
UKAEA-CCFE-PR(23)145

S. Mijin, D. Power, R. Holden, W. Hornsby, D.

Moulton, F. Militello

ReMKiT1D - A framework for building
reactive multi-fluid models of the

tokamak Scrape-Off Layer with
coupled electron kinetics in 1D

Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/

ReMKiT1D - A framework for
building reactive multi-fluid models

of the tokamak Scrape-Off Layer
with coupled electron kinetics in 1D

S. Mijin, D. Power, R. Holden, W. Hornsby, D. Moulton, F. Militello

This is a preprint of a paper submitted for publication in
Computer Physics Communications

ReMKiT1D - A framework for building reactive

multi-fluid models of the tokamak Scrape-Off Layer

with coupled electron kinetics in 1D

Stefan Mijina,∗, Dominic Powerb, Ryan Holdena,c, William Hornsbya, David
Moultona, Fulvio Militelloa

aUnited Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham
Science Centre, Abingdon, Oxon, OX14 3DB, UK

bBlackett Lab., Plasma Physics Group, Imperial College London, London, SW7 2AZ, UK
cSchool of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, UK

Abstract

In this manuscript we present the recently developed flexible framework
for building both fluid and electron kinetic models of the tokamak Scrape-
Off Layer in 1D - ReMKiT1D (Reactive Multi-fluid and Kinetic Transport
in 1D). The framework can handle systems of non-linear ODEs, various 1D
PDEs arising in fluid modelling, as well as PDEs arising from the treatment
of the electron kinetic equation. As such, the framework allows for flexibility
in fluid models of the Scrape-Off Layer while allowing the easy addition of
kinetic electron effects. We focus on presenting both the high-level design
decisions that allow for model flexibility, as well as the most important im-
plementation aspects. A significant number of verification and performance
tests are presented, as well as a step-by-step walkthrough of a simple example
for setting up models using the Python interface.

Keywords: framework; fluid; kinetic; electrons; tokamak; SOL; multi-fluid;
collisional-radiative

PROGRAM SUMMARY
Program Title: ReMKiT1D
CPC Library link to program files: (to be added by Technical Editor)

∗Corresponding author.
E-mail address: stefan.mijin@ukaea.uk

Preprint submitted to Computer Physics Communications July 26, 2023

Developer’s repository link: https://github.com/ukaea/ReMKiT1D and
https://github.com/ukaea/ReMKiT1D-Python
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: GPLv3
Programming language: Fortran, Python
Supplementary material: https://doi.org/10.14468/fdq7-z869
Nature of problem: The flexible generation and modification of 1D models pertain-
ing to multi-fluid simulations of the tokamak Scrape-Off Layer (SOL) with electron
kinetics and reaction support. This would then allow both for rapid iteration on
reduced models as well as the evaluation of kinetic electron effects in equilibria and
during transients, following the formalism previously developed for SOL-KiT[1].
The framework was not only envisioned as the successor to SOL-KiT, but a tool
that would allow users to construct their own models coupled with electron kinet-
ics capabilities.
Solution method: The framework is written heavily utilizing Object-Oriented de-
sign principles, in particular using a generalized version of the puppeteer pattern as
presented by Rouson et al[2], as well as the heavy use of the strategy pattern/de-
pendency injection. The Fortran code is MPI parallel and utilizes the PETSc
library for implicit time-stepping. MPI parallelization is extended to distribution
function Legendre harmonics, allowing for improved strong scaling. Initialization
of the Fortran framework is done using JSON configuration files generated by an
accompanying Python interface, and data analysis is standardized using widely
used data formats such as HDF5.
Additional comments including restrictions and unusual features: The present
manuscript focuses on the design and high-level implementation of the frame-
work, as well as the demonstration of the workflow and various verification and
performance benchmarking tests. Some details are avoided for the sake of brevity
at various points, and these are meant to be available as part of the general code
documentation or tutorials offered on the main repositories.

References

[1] S. Mijin, A. Antony, F. Militello, SOL-KiT-Fully implicit code for kinetic sim-
ulation of parallel electron transport in the tokamak Scrape-Off Layer, Comp.
Phys. Comm. 258 (2021)

[2] D. Rouson, J. Xia, X. Xu, Scientific Software Design: The Object- Oriented
Way, Cambridge University Press, 2011

2

1. Introduction

The Scrape-Off Layer (SOL) denotes the region of open magnetic field
lines just outside of the core of magnetically confined fusion (MCF) devices,
such as the tokamak. These open field lines impinge on material surfaces
(walls, limiters, or divertor targets) in the device, leading to plasma-surface
interactions, which can inject impurity species into the plasma. Furthermore,
the region outside the core, often referred to as the edge, is cold enough for
atomic, or even molecular, neutrals to persist and interact with the plasma
in a non-trivial way. As such, this region of the device is particularly rich
in multi-species plasma physics, with many reactions occurring between the
species.

Furthermore, due to the scale separation of parallel (to the open magnetic
field lines) and perpendicular transport, 1D analytical and numerical models
of the SOL have been a mainstay since the early days of SOL simulations.
The reduced geometrical/dimensional complexity allows for the treatment
of more involved physics, while keeping run times short compared to 2D or
3D simulations. As such, a range of 1D codes geared towards exploring one
or more aspects of the SOL have been in use over the last several decades,
ranging from PIC codes[1, 2], to continuum fluid[3, 4, 5] and kinetic [6, 7, 8, 9]
codes. These have been used for a variety of problems, and some of them
will be reviewed here to provide context for the code to be presented in the
bulk of this text.

One of the most common problems tackled by 1D codes is that of simulat-
ing equilibrium divertor regimes, with a particular focus on detachment[10,
11, 3] - the regime in which the plasma recombines significantly in front of
the target, effectively producing a cloud of neutrals which shields it from
exposure to the hot upstream conditions. Tying into this is the study of how
target conditions are affected by transient phenomena upstream[12, 13], when
particles and energy are transiently injected far away from the targets and
allowed to propagate towards them and interact with any of the background
plasma and neutral species present in the equilibrium conditions.

Another field of research is that of parallel transport in the SOL. While
fluid models tend to use classical values of transport coefficients (e.g. heat
conductivity or viscosity) that rely on local values of plasma parameters,
due to the strong parallel gradients formed in the SOL, kinetic effects can
come into play[14], modifying the classical values in both equilibrium and
transient conditions. Examples of kinetic effects include heat flux suppression

3

and enhancement[15, 16, 17], as well as the modification of the target plasma
sheath properties[18], which fluid codes struggle to include consistently, often
resorting to measures such as heat flux limiting.

Finally, with the presence of many species, and atomic and molecu-
lar physics coming into play, the need arises to couple the various species
through reaction rates, leading naturally towards collisional-radiative mod-
els (CRMs), which attempt to solve and reduce a set of coupled ODEs[19, 20,
21, 22, 23, 24]. Most often, however, these models are 0D, neglecting trans-
port effects and taking reaction rates based on an underlying Maxwellian
distribution for the plasma species. 1D models, especially kinetic models,
when including collisional-radiative processes, can be used to study trans-
port effects on the particle and energy balance governed by these complicated
reactions[25].

The goal of the framework to be presented is to provide a relatively easy
way to build models that can tackle most of the above issues, combining
multi-fluid, collisional-radiative, and kinetic physics, particularly in the con-
text of SOL plasmas. However, the presented framework could also be rele-
vant to other fields where 1D fluid equations might need to be solved.

The ReMKiT1D (Reactive Multi-fluid and Kinetic Transport in 1D)
framework consists of a core code written in Modern Fortran and controlled
through JSON configuration files constructed using a Python package, al-
lowing for rapid model iteration and flexibility. While the numerical ap-
proach is extremely customizable, with many features exposed to the user at
a Python level, a significant number of numerical procedures and approaches
are adapted from work previously done on the hydrogenic hybrid fluid-kinetic
code SOL-KiT[26], which has been used to tackle some of the problems de-
tailed above, namely the quantification of kinetic electron effects on parallel
transport and reaction rates in equilibrium and transient conditions. How-
ever, while SOL-KiT is a purpose-built code, ReMKiT1D has been designed
as a framework, such that models like the one implemented in SOL-KiT, can
be easily built, used, and modified by a variety of users. Furthermore, it
allows for improvements in performance by introducing a second paralleliz-
able dimension in the electron distribution function harmonics (see Sections
4 and 6).

A brief overview of problem types and equations ReMKiT1D is designed
to tackle will be given in Section 2, followed by the description of high-level
features and concepts used in designing ReMKiT1D in Section 3. Those
implementation details relevant to the 1D problems presented here, such as

4

grids, normalizations, and some operators, will be presented in Section 4,
together with the description of the MPI communication in both spatial and
harmonic directions. Details on Python-Fortran coupling and an example
workflow are given in Section 5, before an extensive list of verification and
benchmarking problems are presented in Section 6, including parallel per-
formance scaling tests with the novel harmonic dimension parallelization.
Planned and potential use cases and extensions of the framework are dis-
cussed in Section 7.

2. Target problem classes

With a focus on mathematical models arising in the research of transport
along magnetic field lines in the SOL, ReMKiT1D has been designed to
handle systems of nonlinear ODEs and PDEs arising from coupled fluid and
kinetic models. These will be laid out in this section, without focusing on
any individual model or implementation.

2.1. Systems of nonlinear ODEs

Nonlinear ODEs arise both from the spatial and velocity discretization
of fluid and kinetic models of interest, as well as naturally in the context of
collisional-radiative modelling. In general, given a vector of variables v⃗, the
system of interest can be written as

dv⃗

dt
= M(v⃗) · v⃗ + Γ⃗, (1)

where M(v⃗) is the matrix of (nonlinear) coupling coefficients and Γ⃗ some
constant vector. It is convenient to write the system in this way both for
the purposes of defining the default implicit integration scheme used, and
to draw parallels with the form of general collisional-radiative models [24].
In general, the systems of ODEs that occur in problems of interest are stiff,
and implicit integration schemes together with potentially flexible operator
splitting might be required (see Section 3).

2.2. 1D PDEs

Systems of hyperbolic conservation laws of the form

∂X (x⃗)

∂t
+∇ · Γ⃗X (x⃗) = SX , (2)

5

where X is a conserved quantity, Γ⃗X the flux of that quantity, and SX the
source/sink of X, arise naturally in the modelling of multi-species fluids.
Many well-known methods of solving such equations exist, reducing the sys-
tem through discretization to a system of, in general, nonlinear ODEs. The
complexity of the conservation laws comes from the forms of the fluxes and
sources, which can be complex nonlinear functions of conserved quantities.
Furthermore, cases where evolving the primitive (instead of conserved) quan-
tities is simpler also arise. This can lead to parabolic equations, such as
those that arise in heat conduction problems, as well as combined advection-
diffusion problems.

Finally, equations without an explicit time derivative term can arise, as
is the case with the elliptic problem of Poisson’s equation

∆φ = f. (3)

Further complications arise with the addition of complicated boundary
conditions due to the interaction of the SOL plasma with the wall, such as the
sheath boundary condition and recycling. These are mentioned in Appendix
A, and for more details the reader is encouraged to consult previous work
[26, 6, 2], particularly in the context of kinetic boundary conditions.

As such, it is of interest to at least attempt to cover as many of these
cases as possible, which is simplified somewhat due to the 1D nature of the
problems considered in this manuscript. Implementation details behind the
1D differential operators available in ReMKiT1D (as well as notes on user
level customization) will be presented in Section 4.

2.3. 1D electron kinetic equation

Electron kinetic effects such as heat flux suppression, sheath bound-
ary effects, as well as potential modification of reaction rates due to non-
Maxwellian distributions, are of interest both in equilibrium and transient
conditions. Following the approach in SOL-KiT[26], these effects are included
as emergent physics through the option to solve the 1D electron kinetic equa-
tion,

∂f

∂t
+ vx

∂f

∂x
− eE

me

∂f

∂vx
=

(
δf

δt

)
c

. (4)

Using an expansion of the distribution function into Legendre harmonics fl,
this results in an equation of the form

6

∂fl
∂t

= Al + El + Cl (5)

where Al, El, and Cl represent spatial advection, velocity space advection
due to the electric field, as well as collision operators, respectively. This
enables fine control over the fidelity of the kinetic effects included, through
both choosing the number of resolved distribution function harmonics, as
well as controlling the individual operators evolving each harmonic. Fluid
moments are obtained directly from moments of the individual harmonics,
such that scalar moments are given by

< ϕ >=

∫
ϕ(v)f(v⃗)dv⃗ = 4π

∫ ∞

0

ϕ(v)f0(v)v
2dv,

and vector moments by

< a⃗ >=

∫
a⃗(v)f(v⃗)dv⃗ =

4π

3

∫ ∞

0

a(v)f1(v)v
2dv

For more details on the expansion, the reader is directed towards the SOL-
KiT model and other similar models in the literature[27, 28, 29, 30]. Here it
will only be mentioned that the capability for including the Coulomb collision
operator outside of the Lorentz approximation and the proper treatment of
inelastic electron-neutral collisions is desirable and has been implemented in
ReMKiT1D following the techniques established in SOL-KiT[26].

Given the broad range of problems and the aim for flexibility, the need
for separating high-level concepts and implementation arises. ReMKiT1D
endeavours to exploit low-cost abstraction and the concept of scalable design
to produce a framework that is both fit for purpose in terms of adequately ad-
dressing the target problem classes above, as well as providing the user with
low level control, high level quality-of-life features, flexibility in the models
and numerics, and rapid iteration. This requires at least a conceptual sep-
aration of high-level concepts and those directly tied to the implementation
of operators and solvers in 1D, and an attempt has been made to separate
these concepts with the design of the source code as well. These high-level
concepts and the 1D implementation will be presented in the following two
sections.

