kinematic field conditioning parameters within the region bounded by 7 pixels ≤ CK ≤ 14 pixels, 5 pixels ≤ SK ≤

27 pixels, and 0 ≤ TK ≤ 31 frames. The acceptable error region for the identification of 𝐾1 and 𝜏1 consists of 18 sets of
processing parameters bounded by 7 pixels ≤ CK ≤ 13 pixels, 11 pixels ≤ SK ≤ 25 pixels, and 0 ≤ TK ≤ 15 frames

where both Errortot
(

𝐾 Ident
1

) and Errortot
(

𝜏 Ident1

) are less 3%.

When comparing the two identification criteria, both produced similar results with overlapping identification errors. However,
each criterion offers its own advantages and disadvantages. The minimum Errortot criterion obtains the most accurate moduli
extractions with the smallest standard deviation of all parameters with idealized data. The acceptable region criterion performs
worse on idealized data with far larger standard deviations than the minimum Errortot criterion. However, because it utilizes a
sweep of smoothing parameters where the identification errors are considered acceptable, the acceptable region criterion may
provide a more robust identification in an experimental setting.
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FIGURE 8 Difference between width-averaged stresses calculated identified constitutive parameters using the minimumErrortot
criterion and those output by the finite element model.

To confirm the quality of the identification, the constitutive parameters identified using the minimum Errortot criterion were
input into the stress reconstruction algorithm presented in Section 2.3 along with the full-field finite element strains to calcu-
late the constitutive model stresses 𝜎Ident

𝑖𝑗 . Figure 8 presents the difference between the width-averaged stresses from the finite
element model and those calculated with the ideal identified parameters. Comparing the error maps in Figure 8 with the corre-
sponding maps generated with the reference constitutive parameters in Figure 4 (e) and (f), the error in the stress reconstruction
is concentrated on the loading and unloading portions of the pulse when using the reference parameters and on the pulse plateau
for the identified constitutive parameters. Additionally, the errors in reconstruction were more randomly distributed in space
and time when using reference properties, and more systematic when utilizing extracted parameters. The maximum magnitude
of the difference between 𝜎Ident

12 and 𝜎FE
12 was calculated to be 0.093 MPa with a median of 0.004 MPa, compared to a maximum

of 0.164 MPa with a median of 0.014 MPa for the stresses calculated using the reference parameters. The extracted constitutive
parameters produced a maximum absolute difference of 0.032 MPa with a median value of 0.045 MPa for 𝜎Ident

11 , contrasted
with a maximum of 5.11 MPa and median of 0.048 MPa for reference constitutive parameters.

To further evaluate the quality of the identified constitutive parameters, a noise floor evaluation was performed to identify what
magnitude of displacements, and therefore stress gauge stresses, can theoretically be measured in the simulated experiment. To
obtain these measurements, 128 undeformed images are polluted with noise and processed according to the procedure outlined
in Section 4. The noise floor, or measurement resolution, is defined as the smallest value for a measured quantity that can
reasonably be attributed to mechanical deformation rather than to noise in the camera sensor [47]. Here, this resolution is defined
as one standard deviation of the resulting full-field kinematic fields obtained from 128 undeformed noisy images. The noise
floors in the displacements, 𝑢NF𝑖 , are obtained from the unsmoothed displacement fields and are measured to be 𝑢NF𝑖 = 1.25 μm

in both the 𝐱1 and 𝐱2 directions. However, the resolution in 𝜎SG
𝑖𝑗 must be determined with the temporal smoothing kernel used

to extract the constitutive parameters because accelerations are calculated using temporally smoothed displacements. At the
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Recommended Image Acquisition Parameters
Camera Shimadzu HPV-X1

Image Resolution [400 pixels × 250 pixels]
Region of Interest [389 pixels × 246 pixels] = [70.0 mm × 44.0mm]

Image Scale 0.180 mm∕pixel
Frame Rate 2.00 × 106 fps
Grid Pitch 0.900 mm

Grid Sampling 5.00 pixels∕period
Recommended Image Processing Parameters

Grid Method Algorithm Iterative Grid Method
Image Filtering None

Edge Extrapolation Kernel 𝐶𝐾 =

{

7 pixels 𝑖𝑓 SK ≤ 15 pixels
1
2
SK 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑢𝑖 Extrapolation Order Quadratic
𝑎𝑖 Extrapolation Order Quadratic
𝜀𝑖𝑗 Extrapolation Order Linear

Spatial Smoothing Algorithm Gaussian
Spatial Smoothing Kernel 5 ≤ SK ≤ 27 pixels for 𝜀12

11 ≤ SK ≤ 25 pixels for 𝜀11 and 𝜀22
Temporal Smoothing Algorithm 3rd order Savitsky-Golay

Temporal Smoothing Kernel 0 ≤ TK ≤ 27 frames for 𝑎1
0 ≤ TK ≤ 15 frames for 𝑎2

Predicted Kinematic Field Noise Floors
Image Noise 0.4%

𝑢NF𝑖 1.25 μm
𝜀NF11 (SK = 15 pixels) 433 × 10−6

𝜀NF22 (SK = 15 pixels) 538 × 10−6

𝜀NF12 (SK = 15 pixels) 537 × 10−6

𝜎SG,NF
11 (TK = 7 frames) 1.24 MPa

𝜎SG,NF
12 (TK = 27 frames) 0.177 MPa

TABLE 6 Recommended image acquisition and grid method processing parameters for an IBII test to obtain standard solid
model parameters for a viscoelastic material.

temporal smoothing kernel, TK = 27 frames, used to extract shear modulus, the noise floor in 𝜎SG
12 was measured at 0.177 MPa.