7

3. High-level concepts and patterns

In this section the basic high-level pattern behind ReMKiT1D will be
presented, providing both a bird’s eye view of the code, as well as some gen-
eral and essential implementation details. However, exact implementations
and interfaces are omitted for the sake of brevity and flow, and the choice
is made to focus on a more descriptive presentation of the components and
their relationships. To this end, both classes and objects are written in Pas-
calCaseBold text to differentiate them from concepts with similar (and in
some cases the same) names.

Where appropriate, Section 5 and the example workflow there will be
referenced to provide additional concrete examples of concepts discussed in
this section.

3.1. The Modeller-Model-Manipulator pattern

ReMKiT1D’s high-level algorithm is built on the generalization of the
puppeteer pattern as presented by Rouson et al [31]. Figure 1 shows a sim-
plified UML diagram of this pattern, as implemented in ReMKiT1D.

The fundamental object in the pattern is a central Modeller object,
containing the variables that should be accessible to multiple components, as
well as any supporting library wrapper routines (such as MPI or PETSc[32]).
At this point, the exact implementation/data structure behind the variables
is irrelevant, as long as the interface allows for them to be safely passed
through to other components. In ReMKiT1D, encapsulation of the variable
values in theVariableContainer has been avoided, in order to minimize the
number of potential copies/memory allocation1. More details on variables,
communication, and external library interfacing is given in following sections.

The main relationships in the Modeller-Model-Manipulator pattern
are between the Modeller and the Model objects it contains, as well as
between the Modeller and the Manipulator objects it contains. These
will be discussed in detail in the next two subsections, but the following
short summary should illustrate the responsibilities of the different pattern
members:

1Functional programming patterns and different compiler optimization might be an-
other way to do this, but this has not been done for the version of the code presented
here.

8

Figure 1: A simplified UML diagram of the high-level structure of ReMKiT1D, showcasing
the Modeller-Model-Manipulator pattern, with those three components in bold edged
boxes. A Modeller has one or more Models and is coupled with its Manipulator com-
ponent so that the Manipulator can call Modeller functions and modify the variables.
A special case of the Manipulator is the Integrator, which uses the Modeller-Model
interface to evolve variables in time.

• Models contain, update, and evaluate Terms - objects representing
additive terms in the various equations of Section 2. Any one term is
associated with one variable, which it nominally evolves. A Model is
also allowed to have data specifically tied to it, and by default only
accessible to the Terms within it.

• The Manipulator modifies variables based on calling various Mod-
eller routines. This can be anything from performing an integration
step on a set of Models/Terms while obeying communication rules
to evaluating and storing individual terms into diagnostic variables.
The main concept behind the Manipulator class is the enabling of
high-level dependency injection.

• The Modeller provides a simple interface to the external world and
contains the Manipulators and Models. It can then be fitted into a
time-stepping/output loop to complete the time integration procedure.

9

3.1.1. Models and Terms

As noted above, Terms represent additive terms Si in equations of the
form dv/dt =

∑
i Si or

∑
i Si = 0. They are always associated with an

evolved variable, and can be evaluated into a variable data structure con-
forming to the evolved variable (see variable subsection below and Section 4).
At the moment, ReMKiT1D differentiates between general explicit Terms
which can only be evaluated, and matrixTerms, which can both be evaluated
and passed into PETSc. The present version of the code focuses solely on the
matrix terms, and all examples in this paper will focus on them. However,
some development has gone into building the architecture for the addition of
matrix-free/explicit Terms, and that will be noted where appropriate.

The Models in Section 5, for example, each contain a single term, rep-
resenting spatial derivative operators used to evolved coupled variables, re-
sulting in a wave equation.

Let both v and u be implicit variables (those that have a mapping to a
global implicit vector for use in PETSc, see below for more details). Then a
matrix term describing the evolution of v represents the RHS of

dvi
dt

= Mijuj, (6)

where summation on repeated indices is assumed. The matrix Mij, whose
functional dependence on various variables and time is dropped here for read-
ability, is then composed of multiplicative components and a stencil Sij so
that

Mij = cT (t)FiRiCjSij, (7)

where c and Fi are some constant2 and a constant array that depends only on
the index i, which in practice involves functions of just the spatial/velocity
space coordinates and T (t) is an explicit multiplicative time dependence.
Finally, R and C are row and column functions of some variables in general.
In practice, these are set to products of variables raised to some power like

Ri =
∏
n

vpnn,i,

2This constant is usually associated with some normalization quantities - see Section 5

10

where n now indexes different variables. Together with stencils, these fully
define a matrix term, noting that every component other than a stencil is
optional. Stencils come in different forms, representing the discretization
of different operators. Some will be presented in Section 4. The simplest
stencil is a diagonal stencil, with an example of a Python code snippet used
to generate the matrix Term representing

dv

dt
=

u

2w2

given as:

1 import RMK_support.simple_containers as sc

2

3 eVar = "v"

4 iVar = "u"

5 nConst = 0.5

6

7 #Set R = 1/w^2

8 vData = sc.varData(reqRowVars =["w"],reqRowPowers =[-2.0])

9

10 newTerm = sc.GeneralMatrixTerm(evolvedVar=eVar ,implicitVar=

iVar ,customNormConst=nConst ,varData=vData ,stencilData=sc.

diagonalStencil ())

Note that the above variables (v,u and w) do need to be registered in the
VariableContainer object, which will be covered below. The above will
then generate the matrix Mij = δij/(2w

2
i) that can then be used to evolve v

using an implicit method built with the PETSc library. More complicated
stencils will be presented in Section 4, but an example, relevant to Section 5,
is a spatial gradient stencil. Thus, stencils represent discretizations of various
differential or integral operators one might encounter while dealing with fluid
or electron kinetic problems.

Terms like the one above are then grouped into implicit and general
groups, with the only difference between the groups that implicit groups
can only contain matrix Terms, and can be evolved using the fixed-point
integrator (see next section and Appendix B), while general groups can only
be evaluated for use in solvers that only require a RHS vector3. These groups
are housed in Model objects and can be updated and evaluated from the

3In order to be able to evaluate a group, allTermsmust have the same evolved variable,
otherwise the group can only have its matrices passed to PETSc if it is an implicit group

11

parent Modeller object. In general, a Term can also use the evaluation of
other Terms in the Model or even borrow their matrices for modification.
An example of where this is useful is writing terms that depend on taking
velocity space moments of other terms (see Appendix A).

The Model can also contain a ModelboundData object, which, in
principle, calculates and stores data accessible to the Model and its Terms.
Some examples of ModelboundData will be covered in the following sec-
tions.

3.1.2. Manipulators and Integrators

The fundamental idea behind Manipulators is formalizing high-level
dependency injection through enabling callbacks to the Modeller4. Ma-
nipulators then allow for the direct manipulation of variable data in the
Modeller.

Manipulators are stored in a CompositeManipulator object, which
the Modeller calls directly, and each Manipulator is also associated with
a priority (0 being the highest). This way, one can control when certain Ma-
nipulators are called. For example, one might want to call a Manipulator
as often as possible as it modifies a variable that is used in some internal
iteration of an integrator. On the other end of the spectrum, one might want
to just call the Manipulator before outputting data, if the Manipulator’s
task is extracting diagnostic variables such as term evaluation.

Several important data access Manipulators are implemented at the
moment. They include term evaluation Manipulators, that store the eval-
uation value of a Term in one variable, useful for analysis, as well as de-
bugging. Similarly, an extraction Manipulator is available for accessing
ModelboundData values that can fit into regular variables (more on this
in the next sections).

Finally, the most important Manipulators are the Integrators, which
have their own specialized container in the CompositeIntegrator object.
These objects are responsible for the time integration, and the Compos-
iteIntegrator controls any single integration call in two ways:

1. By applying any global time step control

2. By calling individual Integrator components in accordance with pre-
cisely defined integration steps

4One can also think of this as an implementation of the well-known strategy pattern

12

The application of the global time step control is done by re-scaling the initial
time step in accordance with some rule (see Appendix B for an example).

Integration steps are defined by the following:

• The associated Integrator object

• The fraction of the global time step (the total time step requested in
the integration call) associated with the step

• Evolution and update rules (e.g. which Models and Term groups
should be evaluated or how often to update non-linear terms)

In combination with the grouping of Terms, this gives the user full control
over any potential operator splitting through simply defining each step in
sequence, and associating the Models (and optionally even individual Term
groups) to be used in the evolution. Furthermore, the control over update
frequency of both individual non-linearTerms as well asModelboundData
opens up performance optimization opportunities at the expense of accuracy,
all accessible at the highest level of the interface.

At the moment, two integrator types are implemented in ReMKiT1D,
an explicit Runge-Kutta integrator up to 4th order5, as well as a first order
Backwards Euler method with fixed-point iterations, borrowing heavily from
SOL-KiT’s integrator. It is briefly described in Appendix B.

3.2. Variables, communication, and Derivations

Variable data is stored in VariableContainer objects, which are re-
sponsible for providing data indexing as well as features pertaining to the
two general types of variables in ReMKiT1D:

• Implicit variables - these are allowed to be evolved by matrix terms and
can be declared as their RHS implicit variables,

• Derived variables - while these cannot be implicitly evolved, they can
have derivation rules associated with them.

5Arbitrary Butcher tableau support has been implemented, but not available in the
Python interface as of v1.0.x.

13

A VariableContainer is equipped with routines to generate local (in the
MPI sense) flattened vectors of variables for use in PETSc routines. The
only variables that are included in these local vectors are implicit variables.

In many use cases, there are variables which aren’t suitable to be included
in an implicit solve, but must be calculated using existing variables. The way
ReMKiT1D deals with this is through Derivations, which act as generalized
function wrappers that take in multiple variables and calculate one6. A
derivation rule is then a combination of a derivation and a list of required
variables, and we refer to variables calculated using this approach as derived
variables.

In general, Derivations wrap impure functions, allowing for changes to
their internal state. However, most derivations available in ReMKiT1D are
written avoiding side-effects, with some tree-based calculation derivations,
covered below, written explicitly with pure functions to enable compiler op-
timization.

While the list of available Derivation classes is too long to cover here, it
is worth noting that they can be combined both additively and multiplica-
tively through corresponding composite Derivation objects. More involved
examples include derivations that take moments of distribution function vari-
ables, or specialized derivations for polynomial functions of multiple variables
(see Appendix A for an example of where this is useful).

Furthermore, variables are by default assumed to live on just the spatial
grid (see Section 4.1 for details), but can be specified to be distributions that
also have velocity and Legendre harmonic indices, or simply scalar variables.

The implementation of communication across the spatial domain and in
distribution function harmonics will be presented in detail in the next sec-
tion, though it is worth noting here that some Derivations might require
knowledge of data calculated or evolved by MPI processes other than the lo-
cal one. An example would be a central difference operator derivation, which
will require knowledge of spatial halo values before being able to correctly
calculate the difference. Thus, there is danger of out-of-order communication
and derivations. This is true in particular with scalar variables, which are al-
ways associated with a primary host process, and are broadcast to all others.
If a Derivation on one process requires a scalar variable living on another

6The implementation of the interface is a little different, with Derivations taking in
data and indices associated with the variables that are required

14

Figure 2: An example of how ReMKiT1D handles the calculation and communication of
derived variables. Left: A graph representation of variable dependencies in this example.
Here a and b are implicit variables and can be safely communicated first. c is derived using
only implicit variables a and b and is thus given depth 0; d is not an implicit variable,
but does not have a derivation rule associated with it (perhaps being evolved explicitly),
and is also given depth 0. e and f depend on depth 0 and 1 derived variables, and thus
have depths 1 and 2, respectively. Right: The derivation-safe communication algorithm -
derivations are called on each depth only once the depth before it has been communicated,
ensuring no out-of-order operations. Example: If c requires taking the central difference
derivative of a, the halo of variable a must first be communicated.

process, the broadcast MUST happen before the derivation call in order for
the correct value to be used. In ReMKiT1D, this is ensured by associating a
derivation depth with every variable, and always using a communication-safe
derivation call, as follows:

• Implicit variables are given a derivation depth of -1; they are always
safe to communicate and are the first to be communicated.

• Derived variables that only require implicit variables (or don’t have any
required variables) are given a depth of 0; they can be calculated once
implicit variables have been communicated.

• All other derived variables are given depth equal to d + 1, where d is
the highest depth of all variables required by a given derived variable.

15

Thus, variables of depth d are calculated only after variables of depth
d− 1 have been communicated.

The above algorithm ensures safe calls to all Derivation routines, under the
condition that there are no cyclical dependencies. This can be represented
by a directed acyclic graph, as shown in Figure 2.

Finally, it is worth noting that a variable-like ModelboundData object
is available, which stores derived variables only. Those variables, unlike in
the VariableContainer can also represent single harmonics, making them
useful for some kinetic algorithms (see Appendix A). However, the above
communication-safe derivation call is not available, so care should be taken
that any derived variables in such a ModelboundData object are added
in the correct order. In practice this is rarely an issue, since most derived
variables in ModelboundData tend to be calculated using variables in the
VariableContainer, while only a minority require variables that only live
in the ModelboundData.

3.2.1. Tree-based calculation Derivations

A particularly flexible type of Derivation is worth covering in slightly
more detail at this point. This is based on an expression tree calculation,
where each node (represented in the Fortran code by the CalculationNode
class) can have a particular set of properties:

• Whether the node is additive or multiplicative with respect to the re-
sults of its children

• A single constant to add to/multiply the results of the children, de-
pending on whether the node is additive or multiplicative

• An associated variable name from the VariableContainer - only rel-
evant for leaf nodes, where it is treated as the result of the node’s
non-existent children

• A unary transformation, to be applied to the result of the node

By default, nodes are multiplicative, with a constant of unity, and no unary
transformation. Most basic functions, such as exp and log, are implemented
as unary transformations. Unary transformations can also have associated
parameters, allowing for added flexibility. An example is raising variables to

16

Figure 3: Example of a calculation tree. a) General expression tree diagram we are looking
to represent. Each node should add/multiply the results of its children and potentially
apply some unary transformation to that result. b) Left-child right-sibling representation
of the calculation tree. Blue arrows connect the parents with their leftmost child, red
connect nodes with their sibling to the right, and black arrows point back to the parent.
c) UML representation of the CalculationNode class. See text for more details. d)
Example of a Python expression that would generate the example tree for ReMKiT1D
to use. Leaf nodes are pointed out using solid line arrows and boxes, and the composite
nodes with dashed line arrows/boxes. The root node and nodes N1,N4, and N5 are two
additive nodes, a node with an applied function, and a multiplicative node with a constant,
respectively. Note that, in this case, all three variables participating in leaf nodes must
conform, i.e. be of the same size (e.g. all must be fluid variables or distribution variables,
but not a mix).

integer- or real-valued powers, which are transformations where the power
is a transformation parameter. Another useful parameterized transform is

17

the shift transform, which cyclically shifts the flattened array representation
of a variable/node evaluation result some number of entries. This allows
for representation of finite difference/volume operators through appropriate
combinations of shift transforms. Transforms are also supplied that can be
used for the contraction of distribution variables into variables that are only
defined on the spatial grid, and vice-versa. In this way, preparation work has
been done for general non-matrix Terms to be implemented with a simple
Python level interface in the future.

The result of a node evaluation is given by

Ri = fi(ci +
∑
j∈Ci

Rj), (8)

for an additive node and

Ri = fi(ci
∏
j∈Ci

Rj), (9)

for a multiplicative node, where fi is the unary transformation, ci is the
constant, and Ci is the list of the children of node i. The expression tree is
represented in the Fortran code using a left-child right-sibling tree structure,
where each child node also has a reference to its parent. The two above
expressions then become

Ri = fi(ci ·i RLi
·Pi

RSi
), (10)

with ·i now representing the binary operation (addition or multiplication)
associated with node i, Li the left child of i, Si the right sibling of i, and Pi

the parent node of i. Both representations of the tree structure, as well as
the UML element for the CalculationNode class, and an example Python
expression generating an expression tree are given in Figure 3.

A few notes on the implementation details of this particular type of
Derivation are in order, as there are a number of (Fortran) peculiarities
that need to be addressed. Firstly, copying derived types with pointer com-
ponents is error prone, as the copy’s pointers will not point to the same
object as the original’s pointers, but to the pointers themselves. This can
lead to surprises when objects go out of scope, causing all copies of them to
have their pointer components dangling. This can be avoided using Fortran’s
allocatable components. However, since the unary transformations are pro-
cedure pointer components, it is impossible to completely avoid this issue of

18

dangling pointers. The way ReMKiT1D’s implementation gets around these
behaviours is through flattening the expression tree, and unpacking it only
once evaluations are required. One can argue that the procedure pointer
issue can be avoided by checking association at each evaluateNode call, and
associating the pointer with the correct procedure if it became un-associated.
Unfortunately, this is technically a side-effect, and would disallow the use of
pure evaluateNode functions, which was one of the aims when designing this
particular expression tree representation.

4. Implementation in 1D

A number of implementation details are unique to the 1D case dealt
with by ReMKiT1D. These include the default grids in the code, variable
communication, as well as some of the finite volume operators, and will
be presented in this section. Several implementation details that are not
necessarily tied to the 1D approach will also be presented here, such as the
handling of collisional-radiative processes.

4.1. Grids

ReMKiT1D deals with three types of variables7:

• Scalar variables

• Fluid variables - the default variable type, lives only on the spatial grid

• Distribution variables - live on both the spatial and velocity grids (in-
cluding Legendre harmonics)

ReMKiT1D contains default implementations of the spatial and velocity
grids used to both determine the numbers of degrees of freedom for each
variable, as well as construct some default operators. In principle, the user
does not have to use the default operators and can construct custom stencils
(see below).

7Four if single harmonic variables in variable-like model-bound data objects are con-
sidered, but these cannot be explicitly included in the main variable container object in
v1.0.x.

19

4.1.1. Spatial and velocity grids

The default spatial grid in ReMKiT1D consists of a 1D array of cells i,
which can be thought of as stacked truncated cones, such that their base
areas are given by cell face Jacobians Ji, allowing for the representation of
flux tubes of varying cross-section in the SOL. Together with the cell widths
dxi, these Jacobians determine cell volumes Vi = dxi(Ji+Ji−1)/2. Alongside
the grid of cells i, a dual/staggered grid of cells i + 1/2 is defined. The
volumes and face Jacobians of these cells are calculated so that they fit into
the regular grid. Thus the right face Jacobian of cell i+1/2 is the cell centre
Jacobian/area of cell i+1, Ji+1/2 = (Ji+Ji+1)/2, and the volume is given by
Vi+1/2 = dxi(Ji−1/2 + Ji)/4 + dxi+1(Ji+1/2 + Ji)/4. An exception to this are
dual grid cells near boundaries, which can be extended so that the dual grid
cell volumes cover the same volume as the regular cells, which is useful when
a boundary condition on an outer cell face should be applied to variables
defined on the dual grid. A schematic of the default ReMKiT1D spatial cells
is shown in Figure 4.

dxi dxi+1

dxi+1/2

dx*i+1/2

JiJi-1
Ji+1

i i+1/2 i+1 i+3/2

Figure 4: The default ReMKiT1D spatial grids. Black cells are cells on the regular grid,
with their cell centres labelled by whole numbers i and marked by black stars, and their
right cell face Jacobians given by Ji. The dual/staggered grid points are marked with red
stars and the corresponding cells with dashed red lines. Dot-dashed blue lines mark an
example of an extended boundary dual cell, in this case assuming that the left face of cell
i in the schematic is an outer boundary face.

20

Fluid variables thus live either on the regular or the dual grid, with the
possibility of linear interpolation between them. Distribution variables, on
the other hand, either live entirely on the regular grid, or their even l har-
monics live on the regular and their odd harmonics on the dual grid, or
vice-versa. This is because some of the more notable moments of even har-
monics include densities and energies, which naturally live in cell centres/on
the regular grid, while the odd harmonics produce moments that determine
various fluxes.

When the spatial grid is periodic, the regular and dual grids have the
same number of cells. Otherwise the dual grid has one fewer cell, as the
outer boundaries of the domain are always assumed to be on regular cell
boundaries. In terms of the actual array indexing, a variable that lives on
the staggered grid with index i corresponds to the right cell face of regular
cell i, or i+ 1/2 in Figure 4.

The velocity grid is a 1D array of cells with defined cell centres repre-
senting discrete velocity magnitudes, and is accompanied by the harmonic
index, similar to the implementation in SOL-KiT[26]. The distribution func-
tion is assumed to be azimuthally symmetric, so that the harmonic number
l is the only one that needs to be tracked8. As such, distribution variables
are fully determined by a spatial, a harmonic, and a velocity index, making
them effectively 1D2V.

The layout of implicit fluid and distribution variables in a flattened array
passed to PETSc is covered in Appendix B.

4.1.2. MPI communication

ReMKiT1D utilizes MPI parallelism, with each rank responsible for evolv-
ing/calculating its own local variable data in the following way. The spatial
domain is simply decomposed, with halo exchange coupling the different
spatial partitions. However, in order to obtain speedup when multiple dis-
tribution harmonics are included, ReMKiT1D also allows partitioning in the
harmonic domain, though in a less efficient manner due to some fundamen-
tal constraints. Thus, the domain decomposition when evolving distribution
variables is inherently 2D. Each column represent a spatial partition and each
row represents a harmonic partition. Hence, spatial(harmonic) information
is exchanged between columns(rows). This is shown in Figure 5.

8Although support is built in for an eventual inclusion of the m numbers as well

21

halo exchange
h
a
rm

o
n
ic

 p
a
rt

it
io

n
s

spatial partitions

�uid variable
broadcast

distribution
 variable
broadcast

Figure 5: Schematic of a spatial-harmonic domain decomposition. Each cell represents
one MPI process, and each column (shown in different colours) corresponds to a single
set of spatial coordinates. Within a column fluid variables live in the first process, while
harmonics are distributed across the column processes. Three of the four types of commu-
nication in ReMKiT1D are shown: halo exchange - exchanging spatial information along
rows; fluid variable broadcasts - broadcasting from each column’s root process to other
processes in the column; distribution variable broadcast - broadcasting data from all col-
umn processes to all other processes in the same column.

The following rules for local variable data are observed:

• Fluid variables live in the first row of each column, where they are
evolved/calculated and broadcast to other processes in their respec-
tive column. However, derived variables need only be communicated
if necessary (as deemed by the user and set by the problem), and are
calculated on each process independently following the communication-
safe algorithm in Figure 2.

• Distribution variables are spread across all processes, with their har-
monics partitioned within processor columns. Due to how some oper-
ators might require the entirety of the distribution function at a sin-
gle spatial location, harmonics within a column are broadcast to all
processors in that column, which makes column communication more
expensive than the row halo exchange.

• Scalar variables are assigned a host processes, such that they are broad-
cast from that process to all others. This is only necessary if the scalar

22

variable’s value is expected to depend on some spatial information. An
example is extracting the value of a variable in the last spatial cell and
passing it to all other processors.

Based on the above rules for variables, four types of variable communi-
cation exist in ReMKiT1D, with three shown in Figure 5. These are

• Halo exchange - where both fluid and distribution variables are ex-
changed within their respective processor rows

• Fluid variable broadcast - where fluid variables are broadcast from each
processor column’s root to the other column processes

• Distribution variable broadcast - where distribution variable harmon-
ics are broadcast from the processes that evolves them to all other
processes in the same column

• Scalar variable broadcast - broadcast from single host process to all
others (not shown in Figure 5)

Other minor communication routines exist, primarily to check integra-
tor convergence criteria by performing a logical reduction operation over all
processes.

The two domain decomposition dimensions are not equivalent, as might
be expected from a standard 2D domain decomposition. This is solely due
to the fact that we are dealing with variables of varying dimensionality. In
particular, harmonic decomposition is more communication-heavy. However,
due to the large number of practically dense matrix operators, such as colli-
sion operators, speedup can be gained even with this increased cost of com-
munication, as will be shown in Section 6.

4.2. Operators in 1D

In order to illustrate how matrix term stencils work, a number of operators
will be reviewed in this section. However, this will not be an exhaustive list,
in particular when it comes to various collision operator stencils and kinetic
boundary conditions, the implementation of which is adopted from SOL-
KiT[26].

As shown in the Python code snippet in Section 3, the simplest (and de-
fault stencil) is the diagonal stencil Sij = δij. It does, however, allow for the

23

specification of evolved spatial cells/harmonics/velocity cells, effectively in-
cluding only the relevant diagonal terms in the matrix. The diagonal stencil
also automatically determines whether interpolation/extrapolation is neces-
sary. This is important when staggered grids are used and the evolved and
implicit variable are not defined on the same grid. In this case the diagonal
stencil will automatically linearly interpolate from the implicit variable’s grid
onto the evolved variable’s grid.

The second most important stencil group are the various spatial differ-
ence stencils, starting with the central difference stencils, where both the
implicit and the evolved variable must be defined on the same grid (regular
or dual), and the implicit variable is interpolated onto the corresponding cell
boundaries. An example is the central difference divergence stencil, where i
and j here are spatial cell indices

Sijuj =
Jiui+1/2 − Ji−1ui−1/2

Vi

, (11)

where ui+1/2 is the variable u interpolated on the boundary of cell i. For
variables defined on the dual/staggered grid, the interpolation is performed
accordingly, and the above expression can be used with i → i + 1/2. For a
gradient operator, the Jacobians are ignored, and the stencil becomes simply

Sijuj =
ui+1/2 − ui−1/2

dxi

. (12)

In the case of differences on a staggered grid, where the implicit and evolved
variable live on different grids, the expressions look the same, but now ui+1/2

is not interpolated, since it is the actual value of the implicit variable, con-
sidering it lives on the boundaries of cell i. In practice, this amounts to for-
ward/backward difference, depending on whether the implicit variable lives
on the dual/regular grid, respectively.

Note that the above stencils do not include the contribution from the
domain boundaries, which can be dealt with a corresponding boundary con-
dition stencil for both divergence and gradient operators. For a divergence
boundary condition, the following form is assumed

Sijuj = ±δiib
JibFbub

Vib

, (13)

where ib is the spatial index of the boundary cell (with Jib denoting either the
left or right face Jacobian in this case), and the sign depends on whether the

24

boundary is the left(+) or right(-) domain boundary. Fb is the flux Jacobian
variable, and both it and u are linearly extrapolated onto the boundary. This
form assumes that the flux through the boundary is given as Fbub, with the
flux Jacobian variable living on the regular grid. The boundary condition
operator written in this form allows for the application of a lower bound to
the flux Jacobian, which is useful, for example, in setting the Bohm condition
at the divertor target (see Appendix A). For a gradient operator both the
flux and face Jacobians are ignored, and the stencil becomes simply

Sijuj = ±δiib
ub

dxib

. (14)

Note that the above divergence boundary term is non-linear, due to both F
and u being variables. More involved stencils might have derivation rules
associated with them, or might require access to model-bound variables. An
example is the spatial diffusion stencil, which requires both the evolved and
the implicit variable to live on the regular grid, and takes in a derivation rule
in order to calculate the diffusion coefficient D

Sijuj =
1

Vi

(
JiDi+1/2

ui+1 − ui

dxi+1/2

− Ji−1Di−1/2
ui − ui−1

dxi−1/2

)
. (15)

Kinetic/distribution variable stencils tend to be more involved, and will
not be covered in detail in this manuscript. An example of this complexity
is the velocity space derivative operator, representing the term

∂fl
∂t

=
∂

∂v
(C(v)fl′), (16)

where the function C(v) can be specified in the code as either a fixed veloc-
ity space vector, or a model-bound single harmonic variable. Similarly, fl′
can be interpolated onto the velocity space cell boundaries, and the linear
interpolation coefficients can be specified in a similar way to C(v), defaulting
to interpolating directly onto the cell boundaries. An example where both
custom interpolation and C(v) are useful is for the Chang-Cooper-Langdon
scheme[33] for the Coulomb collision operator (used in the model in Appendix
A).