The noise floor for 𝜎SG
11 was 1.24MPa at the smoothing kernelTK = 7 frames used to extract the bulk modulus and time constant.

Notably, for both shear and axial stresses, both the maximum and median absolute differences between the finite element
stress and reconstructed stresses are smaller using the extracted constitutive parameters than the equivalent differences using
the reference values. Additionally, the maximum magnitude of the absolute difference for the shear stress is similar to the noise
floor observed in the shear stress gauge stresses. For axial stress, the maximum magnitude of the stress reconstruction error is
the same order of magnitude as the stress gauge resolution. These two factors, in combination with the parameter identification
errors from simulated experimental images lying within the errors obtained from the finite element kinematic fields, indicate
that the IBII test can successfully identify Maxwell parameters for the standard solid model.
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Table 6 summarizes the recommended grid method processing parameters for extracting Zener Model constitutive parameters
from the simulated IBII experiment. The suggested smoothing and extrapolation kernel sizes are determined using the acceptable
region criterion and the reported strain and stress gauge resolutions come from the parameters obtained with the miminum
Errortot criterion. Although these recommendations are valid for experiments similar to the test simulated herein, they may not
apply to experiments that differ significantly, such as those using a different camera, a different loading pulse, or a material that
cannot be modeled with a time constant on the order of 10 μs. In these cases, the authors recommend repeating the method
outlined throughout this study with the expected imaging and loading parameters to determine the ideal processing parameters
for the intended experimental conditions.

6 CONCLUSIONS

To facilitate improved identification of linear viscoelastic parameters at short time scales and high strain rates, a novel implemen-
tation of the IBII test is proposed. The viscoelastic material is modeled using the Maxwell form of the standard solid model, and
the constitutive parameters are extracted from the time-resolved full-field deformation data using the stress gauge formulation
of the virtual fields method. The experiment is validated with a digital replica approach in which an IBII experiment on a theo-
retical specimen is simulated using finite elements, and the parameter identification is verified using the output kinematic fields.
The finite element data are then used to deform computer-generated grid images matching the spatial and temporal resolutions
that would be recorded in a physical experiment, and the resulting kinematic fields are obtained from the images in the same
manner as they would be in an experiment. The identification procedure was then performed on the pristine simulated images
and then on images polluted with measurement noise to characterize the systematic and random errors. From these simulations
it can be concluded that:

• A half-height IBII experiment provides sufficient information to extract viscoelastic bulk and shear modulus along with
their associated time constant utilizing a set of two cost functions. First, the shear modulus is extracted by minimizing
the difference between the stress obtained from the stress gauge equations and from the constitutive model, and then the
process is repeated with the axial stresses. During the calculation of the axial stresses, the identified shear modulus is used
to calculate out-of-plane strain.

• The systematic identification error of viscoelastic constitutive parameters is dominated by the poor quality displacement
measurements at the sample edges. This corrupted deformation data necessitates the extrapolation of the kinematic fields
at least 7 pixels in from the edges to reliably extract constitutive properties, and the spatial smoothing kernel should be at
least twice the extrapolation interval.
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• The gray-level noise present in experimental images adds a significant systematic bias, as well as a significant random
error component in parameter identification. Without spatial smoothing, the temporal integration in the constitutive law
propagates errors from noise forward in time and dominates the error in parameter identification. However, as spatial
smoothing increases, the random error due to edge extrapolation of the acceleration fields dominates, but can be minimized
with increased temporal smoothing.

• The appropriate choice of smoothing parameters can effectively eliminate the systematic error due to noise, and the
extraction of the shear and bulk moduli require different smoothing parameters. These ideal smoothing parameters can be
defined as the smoothing kernels resulting in the minimum Errortot . Alternatively, the parameters can be determined from
the average identification over a range of smoothing parameters with similar identification error to the systematic error
from unsmoothed pristine images. All three criteria were able to successfully identify constitutive parameters to within
3% of their reference values.

With the strong dependence on edge extrapolations and temporal integration of the constitutive law, the largest limiting factor
in the use of the IBII experiment to characterize viscoelastic materials is the camera used. As cameras continue to improve over
time, increased spatial resolution will allow for higher quality measurement of the displacement fields near the specimen edges,
reducing the impact of the edge extrapolation on identification quality. Similar, increases in temporal resolution and record length
will enable identification of a wider range of time constants, and more accurate measurement of the relaxation in the material.

Having developed the theoretical framework for the utilization of the image based inertial impact test, the next step is to apply
the recommendations made here to the experimental characterization of a viscoelastic material. The next installment of this
series will validate the methodology presented here on experimental data.
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