Other kinetic stencils include

• A moment stencil - represents taking the n-th moment of a harmonic
4π

∫∞
0

flv
n+2dv.

25

• Velocity space diffusion - with the ability to specify single harmonic
model-bound data diffusion coefficients.

• Logical boundary condition - a stencil representing the logical boundary
condition, as derived for SOL-KiT[26].

• Spatial difference stencil - ∂/∂x operator for harmonics, behaving either
as a central difference or a staggered (forward/backward) difference
stencil, depending on where the individual harmonics are defined.

• Boltzmann collision operator stencil - based on the SOL-KiT Boltz-
mann collision integral implementation and using the collisional-radiative
model-bound data (see next section)

• Other niche stencils - such as a stencil taking the moment of a kinetic
term, or stencils designed for particular Coulomb collision operator
terms.

A particularly convenient stencil from a user’s perspective is the custom
1D fluid stencil, which gives the high-level user effectively low-level access
with a very flexible interface. This stencil is defined as

Sij =
∑
k

δi,j+skXk,ivk,iwk,i, (17)

where sk defines the k-th relative stencil entry position. Xk,i is the i-th entry
of the fixed stencil component for the k-th relative stencil entry, while vk and
wk represent VariableContainer and ModelboundData fluid variables
that can be included as individual stencil columns. In this way, combined
with various Derivations, the user can represent most fluid stencils. An
example would be a three point stencil, where s = [−1 0 1], meaning that
each spatial location requires information from its left neighbour, itself, and
its right neighbour. This three point stencil can then be used, for example,
to represent the diffusion stencil in equation (15) by setting

X1,i =
Ji−1/2

Vidxi−1/2

, X3,i =
Ji+1/2

Vidxi+1/2

, X2,i = −X1,i −X3,i,

where the diffusion coefficient was assumed to be 1, for simplicity9. One could

9Otherwise there would be a need to define three derived variables to use as vk or wk

in equation (17), for which one could use calculation trees

26

then add complexity by accounting for boundary conditions, for example by
setting X1,i to 0 at the left boundary and X3,i to 0 at the right boundary.

More details on the available stencils and their options can be found in
the User Manual and within the code documentation.

4.3. Collisional-radiative model-bound data

While one could write a collisional-radiative model (in the ODE sense
from Section 2) purely using derived variables and diagonal stencils, these
models tend to contain many transitions and terms, so the cognitive load on
a user implementing them term-by-term would be high. When one factors
in the special treatment needed for Boltzmann collisions, it becomes natu-
ral to group collisional-radiative data to allow for efficient Term generation.
The ModelboundCRMData class serves this purpose, unifying Transi-
tion objects and inelastic collision mapping, and enabling a simple interface
for Term generation.

It is also worth noting here that species data in ReMKiT1D can be
grouped into species objects, each being associated with a species name and
integer ID, and containing data on the species charge and mass. Most impor-
tantly, it also allows for the association of certain variable names to a species,
which further facilitates the automatic generation of Terms. The abstract
Transition class assumes that each species is associated with an integer ID
when defining the ingoing and outgoing states. For example, the integer ID
0 is always associated with electrons, and negative IDs are generally used for
ion species, while positive IDs tend to denote neutrals species. As such, one
could represent the ionization reaction

e− +H → e− + e− +H+,

as aTransition from ingoing to outgoing states/species10 [0 1] → [0 0 −
1], assuming that the hydrogen atom is given the ID 1 and H+ the ID −1.
Then, depending on the concrete Transition class, the following quantities
are accessible through the abstract interface:

• The reaction rate as a function of position

10In the context of the CRM model-bound data these two terms are used interchange-
ably. It is assumed that each tracked state is represented by a species in the model.

27

• The momentum loss rate as a function of position - usually available
only for a small subset of electron induced transitions

• The energy loss rate as a function of position - generally associated
with the energy loss of electrons

• Cross-section - electron impact cross section associated with the transi-
tion and used when constructing Boltzmann collision operators (can be
a function of position in the general case, see below for detailed balance
transition)

• Transition energy - either a fixed value or a value for each spatial cell
based on the ratio of energy loss and reaction rates

Different Transition classes are available to the user, allowing for control
over how the above quantities are calculated and used. The following are
available and widely used as of v1.0.x:

• SimpleTransition - the simplest possible transition with a fixed tran-
sition energy and rate

• DerivedTransition - a transition with the reaction rate calculated
using a Derivation. Uses a fixed transition energy by default, but can
also associate Derivations with the momentum and energy loss rates

• FixedECSTransition - a transition with a fixed transition energy and
cross-section (which can be specified for any number of electron distri-
bution harmonics). The rates are calculated using the cross-section,
together with inelastic grid mappings (see below)

• DBTransition - a transition obtained using detailed balance (see SOL-
KiT paper[26]) with another transition which has a cross-section asso-
ciated with it. The resulting cross-section held by this Transition
object is thus also a function of position.

In order to use Boltzmann collision operators or any of the transitions with
associated cross-sections, inelastic transition grid data must be generated,
in the same way as in SOL-KiT, by specifying a set of transition energies.
Then transitions such as the FixedECSTransition and stencils such as the
Boltzmann collision operator stencil can calculate rates and operators that

28

obey particle and energy conservation. Term generator objects can be cre-
ated in ReMKiT1D, that can scan the ModelboundCRMData object and
generate all terms corresponding to the particle and/or energy loss/gain rates
due to collisions, as well as any Boltzmann collision operators. For example,
particle sources can be generated using the reaction rate data of each transi-
tion, multiplying them with the ingoing state densities corresponding to the
transition11 and by the population change due to the transition. In the above
electron impact ionization example the population change for electrons and
ions is +1, while it is −1 for the atoms. In general, these produce terms of
the form (

∂nb

∂t

)
T

= P T
b K

T
∏
b′∈IT

nb′ , (18)

where b is the species index (and can be associated with any species in either
the ingoing or outgoing state lists), IT is the ingoing state list for transition T ,
KT is the reaction rate of the transition, and P T

b is the population change of
species b in transition T . These sorts of generated terms are diagonal stencil
terms using model-bound rate data and are implicit in the final ingoing state
density (given as the first associated variable for that species). Other term
generators can be found in the code documentation and examples.

5. Python-JSON-Fortran interface and example workflow

ReMKiT1D’s core is written in Fortran, and the code is initialized through
a JSON configuration file using the json-fortran library[34]. The motivation
behind this approach is the combination of human readability and established
IO libraries for JSON in both Fortran and Python. This section will cover
IO both with JSON and HDF5 files before presenting an example of how
a simple advection simulation with two equations can be generated in the
Python interface.

5.1. IO with JSON and HDF5 through Python interface

As noted above, ReMKiT1D is fully initializable using just a JSON config-
uration file. The JSON keys are defined in the Fortran code, and a Python

11Some transition rates that use cross-sections already include one electron density fac-
tor, so these are automatically dropped by generators

29

interface that generates the corresponding JSON entries is provided. The
main object in this Python interface is the RKWrapper, which is responsi-
ble for generating the configuration file and provides a convenient interface
for creating ReMKiT1D runs without knowing the appropriate JSON keys.
To illustrate the config.json file format, a snippet of the file produced for the
advection example to follow is provided below. The snippet contains settings
for HDF5 output as well as MPI communication.

1 "HDF5": {
2 "filepath": "./ RMKOutput/RMK_advection_test

/",

3 "outputVars": ["n", "n_dual", "T", "T_dual",

"u", "u_dual", "time", "W"]

4 },
5 "MPI": {
6 "commData": {
7 "haloExchangeVars": ["n", "n_dual", "

u_dual", "u"],

8 "scalarBroadcastRoots": [],

9 "scalarVarsToBroadcast": [],

10 "varsToBroadcast": []

11 },
12 "numProcsH": 1,

13 "numProcsX": 4,

14 "xHaloWidth": 1

15 }

Data output in ReMKiT1D is performed using the HDF5 library, with
HDF5 datasets generated for each variable selected for output (see above
snippet for example). Each .h5 file produced this way corresponds to one
time step, and the Python interface provides routines for reading these files
into xarray datasets, allowing for easy data processing.

HDF5 files can also be used to initialize variable values, instead of using
the initial conditions in the config.json file. Furthermore, the code can be
instructed to have each processor dump a restart HDF5 file, which can then
be used to restart runs from defined checkpoints.

30

5.2. Simple advection workflow example

In order to illustrate the Python-level workflow involved with producing a
ReMKiT1D config.json file, a simulation setup solving the following equations
will be explored

∂n

∂t
= −∂u

∂x
, (19)

mi
∂u

∂t
= −∂(nkT)

∂x
, (20)

where mi is here taken to be the hydrogen mass, and the flux is somewhat
unconventionally written as u. Before moving on to the details of the work-
flow example, it is useful to note the default normalization scheme used in
ReMKiT1D. While the users are free to set their own normalization constants
for each term, the code comes with the following default normalization, used
in all pre-built models, borrowing heavily from SOL-KiT[26].

The three independent normalization quantities are the reference den-
sity n0 (in m−3), temperature T0 (in eV), and ion charge Zref . These are
usually set to 1019m−3, 10eV, and 1, respectively. From these all derived
normalization quantities are obtained:

• Velocity (both for the velocity grid and flow speeds) is normalized to
vth = (2eT0/me)

1/2

• Time is normalized to the reference ion-electron collision time t0 =
v3th/(Γ

0
ein0 ln Λei(T0, n0)/Zref , where Γ0

ei = Z2
refe

4/(4πm2
eϵ

2
0) and the

Coulomb logarithm is taken from the NRL Plasma Formulary[35].

• Length is normalized to x0 = vtht0

• The distribution function units are in n0/v
3
th

• The electric field is normalized to mevth/(et0)

• Transition energies are normalized to T0

• Heat flux is normalized to men0v
3
th/2

• Cross-sections are normalized to 1/(x0n0)

31

In normalized units, the above equations become

∂n

∂t
= −∂u

∂x
, (21)

∂u

∂t
= − me

2mi

∂(nT)

∂x
, (22)

which is what will be implemented in the example that follows. The following
code snippet initializes the wrapper and sets up IO and MPI settings:

1 from RMK_support import RKWrapper , Grid , Node , treeDerivation

2 import RMK_support.simple_containers as sc

3 import RMK_support.IO_support as io

4

5 #initialize wrapper object

6 rk = RKWrapper ()

7

8 #set IO paths

9 rk.jsonFilepath = "./ config.json" # Default value

10 hdf5Filepath = "./ RMKOutput/RMK_advection_test/"

11 rk.setHDF5Path(hdf5Filepath) # The input and output location

of any HDF5 files used/generated by the code

12

13 #set MPI properties

14 numProcsX = 4 # Number of processes in x direction

15 numProcsH = 1 # Number of processes in harmonic direction

16 haloWidth = 1 # Halo width in cells

17 numProcs = numProcsH * numProcsX

18 rk.setMPIData(numProcsX ,numProcsH ,haloWidth)

The run being generated will be run on 4 MPI processes, all of which are in
the spatial direction, as there are no distribution variable to be parallelized
in the harmonic direction. The halo width used is the default one, as no
operator requires a halo wider than one cell.

The grid is initialized using the following code

1 xGridWidths = 0.025* np.ones (512) # widths of each spatial

cell

2

3 #no velocity grid necessary - default values for the grids

4 vGrid = np.ones (1)

5 lMax = 0

6 gridObj = Grid(xGridWidths , vGrid , lMax ,

interpretXGridAsWidths=True)

7

8 rk.grid = gridObj

32

which initializes a grid of length L = 12.8x0.
Basic variables are added in the following way

1 n = 1 + np.exp(-(gridObj.xGrid -np.mean(gridObj.xGrid))**2) #

A Gaussian perturbation

2 T = np.ones(len(gridObj.xGrid)) # Constant temperature

3

4 # These will add both the variable ’v’ and ’v_dual ’

5 rk.addVarAndDual(’n’,n,isCommunicated=True)

6 rk.addVar(’T’,T,isDerived=True) # isDerived removes the

variable from the implicit vector

7 rk.addVarAndDual(’u’,isCommunicated=True ,primaryOnDualGrid=

True) # primaryOnDualGrid denotes that the main variable

is u_dual , and u is interpolated

8 rk.addVar(’time’,isDerived=True ,isScalar=True)

After the above code, the wrapper will have the following variables registered:

• ’n’ - lives on the regular grid and is an implicit fluid variable (the
default) - initialized as n = 1 + exp(−(x− L/2)2)

• ’n dual’ - lives on the dual/staggered grid and is derived by linearly
interpolating ’n’

• ’T’ - a derived fluid variable with no derivation rule associated with it,
effectively making it constant - initialized to 1

• ’u dual’ - represents the flux, lives on the dual/staggered grid, and is
an implicit fluid variable - initialized to 0

• ’u’ - lives on the regular grid and is derived by interpolating ’u dual’

• ’time’ - an explicit scalar variable that the code will recognise as the
time variable and use it in that way

To demonstrate how Derivations are added, the following snippet cre-
ates a calculation tree for the normalized total energy W and adds the cor-
responding Derivation to the wrapper

1 #add individual variables as nodes

2 nNode = Node(’n’)

3 uNode = Node(’u’)

4 TNode = Node(’T’)

5

33

6 massRatio = 1/1836 # approximate electron -proton mass ratio

7

8 #tree representation of normalized total energy calculation

9 wNode = 1.5* nNode*TNode + uNode **2/(nNode*massRatio) #

assuming normalization to n_0*e*T_0

10

11 # Registering the derivation in the wrapper with the name "

wDeriv"

12 rk.addCustomDerivation("wDeriv",treeDerivation(wNode))

Then one can add the variable to be calculated with this derivation with

1 rk.addVar("W",isDerived=True ,derivationRule=sc.derivationRule

("wDeriv",[’n’,’u’,’T’]))

where the new variable ’W’ is associated with the derivation rule ”wDeriv”
and requires the three variables that act as leaf nodes in the calculation tree.
In general, the list of required variables depends on the type of derivation as
well as the use case.

At this point we can start adding the Models and Terms, beginning
with the continuity equation and the corresponding flux divergence term

1 # declare a new Model object

2 newModel = sc.CustomModel(modelTag="nAdvection")

3

4 #create a new general matrix term

5 divFluxTerm = sc.GeneralMatrixTerm(evolvedVar=’n’,implicitVar

=’u_dual ’,customNormConst =-1.0, stencilData=sc.

staggeredDivStencil ())

6 newModel.addTerm("divFlux",divFluxTerm) # add a new term with

tag "divFlux"

7 rk.addModel(newModel.dict())

where the implicit variable is ’u dual’ since it is the implicit flux variable, and
the stencil is staggered as ’n’ and ’u dual’ live on different grids. Similarly,
the pressure gradient term is added as

1 newModel = sc.CustomModel(modelTag=’pGrad ’)

2 #Required variable data for pressure

3 vData = sc.VarData(reqColVars =[’T’])

4

5 gradTerm = sc.GeneralMatrixTerm(evolvedVar=’u_dual ’,

implicitVar=’n’,customNormConst=-massRatio /2, stencilData=

sc.staggeredGradStencil (),varData=vData)

6 newModel.addTerm("gradTerm",gradTerm)

7 rk.addModel(newModel.dict())

34

where now the C array in equation (7) is set to the ’T’ variable on line
3, making the staggered gradient stencil act on both ’n’ and ’T’, with the
temperature value being lagged in time by the non-linear solver (has no
effect in this example since it is a constant). Note that neither of the terms
added has a boundary condition term. Since the grid is staggered, the main
boundary conditions are on the divergence of the flux, and with no boundary
condition term specified, these default to reflective boundary conditions (0
flux on boundaries). The only remaining setup concerns the time integration,
starting with the definition of the implicit integrator and its addition to the
CompositeIntegrator object

1 # the implicit BDE integrator that checks convergence based

on the variables ’n’ and ’u_dual ’

2 integrator = sc.picardBDEIntegrator(nonlinTol =1e-12, absTol

=10.0 , convergenceVars =[’n’,’u_dual ’])

3

4 rk.addIntegrator("BE",integrator)

where the absolute solver tolerance is in units of machine precision12, and
the global integrator properties

1 # fixed timestep in this example

2 initialTimestep =0.1 # in normalized time units

3 rk.setIntegratorGlobalData (1, # number of allowed implicit

term groups - grouping everything into one group per model

4 1, # number of allowed general

term groups

5 initialTimestep)

where no time step control is specified, making the time step constant -
∆t = 0.1. All Models are also set to allow only a single term group, as
there are no diagnostic variables that would require evaluating individual
terms or term groups, and there is no operator splitting in the integration of
individual Models. In this simple example, a single integration step in the
CompositeIntegrator is used, set in the following way

1 # a single integration step evolving all models

2 bdeStep = sc.IntegrationStep("BE")

3

4 for tag in rk.modelTags ():

5 bdeStep.addModel(tag)

12More precisely, in the units of the Fortran intrinsic function epsilon() applied to the
default ReMKiT1D real variable kind.

35

6

7 rk.addIntegrationStep("StepBDE",bdeStep.dict())

Finally the number of time steps is set13, as well as how often the code should
output variable data

1 rk.setFixedNumTimesteps (10000)

2 rk.setFixedStepOutput (200)

The configuration file is then written by simply calling

1 rk.writeConfigFile ()

The configuration file is then ready for use. Once the output files are gener-
ated they can be loaded into an xarray Dataset object using provided Python
routine. The output of this advection test will be analyzed in the next sec-
tion, and the Jupyter notebook with the test and analysis is available in the
ReMKiT1D-Python repository.

6. Verification and benchmarking

In order to build confidence in the implementation of various operators
both in the Fortran and the Python interfaces of ReMKiT1D a large number
of tests have been performed. Some of those will be presented here, aiming
to cover a wide range of use cases.

It should also be noted that the Fortran code for ReMKiT1D comes with
its own unit test suite, built using the testing framework pFUnit[36], with
those test integrated into the GitHub repository, while the Python package
is tested using the pytest package. For more details on these tests see the
corresponding repositories.

Beyond benchmarking, a number of parallel performance/scaling tests
have been conducted, and those will also be covered in this section.

Table 1 lists all of the tests performed in upcoming sections, as well as
the scripts associated with them, which are available either as parts of the
Python package’s examples or as supplemental materials for this manuscript.

6.1. Verification of fluid operators

A number of fluid operators are implemented in the code, as noted in
Section 4. These are primarily divergence and gradient operators used to

13It is possible to set different time-stepping modes and output modes such as running
until a certain elapsed normalized time is reached

36

Name and Section Scripts

Fluid advection test
6.1.1.

ReMKiT1D advection test.ipynb

MMS test
6.1.2.

ReMKiT1D MMS.ipynb

Kinetic advection test
6.2.1.

ReMKiT1D kin adv test.ipynb

Coulomb collision operators
6.2.2.

ReMKiT1D ee coll test.ipynb
ReMKiT1D ee coll test.ipynb
ReMKiT1D cold ion test.ipynb

Epperlein-Short test
6.2.3.

ReMKiT1D ES test.ipynb
es test.py
es verif.ipynb

Collisional-Radiative tests
6.3.

ReMKiT1D crm example.ipynb
ReMKiT1D kin crm test.ipynb

Epperlein-Short scaling tests
6.4.1.

es test weak scaling.ipynb
es test strong scaling.ipynb

SOL-KiT-like scaling tests
6.4.2.

sk comp thesis.py
sk comp thesis kin.py
ReMKiT1D SK comp staggered kin thesis.ipynb
ReMKiT1D SK comp staggered thesis.ipynb
sk comp thesis strong fluid.ipynb
sk comp thesis strong kinetic.ipynb

Table 1: Script names associated with each reported benchmarking and scaling test. All
.py and those .ipynb files starting with ReMKiT1D are part of the RMK support Python
package’s examples. All other .ipynb files are part of the supplemental material for this
manuscript.

37

represent terms such as advective and pressure gradient terms, as shown in
the Python example in the previous section.

6.1.1. Simple advection

Figure 6 shows the result of running the advection test from the previous
section for 1000 normalized times and comparing to the analytical result.
Agreement is generally good, with the relative error during the simulation
shown in Figure 6b. The relative error is defined here as

δn = max(|nsimulation − nanalytic|/nanalytic),

where the maximum is taken along the spatial domain. Note that the two
oscillatory features in the relative error in the figure come from the reflection
of the wave at the boundaries.

0 5 10
x (x0)

1.0

1.1

1.2

1.3

1.4

1.5

n
(n

or
m

al
ize

d
un

its
)

simulation
analytic result

(a) Comparison of analytic and numerical re-
sults at the end of the simulation t = 1000t0

0 250 500 750 1000
time (t0)

0.000

0.002

0.004

0.006

0.008

0.010

n

(b) Maximum relative error of numerical result dur-
ing simulation

Figure 6: Advection test results compared with analytical solution

Note that the above implementation of the advection operators does not
include any flux limiting or artificial viscosity. ReMKiT1D v1.0.x does allow
for the inclusion of artificial viscosity using the calculation tree approach.
Future implementations of non-matrix terms will address more complex flux-
limiter schemes used for shock capturing.

38

6.1.2. MMS test of isothermal 2-fluid model

In order to test a slightly more involved problem, the following equations
were implemented:

∂ns

∂t
+

∂Γs

∂x
= 0, (23)

ms
∂Γs

∂t
+

∂

∂x
(nskTs +msΓsus)− ZsensE = 0, (24)

∂E

∂t
= − j

ϵ0
, (25)

where s is a species index, here either for electrons or deuterium ions, and
j =

∑
s ZseΓs is the total current, making the electric field equation, when

solved implicitly, act as a current constraint (see SOL-KiT implementation).
Γs = nsus is the particle flux, and Zs is the species charge. The species
temperatures Ts are left as constants. These equations can be suitably nor-
malized to be

∂ns

∂t
+

∂Γs

∂x
= 0, (26)

∂Γs

∂t
+

∂

∂x

(
me

2ms

nsTs + Γsus

)
− me

ms

ZsnsE = 0, (27)

∂E

∂t
= −t20ω

2
pj, (28)

where t0 is the normalization/electron-ion collision time and ωp is the plasma
oscillation frequency at the normalized density. The normalized temperature
Ts is set to 0.5T0. In order to test the above equations, the following manu-
factured solution is used with reflective boundary conditions:

ns = 1 + 0.1
x− L

L
, (29)

us = −0.01x
x− L

L2
, (30)

E = −1

4

1

ne

∂ne

∂x
− 1

ne

∂

∂x
(nu2), (31)

(32)

39

where the fact that the temperature is equal to 0.5T0 is used explicitly and
the electric field is calculated from the electron momentum equation. L is
the length of the domain, and x the spatial coordinate, either on the regular
or dual grid. Following the Method of Manufactured Solutions (MMS), the
above solutions are inserted into the equations and the resulting source terms
are added in order to push the solution towards the manufactured one. Note
that the electric field equation is unaffected, as the manufactured solution
assumes j = 0. Finally, the densities ns are set to live on the regular grid,
and the fluxes Γs and electric field E are set to live on the dual/staggered
grid. The simulation is then run for several (≈ 3) sonic transition times L/cs.
L here is set to 10m and the normalised sound speed is cs =

√
meTe/mi.

The errors are calculated as the maximum (within the domain) relative
departure of the tracked quantities compared to the initial values at the
end of the simulation, and are shown in Figure 7. When the manufactured
solution is computed directly, in particular the ∂(Γsus)/∂x terms, the electric
field converges poorly due to discrepancies at the system boundaries, see
7a. This is because the default operators used in this example assume that
the boundary cells on the dual grid are extended, as shown in Section 4.1.
Once this is taken into account and those gradient terms are modified in the
manufactured solution, much better spatial convergence is obtained, see 7b.

6.2. Verification of kinetic operators

A number of kinetic operators are included in ReMKiT1D, with some
used to compose more complex operators, such as the Coulomb collision
operators (see Appendix A). A number of these operators will be subjected
to verification tests in this section.

6.2.1. Kinetic advection

As noted in Section 4, on staggered grids the even harmonics live on the
regular grid (cell centres) and the odd distribution harmonics live on the
dual/staggered grid, so it is possible to write a simple advection test for the
kinetic spatial advection operator that mimics the fluid advection setup by
writing the equations for f0 and f1 without any fields or collisions

40

102 103

Nx

10 9

10 7

10 5

10 3

10 1

m
ax

(
)

(a) Without accounting for extended boundary
cells in manufactured solution

102 103

Nx

10 9

10 7

10 5

10 3

10 1

m
ax

(
)

ne
ue_dual
E_dual

(b) With accounting for extended boundary
cells in manufactured solution

Figure 7: Convergence of MMS test on simple isothermal 2-fluid model with Nx = 64 −
1024. The plotted quantity is the maximum relative error of the respective variables
compared to the manufactured solution after t ≈ 3L/cs

∂f0
∂t

+
1

3
v
∂f1
∂x

= 0, (33)

∂f1
∂t

+ v
∂f0
∂x

= 0, (34)

which gives a wave equation for f0 with wave speed v/
√
3. By initializing f0

spatially as a Gaussian for all velocities v one can then test the numerical
errors for each velocity grid. These are, as expected from keeping the same
time and space discretization, worse for larger velocities, as shown in Figure
8. Similar to the fluid advection test the reflections from boundaries are seen
as oscillations in the error. While Figure 8 shows a worryingly high error for
high velocities, it should be noted that the Gaussian initial condition is the
same for all velocities, so the distribution function is unphysically large at
high velocities, where it would be orders of magnitude smaller than in the
bulk, so in practice this error at high velocities contributes very little to the
moments of the distribution function.

For completeness, the grid parameters for this test are as follows. The
spatial grid has normalized length L = 12.8x0 with 128 cells, and the sim-
ulation is run with time steps of ∆t = 0.01t0, where we note again that

41

vth = x0/t0. In this example vmaxdt/dx = 1, resolving all of the wave speeds
in the system, albeit poorly for higher v values, as evident from Figure 8.
For more details the reader is directed to the relevant example script.

0 10 20 30 40
time (t0)

10 7

10 4

10 1

f 0

v = 0.01vth

v = 0.05vth

v = 0.30vth

v = 1.74vth

Figure 8: Absolute error of f0 harmonic compared to analytical result due to spatial
advection.

6.2.2. Coulomb collision operators

Coulomb collision operators are an important part in accurately mod-
elling electron kinetic effects, and the implementation based on ReMKiT1D
velocity space operators will be tested in this section. For more details on
the functional form and numerical implementation, the reader is directed to
previous work in SOL-KiT, as well as Appendix A and the relevant Python
routines referenced in the scripts.

The first Coulomb collision operator to be tested is the isotropic electron-
electron operator, a non-linear operator acting on f0, conserving particles and
energy and pushing the distribution towards a Maxwellian. The conservative
finite difference implementation of this operator should conserve particles
exactly and energy up to non-linear tolerance. To test this, only the f0
harmonic is evolved, with the following bump-on-tail initial condition (in
normalized quantities)

42

f0(t = 0) =
n

(Tπ)3/2
e−v2/T +

0.1n

(Tπ)3/2
e−(v−vbump)

2/T ,

where n = 1n0, T = 0.5T0, and vbump = 3vth, with standard normalization.
This leads to the relaxation of the bump towards a Maxwellian with effective
temperature T ≈ 6.07T0. This relaxation is plotted in Figure 9 on a log
scale, with the x-axis being the energy grid (simply v2 with the standard
normalization). The time step used is ∆t = 0.05t0, and the simulations were
ran up to t = 60t0.

The velocity grid cell widths are given by ∆v1 = 0.01535vth and ∆vi =
cv∆vi−1, with a total of 120 cells. The test was performed with two values
of cv, 1.025 and 1.03, which give total velocity grid lengths of approximately
11.27vth and 17.25vth, respectively. As shown in Figure 9b, the shorter grid
has a much worse energy conservation, given by the relative error of the effec-
tive temperature. This is because the temperature is considerably larger than
the normalization temperature T0, leading to an under-resolved Maxwellian
tail in the latter half of the relaxation on the shorter grid. While this resolu-
tion effect is important when there is a substantial evolution in the distribu-
tion tail during the simulation, if the solution is already close to equilibrium
the error is less pronounced. However, care should always be taken that high
energy electrons in kinetic runs are adequately resolved.

0.0 21.8 43.6 65.3 87.1 108.9130.7152.4174.2196.0

E (eV)
10 12

10 10

10 8

10 6

10 4

10 2

100

f (
no

rm
al

ize
d

un
its

)

0.00t0
0.25t0
0.50t0
5.00t0
30.00t0
60.00t0
Maxwellian

(a) Relaxation of bump-on-tail distribution to a
Maxwellian

0 20 40 60
time (t0)

10 16

10 14

10 12

10 10

10 8

10 6

T

vmax = 11.27vth

vmax = 17.25vth

(b) Temperature error during bump-on-tail re-
laxation for two different grid lengths with the
same number of cells

Figure 9: f0 relaxation test under electron-electron collisions

The second collision operator to test is the electron-ion collision operator

43

for f0, which leads to temperature equilibration with fluid ions. To do this,
both the collision operator and a term that takes its energy moment are added
to the equations, to which an ion energy equation is now added, containing
the moment term. For more information on the electron-ion operator, see
Appendix A or references [17, 37]. To test the relaxation in the collisional
limit, electron temperature is initialized at Te = 8eV and the ion temperature
Ti = 4eV, with both densities set to the normalization density n0 = 1019m−3.
In this case, the equilibrium temperature is TA = 6eV, and we expect both
species to relax to that temperature. Following Shkarofsky[37], we define

ξ =
ni (Te − Ti)

neTe + niTi

, (35)

t′ei =
8(ne + ni)

3
√
π

Γei
me

mi

(
me

2kTA

)3/2

t, (36)

where Γei is the standard Coulomb collision constant. Taking the small mass
ratio assumption, the relaxation follows the simple differential equation

∂ξ

∂t′ei
= − ξ

(1 + ξ)3/2
, (37)

to which an analytical solution is readily obtained. This solution is compared
to the numerical result obtained with ReMKiT1D in Figure 10, showing
good agreement. The simulation is ran on the short grid from the previous
electron-electron collision example and with time steps ∆t = 0.1t0. As can be
seen from the absolute error of the solution in Figure 10b, the final electron
temperature is not exactly the same as the ion temperature, with the error
well below 1%. This is likely due to finite velocity grid effects.

To test the electron-ion operator for l = 1, responsible for momentum
exchange, the following setup was used. The electron distribution function
was initialized as a Maxwellian at the standard normalization density and
temperature (T0 = 10eV, n0 = 1019m−3), with the ions initialized at the same
density, and flowing at the speed ui = 10−4vth. The only terms solved were
the cold ion electron-ion collision operator terms for l = 1 (see Appendix A
or SOL-KiT), as well as terms in the ion momentum equations that represent
the friction moments of the collision operator terms. In the slow ion limit,
the distribution function has the following solution for its l = 1 harmonic

44

0 2 4 6
t ′ei

0.0

0.1

0.2

0.3

0.4

T[
10

eV
]

Analytical formula
Numerical result

(a) Comparison of e-i temperature relaxation to
analytical result

0 2 4 6
t ′ei

0.0012
0.0010
0.0008
0.0006
0.0004
0.0002
0.0000
0.0002

T e
rr
[1

0e
V]

(b) Over-relaxation in e-i collision test

Figure 10: Temperature equilibration test under electron-ion collisions - due to finite grid
effects

f1 = −ui
∂f0
∂v

, (38)

which is readily computed for a Maxwellian f0 and is compared to the numer-
ical simulation in Figure 11. The total momentum is conserved up to solver
tolerance, and the error in the equilibrium electron flow speed (expecting it
to equal ui) is 0.36% on the same grid as the previous electron-ion l = 0
operator test.

Higher harmonic Coulomb collision operators are tested in the Epperlein-
Short test to follow.

6.2.3. Epperlein-Short test

In order to fully test the electron-ion collision operators for higher har-
monics the well-known Epperlein-Short (ES)[15, 38] test has been conducted.
This entails a small electron temperature perturbation decay with electron-
electron and electron-ion collisions enabled. Through the decay of the pertur-
bation, the ratio of electron heat conductivity to the classical Braginskii[39]
value can be inferred, either through a direct comparison or through exam-
ining the decay rate. The initial conditions are set to

T = T0 + T1 sin(2πx/L),

45

5 10 15 20
v [vth]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

f 1
[n

or
m

al
ize

d
un

its
]

1e 5
Analytical formula
Numerical result

Figure 11: Comparison of numerical result of equilibrium f1 harmonics with slowly drifting
cold ions to analytical result.

where the perturbation wavelength can be controlled by modifying the do-
main length L. The used grid was periodic and contained Nx = 128 spatial
cells, Nv = 120 velocity cells with widths given by ∆v1 = 0.0307vth and
∆vi = 1.025∆vi−1. In this example, the normalization temperature was set
to T0 = 100eV, while other normalization quantities are set to the default
values. Density is set to the normalization value, T1 was set to 0.1eV, and ion
charge is left at 1. Following the approach used to benchmark SOL-KiT[26],
the ES test was performed for 4 values of lmax, and the results are plotted
against the same fit based on KIPP[7, 15] data in Figure 12. Here λB

ei can be

46

converted to normalized length just as with SOL-KiT - λB
ei = 3

√
π/(4

√
2)x0.

Generally good agreement is found with previous SOL-KiT benchmarking,
including the agreement with KIPP results, increasing confidence in the de-
fault collision operator implementation in the ReMKiT1D framework.

10 2 10 1 100

k B
ei

10 1

100

/
B

lmax = 1
lmax = 3
lmax = 5
lmax = 7
KIPP fit

Figure 12: Convergence of ES test with number of harmonics. The fit is based on fit data
from KIPP simulations published in [15] and previously used to test SOL-KiT.

6.3. Collisional-Radiative Model tests

In order to test the CRM capabilities a number of tests have been run for
both fluid and kinetic electrons. The implementation of inelastic Boltzmann
collision operators is adapted from SOL-KiT, and the reader is encouraged
to refer to the original SOL-KiT paper for the explanation of the particle and
energy conserving discretization. For the tests shown here, the atomic data
is in-built Janev[40] hydrogen data14, together with NIST[41] spontaneous

14This data is hard-coded in the Fortran source code as an option, but the user is free
to define their own data as well.

47

transmission rates.
Two fluid and one kinetic electron test have been performed. The fluid

tests were focused on detailed balance and the Saha-Boltzmann equilibrium,
as well as a qualitative comparison with existing kinetic electron simulations
performed by Colonna et al[42]. All tests are done in 0D (one spatial cell).
The velocity space used to calculate Maxwellian moments of the Janev cross-
sections in the fluid case is composed of Nv = 80 cells with grid widths going
from ∆v = 10−2vth to vth on a logarithmic grid.

For all tests the following hydrogen reactions have been included:

• Electron impact excitation and de-excitation

• Electron impact ionization

• Three-body recombination

with the evolution test in Figure 13b also including radiative de-excitation
and recombination.

For the two fluid tests the number of neutral states tracked was set to
25, including the ground state, while the electron temperature was set to
Te = 1.72T0 = 17.2eV (which corresponds to approximately 20000K). De-
fault normalization was used in all tests. For the Saha-Boltzmann test the
total density was set to n = n0 = 1019m−3, with the initial atomic state
distribution set to a Saha-Boltzmann distribution at half the electron tem-
perature. The final atomic state distribution after a large number of time
steps is shown in Figure 13a, showing equilibration at the expected Saha-
Boltzmann distribution with T = Te.

The second test was the qualitative replication of the t = 10−8s curve in
Figure 8 of Colonna et al. For this purpose, the total density is initialized to
n = 733893.9n0, loosely corresponding to 1 atmosphere of pressure at 1000K
and with an initial ionization degree of 10−3. The electron temperature and
initial atomic state distribution are set to the same as in the previous test.
Finally, the electron distribution is clamped to its initial value. The result,
shown in Figure 13b qualitatively agrees well with the corresponding curve in
Figure 8 in the original reference. Finally, in order to test the conservation
properties of the ReMKiT1D implementation of the SOL-KiT Boltzmann
collision integrals for inelastic electron-neutral collisions, a long simulation
was performed with 20 neutral states and with all non-radiative processes
included. The velocity grid used had Nv = 120 cells with widths given by

48

0 5 10
E [eV]

10 9

10 8

10 7

10 6

n i
/g

i

Saha-Boltzmann
ReMKiT1D

(a) Saha-Boltzmann equilibrium with
ReMKiT1D.

0 5 10
E [eV]

10 6

10 4

10 2

100

n i
/g

i

t = 0
t = 1.08e-08s

(b) Evolution of atomic state distribution for
fixed initial electron Maxwellian distribtution -
to be compared with Figure 8 in [42]

.

Figure 13: Fluid tests of Collisional-Radiative Model with hydrogen. Here ni/gi is the
population of state with principle quantum number i weighted by the state multiplicity
(gi ∝ i2 for hydrogen)

.

∆v1 = 0.01vth and ∆vi = 1.025∆vi−1. The electron temperature was nor-
malized to T0 = 5eV and its initial value was set to T0. The initial electron
density was set to 1019m−3 and the initial neutral ground state density was
set to 1018m−3, with no excited state populations. Only inelastic collision
integrals were included, allowing us to test the conservation properties isolat-
ing only these quantities. In order to isolate discretization errors from time
integration errors, a low non-linear iteration relative tolerance of 10−14 was
used. As shown in Figure 14, both the energy and density relative errors are
on the order of the iteration tolerance, even though the simulation was run
for a macroscopically significant time and even though the total number of
collision operators solved was above 400.

6.4. Parallel performance benchmarking

In order to test parallel performance scaling a number of tests have been
performed, mostly focusing on scaling in runs with kinetic electrons, as those
are both generally more expensive and conducive to scaling, as well as al-
lowing us to test the scaling behaviour of parallelization in the harmonic
direction. All performance scaling tests have been done on the ARCHER2
HPC machine.

49

0.0 0.1 0.2 0.3 0.4
t [ms]

0

1

2

3

4

1e 14
n
E

Figure 14: Conservation of heavy particles and total energy in kinetic electron CRM
simulation with 20 neutral states.

6.4.1. Epperlein-Short test - strong and weak scaling

A variant of the ES test used to verify collision operators has been used
to test both strong and weak scaling, as well as investigate basic properties
of harmonic parallelization available in ReMKiT1D.

For the strong scaling, the following parameters were used. The maximum
harmonic number was set to lmax = 7, with Nx = 128 spatial cells with width
∆x = 0.1x0, and the simulations were run for Nt time steps with length

50

∆t = 0.05t0. Other parameters were set to the same in the verification test.
Due to different behaviour of spatial and harmonic parallelization, strong
scaling was tested for 1,2, and 4 processes in the harmonic direction. The
results are shown in Figure 15a, where it can be seen that the runs with more
harmonic direction processes scale up to a higher number of cores. However,
it should be noted here that adding processors in the harmonic direction
by default produces a more difficult matrix solve problem due to higher
harmonics having shorter timescales. This leads to sub-matrices belonging
to processes responsible for high harmonic number naturally being stiffer,
leading to the 4 harmonic direction processor run with 256 cores failing due
to the solver. While this could potentially be solved by introducing more
involved preconditioning, that is beyond the scope of the present manuscript.

0 20 40 60 80 100 120
Cores

0

20

40

60

80

100

120

Sp
ee

du
p

mpiProcsH=1
mpiProcsH=2
mpiProcsH=4

(a) Strong scaling

0 100 200 300 400 500
Cores

0.6

0.7

0.8

0.9

1.0
Sc

al
in

g
ef

fic
ie

nc
y

mpiProcsH=1
mpiProcsH=2
mpiProcsH=4

(b) Weak scaling

Figure 15: Strong and weak scaling for the ES test. The different colours/markers repre-
sent different numbers of processes in the harmonic direction.

For the weak scaling test, the problem was modified in order to avoid
limitations due to the matrix solver. The total number of harmonics remains
8, but the length of the domain has been increased to L = 80x0, the time
step length reduced to 0.001t0 and the number of time steps increased to
Nt = 30000. This way the main cost in the code was not the matrix solve, but
the matrix construction. Scaling has been tested up to 4 ARCHER2 nodes,
totalling 512 cores. The number of spatial cells was varied from 8 to 1024 in
powers of 2, and the results are shown in Figure 15b for 1,2, and 4 processes
in the harmonics direction. What can be seen is that in this example, where
the code spends more resources on matrix construction instead of the solve,
adding processors in the harmonic direction always improves performance.

51

The relative speedup from adding harmonics is shown in Figure 16, where it
can be seen it is close to the ideal speedup, particularly for higher numbers
of processes in the spatial direction.

0 20 40 60 80 100 120
Cores in spatial direction

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

sp
ee

du
p

mpiProcsH=2
mpiProcsH=4

Figure 16: Relative speedup in the weak scaling set of runs from the ES test when pro-
cessors are added in the harmonic direction. The black dashed lines are ideal speedups.

6.4.2. SOL models - strong scaling

The final set of scaling tests is focused on testing more production-relevant
models of the Scrape-Off Layer. Details of the models are given in Appendix
A, and they will only briefly be summarized here. The models are loosely
based on equations previously used in SOL-KiT, with the major difference
being the use of the AMJUEL[43] database for effective hydrogen ionization
and recombination. The electrons are treated either as a fluid or kinetically,
and both options are tested here for scaling. The domain is reflective at the
left boundary and has a sheath boundary condition at the right boundary,
with a total domain length of L = 10m, with the spatial grid being finer closer

52

to the boundary. An effective heat flux of 3MW/m2 is injected over Lh =
3m upstream, while the ion temperature is assumed equal to the electron
temperature. Standard normalization is used. The initial condition is based
on a Two-Point Model solution[44], with the electron temperature upstream
set to Tu = 20eV and downstream to Td = 5eV, and the upstream density set
to nu = 8 ·1018m−3. Initial conditions assume no neutral particles, which are
injected through the recycling flux at the target. Neutrals are diffusive, while
the ion continuity and momentum equations are explicitly solved, including
charge-exchange interactions with the neutrals.

0 5 10 15 20 25 30
Cores

1

2

3

4

5

6

7

8

Sp
ee

du
p

Figure 17: Strong scaling with a fluid electron SOL model showing poor scaling due to
low number of degrees of freedom per processor

The fluid runs are set up with Nx = 512 spatial cells and run until a
time t = 9000t0, with time steps adaptively set to approximately 10% of the
shortest electron-ion collision time in the domain. Figure 17 shows the result
of the scaling test up to 32 cores for this fluid problem. The scaling falls
off very quickly due to limitations in the solver, with the simple explanation

53

being that there are not enough degrees of freedom per core for the matrix
solver to scale properly.

0 50 100 150 200 250
Cores

0

50

100

150

200

250

Sp
ee

du
p

mpiProcsH=1
mpiProcsH=2

(a) 256 spatial cells and 4 harmonics starting
with single core

0 200 400 600 800 1000
Cores

0

5

10

15

20

25

30

Sp
ee

du
p

mpiProcsH=1
mpiProcsH=2
mpiProcsH=4

(b) 512 spatial cells and 8 harmonics starting
with 32 cores

Figure 18: Strong scaling with a kinetic electron SOL model

For the kinetic electron test, two sets of runs were performed, a small scale
set with Nx = 256 and lmax = 3 going from a single to 256 MPI processes,
and a larger scale set with Nx = 512 and lmax = 7 going from 32 to 1024
MPI processes. Both sets were run up to t = 50t0 with time steps adaptively
set to 5% of the shortest electron-ion collision time. Nv = 80 velocity cells
are used, with cell widths ranging from 0.05vth to 0.4vth. The results of
these scaling tests are shown in Figure 18. Unlike the Epperlein-Short test,
adding processors in the harmonic direction for both sets of runs improves
the scaling. This is likely due to this example having a more involved set
of collision operators (due to the flowing ions), which shifts the cost of one
solver iteration towards matrix building and away from the actual PETSc
solver call. While Figure 18b seems to suggest a better-than-ideal speedup
at first glance, this is simply due to the fact that that set of runs did not go
down to serial due to the increased computational cost with 8 harmonics and
512 spatial cells, and the scaling seems to improve in the 64-512 core range
compared to the 1-64 range.

The results presented above showcase the increased scalability of kinetic
models compared to fluid electron models, especially with the novel harmonic
dimension domain decomposition. In the example above, moving from fluid
to kinetic, the number of degrees of freedom associated with implicit electron
variables goes from 5 per spatial cell to 320-640 per spatial cell (4-8 harmonics
with 80 velocity space cells).

54

7. Discussion

In this section the present limitations of the framework as well as potential
use cases and future extensions will briefly be discussed. The focus will both
be on the software design and numerical aspects, as well as on the achievable
modelling with the current version of the software.

The main limitation in ReMKiT1D is its dimensionality, and the 1D as-
pect is baked into many parts of the framework. Another limitation is the
hard-coded assumption that the distribution function is represented in a Leg-
endre/Spherical Harmonic basis. However, basic conceptualization work is
planned to explore the applicability of the Modeller-Model-Manipulator (3M)
pattern in a way that is agnostic to both numerical methods and problem
dimension. This would allow for solving the above two main limitations of
the framework.

Even in 1D, the framework’s main strength is its flexibility, allowing for
rapid iteration on models in the SOL. Examples of planned or ongoing ap-
plications include:

• Equilibrium and transient simulations of the SOL, akin to those pre-
viously performed using SOL-KiT[18], but with flexible neutral and
plasma models, as well as with multiple ion species, focusing on impu-
rity transport and electron kinetic effects

• Exploration of different effective collisional operators that could be used
in conjunction with both external and internal Collisional-Radiative
Models to include impurity collisional effects on the electron distribu-
tion function in runs with kinetic electrons - this includes both simpli-
fied and high fidelity molecular deuterium effects

• The calibration of reduced models of SOL equilibria and transients
against higher fidelity models both within ReMKiT1D and in other
codes

• Training data production for machine-learning applications in the SOL

In order to properly handle some of the above applications, extensions to
the framework might be required. Some of the extensions being planned or
considered as options are:

55

• Full support for explicit Term objects, as well as improved options for
explicit time-stepping

• Adaptive Boltzmann collision operator stencils that can handle reac-
tions with varying energy costs, such as those arising from CRMs

• Full support of Python level custom stencils for kinetic operators, al-
lowing users to generate their own stencils in velocity space (the archi-
tecture behind the custom fluid stencil can be adapted for this)

• Multi-linear interpolation support for atomic data for use in the in-built
CRM model-bound data

While flexibility and design scalability are the main priorities in ReMKiT1D
development, performance represents an increasingly important aspect, par-
ticularly since multi-node scalability has been demonstrated for kinetic elec-
tron simulations. In order to improve performance, the coupling with PETSc
should be explored in more detail, particularly in terms of preconditioners,
while PETSc’s GPU support might also be an option for more demanding
kinetic runs in the future. Other improvements in performance could be
bundled with the generalization of the 3M pattern, with a future version of
the code using more efficient data structures in terms of memory access.

Finally, the framework’s Python interface is under active development
with the aim to improve user-friendliness and introduce various quality-of-
life features.

8. Conclusion

We have presented the new ReMKiT1D framework for the construction
of 1D models of the tokamak Scrape-Off Layer. The framework was designed
with the goal of combining flexibility and user-friendliness with the capability
of handling electron kinetic effects coupled to multi-fluid models. In order
to reach this goal, the main body of the framework is written in Object-
Oriented Modern Fortran utilizing convenient abstractions, and coupling to
a high level Python interface through the use of JSON and HDF5 files.

The design philosophy of ReMKiT1D is laid out, together with a workflow
example demonstrating the use of the Python interface. Various verification
tests are presented, together with parallel performance tests, which are fo-
cused on the novel parallelization in distribution function harmonics. It is

56

shown that this approach works and provides a significant improvement in
the scalability of the framework when handling kinetic models. As for the ver-
ification tests, both individual operator tests as well as standard integrated
tests such as the method of manufactured solutions or the Epperlein-Short
test have been performed, showing expected agreement of the implemented
models.

Finally, ongoing and potential uses as well as future extensions of the
framework are discussed in detail, focusing both on the software engineering
aspects as well as model development using the framework.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

This work used the ARCHER2 UK National Supercomputing Service
(https://www.archer2.ac.uk). This work has been part-funded by the EP-
SRC Energy Programme [grant number EP/W006839/1]. To obtain further
information on the data and models underlying this paper please contact
PublicationsManager@ukaea.uk.

For the purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence (where permitted by UKRI, ‘Open
Government Licence’ or ‘Creative Commons Attribution No-derivatives (CC
BY-ND) licence’ may be stated instead) to any Author Accepted Manuscript
version arising.

Appendix A. The SOL-KiT-like SOL models

Some modifications have been performed on the previously reported stan-
dard SOL-KiT model[26, 18] for the purpose of testing the implementation
in ReMKiT1D, with one major modification being the use of AMJUEL[43]
rates instead of the SOL-KiT-style embedded CRM in order to reduce com-
putational costs significantly. The equations for both the fluid models and
the kinetic electron model will be presented in this appendix for complete-
ness, while the reader is directed to previous SOL-KiT publications for more
details.

57

Appendix A.1. Fluid equations

A minor difference between the SOL-KiT equations in previous publica-
tions and the equations implemented in the ReMKiT1D SOL-KiT-like models
is that the fluid equations in ReMKiT1D’s implementation are in conserva-
tive form, utilizing the capability to implicitly calculate variables with no
explicit time derivative in their equations to extract the temperatures and
heat fluxes in a way that keeps implicit stability.

The electron fluid equations are given by:

∂ne

∂t
+

∂Γe

∂x
= S, (A.1)

me
∂Γe

∂t
+

∂

∂x
(nekTe +meΓeue) + neeE = Rei, (A.2)

∂We

∂t
+

∂

∂x
[(We + nekTe)ue + qe] + ΓeeE = Qe, (A.3)

where Γe = neue and We = 3nekTe/2 + nemeu
2
e/2. In order to facilitate

future inclusions of multiple ion species the parallel transport coefficients for
qe = κe∇kTe and Rei = −0.71ne∇kTe are calculated taking the Braginskii
limit[39](me/mi → 0 and Z = 1) using expressions from Makarov et al[45].
The particle source S results solely from ionization and recombination, and
Qe = Qh + Qen, where Qh is the upstream heating term, and Qen is the
effective electron energy loss/source associated with ionization and recombi-
nation collisions. These are implemented using AMJUEL[43] rates H.4-2.1.5
and H.4-2.1.8 for the particle sources, and H.10-2.1.5 and H.10-2.1.8, to-
gether with the potential energy accounting for recombination (H.4-2.1.8.
with 13.6eV), are used for Qen. A specialized polynomial derivation is im-
plemented in the framework to handle fits such as those in the AMJUEL
database.

Note that Te and qe are actually treated as implicit variables using ReMKiT1D’s
capability to include temporally stationary variables in the implicit vector.
This ensures stability due to the implicit nature of the scheme is kept, even
if the plasma equations are solved in conservative form.

Ion equations are given as

58

∂ni

∂t
+

∂Γi

∂x
= S, (A.4)

mi
∂Γi

∂t
+

∂

∂x
(nikTe +meΓeue)− nieE = −Rei +RCX , (A.5)

where the assumption Ti = Te is taken as in the standard SOL-KiT model,
and RCX = −ΓinnKCX is the charge-exchange friction, with KCX using
AMJUEL rate H.2-3.1.8, scaling the temperature dependence by 1/2 to ac-
count for tracking deuterium instead of hydrogen.

The neutrals are diffusive with their density evolved according to

∂nn

∂t
=

∂

∂x

(
Dn

∂nn

∂x

)
− S, (A.6)

where the diffusion coefficient is set to Dn = k
√
TnTe/(miKCXni), with the

neutrals assumed to have Tn = 3eV, corresponding to the Franck-Condon
dissociation energy. The

√
Te factor comes from the ion thermal velocity,

leading to the neutrals effectively having a diffusive temperature correspond-
ing to a geometric mean between the Franck-Condon and ion temperatures.

Boundary conditions are set to reflective upstream, and sheath boundary
conditions at the target, with ue = ui = cs =

√
2kTe/mi set by the Bohm

condition and qe = γeΓekTe, where the electron sheath heat transmission
coefficient is approximately 4.86. Ions and electrons leaving the plasma are
recombined on the surface and returned with 100% recycling. Finally, the
electric field is solved for by implicitly solving

∂E

∂t
= − j

ϵ0
, (A.7)

where j = e(Γi − Γe), which, together with the two momentum equations
acts like a current constraint and ensures quasi-neutrality.

Appendix A.2. Electron kinetic equations

When electrons are treated kinetically the electron kinetic equations are
solved for the evolution of a set number of distribution function harmonics
instead of the three electron moment equations in the previous section. The
equations have been discussed in detail in the context of SOL-KiT[26, 18],
and will not be repeated here for the sake of brevity. A brief description
of the terms that remain unchanged from the SOL-KiT implementation will

59

be given, with the effective cooling operators for use with AMJUEL rates
introduced in more detail.

The terms implemented from SOL-KiT are:

• Spatial and velocity space advection (Vlasov) terms

• Coulomb collision terms for electron-electron collisions for all harmon-
ics15

• Coulomb collision terms for electron-ion collisions for cold flowing ions
for harmonics with l > 0

• The logical boundary condition[26, 2] at the sheath using the previously
developed harmonic formulation

• Diffusive heating terms upstream

• Secondary electron source/sink at low electron energy due to ioniza-
tion/recombination

• Terms coupling the kinetic operators with the ion fluid equation through
taking moments (e.g. Rei)

The only missing effect is the electron energy loss/gain terms due to ion-
ization/recombination. These would normally be included as part of the
Boltzmann collision operator for electron-neutral collisions, but the imple-
mentation used here has instead used effective rates from AMJUEL, so an
effective cooling/heating operator needs to be implemented. The simplest im-
plementation is a drag-like operator on f0, which, given an inelastic electron-
neutral process with energy cost ϵ and rate K, can be written as(

∂f0
∂t

)
inel

= −Kϵnn

mev2
∂

∂v
(vf0) , (A.8)

which can be shown to reproduce the energy loss rate using partial integration
on taking the second moment. However, a simple implementation will not
preserve this analytical property, so the following velocity space discretization
(in standard normalization) is used

15Here the ability to define single harmonic variables in model-bound data comes in
handy to implement Chang-Cooper-Langdon terms[33]

60

(
∂f0
∂t

)
inel

= −Kϵnn

v2k

Ckf0,k − Ck−1f0,k−1

∆vk
, (A.9)

where now Ck = v2k∆vk/(v
2
k+1 − v2k) with boundary conditions C0 = 0 and

CNv = ∆vNv . It is easy to show that this form gives the correct energy
source. However, the number of particles is not necessarily conserved to
machine precision due to the right boundary condition on CNv , which can be
ensured by setting CNv = 0, instead moving the error to the energy source. In
the tests presented here this was not done since the spurious density source
is proportional to the value of the distribution function in the last cell, which
is essentially 0. Either way, if the distribution function tail is well resolved
this error will never play a role.

Appendix B. Implicit BDE integrator with fixed-point iterations

While the general approach for the Backward Difference Euler (BDE)
integrator in ReMKiT1D borrows heavily from SOL-KiT[26], in the interest
of clarity, it is useful to have a summary of the method here, as well as
how time step length is controlled and how the variable data is stored in the
implicit vector passed to PETSc matrix solvers.

Firstly, the variable placement in the implicit variable vector is done in
the following way. Given a list of implicit variables vn, which are either
fluid (depend only on the spatial index) or distribution (depend on a spatial,
harmonic, and velocity space indices) variables they are flattened and ordered
in the implicit vector F as follows

F⃗ =


F⃗1

F⃗2
...

F⃗Nx

 , (B.1)

where Fi is the sub-vector corresponding to spatial index i and is given by,
for example,

61

F⃗i =


v1,i

v⃗2,i(h, v)
...

vN,i

 , (B.2)

N is the total number of implicit variables, and where v⃗2,i is a distribution
variable vector at spatial index i, which is further flattened first in the har-
monic index h and the velocity space index v

v⃗2,i(h, v) =



v2,i,1,1
v2,i,1,2

...
v2,i,1,Nv

v2,i,2,1
...

v2,i,Nh,Nv


, (B.3)

where Nh and Nv are the total number of distribution function harmonics
and the number of velocity space cells.

Collating all individual term matrices, as presented in Section 3, one
arrives at the global matrix equation

dF⃗

dt
= M(F⃗) · F⃗ , (B.4)

where now M(F⃗) is in general a non-linear global PETSc matrix. The im-
plicit BDE method with fixed-point iterations then discretizes the solution
in time as

F⃗ i+1 − F⃗ i+1

∆ti
= M(F⃗ i∗) · F⃗ i+1, (B.5)

where now i∗ represents the value at the previous non-linear iteration of the
solver. The integrator converges based on a set of convergence variables and
a relative or absolute non-linear iteration error16. Finally, the global (at

16Usually based on L2 norm of spatially-local values or largest L1 norm

62

the Composite Integrator level) time step length ∆ti can be controlled
through the application of a TimestepController, which scales the time
step based on some spatially global criterion. An example is scaling an initial
time step based on collisionality by multiplying it by the smallest value of
(normalized) T 3/2/n, making sure that the shortest collisional times in the
domain are always resolved. This is used in the SOL-KiT-like models in
Appendix A.

Finally, the BDE integrator in ReMKiT1D is capable of recovering from
failed matrix solves and cases where non-linear iterations fail by subdividing
its time-step into smaller steps when a failure is detected. While crude, this
method enables convergence when transient effects might momentarily make
the matrix stiffer than expected. This integrator recovery is in addition to
any time-step control defined at the global level.

References

[1] D. Tskhakaya, On Recent Massively Parallelized PIC Simulations of the
SOL, Contributions to Plasma Physics 52 (2012) 490–499.

[2] R. J. Procassini, D. A. Knoll, Kinetically motivated boundary condi-
tions for fluid models of scrape-off layer transport, Journal of Nuclear
Materials 196-198 (1992) 363–368.

[3] B. D. Dudson, J. Allen, T. Body, B. Chapman, C. Lau, L. Townley,
D. Moulton, J. Harrison, B. Lipschultz, The role of particle, energy and
momentum losses in 1D simulations of divertor detachment, Plasma
Physics and Controlled Fusion 61 (2019).

[4] G. L. Derks, J. P. K. W. Frankemölle, J. T. W. Koenders, M. van Berkel,
H. Reimerdes, M. Wensing, E. Westerhof, Benchmark of a self-consistent
dynamic 1D divertor model DIV1D using the 2D SOLPS-ITER code,
Plasma Physics and Controlled Fusion 64 (2022) 125013.

[5] E. Havĺıčková, W. Fundamenski, F. Subba, D. Coster, M. Wischmeier,
G. Fishpool, Benchmarking of a 1D scrape-off layer code SOLF1D with
SOLPS and its use in modelling long-legged divertors, Plasma Physics
and Controlled Fusion 55 (2013).

[6] O. Batishchev, M. M. Shoucri, A. A. Batishcheva, I. P. Shkarofsky, Fully
kinetic simulation of coupled plasma and neutral particles in scrape-off

63

layer plasmas of fusion devices, Journal of Plasma Physics 61 (1999)
347–364.

[7] A. V. Chankin, D. P. Coster, Benchmarks of KIPP: Vlasov-
Fokker-Planck Code for Parallel Plasma Transport in the SOL
and Divertor, Contributions to Plasma Physics 54 (2014) 493–497.
doi:10.1002/ctpp.201410047.

[8] M. Zhao, A. Chankin, D. Coster, An iterative algorithm of coupling
the Kinetic Code for Plasma Periphery (KIPP) with SOLPS, Computer
Physics Communications 235 (2019) 133–152.
URL https://doi.org/10.1016/j.cpc.2018.09.012

[9] K. Kupfer, R. W. Harvey, O. Sauter, M. J. Schaffer, G. M. Staebler,
Kinetic modeling of scrape-off layer plasmas, Physics of Plasmas 3 (1996)
3644–3652. doi:10.1063/1.871957.

[10] S. I. Krasheninnikov, A. S. Kukushkin, Physics of ultimate detachment
of a tokamak divertor plasma, Journal of Plasma Physics 83 (2017)
155830501.

[11] P. C. Stangeby, Basic physical processes and reduced models for plasma
detachment, Plasma Physics and Controlled Fusion 60 (2018).

[12] D. Tskhakaya, F. Subba, X. Bonnin, D. P. Coster, W. Fundamenski,
R. A. Pitts, On kinetic effects during parallel transport in the sol, Con-
tributions to Plasma Physics 48 (2008) 89–93.

[13] I. Vasileska, X. Bonnin, L. Kos, Kinetic-fluid coupling simulations of
ITER Type I ELM, Fusion Engineering and Design 168 (2021) 112407.
URL https://doi.org/10.1016/j.fusengdes.2021.112407

[14] W. Fundamenski, Parallel heat flux limits in the tokamak scrape-off
layer, Plasma Physics and Controlled Fusion 47 (2005).

[15] J. P. Brodrick, R. J. Kingham, M. M. Marinak, M. V. Patel, A. V.
Chankin, J. T. Omotani, M. V. Umansky, D. D. Sorbo, B. Dudson,
J. T. Parker, G. D. Kerbel, M. Sherlock, C. P. Ridgers, Testing non-
local models of electron thermal conduction for magnetic and inertial
confinement fusion applications, Physics of Plasmas 24 (2017) 092309.

64

[16] A. V. Chankin, G. Corrigan, A. E. Jaervinen, Assessment of the strength
of kinetic effects of parallel electron transport in the SOL and divertor
of JET high radiative H-mode plasmas using EDGE2D-EIRENE and
KIPP codes, Plasma Physics and Controlled Fusion 60 (2018).

[17] D. Power, S. Mijin, F. Militello, R. J. Kingham, Ion–electron energy
transfer in kinetic and fluid modelling of the tokamak scrape-off layer,
European Physical Journal Plus 136 (11 2021).

[18] S. Mijin, F. Militello, S. Newton, J. Omotani, R. J. Kingham, Kinetic
and fluid simulations of parallel electron transport during equilibria and
transients in the scrape-off layer, Plasma Physics and Controlled Fusion
62 (9) (2020) 095004.

[19] D. R. Bates, A. E. Kingston, R. W. P. McWhirter, Recombination be-
tween electrons and atomic ions, I. Optically thin plasmas, Proceedings
of the Royal Society of London. Series A. Mathematical and Physical
Sciences 267 (1962) 297–312.

[20] D. R. Bates, A. E. Kingston, Collisional-radiative recombination at low
temperatures and densities, PROC. PHYS. SOC 83 (1964).

[21] K. Sawada, T. Fujimoto, Effective ionization and dissociation rate coef-
ficients of molecular hydrogen in plasma, Journal of Applied Physics 78
(1995) 2913–2924.

[22] H. P. Summers, W. J. Dickson, M. G. O’Mullane, N. R. Badnell, A. D.
Whiteford, D. H. Brooks, J. Lang, S. D. Loch, D. C. Griffin, Ionization
state, excited populations and emission of impurities in dynamic finite
density plasmas: I. The generalized collisional-radiative model for light
elements, Plasma Physics and Controlled Fusion 48 (2006) 263–293.

[23] D. Wünderlich, U. Fantz, Evaluation of state-resolved reaction proba-
bilities and their application in population models for He, H, and H2,
Atoms 4 (12 2016).

[24] P. T. Greenland, Collisional – radiative models with molecules, Proc. R.
Soc. Lond. A 457 (2001) 1821–1839.

65

[25] S. Mijin, F. Militello, S. Newton, J. Omotani, R. J. Kingham, Kinetic
effects in parallel electron energy transport channels in the scrape-off
layer, Plasma Physics and Controlled Fusion 62 (10 2020).

[26] S. Mijin, A. Antony, F. Militello, SOL-KiT-Fully implicit code for ki-
netic simulation of parallel electron transport in the tokamak Scrape-Off
Layer, Computer Physics Communications 258 (2021) 107600.

[27] R. J. Kingham, A. R. Bell, An implicit Vlasov-Fokker-Planck code to
model non-local electron transport in 2-D with magnetic fields, Vol. 194,
2004.

[28] A. R. Bell, A. P. Robinson, M. Sherlock, R. J. Kingham, W. Rozmus,
Fast electron transport in laser-produced plasmas and the kalos code
for solution of the vlasov-fokker-planck equation, Plasma Physics and
Controlled Fusion 48 (2006).

[29] W. A. Hornsby, A. R. Bell, R. J. Kingham, R. O. Dendy, A code to
solve the Vlasov–Fokker–Planck equation applied to particle transport
in magnetic turbulence, Plasma Physics and Controlled Fusion 52 (7)
(2010) 75011.

[30] M. Tzoufras, A. R. Bell, P. A. Norreys, F. S. Tsung, A vlasov-fokker-
planck code for high energy density physics, Journal of Computational
Physics 230 (2011) 6475–6494.

[31] D. Rouson, J. Xia, X. Xu, Scientific Software Design: The Object-
Oriented Way, Cambridge University Press, 2011.

[32] S. Balay, W. Gropp, L. C. McInnes, B. F. Smith, Petsc, the portable, ex-
tensible toolkit for scientific computation, Argonne National Laboratory
2 (17) (1998).

[33] E. M. Epperlein, Implicit and conservative diference scheme for the
fokker-planck equation (1994).

[34] J. Williams, JSON-Fortran, https://github.com/jacobwilliams/json-fortran
Last accessed 5 May 2023.

[35] J. D. Huba, Nrl plasma formulary 19 (2013).

66

[36] pFUnit, https://github.com/Goddard-Fortran-Ecosystem/pFUnit

Last accessed 5 May 2023.

[37] I. Shkarofsky, T. Johnston, M. Bachynski, The Particle Kinetics of the
Plasmas, Addison-Wesley Publishing Company, 1966.

[38] E. M. Epperlein, Kinetic theory of laser filamentation in plasmas, Phys-
ical Review Letters 65 (1990) 2145–2148.

[39] S. I. Braginskii, Transport processes in a plasma (1965).

[40] R. K. Janev, U. Samm, D. Reiter, Collision processes in low-temperature
hydrogen plasmas, 2003.

[41] A. Kramida, Y. Ralchenko, J. Reader, N. A. Team, NIST Atomic Spec-
tra Database (ver. 5.9), [Online], https://physics.nist.gov/asd

National Institute of Standards and Technology, Gaithersburg, MD.
DOI: https://doi.org/10.18434/T4W30F. Last accessed 13 May 2022
(2021).

[42] G. Colonna, L. D. Pietanza, M. Capitelli, Coupled solution of a
time-dependent collisional-radiative model and boltzmann equation for
atomic hydrogen plasmas: Possible implications with libs plasmas, Spec-
trochimica Acta - Part B Atomic Spectroscopy 56 (2001) 587–598.
doi:10.1016/S0584-8547(01)00223-3.

[43] D. Reiter, The data file AMJUEL: Addi-
tional Atomic and Molecular Data for EIRENE,
https://www.eirene.de/Documentation/amjuel.pdf Last accessed 5
May 2023 (2020).

[44] P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Vol. 43,
2000.

[45] S. O. Makarov, D. P. Coster, V. A. Rozhansky, A. A. Stepanenko, V. M.
Zhdanov, E. G. Kaveeva, I. Y. Senichenkov, X. Bonnin, Equations and
improved coefficients for parallel transport in multicomponent collisional
plasmas: Method and application for tokamak modeling, Physics of
Plasmas 28 (2021).

67

